1
|
Liu AY. Prostate cancer research: tools, cell types, and molecular targets. Front Oncol 2024; 14:1321694. [PMID: 38595814 PMCID: PMC11002103 DOI: 10.3389/fonc.2024.1321694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 02/27/2024] [Indexed: 04/11/2024] Open
Abstract
Multiple cancer cell types are found in prostate tumors. They are either luminal-like adenocarcinoma or less luminal-like and more stem-like non-adenocarcinoma and small cell carcinoma. These types are lineage related through differentiation. Loss of cancer differentiation from luminal-like to stem-like is mediated by the activation of stem cell transcription factors (scTF) such as LIN28A, NANOG, POU5F1 and SOX2. scTF expression leads to down-regulation of β2-microglobulin (B2M). Thus, cancer cells can change from the scT F ˜ B 2 M hi phenotype of differentiated to that of scT F ˙ B 2 M lo of dedifferentiated in the disease course. In development, epithelial cell differentiation is induced by stromal signaling and cell contact. One of the stromal factors specific to prostate encodes proenkephalin (PENK). PENK can down-regulate scTF and up-regulate B2M in stem-like small cell carcinoma LuCaP 145.1 cells indicative of exit from the stem state and differentiation. In fact, prostate cancer cells can be made to undergo dedifferentiation or reprogramming by scTF transfection and then to differentiate by PENK transfection. Therapies need to be designed for treating the different cancer cell types. Extracellular anterior gradient 2 (eAGR2) is an adenocarcinoma antigen associated with cancer differentiation that can be targeted by antibodies to lyse tumor cells with immune system components. eAGR2 is specific to cancer as normal cells express only the intracellular form (iAGR2). For AGR2-negative stem-like cancer cells, factors like PENK that can target scTF could be effective in differentiation therapy.
Collapse
Affiliation(s)
- Alvin Y. Liu
- Department of Urology, Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, United States
| |
Collapse
|
2
|
Lu Q, Wang J, Tao Y, Zhong J, Zhang Z, Feng C, Wang X, Li T, He R, Wang Q, Xie Y. Small Cajal Body-Specific RNA12 Promotes Carcinogenesis through Modulating Extracellular Matrix Signaling in Bladder Cancer. Cancers (Basel) 2024; 16:483. [PMID: 38339238 PMCID: PMC10854576 DOI: 10.3390/cancers16030483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/15/2024] [Accepted: 01/19/2024] [Indexed: 02/12/2024] Open
Abstract
Background: Small Cajal body-specific RNAs (scaRNAs) are a specific subset of small nucleolar RNAs (snoRNAs) that have recently emerged as pivotal contributors in diverse physiological and pathological processes. However, their defined roles in carcinogenesis remain largely elusive. This study aims to explore the potential function and mechanism of SCARNA12 in bladder cancer (BLCA) and to provide a theoretical basis for further investigations into the biological functionalities of scaRNAs. Materials and Methods: TCGA, GEO and GTEx data sets were used to analyze the expression of SCARNA12 and its clinicopathological significance in BLCA. Quantitative real-time PCR (qPCR) and in situ hybridization were applied to validate the expression of SCARNA12 in both BLCA cell lines and tissues. RNA sequencing (RNA-seq) combined with bioinformatics analyses were conducted to reveal the changes in gene expression patterns and functional pathways in BLCA patients with different expressions of SCARNA12 and T24 cell lines upon SCARNA12 knockdown. Single-cell mass cytometry (CyTOF) was then used to evaluate the tumor-related cell cluster affected by SCARNA12. Moreover, SCARNA12 was stably knocked down in T24 and UMUC3 cell lines by lentivirus-mediated CRISPR/Cas9 approach. The biological effects of SCARNA12 on the proliferation, clonogenic, migration, invasion, cell apoptosis, cell cycle, and tumor growth were assessed by in vitro MTT, colony formation, wound healing, transwell, flow cytometry assays, and in vivo nude mice xenograft models, respectively. Finally, a chromatin isolation by RNA purification (ChIRP) experiment was further conducted to delineate the potential mechanisms of SCARNA12 in BLCA. Results: The expression of SCARNA12 was significantly up-regulated in both BLCA tissues and cell lines. RNA-seq data elucidated that SCARAN12 may play a potential role in cell adhesion and extracellular matrix (ECM) related signaling pathways. CyTOF results further showed that an ECM-related cell cluster with vimentin+, CD13+, CD44+, and CD47+ was enriched in BLCA patients with high SCARNA12 expression. Additionally, SCARNA12 knockdown significantly inhibited the proliferation, colony formation, migration, and invasion abilities in T24 and UMUC3 cell lines. SCARNA12 knockdown prompted cell arrest in the G0/G1 and G2/M phase and promoted apoptosis in T24 and UMUC3 cell lines. Furthermore, SCARNA12 knockdown could suppress the in vivo tumor growth in nude mice. A ChIRP experiment further suggested that SCARNA12 may combine transcription factors H2AFZ to modulate the transcription program and then affect BLCA progression. Conclusions: Our study is the first to propose aberrant alteration of SCARNA12 and elucidate its potential oncogenic roles in BLCA via the modulation of ECM signaling. The interaction of SCARNA12 with the transcriptional factor H2AFZ emerges as a key contributor to the carcinogenesis and progression of BLCA. These findings suggest SCARNA12 may serve as a diagnostic biomarker and potential therapeutic target for the treatment of BLCA.
Collapse
Affiliation(s)
- Qinchen Lu
- Department of Urology, Guangxi Medical University Cancer Hospital, Nanning 530021, China; (Q.L.); (J.W.)
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Medical University, Nanning 530021, China; (Y.T.); (J.Z.); (C.F.); (X.W.)
- Collaborative Innovation Centre of Regenerative Medicine and Medical Bioresource Development and Application Co-Constructed by the Province and Ministry, Guangxi Medical University, Nanning 530021, China
| | - Jiandong Wang
- Department of Urology, Guangxi Medical University Cancer Hospital, Nanning 530021, China; (Q.L.); (J.W.)
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Medical University, Nanning 530021, China; (Y.T.); (J.Z.); (C.F.); (X.W.)
- Collaborative Innovation Centre of Regenerative Medicine and Medical Bioresource Development and Application Co-Constructed by the Province and Ministry, Guangxi Medical University, Nanning 530021, China
| | - Yuting Tao
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Medical University, Nanning 530021, China; (Y.T.); (J.Z.); (C.F.); (X.W.)
| | - Jialing Zhong
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Medical University, Nanning 530021, China; (Y.T.); (J.Z.); (C.F.); (X.W.)
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Zhao Zhang
- Department of Molecular Medicine, Mays Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA;
| | - Chao Feng
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Medical University, Nanning 530021, China; (Y.T.); (J.Z.); (C.F.); (X.W.)
| | - Xi Wang
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Medical University, Nanning 530021, China; (Y.T.); (J.Z.); (C.F.); (X.W.)
| | - Tianyu Li
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China;
| | - Rongquan He
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China;
| | - Qiuyan Wang
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Medical University, Nanning 530021, China; (Y.T.); (J.Z.); (C.F.); (X.W.)
| | - Yuanliang Xie
- Department of Urology, Guangxi Medical University Cancer Hospital, Nanning 530021, China; (Q.L.); (J.W.)
| |
Collapse
|
3
|
Chen LC, Huang SP, Shih CT, Li CY, Chen YT, Huang CY, Yu CC, Lin VC, Lee CH, Geng JH, Bao BY. ATP8B1: A prognostic prostate cancer biomarker identified via genetic analysis. Prostate 2023; 83:602-611. [PMID: 36794287 DOI: 10.1002/pros.24495] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 01/10/2023] [Accepted: 01/23/2023] [Indexed: 02/17/2023]
Abstract
BACKGROUND Controlling the asymmetric distribution of phospholipids across biological membranes plays a pivotal role in the life cycle of cells; one of the most important contributors that maintain this lipid asymmetry are phospholipid-transporting adenosine triphosphatases (ATPases). Although sufficient information regarding their association with cancer exists, there is limited evidence linking the genetic variants of phospholipid-transporting ATPase family genes to prostate cancer in humans. METHODS In this study, we investigated the association of 222 haplotype-tagging single-nucleotide polymorphisms (SNPs) in eight phospholipid-transporting ATPase genes with cancer-specific survival (CSS) and overall survival (OS) of 630 patients treated with androgen-deprivation therapy (ADT) for prostate cancer. RESULTS After multivariate Cox regression analysis and multiple testing correction, we found that ATP8B1 rs7239484 was remarkably associated with CSS and OS after ADT. A pooled analysis of multiple independent gene-expression datasets demonstrated that ATP8B1 was under-expressed in tumor tissues and that a higher ATP8B1 expression was associated with a better patient prognosis. Moreover, we established highly invasive sublines using two human prostate cancer cell lines to mimic cancer progression traits in vitro. The expression of ATP8B1 was consistently downregulated in both highly invasive sublines. CONCLUSION Our study indicates that rs7239484 is a prognostic factor for patients treated with ADT and that ATP8B1 can potentially attenuate prostate cancer progression.
Collapse
Affiliation(s)
- Lih-Chyang Chen
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan
| | - Shu-Pin Huang
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Ph.D. Program in Environmental and Occupational Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Chieh-Tien Shih
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan
| | - Chia-Yang Li
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Yei-Tsung Chen
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chao-Yuan Huang
- Department of Urology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chia-Cheng Yu
- Division of Urology, Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
- Department of Urology, School of Medicine, National Yang-Ming University, Taipei, Taiwan
- Department of Pharmacy, Tajen University, Pingtung, Taiwan
| | - Victor C Lin
- Department of Urology, E-Da Hospital, Kaohsiung, Taiwan
- School of Medicine for International Students, I-Shou University, Kaohsiung, Taiwan
| | - Cheng-Hsueh Lee
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Jiun-Hung Geng
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Department of Urology, Kaohsiung Municipal Hsiao-Kang Hospital, Kaohsiung, Taiwan
| | - Bo-Ying Bao
- Department of Pharmacy, China Medical University, Taichung, Taiwan
- Sex Hormone Research Center, China Medical University Hospital, Taichung, Taiwan
- Department of Nursing, Asia University, Taichung, Taiwan
| |
Collapse
|
4
|
Jafari NV, Rohn JL. An immunoresponsive three-dimensional urine-tolerant human urothelial model to study urinary tract infection. Front Cell Infect Microbiol 2023; 13:1128132. [PMID: 37051302 PMCID: PMC10083561 DOI: 10.3389/fcimb.2023.1128132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/01/2023] [Indexed: 03/29/2023] Open
Abstract
IntroductionMurine models of urinary tract infection (UTI) have improved our understanding of host-pathogen interactions. However, given differences between rodent and human bladders which may modulate host and bacterial response, including certain biomarkers, urothelial thickness and the concentration of urine, the development of new human-based models is important to complement mouse studies and to provide a more complete picture of UTI in patients.MethodsWe originally developed a human urothelial three-dimensional (3D) model which was urine tolerant and demonstrated several urothelial biomarkers, but it only achieved human thickness in heterogenous, multi-layered zones and did not demonstrate the comprehensive differentiation status needed to achieve barrier function. We optimised this model by altering a variety of conditions and validated it with microscopy, flow cytometry, transepithelial electrical resistance and FITC-dextran permeability assays to confirm tissue architecture, barrier integrity and response to bacterial infection.ResultsWe achieved an improved 3D urine-tolerant human urothelial model (3D-UHU), which after 18-20 days of growth, stratified uniformly to 7-8 layers comprised of the three expected, distinct human cell types. The apical surface differentiated into large, CD227+ umbrella-like cells expressing uroplakin-1A, II, III, and cytokeratin 20, all of which are important terminal differentiation markers, and a glycosaminoglycan layer. Below this layer, several layers of intermediate cells were present, with a single underlying layer of CD271+ basal cells. The apical surface also expressed E-cadherin, ZO-1, claudin-1 and -3, and the model possessed good barrier function. Infection with both Gram-negative and Gram-positive bacterial classes elicited elevated levels of pro-inflammatory cytokines and chemokines characteristic of urinary tract infection in humans and caused a decrease in barrier function.DiscussionTaken together, 3D-UHU holds promise for studying host-pathogen interactions and host urothelial immune response.
Collapse
|
5
|
Chianese U, Papulino C, Ali A, Ciardiello F, Cappabianca S, Altucci L, Carafa V, Benedetti R. FASN multi-omic characterization reveals metabolic heterogeneity in pancreatic and prostate adenocarcinoma. J Transl Med 2023; 21:32. [PMID: 36650542 PMCID: PMC9847120 DOI: 10.1186/s12967-023-03874-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/02/2023] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) and prostate cancer (PCa) are among the most prevalent malignant tumors worldwide. There is now a comprehensive understanding of metabolic reprogramming as a hallmark of cancer. Fatty acid synthase (FASN) is a key regulator of the lipid metabolic network, providing energy to favor tumor proliferation and development. Whereas the biological role of FASN is known, its response and sensitivity to inhibition have not yet been fully established in these two cancer settings. METHODS To evaluate the association between FASN expression, methylation, prognosis, and mutational profile in PDAC and PCa, we interrogated public databases and surveyed online platforms using TCGA data. The STRING database was used to investigate FASN interactors, and the Gene Set Enrichment Analysis platform Reactome database was used to perform an enrichment analysis using data from RNA sequencing public databases of PDAC and PCa. In vitro models using PDAC and PCa cell lines were used to corroborate the expression of FASN, as shown by Western blot, and the effects of FASN inhibition on cell proliferation/cell cycle progression and mitochondrial respiration were investigated with MTT, colony formation assay, cell cycle analysis and MitoStress Test. RESULTS The expression of FASN was not modulated in PDAC compared to normal pancreatic tissues, while it was overexpressed in PCa, which also displayed a different level of promoter methylation. Based on tumor grade, FASN expression decreased in advanced stages of PDAC, but increased in PCa. A low incidence of FASN mutations was found for both tumors. FASN was overexpressed in PCa, despite not reaching statistical significance, and was associated with a worse prognosis than in PDAC. The biological role of FASN interactors correlated with lipid metabolism, and GSEA indicated that lipid-mediated mitochondrial respiration was enriched in PCa. Following validation of FASN overexpression in PCa compared to PDAC in vitro, we tested TVB-2640 as a FASN inhibitor. PCa proliferation arrest was modulated by FASN inhibition in a dose- and time-dependent manner, whereas PDAC proliferation was not altered. In line with this finding, mitochondrial respiration was found to be more affected in PCa than in PDAC. FASN inhibition interfered with metabolic signaling causing lipid accumulation and affecting cell viability with an impact on the replicative processes. CONCLUSIONS FASN exhibited differential expression patterns in PDAC and PCa, suggesting a different evolution during cancer progression. This was corroborated by the fact that both tumors responded differently to FASN inhibition in terms of proliferative potential and mitochondrial respiration, indicating that its use should reflect context specificity.
Collapse
Affiliation(s)
- Ugo Chianese
- grid.9841.40000 0001 2200 8888Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, L. De Crecchio 7, 80138 Naples, Italy
| | - Chiara Papulino
- grid.9841.40000 0001 2200 8888Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, L. De Crecchio 7, 80138 Naples, Italy
| | - Ahmad Ali
- grid.9841.40000 0001 2200 8888Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, L. De Crecchio 7, 80138 Naples, Italy
| | - Fortunato Ciardiello
- grid.9841.40000 0001 2200 8888Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, L. De Crecchio 7, 80138 Naples, Italy
| | - Salvatore Cappabianca
- grid.9841.40000 0001 2200 8888Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, L. De Crecchio 7, 80138 Naples, Italy
| | - Lucia Altucci
- grid.9841.40000 0001 2200 8888Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, L. De Crecchio 7, 80138 Naples, Italy ,grid.428067.f0000 0004 4674 1402Biogem Institute of Molecular and Genetic Biology, 83031 Ariano Irpino, Italy ,grid.429047.c0000 0004 6477 0469IEOS, Institute for Endocrinology and Oncology “Gaetano Salvatore”, 80131 Naples, Italy
| | - Vincenzo Carafa
- grid.9841.40000 0001 2200 8888Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, L. De Crecchio 7, 80138 Naples, Italy ,grid.428067.f0000 0004 4674 1402Biogem Institute of Molecular and Genetic Biology, 83031 Ariano Irpino, Italy
| | - Rosaria Benedetti
- grid.9841.40000 0001 2200 8888Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, L. De Crecchio 7, 80138 Naples, Italy
| |
Collapse
|
6
|
Elbadawy M, Fujisaka K, Yamamoto H, Tsunedomi R, Nagano H, Ayame H, Ishihara Y, Mori T, Azakami D, Uchide T, Fukushima R, Abugomaa A, Kaneda M, Yamawaki H, Shinohara Y, Omatsu T, Mizutani T, Usui T, Sasaki K. Establishment of an experimental model of normal dog bladder organoid using a three-dimensional culture method. Biomed Pharmacother 2022; 151:113105. [PMID: 35605292 DOI: 10.1016/j.biopha.2022.113105] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 04/30/2022] [Accepted: 05/10/2022] [Indexed: 11/30/2022] Open
Abstract
Dog bladder cancer (BC) is mostly muscle-invasive (MI) with poor prognosis, and its pathogenesis is close to human MIBC. Three-dimensional (3D) organoid culture ensures novel knowledge on cancer diseases including BC. Recently, we have established dog BC organoids (BCO) using their urine samples. BCO recapitulated the epithelial structures, characteristics, and drug sensitivity of BC-diseased dogs. However, organoids from dog normal bladder epithelium are not established yet. Therefore, the present study aimed to establish dog normal bladder organoids (NBO) for further understanding the pathogenesis of dog BC and human MIBC. The established NBO underwent various analyzes including cell marker expressions, histopathological structures, cancer-related gene expression patterns, and drug sensitivity. NBO could be produced non-invasively with a continuous culturing and recapitulated the structures and characteristics of the dog's normal bladder mucosal tissues. Different drug sensitivities were observed in each NBO. The analysis of RNA sequencing revealed that several novel genes were changed in NBO compared with BCO. NBO showed a higher expression of p53 and E-cadherin, but a lower expression of MDM2 and Twist1 compared with BCO. These results suggest that NBO could be a promising experimental 3D model for studying the developmental mechanisms of dog BC and human MIBC.
Collapse
Affiliation(s)
- Mohamed Elbadawy
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan; Department of Pharmacology, Faculty of Veterinary Medicine, Benha University, 13736, Moshtohor, Toukh, Elqaliobiya, Egypt.
| | - Kodai Fujisaka
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | - Haru Yamamoto
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | - Ryouichi Tsunedomi
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
| | - Hiroaki Nagano
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
| | - Hiromi Ayame
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | - Yusuke Ishihara
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | - Takashi Mori
- Laboratory of Veterinary Clinical Oncology, Faculty of Applied Biological Sciences, Gifu University, 1-1, Yanagido, Gifu, Gifu 501-1193, Japan
| | - Daigo Azakami
- Laboratory of Veterinary Clinical Oncology, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | - Tsuyoshi Uchide
- Laboratory of Veterinary Surgery, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | - Ryuji Fukushima
- Animal Medical Center, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | - Amira Abugomaa
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan; Faculty of Veterinary Medicine, Mansoura University, 35516 Mansoura, Egypt
| | - Masahiro Kaneda
- Laboratory of Veterinary Anatomy, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | - Hideyuki Yamawaki
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University, 35-1, Higashi 23 ban-cho, Towada, Aomori 034-8628, Japan
| | - Yuta Shinohara
- Pet Health & Food Division, Iskara Industry CO., LTD, 1-14-2, Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan
| | - Tsutomu Omatsu
- Center for Infectious Diseases of Epidemiology and Prevention Research, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | - Tetsuya Mizutani
- Center for Infectious Diseases of Epidemiology and Prevention Research, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | - Tatsuya Usui
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan.
| | - Kazuaki Sasaki
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| |
Collapse
|
7
|
Murray BO, Flores C, Williams C, Flusberg DA, Marr EE, Kwiatkowska KM, Charest JL, Isenberg BC, Rohn JL. Recurrent Urinary Tract Infection: A Mystery in Search of Better Model Systems. Front Cell Infect Microbiol 2021; 11:691210. [PMID: 34123879 PMCID: PMC8188986 DOI: 10.3389/fcimb.2021.691210] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 05/04/2021] [Indexed: 12/12/2022] Open
Abstract
Urinary tract infections (UTIs) are among the most common infectious diseases worldwide but are significantly understudied. Uropathogenic E. coli (UPEC) accounts for a significant proportion of UTI, but a large number of other species can infect the urinary tract, each of which will have unique host-pathogen interactions with the bladder environment. Given the substantial economic burden of UTI and its increasing antibiotic resistance, there is an urgent need to better understand UTI pathophysiology - especially its tendency to relapse and recur. Most models developed to date use murine infection; few human-relevant models exist. Of these, the majority of in vitro UTI models have utilized cells in static culture, but UTI needs to be studied in the context of the unique aspects of the bladder's biophysical environment (e.g., tissue architecture, urine, fluid flow, and stretch). In this review, we summarize the complexities of recurrent UTI, critically assess current infection models and discuss potential improvements. More advanced human cell-based in vitro models have the potential to enable a better understanding of the etiology of UTI disease and to provide a complementary platform alongside animals for drug screening and the search for better treatments.
Collapse
Affiliation(s)
- Benjamin O. Murray
- Centre for Urological Biology, Department of Renal Medicine, University College London, London, United Kingdom
| | - Carlos Flores
- Centre for Urological Biology, Department of Renal Medicine, University College London, London, United Kingdom
| | - Corin Williams
- Department of Bioengineering, Charles Stark Draper Laboratory, Inc., Cambridge, MA, United States
| | - Deborah A. Flusberg
- Department of Bioengineering, Charles Stark Draper Laboratory, Inc., Cambridge, MA, United States
| | - Elizabeth E. Marr
- Department of Bioengineering, Charles Stark Draper Laboratory, Inc., Cambridge, MA, United States
| | - Karolina M. Kwiatkowska
- Centre for Urological Biology, Department of Renal Medicine, University College London, London, United Kingdom
| | - Joseph L. Charest
- Department of Bioengineering, Charles Stark Draper Laboratory, Inc., Cambridge, MA, United States
| | - Brett C. Isenberg
- Department of Bioengineering, Charles Stark Draper Laboratory, Inc., Cambridge, MA, United States
| | - Jennifer L. Rohn
- Centre for Urological Biology, Department of Renal Medicine, University College London, London, United Kingdom
| |
Collapse
|
8
|
A genetically defined disease model reveals that urothelial cells can initiate divergent bladder cancer phenotypes. Proc Natl Acad Sci U S A 2019; 117:563-572. [PMID: 31871155 PMCID: PMC6955337 DOI: 10.1073/pnas.1915770117] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Small cell carcinoma of the bladder (SCCB) is a lethal variant of bladder cancer with no effective treatment. A lack of available preclinical models and clinical cohorts impedes our understanding of its molecular pathogenesis. In this study, we provided a tumor model as functional evidence showing that SCCB and other bladder cancer phenotypes can be derived from normal human urothelial cells. We further demonstrated that SCCB has a distinct transcriptome and identified SCCB-associated cell surface proteins (CSPs) that can be further evaluated as potential therapeutic targets. We show that our model shares CSP profile with clinical SCCB samples. Our findings create a foundation to understand the molecular underpinnings of SCCB and provide tools for developing therapeutic strategies. Small cell carcinoma of the bladder (SCCB) is a rare and lethal phenotype of bladder cancer. The pathogenesis and molecular features are unknown. Here, we established a genetically engineered SCCB model and a cohort of patient SCCB and urothelial carcinoma samples to characterize molecular similarities and differences between bladder cancer phenotypes. We demonstrate that SCCB shares a urothelial origin with other bladder cancer phenotypes by showing that urothelial cells driven by a set of defined oncogenic factors give rise to a mixture of tumor phenotypes, including small cell carcinoma, urothelial carcinoma, and squamous cell carcinoma. Tumor-derived single-cell clones also give rise to both SCCB and urothelial carcinoma in xenografts. Despite this shared urothelial origin, clinical SCCB samples have a distinct transcriptional profile and a unique transcriptional regulatory network. Using the transcriptional profile from our cohort, we identified cell surface proteins (CSPs) associated with the SCCB phenotype. We found that the majority of SCCB samples have PD-L1 expression in both tumor cells and tumor-infiltrating lymphocytes, suggesting that immune checkpoint inhibitors could be a treatment option for SCCB. We further demonstrate that our genetically engineered tumor model is a representative tool for investigating CSPs in SCCB by showing that it shares a similar a CSP profile with clinical samples and expresses SCCB–up-regulated CSPs at both the mRNA and protein levels. Our findings reveal distinct molecular features of SCCB and provide a transcriptional dataset and a preclinical model for further investigating SCCB biology.
Collapse
|
9
|
Santos CP, Lapi E, Martínez de Villarreal J, Álvaro-Espinosa L, Fernández-Barral A, Barbáchano A, Domínguez O, Laughney AM, Megías D, Muñoz A, Real FX. Urothelial organoids originating from Cd49f high mouse stem cells display Notch-dependent differentiation capacity. Nat Commun 2019; 10:4407. [PMID: 31562298 PMCID: PMC6764959 DOI: 10.1038/s41467-019-12307-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Accepted: 09/02/2019] [Indexed: 12/29/2022] Open
Abstract
Understanding urothelial stem cell biology and differentiation has been limited by the lack of methods for their unlimited propagation. Here, we establish mouse urothelial organoids that can be maintained uninterruptedly for >1 year. Organoid growth is dependent on EGF and Wnt activators. High CD49f/ITGA6 expression features a subpopulation of organoid-forming cells expressing basal markers. Upon differentiation, multilayered organoids undergo reduced proliferation, decreased cell layer number, urothelial program activation, and acquisition of barrier function. Pharmacological modulation of PPARγ and EGFR promotes differentiation. RNA sequencing highlighted genesets enriched in proliferative organoids (i.e. ribosome) and transcriptional networks involved in differentiation, including expression of Wnt ligands and Notch components. Single-cell RNA sequencing (scRNA-Seq) analysis of the organoids revealed five clusters with distinct gene expression profiles. Together, with the use of γ-secretase inhibitors and scRNA-Seq, confirms that Notch signaling is required for differentiation. Urothelial organoids provide a powerful tool to study cell regeneration and differentiation.
Collapse
Affiliation(s)
- Catarina P Santos
- Epithelial Carcinogenesis Group, Spanish National Cancer Research Centre-CNIO, Madrid, Spain
| | - Eleonora Lapi
- Epithelial Carcinogenesis Group, Spanish National Cancer Research Centre-CNIO, Madrid, Spain
- CIBERONC, Madrid, Spain
| | - Jaime Martínez de Villarreal
- Epithelial Carcinogenesis Group, Spanish National Cancer Research Centre-CNIO, Madrid, Spain
- CIBERONC, Madrid, Spain
| | - Laura Álvaro-Espinosa
- Epithelial Carcinogenesis Group, Spanish National Cancer Research Centre-CNIO, Madrid, Spain
| | - Asunción Fernández-Barral
- CIBERONC, Madrid, Spain
- Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM and IdiPAZ, 28029, Madrid, Spain
| | - Antonio Barbáchano
- CIBERONC, Madrid, Spain
- Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM and IdiPAZ, 28029, Madrid, Spain
| | - Orlando Domínguez
- Genomics Unit, Spanish National Cancer Research Centre-CNIO, Madrid, Spain
| | | | - Diego Megías
- Confocal Microscopy Unit, Spanish National Cancer Research Centre-CNIO, Madrid, Spain
| | - Alberto Muñoz
- CIBERONC, Madrid, Spain
- Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM and IdiPAZ, 28029, Madrid, Spain
| | - Francisco X Real
- Epithelial Carcinogenesis Group, Spanish National Cancer Research Centre-CNIO, Madrid, Spain.
- CIBERONC, Madrid, Spain.
- Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain.
| |
Collapse
|
10
|
Yang D, Ma Y, Zhao P, Ma J, He C. Systematic screening of protein-coding gene expression identified HMMR as a potential independent indicator of unfavorable survival in patients with papillary muscle-invasive bladder cancer. Biomed Pharmacother 2019; 120:109433. [PMID: 31568988 DOI: 10.1016/j.biopha.2019.109433] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 09/02/2019] [Accepted: 09/02/2019] [Indexed: 12/20/2022] Open
Abstract
Papillary and non-papillary are two histological patterns of bladder carcinogenesis and are considered as dual-track oncogenic pathways, which have different genetic alterations. The TCGA-bladder cancer (BLCA) database contains clinicopathological, genomic and survival data from over 400 muscle-invasive bladder cancer patients. In this study, using data from this database, we performed a systematic screening of gene expression to identify the protein-coding gene that might have prognostic value in papillary and non-papillary muscle-invasive bladder cancer (MIBC). The data of patients with primary MIBC in TCGA-BLCA was acquired from the UCSC Xena project (http://xena.ucsc.edu) for re-analysis. By setting |log2 fold change|≥2 and adjusted p value <0.01 as the screening criteria, we found 751 significantly dysregulated genes, including 183 overexpressed and 568 downregulated genes. HMMR was identified as a potential prognostic marker with unique expression. Multivariate analysis showed that its expression was an independent prognostic indicator of shorter progression-free survival (PFS) (HR: 1.400, 95%CI: 1.021-1.920, p = 0.037) in the papillary subtype. ENST00000393915.8 and ENST00000358715.3, two transcripts that contain all 18 exons and encode the full length of HMMR, were significantly upregulated in cancer tissues compared with normal bladder tissues. None of the 17 CpG sites in its DNA locus was relevant to HMMR expression. 26/403 (6.5%) MIBC cases had HMMR gene-level amplification, which was associated with upregulated HMMR expression compared with the copy-neutral and deletion groups. Gene set enrichment analysis (GSEA) in papillary MIBC found that the high HMMR expression group was associated with upregulated genes enriched in multiple gene sets with well-established role in BC development, including G2M checkpoint, E2 F Targets, Myc Targets V1, Myc Targets V2 and Glycolysis. Based on these findings, we infer that HMMR expression might be a specific prognostic marker in terms of PFS in papillary MIBC. DNA amplification might be an important mechanism of its elevation.
Collapse
Affiliation(s)
- Dong Yang
- Department of Urology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, 450008, China
| | - Yan Ma
- Department of Urology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, 450008, China
| | - Pengcheng Zhao
- Department of Urology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, 450008, China
| | - Jing Ma
- Department of Urology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, 450008, China
| | - Chaohong He
- Department of Urology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, 450008, China.
| |
Collapse
|
11
|
Kanan AD, Corey E, Vêncio RZN, Ishwar A, Liu AY. Lineage relationship between prostate adenocarcinoma and small cell carcinoma. BMC Cancer 2019; 19:518. [PMID: 31146720 PMCID: PMC6543672 DOI: 10.1186/s12885-019-5680-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 05/07/2019] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Prostate cancer displays different morphologies which, in turn, affect patient outcome. This fact prompted questions about the lineage relationship between differentiated, more treatable prostate adenocarcinoma and poorly differentiated, less treatable non-adenocarcinoma including small cell carcinoma, and the molecular mechanism underlying prostate cancer differentiation. METHODS Newly available non-adenocarcinoma/small cell carcinoma PDX LuCaP lines were analyzed for expression of stem cell transcription factors (scTF) LIN28A, NANOG, POU5F1, SOX2, which are responsible for reprogramming or de-differentiation. cDNA of these genes were cloned from small cell carcinoma LuCaP 145.1 into expression vectors to determine if they could function in reprogramming. RESULTS Expression of scTF was detected in small cell carcinoma LuCaP 93, 145.1, 145.2, and non-adenocarcinoma LuCaP 173.1, 173.2A. Transfection of scTF from LuCaP 145.1 altered the gene expression of prostate non-small cell carcinoma cells, as well as fibroblasts. The resultant cells grew in stem-like colonies. Of note was a 10-fold lower expression of B2M in the transfected cells. Low B2M was also characteristic of LuCaP 145.1. Conversely, B2M was increased when stem cells were induced to differentiate. CONCLUSIONS This work suggested a pathway in the emergence of non-adenocarcinoma/small cell carcinoma from adenocarcinoma through activation of scTF genes that produced cancer de-differentiation.
Collapse
Affiliation(s)
- Adelle D Kanan
- Department of Urology, University of Washington, Box 358056, 850 Republican Street, Seattle, Washington, 98195-6100, USA.
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington, USA.
| | - Eva Corey
- Department of Urology, University of Washington, Box 358056, 850 Republican Street, Seattle, Washington, 98195-6100, USA
| | - Ricardo Z N Vêncio
- Department of Mathematics, University of Sao Paulo, 3900 Ave Bandeirantes, Vila Monte Alegre, Ribeirão Preto, 14040-900, Brazil
| | - Arjun Ishwar
- Thermo Fisher Scientific, 168 3rd Ave, Waltham, Massachutts, 02451, USA
- Sophia Genetics, 1550 E Campbell Ave. #4032, Phoenix, Arizona, 85014, USA
| | - Alvin Y Liu
- Department of Urology, University of Washington, Box 358056, 850 Republican Street, Seattle, Washington, 98195-6100, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington, USA
| |
Collapse
|
12
|
Merrick BA, Chang JS, Phadke DP, Bostrom MA, Shah RR, Wang X, Gordon O, Wright GM. HAfTs are novel lncRNA transcripts from aflatoxin exposure. PLoS One 2018; 13:e0190992. [PMID: 29351317 PMCID: PMC5774710 DOI: 10.1371/journal.pone.0190992] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 12/22/2017] [Indexed: 12/28/2022] Open
Abstract
The transcriptome can reveal insights into precancer biology. We recently conducted RNA-Seq analysis on liver RNA from male rats exposed to the carcinogen, aflatoxin B1 (AFB1), for 90 days prior to liver tumor onset. Among >1,000 differentially expressed transcripts, several novel, unannotated Cufflinks-assembled transcripts, or HAfTs (Hepatic Aflatoxin Transcripts) were found. We hypothesized PCR-cloning and RACE (rapid amplification of cDNA ends) could further HAfT identification. Sanger data was obtained for 6 transcripts by PCR and 16 transcripts by 5’- and 3’-RACE. BLAST alignments showed, with two exceptions, HAfT transcripts were lncRNAs, >200nt without apparent long open reading frames. Six rat HAfT transcripts were classified as ‘novel’ without RefSeq annotation. Sequence alignment and genomic synteny showed each rat lncRNA had a homologous locus in the mouse genome and over half had homologous loci in the human genome, including at least two loci (and possibly three others) that were previously unannotated. While HAfT functions are not yet clear, coregulatory roles may be possible from their adjacent orientation to known coding genes with altered expression that include 8 HAfT-gene pairs. For example, a unique rat HAfT, homologous to Pvt1, was adjacent to known genes controlling cell proliferation. Additionally, PCR and RACE Sanger sequencing showed many alternative splice variants and refinements of exon sequences compared to Cufflinks assembled transcripts and gene prediction algorithms. Presence of multiple splice variants and short tandem repeats found in some HAfTs may be consequential for secondary structure, transcriptional regulation, and function. In summary, we report novel, differentially expressed lncRNAs after exposure to the genotoxicant, AFB1, prior to neoplastic lesions. Complete cloning and sequencing of such transcripts could pave the way for a new set of sensitive and early prediction markers for chemical hepatocarcinogens.
Collapse
Affiliation(s)
- B. Alex Merrick
- Biomolecular Screening Branch, Division National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, United States of America
- * E-mail:
| | - Justin S. Chang
- Biomolecular Screening Branch, Division National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, United States of America
| | - Dhiral P. Phadke
- Sciome, LLC, Research Triangle Park, North Carolina, United States of America
| | - Meredith A. Bostrom
- Genomics Laboratory, David H. Murdock Research Institute, Kannapolis, North Carolina, United State of America
| | - Ruchir R. Shah
- Sciome, LLC, Research Triangle Park, North Carolina, United States of America
| | - Xinguo Wang
- Genomics Laboratory, David H. Murdock Research Institute, Kannapolis, North Carolina, United State of America
| | - Oksana Gordon
- Genomics Laboratory, David H. Murdock Research Institute, Kannapolis, North Carolina, United State of America
| | - Garron M. Wright
- Genomics Laboratory, David H. Murdock Research Institute, Kannapolis, North Carolina, United State of America
| |
Collapse
|
13
|
Ho ME, Quek SI, True LD, Seiler R, Fleischmann A, Bagryanova L, Kim SR, Chia D, Goodglick L, Shimizu Y, Rosser CJ, Gao Y, Liu AY. Bladder cancer cells secrete while normal bladder cells express but do not secrete AGR2. Oncotarget 2017; 7:15747-56. [PMID: 26894971 PMCID: PMC4941274 DOI: 10.18632/oncotarget.7400] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 02/05/2016] [Indexed: 11/30/2022] Open
Abstract
Anterior gradient 2 (AGR2) is a cancer-associated secreted protein found predominantly in adenocarcinomas. Given its ubiquity in solid tumors, cancer-secreted AGR2 could be a useful biomarker in urine or blood for early detection. However, normal organs express and might also secrete AGR2, which would impact its utility as a cancer biomarker. Uniform AGR2 expression is found in the normal bladder urothelium. Little AGR2 is secreted by the urothelial cells as no measurable amounts could be detected in urine. The urinary proteomes of healthy people contain no listing for AGR2. Likewise, the blood proteomes of healthy people also contain no significant peptide counts for AGR2 suggesting little urothelial secretion into capillaries of the lamina propria. Expression of AGR2 is lost in urothelial carcinoma, with only 25% of primary tumors observed to retain AGR2 expression in a cohort of lymph node-positive cases. AGR2 is secreted by the urothelial carcinoma cells as urinary AGR2 was measured in the voided urine of 25% of the cases analyzed in a cohort of cancer vs. non-cancer patients. The fraction of AGR2-positive urine samples was consistent with the fraction of urothelial carcinoma that stained positive for AGR2. Since cancer cells secrete AGR2 while normal cells do not, its measurement in body fluids could be used to indicate tumor presence. Furthermore, AGR2 has also been found on the cell surface of cancer cells. Taken together, secretion and cell surface localization of AGR2 are characteristic of cancer, while expression of AGR2 by itself is not.
Collapse
Affiliation(s)
- Melissa E Ho
- Department of Urology, Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA.,Present address: University of California San Francisco Medical Center, San Francisco, CA, USA
| | - Sue-Ing Quek
- Department of Urology, Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA.,Present address: Singapore Polytechnic, Center for Biomedical & Life Sciences, Singapore
| | - Lawrence D True
- Department of Pathology, University of Washington, Seattle, WA, USA
| | - Roland Seiler
- Department of Urology, University Hospital of Bern, Bern, Switzerland
| | - Achim Fleischmann
- Institute of Pathology, University Hospital of Bern, Bern, Switzerland
| | - Lora Bagryanova
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Sara R Kim
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.,Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - David Chia
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.,Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Lee Goodglick
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.,Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | | | | | - Yuqian Gao
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Alvin Y Liu
- Department of Urology, Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
14
|
Viktorsson K, Shah CH, Juntti T, Hååg P, Zielinska-Chomej K, Sierakowiak A, Holmsten K, Tu J, Spira J, Kanter L, Lewensohn R, Ullén A. Melphalan-flufenamide is cytotoxic and potentiates treatment with chemotherapy and the Src inhibitor dasatinib in urothelial carcinoma. Mol Oncol 2016; 10:719-34. [PMID: 26827254 PMCID: PMC5423156 DOI: 10.1016/j.molonc.2015.12.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 12/23/2015] [Accepted: 12/23/2015] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Chemotherapy options in advanced urothelial carcinoma (UC) remain limited. Here we evaluated the peptide-based alkylating agent melphalan-flufenamide (mel-flufen) for UC. METHODS UC cell lines J82, RT4, TCCsup and 5637 were treated with mel-flufen, alone or combined with cisplatin, gemcitabine, dasatinib or bestatin. Cell viability (MTT assay), intracellular drug accumulation (liquid chromatography) apoptosis induction (apoptotic cell nuclei morphology, western blot analysis of PARP-1/caspase-9 cleavage and Bak/Bax activation) were evaluated. Kinome alterations were characterized by PathScan array and phospho-Src validated by western blotting. Aminopeptidase N (ANPEP) expression was evaluated in UC clinical specimens in relation to patient outcome. RESULTS In J82, RT4, TCCsup and 5637 UC cells, mel-flufen amplified the intracellular loading of melphalan in part via aminopeptidase N (ANPEP), resulting in increased cytotoxicity compared to melphalan alone. Mel-flufen induced apoptosis seen as activation of Bak/Bax, cleavage of caspase-9/PARP-1 and induction of apoptotic cell nuclei morphology. Combining mel-flufen with cisplatin or gemcitabine in J82 cells resulted in additive cytotoxic effects and for gemcitabine also increased apoptosis induction. Profiling of mel-flufen-induced kinome alterations in J82 cells revealed that mel-flufen alone did not inhibit Src phosphorylation. Accordingly, the Src inhibitor dasatinib sensitized for mel-flufen cytotoxicity. Immunohistochemical analysis of the putative mel-flufen biomarker ANPEP demonstrated prominent expression levels in tumours from 82 of 83 cystectomy patients. Significantly longer median overall survival was found in patients with high ANPEP expression (P = 0.02). CONCLUSION Mel-flufen alone or in combination with cisplatin, gemcitabine or Src inhibition holds promise as a novel treatment for UC.
Collapse
Affiliation(s)
- Kristina Viktorsson
- Karolinska Institutet, Department of Oncology-Pathology, Karolinska Biomics Center, SE-171 76, Stockholm, Sweden.
| | - Carl-Henrik Shah
- Karolinska Institutet, Department of Oncology-Pathology, Karolinska Biomics Center, SE-171 76, Stockholm, Sweden; Department of Oncology, Radiumhemmet, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| | - Therese Juntti
- Karolinska Institutet, Department of Oncology-Pathology, Karolinska Biomics Center, SE-171 76, Stockholm, Sweden
| | - Petra Hååg
- Karolinska Institutet, Department of Oncology-Pathology, Karolinska Biomics Center, SE-171 76, Stockholm, Sweden
| | - Katarzyna Zielinska-Chomej
- Karolinska Institutet, Department of Oncology-Pathology, Karolinska Biomics Center, SE-171 76, Stockholm, Sweden
| | - Adam Sierakowiak
- Karolinska Institutet, Department of Oncology-Pathology, Karolinska Biomics Center, SE-171 76, Stockholm, Sweden
| | - Karin Holmsten
- Karolinska Institutet, Department of Oncology-Pathology, Karolinska Biomics Center, SE-171 76, Stockholm, Sweden; Department of Oncology, Radiumhemmet, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| | - Jessica Tu
- Karolinska Institutet, Department of Oncology-Pathology, Karolinska Biomics Center, SE-171 76, Stockholm, Sweden
| | - Jack Spira
- InSpira Medical AB, SE-135 53 Tyresö, Sweden
| | - Lena Kanter
- Karolinska Institutet, Department of Oncology-Pathology, Karolinska Biomics Center, SE-171 76, Stockholm, Sweden
| | - Rolf Lewensohn
- Karolinska Institutet, Department of Oncology-Pathology, Karolinska Biomics Center, SE-171 76, Stockholm, Sweden; Department of Oncology, Radiumhemmet, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| | - Anders Ullén
- Karolinska Institutet, Department of Oncology-Pathology, Karolinska Biomics Center, SE-171 76, Stockholm, Sweden; Department of Oncology, Radiumhemmet, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| |
Collapse
|
15
|
Borges GT, Vêncio EF, Quek SI, Chen A, Salvanha DM, Vêncio RZN, Nguyen HM, Vessella RL, Cavanaugh C, Ware CB, Troisch P, Liu AY. Conversion of Prostate Adenocarcinoma to Small Cell Carcinoma-Like by Reprogramming. J Cell Physiol 2016; 231:2040-7. [PMID: 26773436 DOI: 10.1002/jcp.25313] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 01/14/2016] [Indexed: 12/14/2022]
Abstract
The lineage relationship between prostate adenocarcinoma and small cell carcinoma was studied by using the LuCaP family of xenografts established from primary neoplasm to metastasis. Expression of four stem cell transcription factor (TF) genes, LIN28A, NANOG, POU5F1, SOX2, were analyzed in the LuCaP lines. These genes, when force expressed in differentiated cells, can reprogram the recipients into stem-like induced pluripotent stem (iPS) cells. Most LuCaP lines expressed POU5F1, while LuCaP 145.1, representative of small cell carcinoma, expressed all four. Through transcriptome database query, many small cell carcinoma genes were also found in stem cells. To test the hypothesis that prostate cancer progression from "differentiated" adenocarcinoma to "undifferentiated" small cell carcinoma could involve re-expression of stem cell genes, the four TF genes were transduced via lentiviral vectors into five adenocarcinoma LuCaP lines-70CR, 73CR, 86.2, 92, 105CR-as done in iPS cell reprogramming. The resultant cells from these five transductions displayed a morphology of small size and dark appearing unlike the parentals. Transcriptome analysis of LuCaP 70CR* ("*" to denote transfected progeny) revealed a unique gene expression close to that of LuCaP 145.1. In a prostate principal components analysis space based on cell-type transcriptomes, the different LuCaP transcriptome datapoints were aligned to suggest a possible ordered sequence of expression changes from the differentiated luminal-like adenocarcinoma cell types to the less differentiated, more stem-like small cell carcinoma types, and LuCaP 70CR*. Prostate cancer progression can thus be molecularly characterized by loss of differentiation with re-expression of stem cell genes. J. Cell. Physiol. 231: 2040-2047, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Gisely T Borges
- Department of Urology, University of Washington, Seattle, Washington.,Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington.,Pharmacy School, Federal University of Goiás, Goiânia, Brazil
| | - Eneida F Vêncio
- Department of Urology, University of Washington, Seattle, Washington.,Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington.,Department of Oral Pathology, Dental School, Federal University of Goiás, Goiânia, Brazil
| | - Sue-Ing Quek
- Department of Urology, University of Washington, Seattle, Washington.,Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington
| | - Adeline Chen
- Department of Urology, University of Washington, Seattle, Washington.,Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington
| | - Diego M Salvanha
- Department of Computing and Mathematics, FFCLRP, University of São Paulo, São Paulo, Brazil
| | - Ricardo Z N Vêncio
- Department of Computing and Mathematics, FFCLRP, University of São Paulo, São Paulo, Brazil
| | - Holly M Nguyen
- Department of Urology, University of Washington, Seattle, Washington
| | - Robert L Vessella
- Department of Urology, University of Washington, Seattle, Washington.,Puget Sound VA Medical Center, Seattle, Washington
| | - Christopher Cavanaugh
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington.,Department of Comparative Medicine, University of Washington, Seattle, Washington
| | - Carol B Ware
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington.,Department of Comparative Medicine, University of Washington, Seattle, Washington
| | | | - Alvin Y Liu
- Department of Urology, University of Washington, Seattle, Washington.,Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington
| |
Collapse
|
16
|
Quek SI, Wong OM, Chen A, Borges GT, Ellis WJ, Salvanha DM, Vêncio RZN, Weaver B, Ench YM, Leach RJ, Thompson IM, Liu AY. Processing of voided urine for prostate cancer RNA biomarker analysis. Prostate 2015; 75:1886-95. [PMID: 26306723 DOI: 10.1002/pros.23066] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 08/06/2015] [Indexed: 12/12/2022]
Abstract
BACKGROUND Voided urine samples have been shown to contain cells released from prostate tumors. Could good quality RNA from cells in urine be obtained from every donor for multimarker analysis? In addition, could urine donation be as simple as possible, a practical consideration for a lab test, without involving a prostate massage (as indicated for PCA3 testing), which precludes frequent collection; needing it done at a specific time of day (e.g., first or second urine); and requiring prompt processing of samples in clinics with limited molecular biology capability? METHODS Collected urine samples were pelleted, and the RNA isolated was processed for cDNA synthesis and in vitro transcription to generate amplified sense aRNA. The resultant aRNA was rigorously analyzed for possible introduced changes. DMSO was used as a cell preservative for frozen storage of urine samples. RESULTS Good quality aRNA was obtained for over 100 samples collected at two different institutions. The process of RNA amplification removed co-isolated DNA in some samples, which did not affect RNA amplification. Amplification did not amplify genes that were absent and produce other expression alterations. The sense aRNA could be used to generate urinary transcriptomes specific to individual patients. No chaotropic agents for RNA preservation were added to the urine samples so that the supernatant could be used for analysis of secreted protein biomarkers. The time of donation was not important since patients were seen during the entire day. DMSO was an effective cell preservative for freezing urine. CONCLUSIONS Urinary RNA can be readily isolated and amplified for prostate cancer biomarker analysis. Individual patients had unique set of transcripts derived from their tumor.
Collapse
Affiliation(s)
- Sue-Ing Quek
- Department of Urology, University of Washington, Seattle, Washington
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington
| | - Olivia M Wong
- Department of Urology, University of Washington, Seattle, Washington
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington
| | - Adeline Chen
- Department of Urology, University of Washington, Seattle, Washington
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington
| | - Gisely T Borges
- Department of Urology, University of Washington, Seattle, Washington
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington
| | - William J Ellis
- Department of Urology, University of Washington, Seattle, Washington
| | - Diego M Salvanha
- Department of Computation and Mathematics, University of São Paulo at Riberão Preto, Brazil
| | - Ricardo Z N Vêncio
- Department of Computation and Mathematics, University of São Paulo at Riberão Preto, Brazil
| | - Brandi Weaver
- Department of Urology and The Cancer Therapy and Research Center, The University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Yasmin M Ench
- Department of Urology and The Cancer Therapy and Research Center, The University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Robin J Leach
- Department of Urology and The Cancer Therapy and Research Center, The University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Ian M Thompson
- Department of Urology and The Cancer Therapy and Research Center, The University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Alvin Y Liu
- Department of Urology, University of Washington, Seattle, Washington
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington
| |
Collapse
|
17
|
Alavi M, Mah V, Maresh EL, Bagryanova L, Horvath S, Chia D, Goodglick L, Liu AY. High expression of AGR2 in lung cancer is predictive of poor survival. BMC Cancer 2015; 15:655. [PMID: 26445321 PMCID: PMC4596313 DOI: 10.1186/s12885-015-1658-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 09/28/2015] [Indexed: 05/05/2023] Open
Abstract
Background Anterior gradient 2 (AGR2) is a protein disulfide isomerase-like protein widely expressed in many normal tissues as well as cancers. In our study, non-neoplastic bronchial epithelial cells as well as non-small cell lung cancer (NSCLC) cells express AGR2 protein. Methods AGR2 expression was analyzed on lung tissue microarrays. Tumor staining was correlated with clinical outcomes. Results On a lung cancer tissue microarray using immunohistochemistry, expression levels in cancer showed generally decreasing intensities in order from adenocarcinomas with mucinous components, other adenocarcinomas, squamous carcinomas, to large cell carcinomas. The study cohort was comprised of 400 cases. As a group, there was a slight trend of lower expression with increasing tumor grade. AGR2 expression level was a significant predictor of overall survival in younger patients only. Patients under 65 with lower levels showed a significantly better survival for both men and women. Patients over 65, in contrast, showed no such trend. Conclusions Nearly all NSCLC tumors show AGR2 expression. Lung cancer expression of AGR2 has prognostic value for younger patients.
Collapse
Affiliation(s)
- Mohammed Alavi
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, 10833 Le Conte Ave., Los Angeles, CA, 90095, USA
| | - Vei Mah
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, 10833 Le Conte Ave., Los Angeles, CA, 90095, USA
| | - Erin L Maresh
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, 10833 Le Conte Ave., Los Angeles, CA, 90095, USA
| | - Lora Bagryanova
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, 10833 Le Conte Ave., Los Angeles, CA, 90095, USA
| | - Steve Horvath
- Department of Statistics, David Geffen School of Medicine, University of California, Los Angeles, 10833 Le Conte Ave., Los Angeles, CA, 90095, USA
| | - David Chia
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, 10833 Le Conte Ave., Los Angeles, CA, 90095, USA.,Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, 10833 Le Conte Ave., Los Angeles, CA, 90095, USA
| | - Lee Goodglick
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, 10833 Le Conte Ave., Los Angeles, CA, 90095, USA.,Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, 10833 Le Conte Ave., Los Angeles, CA, 90095, USA
| | - Alvin Y Liu
- Department of Urology, University of Washington, 1959 NE Pacific St., Seattle, WA, 98195, USA. .,Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican St., Seattle, WA, 98195, USA.
| |
Collapse
|
18
|
Borges GT, Vêncio EF, Vêncio RZN, Vessella RL, Ware CB, Liu AY. Reprogramming of prostate cancer cells--technical challenges. Curr Urol Rep 2015; 16:468. [PMID: 25404182 DOI: 10.1007/s11934-014-0468-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Prostate cancer progression is characterized by tumor dedifferentiation. Cancer cells of less differentiated tumors have a gene expression/transcriptome more similar to that of stem cells. In dedifferentiation, cancer cells may follow a specific program of gene expression changes to a stem-like state. In order to treat cancer effectively, the stem-like cancer cells and cancer differentiation pathway need to be identified and studied. Due to the very low abundance of stem-like cancer cells, their isolation from fresh human tumors is technically challenging. Induced pluripotent stem cell technology can reprogram differentiated cells into stem-like, and this may be a tool to generate sufficient stem-like cancer cells.
Collapse
Affiliation(s)
- Gisely T Borges
- School of Pharmacology, Federal University of Goiás, Goiânia, Brazil,
| | | | | | | | | | | |
Collapse
|
19
|
Le PT, Pearce MM, Zhang S, Campbell EM, Fok CS, Mueller ER, Brincat CA, Wolfe AJ, Brubaker L. IL22 regulates human urothelial cell sensory and innate functions through modulation of the acetylcholine response, immunoregulatory cytokines and antimicrobial peptides: assessment of an in vitro model. PLoS One 2014; 9:e111375. [PMID: 25354343 PMCID: PMC4213028 DOI: 10.1371/journal.pone.0111375] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 09/26/2014] [Indexed: 11/21/2022] Open
Abstract
Human urinary disorders are generally studied in rodent models due to limitations of functional in vitro culture models of primary human urothelial cells (HUCs). Current HUC culture models are often derived from immortalized cancer cell lines, which likely have functional characteristics differ from healthy human urothelium. Here, we described a simple explant culture technique to generate HUCs and assessed their in vitro functions. Using transmission electron microscopy, we assessed morphology and heterogeneity of the generated HUCs and characterized their intercellular membrane structural proteins relative to ex vivo urothelium tissue. We demonstrated that our cultured HUCs are free of fibroblasts. They are also heterogeneous, containing cells characteristic of both immature basal cells and mature superficial urothelial cells. The cultured HUCs expressed muscarinic receptors (MR1 and MR2), carnitine acetyltransferase (CarAT), immunoregulatory cytokines IL7, IL15, and IL23, as well as the chemokine CCL20. HUCs also expressed epithelial cell-specific molecules essential for forming intercellular structures that maintain the functional capacity to form the physiological barrier of the human bladder urothelium. A subset of HUCs, identified by the high expression of CD44, expressed the Toll-like receptor 4 (TLR4) along with its co-receptor CD14. We demonstrated that HUCs express, at the mRNA level, both forms of the IL22 receptor, the membrane-associated (IL22RA1) and the secreted soluble (IL22RA2) forms; in turn, IL22 inhibited expression of MR1 and induced expression of CarAT and two antimicrobial peptides (S100A9 and lipocalin-2). While the cellular sources of IL22 have yet to be identified, the HUC cytokine and chemokine profiles support the concept that IL22-producing cells are present in the human bladder mucosa tissue and that IL22 plays a regulatory role in HUC functions. Thus, the described explant technique is clearly capable of generating functional HUCs suitable for the study of human urinary tract disorders, including interactions between urothelium and IL22-producing cells.
Collapse
Affiliation(s)
- Phong T. Le
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois, United States of America
| | - Meghan M. Pearce
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois, United States of America
| | - Shubin Zhang
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois, United States of America
| | - Edward M. Campbell
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois, United States of America
| | - Cynthia S. Fok
- University of Minnesota, Department of Urology, Minneapolis, Minnesota, United States of America
| | - Elizabeth R. Mueller
- Department of Obstetrics and Gynecology, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois, United States of America
| | - Cynthia A. Brincat
- Department of Obstetrics and Gynecology, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois, United States of America
| | - Alan J. Wolfe
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois, United States of America
| | - Linda Brubaker
- Department of Obstetrics and Gynecology, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois, United States of America
| |
Collapse
|
20
|
Zhang H, Lin H, Mo X, Chen G, Lin L. Synergistic relationship between dipeptidyl peptidase IV and neutral endopeptidase expression and the combined prognostic significance in osteosarcoma patients. Med Oncol 2013; 30:608. [PMID: 23686701 DOI: 10.1007/s12032-013-0608-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Accepted: 05/10/2013] [Indexed: 12/12/2022]
Abstract
Neutral endopeptidase (NEP/CD10) and dipeptidyl peptidase IV (DPP IV/CD26) are both ubiquitous glycopeptidases which play important roles in tumor pathogenesis and development. The aim of this study was to investigate the expression patterns and the prognostic significance of CD10 and CD26 in osteosarcoma patients. CD10 and CD26 expression in 116 pairs of primary osteosarcoma and corresponding noncancerous bone tissue samples from the same specimens were detected by immunohistochemistry. The Spearman's correlation was calculated between the expression levels of CD10 and CD26 in osteosarcoma tissues. The associations of CD10 and CD26 expression with the clinicopathologic features and with the prognosis of osteosarcoma were subsequently assessed. Both CD10 expression and CD26 expression in osteosarcoma tissues were significantly higher than those in corresponding noncancerous bone tissue samples (both P < 0.001). Overexpression of CD10 and CD26 were respectively observed in 68.10 % (79/116) and 70.69 % (82/116) of osteosarcoma tissues. A significant correlation was found between CD10 expression and CD26 expression in osteosarcoma tissues (r = 0.83, P < 0.001). In addition, combined overexpression of CD10 and CD26 was observed in 52.59 % (61/116) of osteosarcoma tissues. CD10-high/CD26-high expression was significantly correlated with advanced clinical stage (P = 0.001), positive metastatic status (P = 0.001), shorter overall (P < 0.001) and disease-free (P < 0.001) survival in patients with osteosarcomas. Furthermore, multivariate survival analysis showed that clinical stage, metastatic status, CD10 expression, CD26 expression and combined expression of CD10/CD26 were all independent prognostic factors for predicting both overall and disease-free survival of osteosarcoma patients. Interestingly, combined expression of CD10/CD26 had a better prognostic value than other features. This retrospective study offer the convincing evidence for the first time that the overexpression of CD10 or CD26 may be an important feature of human osteosarcomas, and the combined expression of CD10/CD26 may be an efficient prognostic indicator for this disease.
Collapse
Affiliation(s)
- Hongtao Zhang
- Orthopedics Department, Zhongshan City People's Hospital, Zhongshan 528403, China
| | | | | | | | | |
Collapse
|
21
|
Shen J, Qiao Y, Ran Z, Wang T, Xu J, Feng J. Intestinal protein expression profile identifies inflammatory bowel disease and predicts relapse. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2013; 6:917-925. [PMID: 23638224 PMCID: PMC3638103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/23/2013] [Accepted: 04/08/2013] [Indexed: 06/02/2023]
Abstract
To date, most studies have applied individual factors as indicators of disease classification and prognosis. The aim of this study is to determine whether clustering analysis of protein expression profiles in intestinal epithelia improves classification and prognosis in patients with inflammatory bowel disease (IBD). One hundred and twenty Crohn's disease (CD) patients, 117 ulcerative colitis (UC) patients and 120 cases of nonspecific colitis provided intestinal biopsy samples for tissue microarray (TMA). Both unsupervised and supervised analyses were used for evaluation of clustering and association with relapse. There was a significant concordance between cluster groups based on immunostaining data of TMA and clinical classification in distinguishing IBD from nonspecific colitis (kappa= 0.498, p<0.001). CD27, CD70, CD40, TRAF3, TRAF4 and TRAF2 presented similar immunostaining features, which were different from clusters of CD154, CD80 and TRAF5. Moreover, higher expression of TRAF2 was a predictor of relapse in patients with UC (p=0.006).Thus, protein expression profiles can distinguish IBD and nonspecific colitis, and combination analysis protein expression profiles show that TRAF2 can predict relapse of UC.
Collapse
Affiliation(s)
- Jun Shen
- Division of Gastroenterology and Hepatology, Shanghai Jiao-Tong University School of Medicine, Renji Hospital, Shanghai Institute of Digestive Disease, Shanghai, 200127, China
| | | | | | | | | | | |
Collapse
|
22
|
A multiplex assay to measure RNA transcripts of prostate cancer in urine. PLoS One 2012; 7:e45656. [PMID: 23029164 PMCID: PMC3447789 DOI: 10.1371/journal.pone.0045656] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Accepted: 08/21/2012] [Indexed: 12/31/2022] Open
Abstract
The serum prostate-specific antigen (PSA) test has a high false positive rate. As a single marker, PSA provides limited diagnostic information. A multi-marker test capable of detecting not only tumors but also the potentially lethal ones provides an unmet clinical need. Using the nanoString nCounter gene expression system, a 20-gene multiplex test was developed based on digital gene counting of RNA transcripts in urine as a means to detect prostate cancer. In this test, voided urine is centrifuged to pellet cells and the purified RNA is amplified for hybridization to preselected probesets. Amplification of test cell line RNA appeared not to introduce significant bias, and the counts matched well with gene abundance levels as measured by DNA microarrays. For data analysis, the individual counts were compared to that of β2 microglobulin, a housekeeping gene. Urine samples of 5 pre-operative cases and 2 non-cancer were analyzed. Pathology information was then retrieved. Signals for a majority of the genes were low for non-cancer and low Gleason scores, and 6/6 known prostate cancer markers were positive in the cases. One case of Gleason 4+5 showed, in contrast, strong signals for all cancer-associated markers, including CD24. One non-cancer also showed signals for all 6 cancer markers, and this man might harbor an undiagnosed cancer. This multiplex test assaying a natural waste product can potentially be used for screening, early cancer detection and patient stratification. Diagnostic information is gained from the RNA signatures that are associated with cell types of prostate tumors.
Collapse
|