1
|
Zhu D, Wang Z, Chen S, Li Y, Kang X. Therapeutic potential of targeting the IRF2/POSTN/Notch1 axis in nucleus pulposus cells for intervertebral disc degeneration. J Neuroinflammation 2025; 22:13. [PMID: 39844302 DOI: 10.1186/s12974-025-03335-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 01/06/2025] [Indexed: 01/24/2025] Open
Abstract
BACKGROUND Intervertebral disc degeneration (IDD) is a leading cause of low back pain, often linked to inflammation and pyroptosis in nucleus pulposus (NP) cells. The role of Periostin (POSTN) in IDD remains unclear. OBJECTIVE This study aims to investigate the influence of POSTN on pyroptosis and NLRP3 inflammasome activation in NP cells during IDD. METHODS IVD samples were collected from patients undergoing spinal surgery and classified according to the Pfirrmann grading system. Human NP cells were cultured and treated with IL-1β to induce a pyroptotic phenotype. Western blotting, Immunofluorescence (IF), and immunohistochemistry (IHC) assessed the expression levels of relevant proteins. Chromatin immunoprecipitation (ChIP) and luciferase reporter assays verified the binding of IRF2 to the POSTN and GSDMD promoters and evaluated the activation levels of target genes. The severity of IDD was evaluated using MRI and histological analysis. RESULTS Deletion of POSTN significantly alleviated IDD by suppressing NLRP3 inflammasome activity and pyroptosis in NP cells. POSTN was found to aggravate NP cell pyroptosis by activating the NLRP3 inflammasome through the NF-κB (P65) and cGAS/STING signaling pathways. Furthermore, POSTN interacted with Notch1 to induce NLRP3 expression. IRF2 was identified as a regulator of POSTN at the transcriptional level, contributing to NLRP3 activation and NP cell pyroptosis. IRF2 also directly induced the transcriptional expression of GSDMD, mediating pyroptosis in NP cells. Chemical screening identified Glucosyringic acid (GA) as a direct inhibitor of POSTN, which delayed IDD progression. CONCLUSION The study elucidates the pivotal role of POSTN in mediating NP cell pyroptosis through the NLRP3 inflammasome and highlights GA as a promising therapeutic candidate for IDD. These findings provide new insights into the molecular mechanisms of IDD and potential avenues for treatment.
Collapse
Affiliation(s)
- Daxue Zhu
- Lanzhou University Second Hospital, 82 Cui-Ying-Men, Lanzhou, 730030, PR China
- Key Laboratory of Orthopedic Disease of Gansu Province, Lanzhou University Second Hospital, Lanzhou, 730030, PR China
| | - Zhaoheng Wang
- Lanzhou University Second Hospital, 82 Cui-Ying-Men, Lanzhou, 730030, PR China
- Key Laboratory of Orthopedic Disease of Gansu Province, Lanzhou University Second Hospital, Lanzhou, 730030, PR China
| | - Shijie Chen
- Lanzhou University Second Hospital, 82 Cui-Ying-Men, Lanzhou, 730030, PR China
- Key Laboratory of Orthopedic Disease of Gansu Province, Lanzhou University Second Hospital, Lanzhou, 730030, PR China
| | - Yanhu Li
- Lanzhou University Second Hospital, 82 Cui-Ying-Men, Lanzhou, 730030, PR China
- Key Laboratory of Orthopedic Disease of Gansu Province, Lanzhou University Second Hospital, Lanzhou, 730030, PR China
| | - Xuewen Kang
- Lanzhou University Second Hospital, 82 Cui-Ying-Men, Lanzhou, 730030, PR China.
- Key Laboratory of Orthopedic Disease of Gansu Province, Lanzhou University Second Hospital, Lanzhou, 730030, PR China.
| |
Collapse
|
2
|
Serpi M, Adaş M, Cumbul A, Çakar M, Demirkale İ. Histological Evaluation of the Effects of Intra-Articular Injection of Caffeic Acid on Cartilage Repair in a Rat Knee Microfracture Model. Med Sci Monit 2024; 30:e946845. [PMID: 39639547 PMCID: PMC11629585 DOI: 10.12659/msm.946845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 11/15/2024] [Indexed: 12/07/2024] Open
Abstract
BACKGROUND Cartilage injuries are challenging to treat due to limited self-healing. Standard treatments often lead to the formation of less durable fibrocartilage. Caffeic acid phenethyl ester (CAPE), a polyphenolic compound, can improve cartilage repair. This animal study aimed to evaluate the histological effects of intra-articular injection of CAPE on cartilage repair in a rat model of microfracture of the knee joint. MATERIAL AND METHODS Twenty-four male Sprague-Dawley rats were divided into 4 groups. A cartilage defect was created in all groups, but Group A received no further intervention. Group B underwent a microfracture. Group C received intra-articular CAPE in the presence of a defect, without microfracture. Group D underwent both microfracture and CAPE treatment. Also, each rat underwent bilateral surgery, with one knee receiving CAPE (150 µg/kg) and the other receiving a control solution. After 28 days, histological analysis was performed on the cartilage tissue samples obtained from the defect sites by using the International Cartilage Research Society (ICRS-I and -II) visual assessment scale. Statistical analysis was performed using appropriate tests to compare histological scores between groups, with significance set at P<0.05. RESULTS Intra-articular CAPE significantly improved histopathological outcomes across several parameters, including reduced inflammation (P<0.05), enhanced tissue morphology (P<0.05), and improved cartilage matrix staining (P<0.05). No significant difference was observed in chondrocyte clustering or surface architecture among the groups. CONCLUSIONS Intra-articular CAPE enhances cartilage healing by improving tissue morphology and cartilage matrix quality.
Collapse
Affiliation(s)
- Mustafa Serpi
- Department of Orthopedics and Traumatology, Viranşehir State Hospital, Şanlıurfa, Türkiye
| | - Müjdat Adaş
- Department of Orthopedics and Traumatology, Prof. Dr. Cemil Taşcıoğlu City Hospital, University of Health Sciences, İstanbul, Türkiye
| | - Alev Cumbul
- Department of Histology and Embryology, Yeditepe University, İstanbul, Türkiye
| | - Murat Çakar
- Department of Orthopedics and Traumatology, Prof. Dr. Cemil Taşcıoğlu City Hospital, University of Health Sciences, İstanbul, Türkiye
| | - İsmail Demirkale
- Department of Orthopedics and Traumatology, Şişli Hamidiye Etfal Training and Research Hospital, İstanbul, Türkiye
| |
Collapse
|
3
|
Rodrigues FAP, Oliveira CS, Sá SC, Tavaria FK, Lee SJ, Oliveira AL, Costa JB. Molecules in Motion: Unravelling the Dynamics of Vascularization Control in Tissue Engineering. Macromol Biosci 2024; 24:e2400139. [PMID: 39422632 DOI: 10.1002/mabi.202400139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 08/14/2024] [Indexed: 10/19/2024]
Abstract
Significant progress has been made in tissue engineering (TE), aiming at providing personalized solutions and overcoming the current limitations of traditional tissue and organ transplantation. 3D bioprinting has emerged as a transformative technology in the field, able to mimic key properties of the natural architecture of the native tissues. However, most successes in the area are still limited to avascular or thin tissues due to the difficulties in controlling the vascularization of the engineered tissues. To address this issue, several molecules, biomaterials, and cells with pro- and anti-angiogenic potential have been intensively investigated. Furthermore, different bioreactors capable to provide a dynamic environment for in vitro vascularization control have been also explored. The present review summarizes the main molecules and TE strategies used to promote and inhibit vascularization in TE, as well as the techniques used to deliver them. Additionally, it also discusses the current challenges in 3D bioprinting and in tissue maturation to control in vitro/in vivo vascularization. Currently, this field of investigation is of utmost importance and may open doors for the design and development of more precise and controlled vascularization strategies in TE.
Collapse
Affiliation(s)
- Francisco A P Rodrigues
- CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Universidade Católica Portuguesa, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, Porto, 4169-005, Portugal
| | - Cláudia S Oliveira
- CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Universidade Católica Portuguesa, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, Porto, 4169-005, Portugal
| | - Simone C Sá
- CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Universidade Católica Portuguesa, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, Porto, 4169-005, Portugal
| | - Freni K Tavaria
- CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Universidade Católica Portuguesa, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, Porto, 4169-005, Portugal
| | - Sang Jin Lee
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
| | - Ana L Oliveira
- CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Universidade Católica Portuguesa, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, Porto, 4169-005, Portugal
| | - João B Costa
- CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Universidade Católica Portuguesa, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, Porto, 4169-005, Portugal
| |
Collapse
|
4
|
Xi H, Weng Y, Zheng Y, Wu L, Han D. Diacetoxy-6-gingerdiol protects the extracellular matrix of nucleus pulposus cells and ameliorates intervertebral disc degeneration by inhibiting the IL-1β-mediated NLRP3 pathway. Heliyon 2024; 10:e37877. [PMID: 39568855 PMCID: PMC11577133 DOI: 10.1016/j.heliyon.2024.e37877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 09/11/2024] [Indexed: 11/22/2024] Open
Abstract
Intervertebral disc degeneration (IDD) is a common cause of low back pain, causing a huge emotional and economic burden on patients and society. Reduction of nucleus pulposus cells (NPC) and extracellular matrix (ECM) is the main feature of IDD, and NPC is the main source of ECM. Thermal apoptosis is a newly discovered form of cell death in recent years that differs significantly from apoptosis in terms of molecular mechanisms and cellular morphological changes. Diacetoxy-6-gingerdiol(D-6-G), a type of gingerol, has anti-inflammatory and antioxidant effects, but whether it has an inhibitory effect on cellular pyroptosis is not clear. Therefore, in the present study, we investigated the effect of D-6-G on the ECM of the nucleus pulposus oblongata under IL-1β treatment, as well as the mechanism of its effect on NLRP3 inflammasome and cellular focal death. In vitro cellular experiments demonstrated that D-6-G could bind to and inhibit the activity of NLRP3 inflammasome, and interestingly, D-6-G could also inhibit cellular pyroptosis and protect the nucleus pulposusry cellular microenvironment by activating the Nrf2/HO-1 axis. In conclusion, we found that D-6-G could inhibit NLRP3 inflammatory vesicle activity as well as cellular pyroptosis in NPCs and protect the ECM, suggesting the potential of D-6-G to delay IDD.
Collapse
Affiliation(s)
- Huifeng Xi
- Department of Orthopedics, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Yuesong Weng
- Linhai Hospital of Traditional Chinese Medicine Healthcare Service Community, Linhai, Zhejiang, China
| | - Youmao Zheng
- Department of Orthopedics, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Lizhi Wu
- Department of Orthopedics, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Dawei Han
- Department of Orthopedics, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| |
Collapse
|
5
|
Feng H, Ang K, Guan P, Li J, Meng H, Yang J, Fan L, Sun Y. Application of adhesives in the treatment of cartilage repair. INTERDISCIPLINARY MEDICINE 2024; 2. [DOI: 10.1002/inmd.20240015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 05/08/2024] [Indexed: 01/04/2025]
Abstract
AbstractFrom degeneration causing intervertebral disc issues to trauma‐induced meniscus tears, diverse factors can injure the different types of cartilage. This review highlights adhesives as a promising and rapidly implemented repair strategy. Compared to traditional techniques such as sutures and wires, adhesives offer several advantages. Importantly, they seamlessly connect with the injured tissue, deliver bioactive substances directly to the repair site, and potentially alleviate secondary problems like inflammation or degeneration. This review delves into the cutting‐edge advancements in adhesive technology, specifically focusing on their effectiveness in cartilage injury treatment and their underlying mechanisms. We begin by exploring the material characteristics of adhesives used in cartilage tissue, focusing on essential aspects like adhesion, biocompatibility, and degradability. Subsequently, we investigate the various types of adhesives currently employed in this context. Our discussion then moves to the unique role adhesives play in addressing different cartilage injuries. Finally, we acknowledge the challenges currently faced by this promising technology.
Collapse
Affiliation(s)
- Haoyang Feng
- Department of Pediatric Orthopedics The Third Affiliated Hospital of Southern Medical University Guangzhou China
| | - Kai Ang
- Department of Pediatric Orthopedics The Third Affiliated Hospital of Southern Medical University Guangzhou China
| | - Pengfei Guan
- Department of Pediatric Orthopedics The Third Affiliated Hospital of Southern Medical University Guangzhou China
| | - Junji Li
- Department of Pediatric Orthopedics The Third Affiliated Hospital of Southern Medical University Guangzhou China
| | - Huan Meng
- Postdoc Cartilage Biology AO Research Institute Davos Davos Platz Wellington Switzerland
| | - Jian Yang
- Biomedical Engineering Program School of Engineering Westlake University Hangzhou China
| | - Lei Fan
- Department of Orthopedic Surgery Nanfang Hospital Southern Medical University Guangzhou China
| | - Yongjian Sun
- Department of Pediatric Orthopedics The Third Affiliated Hospital of Southern Medical University Guangzhou China
| |
Collapse
|
6
|
Yang C, Chen R, Chen C, Yang F, Xiao H, Geng B, Xia Y. Tissue engineering strategies hold promise for the repair of articular cartilage injury. Biomed Eng Online 2024; 23:92. [PMID: 39261876 PMCID: PMC11389311 DOI: 10.1186/s12938-024-01260-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 06/18/2024] [Indexed: 09/13/2024] Open
Abstract
Articular cartilage damage and wear can result in cartilage degeneration, ultimately culminating in osteoarthritis. Current surgical interventions offer limited capacity for cartilage tissue regeneration and offer only temporary alleviation of symptoms. Tissue engineering strategies are increasingly recognized as promising modalities for cartilage restoration. Currently, various biological scaffolds utilizing tissue engineering materials are extensively employed in both fundamental and clinical investigations of cartilage repair. In order to optimize the cartilage repair ability of tissue engineering scaffolds, researchers not only optimize the structure and properties of scaffolds from the perspective of materials science and manufacturing technology to enhance their histocompatibility, but also adopt strategies such as loading cells, cytokines, and drugs to promote cartilage formation. This review provides an overview of contemporary tissue engineering strategies employed in cartilage repair, as well as a synthesis of existing preclinical and clinical research. Furthermore, the obstacles faced in the translation of tissue engineering strategies to clinical practice are discussed, offering valuable guidance for researchers seeking to address these challenges.
Collapse
Affiliation(s)
- Chenhui Yang
- Department of Orthopedics, Lanzhou University Second Hospital, No.82, Cuyingmen, Chengguan District, Lanzhou, 730000, Gansu, China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou University Second Hospital, Lanzhou, 730000, China
- The Second School of Clinical Medical, Lanzhou University, Lanzhou, 730000, China
- Department of Orthopedic, Tianshui Hand and Foot Surgery Hospital, Tianshui, 741000, China
| | - Rongjin Chen
- Department of Orthopedics, Lanzhou University Second Hospital, No.82, Cuyingmen, Chengguan District, Lanzhou, 730000, Gansu, China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou University Second Hospital, Lanzhou, 730000, China
- The Second School of Clinical Medical, Lanzhou University, Lanzhou, 730000, China
| | - Changshun Chen
- Department of Orthopedics, Lanzhou University Second Hospital, No.82, Cuyingmen, Chengguan District, Lanzhou, 730000, Gansu, China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou University Second Hospital, Lanzhou, 730000, China
- The Second School of Clinical Medical, Lanzhou University, Lanzhou, 730000, China
| | - Fei Yang
- Department of Orthopedics, Lanzhou University Second Hospital, No.82, Cuyingmen, Chengguan District, Lanzhou, 730000, Gansu, China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou University Second Hospital, Lanzhou, 730000, China
- The Second School of Clinical Medical, Lanzhou University, Lanzhou, 730000, China
| | - Hefang Xiao
- Department of Orthopedics, Lanzhou University Second Hospital, No.82, Cuyingmen, Chengguan District, Lanzhou, 730000, Gansu, China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou University Second Hospital, Lanzhou, 730000, China
- The Second School of Clinical Medical, Lanzhou University, Lanzhou, 730000, China
| | - Bin Geng
- Department of Orthopedics, Lanzhou University Second Hospital, No.82, Cuyingmen, Chengguan District, Lanzhou, 730000, Gansu, China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou University Second Hospital, Lanzhou, 730000, China
- The Second School of Clinical Medical, Lanzhou University, Lanzhou, 730000, China
| | - Yayi Xia
- Department of Orthopedics, Lanzhou University Second Hospital, No.82, Cuyingmen, Chengguan District, Lanzhou, 730000, Gansu, China.
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou University Second Hospital, Lanzhou, 730000, China.
- The Second School of Clinical Medical, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
7
|
Rudnik‐Jansen I, van Kruining Kodele S, Creemers L, Joosten B. Biomolecular therapies for chronic discogenic low back pain: A narrative review. JOR Spine 2024; 7:e1345. [PMID: 39114580 PMCID: PMC11303450 DOI: 10.1002/jsp2.1345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/01/2024] [Accepted: 05/01/2024] [Indexed: 08/10/2024] Open
Abstract
Chronic low back pain caused by intervertebral disc (IVD) degeneration, also termed chronic discogenic low back pain (CD-LBP), is one of the most prevalent musculoskeletal diseases. Degenerative processes in the IVD, such as inflammation and extra-cellular matrix breakdown, result in neurotrophin release. Local elevated neurotrophin levels will stimulate sprouting and innervation of sensory neurons. Furthermore, sprouted sensory nerves that are directly connected to adjacent dorsal root ganglia have shown to increase microglia activation, contributing to the maintenance and chronification of pain. Current pain treatments have shown to be insufficient or inadequate for long-term usage. Furthermore, most therapeutic approaches aimed to target the underlying pathogenesis of disc degeneration focus on repair and regeneration and neglect chronic pain. How biomolecular therapies influence the degenerative IVD environment, pain signaling cascades, and innervation and excitability of the sensory neurons often remains unclear. This review addresses the relatively underexplored area of chronic pain treatment for CD-LBP and summarizes effects of therapies aimed for CD-LBP with special emphasis on chronic pain. Approaches based on blocking pro-inflammatory mediators or neurotrophin activity have been shown to hamper neuronal ingrowth into the disc. Furthermore, the tissue regenerative and neuro inhibitory properties of extracellular matrix components or transplanted mesenchymal stem cells are potentially interesting biomolecular approaches to not only block IVD degeneration but also impede pain sensitization. At present, most biomolecular therapies are based on acute IVD degeneration models and thus do not reflect the real clinical chronic pain situation in CD-LBP patients. Future studies should aim at investigating the effects of therapeutic interventions applied in chronic degenerated discs containing established sensory nerve ingrowth. The in-depth understanding of the ramifications from biomolecular therapies on pain (chronification) pathways and pain relief in CD-LBP could help narrow the gap between the pre-clinical bench and clinical bedside for novel CD-LBP therapeutics and optimize pain treatment.
Collapse
Affiliation(s)
- Imke Rudnik‐Jansen
- Department of Anesthesiology and Pain ManagementMaastricht University Medical Center (MUMC+)Maastrichtthe Netherlands
- Department of Translational Neuroscience, School of Mental Health and Neuroscience (MHeNs)University of MaastrichtMaastrichtthe Netherlands
| | - Sanda van Kruining Kodele
- Department of Translational Neuroscience, School of Mental Health and Neuroscience (MHeNs)University of MaastrichtMaastrichtthe Netherlands
| | - Laura Creemers
- Department of OrthopedicsUniversity Medical Center UtrechtUtrechtthe Netherlands
| | - Bert Joosten
- Department of Anesthesiology and Pain ManagementMaastricht University Medical Center (MUMC+)Maastrichtthe Netherlands
- Department of Translational Neuroscience, School of Mental Health and Neuroscience (MHeNs)University of MaastrichtMaastrichtthe Netherlands
| |
Collapse
|
8
|
Inoue Y, Kumagai K, Ishikawa K, Kato I, Kusaba Y, Naka T, Nagashima K, Choe H, Ike H, Kobayashi N, Inaba Y. Increased Wnt5a/ROR2 signaling is associated with chondrogenesis in meniscal degeneration. J Orthop Res 2024; 42:1880-1889. [PMID: 38440852 DOI: 10.1002/jor.25825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/05/2024] [Accepted: 02/19/2024] [Indexed: 03/06/2024]
Abstract
The aim of the present study was to investigate the association between chondrogenic differentiation and Wnt signal expression in the degenerative process of the human meniscus. Menisci were obtained from patients with and without knee osteoarthritis (OA), and degeneration was histologically assessed using a grading system. Immunohistochemistry, real-time polymerase chain reaction (PCR), and Western blot analysis were performed to examine the expressions of chondrogenic markers and of the components of Wnt signaling. Histological analyses showed that meniscal degeneration involved a transition from a fibroblastic to a chondrogenic phenotype with the upregulation of SOX9, collagen type II, collagen type XI, and aggrecan, which were associated with increased Wnt5a and ROR2 and decreased TCF7 expressions. OA menisci showed significantly higher expressions of Wnt5a and ROR2 and significantly lower expressions of AXIN2 and TCF7 than non-OA menisci on real-time PCR and Western blot analysis. These results potentially demonstrated that increased expression of Wnt5a/ROR2 signaling promoted chondrogenesis with decreased expression in downstream Wnt/β-catenin signaling. This study provides insights into the role of Wnt signaling in the process of meniscal degeneration, shifting to a chondrogenic phenotype. The findings suggested that the increased expression of Wnt5a/ROR2 and decreased expression of the downstream target of Wnt/β-catenin signaling are associated with chondrogenesis in meniscal degeneration.
Collapse
Affiliation(s)
- Yusuke Inoue
- Department of Orthopaedic Surgery and Muscloskeletal Science, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Ken Kumagai
- Department of Orthopaedic Surgery and Muscloskeletal Science, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Kimi Ishikawa
- Department of Orthopaedic Surgery and Muscloskeletal Science, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Ikuma Kato
- Department of Molecular Pathology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Youhei Kusaba
- Department of Orthopaedic Surgery and Muscloskeletal Science, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Takuma Naka
- Department of Orthopaedic Surgery and Muscloskeletal Science, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Kiyotaka Nagashima
- Department of Orthopaedic Surgery and Muscloskeletal Science, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Hyonmin Choe
- Department of Orthopaedic Surgery and Muscloskeletal Science, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Hiroyuki Ike
- Department of Orthopaedic Surgery and Muscloskeletal Science, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Naomi Kobayashi
- Department of Orthopaedic Surgery, Yokohama City University Medical Center, Yokohama, Japan
| | - Yutaka Inaba
- Department of Orthopaedic Surgery and Muscloskeletal Science, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| |
Collapse
|
9
|
Guo J, Yang Y, Xiang Y, Zhang S, Guo X. Application of smart hydrogel materials in cartilage injury repair: A systematic review and meta-analysis. J Biomater Appl 2024; 39:96-116. [PMID: 38708775 DOI: 10.1177/08853282241248779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
OBJECTIVE Cartilage injury is a common clinical condition, and treatment approaches have evolved over time from traditional conservative and surgical methods to regenerative repair. In this context, hydrogels, as widely used biomaterials in the field of cartilage repair, have garnered significant attention. Particularly, responsive hydrogels (also known as "smart hydrogels") have shown immense potential due to their ability to respond to various physicochemical properties and environmental changes. This paper aims to review the latest research developments of hydrogels in cartilage repair, utilizing a more systematic and comprehensive meta-analysis approach to evaluate the research status and application value of responsive hydrogels. The goal is to determine whether these materials demonstrate favorable therapeutic effects for subsequent clinical applications, thereby offering improved treatment methods for patients with cartilage injuries. METHOD This study employed a systematic literature search method to summarize the research progress of responsive hydrogels by retrieving literature on the subject and review studies. The search terms included "hydrogel" and "cartilage," covering data from database inception up to October 2023. The quality of the literature was independently evaluated using Review Manager v5.4 software. Quantifiable data was statistically analyzed using the R language. RESULTS A total of 7 articles were retrieved for further meta-analysis. In the quality assessment, the studies demonstrated reliability and accuracy. The results of the meta-analysis indicated that responsive hydrogels exhibit unique advantages and effective therapeutic outcomes in the field of cartilage repair. Subgroup analysis revealed potential influences of factors such as different types of hydrogels and animal models on treatment effects. CONCLUSION Responsive hydrogels show significant therapeutic effects and substantial application potential in the field of cartilage repair. This study provides strong scientific evidence for their further clinical applications and research, with the hope of promoting advancements in the treatment of cartilage injuries.
Collapse
Affiliation(s)
- Juncheng Guo
- Central Laboratory of Haikou People's Hospital, Haikou Affiliated Hospital of Xiangya Medical College, Central South University, Haikou, P. R. China
| | - Yijun Yang
- Haikou People's Hospital, Xiangya School of Medicine, Haikou Affiliated Hospital of Central South University, Haikou, P. R. China
| | - Yang Xiang
- Haikou People's Hospital, Xiangya School of Medicine, Haikou Affiliated Hospital of Central South University, Haikou, P. R. China
| | - Shufang Zhang
- Central Laboratory, Haikou People's Hospital, Xiangya School of Medicine, Haikou Affiliated Hospital of Central South University, Haikou, P. R. China
| | - Xueyi Guo
- Central South University, Changsha, P. R. China
| |
Collapse
|
10
|
Wakimoto Y, Miura Y, Inoue S, Nomura M, Moriyama H. Effects of different combinations of mechanical loading intensity, duration, and frequency on the articular cartilage in mice. Mol Biol Rep 2024; 51:862. [PMID: 39073659 PMCID: PMC11286701 DOI: 10.1007/s11033-024-09762-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 06/26/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND Understanding how healthy articular cartilage responds to mechanical loading is critical. Moderate mechanical loading has positive effects on the cartilage, such as maintaining cartilage homeostasis. The degree of mechanical loading is determined by a combination of intensity, frequency, and duration; however, the best combination of these parameters for knee cartilage remains unclear. This study aimed to determine which combination of intensity, frequency, and duration provides the best mechanical loading on healthy knee articular cartilage in vitro and in vivo. METHODS AND RESULTS In this study, 33 male mice were used. Chondrocytes isolated from mouse knee joints were subjected to different cyclic tensile strains (CTSs) and assessed by measuring the expression of cartilage matrix-related genes. Furthermore, the histological characteristics of mouse tibial cartilages were quantified using different treadmill exercises. Chondrocytes and mice were divided into the control group and eight intervention groups: high-intensity, high-frequency, and long-duration; high-intensity, high-frequency, and short-duration; high-intensity, low-frequency, and long-duration; high-intensity, low-frequency, and short-duration; low-intensity, high-frequency, and long-duration; low-intensity, high-frequency, and short-duration; low-intensity, low-frequency, and long-duration; low-intensity, low-frequency, and short-duration. In low-intensity CTSs, chondrocytes showed anabolic responses by altering the mRNA expression of COL2A1 in short durations and SOX9 in long durations. Furthermore, low-intensity, low-frequency, and long-duration treadmill exercises minimized chondrocyte hypertrophy and enhanced aggrecan synthesis in tibial cartilages. CONCLUSION Low-intensity, low-frequency, and long-duration mechanical loading is the best combination for healthy knee cartilage to maintain homeostasis and activate anabolic responses. Our findings provide a significant scientific basis for exercise and lifestyle instructions.
Collapse
Affiliation(s)
- Yoshio Wakimoto
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, Tomogaoka 7-10-2, Suma-ku, 654-0142, Kobe, Hyogo, Japan.
| | - Yasushi Miura
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, Tomogaoka 7-10-2, Suma-ku, 654-0142, Kobe, Hyogo, Japan
| | - Shota Inoue
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, Tomogaoka 7-10-2, Suma-ku, 654-0142, Kobe, Hyogo, Japan
| | - Masato Nomura
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, Tomogaoka 7-10-2, Suma-ku, 654-0142, Kobe, Hyogo, Japan
| | - Hideki Moriyama
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, Tomogaoka 7-10-2, Suma-ku, 654-0142, Kobe, Hyogo, Japan
| |
Collapse
|
11
|
Shakeri M, Aminian A, Mokhtari K, Bahaeddini M, Tabrizian P, Farahani N, Nabavi N, Hashemi M. Unraveling the molecular landscape of osteoarthritis: A comprehensive review focused on the role of non-coding RNAs. Pathol Res Pract 2024; 260:155446. [PMID: 39004001 DOI: 10.1016/j.prp.2024.155446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/16/2024]
Abstract
Osteoarthritis (OA) poses a significant global health challenge, with its prevalence anticipated to increase in the coming years. This review delves into the emerging molecular biomarkers in OA pathology, focusing on the roles of various molecules such as metabolites, noncoding RNAs (ncRNAs), including microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs). Advances in omics technologies have transformed biomarker identification, enabling comprehensive analyses of the complex pathways involved in OA pathogenesis. Notably, ncRNAs, especially miRNAs and lncRNAs, exhibit dysregulated expression patterns in OA, presenting promising opportunities for diagnosis and therapy. Additionally, the intricate interplay between epigenetic modifications and OA progression highlights the regulatory role of epigenetics in gene expression dynamics. Genome-wide association studies have pinpointed key genes undergoing epigenetic changes, providing insights into the inflammatory processes and chondrocyte hypertrophy typical of OA. Understanding the molecular landscape of OA, including biomarkers and epigenetic mechanisms, holds significant potential for developing innovative diagnostic tools and therapeutic strategies for OA management.
Collapse
Affiliation(s)
- Mohammadreza Shakeri
- MD, Bone and Joint Reconstruction Research Center, Shafa Orthopedic Hospital, Department of Orthopedic, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Amir Aminian
- MD, Bone and Joint Reconstruction Research Center, Shafa Orthopedic Hospital, Department of Orthopedic, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Khatere Mokhtari
- Department of Cellular and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Mohammadreza Bahaeddini
- MD, Bone and Joint Reconstruction Research Center, Shafa Orthopedic Hospital, Department of Orthopedic, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Pouria Tabrizian
- MD, Bone and Joint Reconstruction Research Center, Shafa Orthopedic Hospital, Department of Orthopedic, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Najma Farahani
- Department of Genetics and Molecular Biology, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Noushin Nabavi
- Independent Researcher, Victoria, British Columbia V8V 1P7, Canada
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
12
|
Ambrosio L, Schol J, Ruiz-Fernández C, Tamagawa S, Joyce K, Nomura A, de Rinaldis E, Sakai D, Papalia R, Vadalà G, Denaro V. Getting to the Core: Exploring the Embryonic Development from Notochord to Nucleus Pulposus. J Dev Biol 2024; 12:18. [PMID: 39051200 PMCID: PMC11270426 DOI: 10.3390/jdb12030018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/12/2024] [Accepted: 07/02/2024] [Indexed: 07/27/2024] Open
Abstract
The intervertebral disc (IVD) is the largest avascular organ of the human body and plays a fundamental role in providing the spine with its unique structural and biomechanical functions. The inner part of the IVD contains the nucleus pulposus (NP), a gel-like tissue characterized by a high content of type II collagen and proteoglycans, which is crucial for the disc's load-bearing and shock-absorbing properties. With aging and IVD degeneration (IDD), the NP gradually loses its physiological characteristics, leading to low back pain and additional sequelae. In contrast to surrounding spinal tissues, the NP presents a distinctive embryonic development since it directly derives from the notochord. This review aims to explore the embryology of the NP, emphasizing the pivotal roles of key transcription factors, which guide the differentiation and maintenance of the NP cellular components from the notochord and surrounding sclerotome. Through an understanding of NP development, we sought to investigate the implications of the critical developmental aspects in IVD-related pathologies, such as IDD and the rare malignant chordomas. Moreover, this review discusses the therapeutic strategies targeting these pathways, including the novel regenerative approaches leveraging insights from NP development and embryology to potentially guide future treatments.
Collapse
Affiliation(s)
- Luca Ambrosio
- Operative Research Unit of Orthopaedic and Trauma Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, 00128 Rome, Italy; (L.A.); (R.P.); (V.D.)
- Research Unit of Orthopaedic and Trauma Surgery, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, 01128 Rome, Italy;
- Department of Orthopaedic Surgery, Tokai University School of Medicine, Isehara 259-1143, Japan; (J.S.); (C.R.-F.); (A.N.); (D.S.)
| | - Jordy Schol
- Department of Orthopaedic Surgery, Tokai University School of Medicine, Isehara 259-1143, Japan; (J.S.); (C.R.-F.); (A.N.); (D.S.)
| | - Clara Ruiz-Fernández
- Department of Orthopaedic Surgery, Tokai University School of Medicine, Isehara 259-1143, Japan; (J.S.); (C.R.-F.); (A.N.); (D.S.)
| | - Shota Tamagawa
- Department of Medicine for Orthopaedics and Motor Organ, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan;
| | - Kieran Joyce
- CÚRAM, SFI Research Centre for Medical Devices, University of Galway, H91 W2TY Galway, Ireland;
- School of Medicine, University of Galway, H91 W2TY Galway, Ireland
| | - Akira Nomura
- Department of Orthopaedic Surgery, Tokai University School of Medicine, Isehara 259-1143, Japan; (J.S.); (C.R.-F.); (A.N.); (D.S.)
| | - Elisabetta de Rinaldis
- Research Unit of Orthopaedic and Trauma Surgery, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, 01128 Rome, Italy;
| | - Daisuke Sakai
- Department of Orthopaedic Surgery, Tokai University School of Medicine, Isehara 259-1143, Japan; (J.S.); (C.R.-F.); (A.N.); (D.S.)
| | - Rocco Papalia
- Operative Research Unit of Orthopaedic and Trauma Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, 00128 Rome, Italy; (L.A.); (R.P.); (V.D.)
- Research Unit of Orthopaedic and Trauma Surgery, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, 01128 Rome, Italy;
| | - Gianluca Vadalà
- Operative Research Unit of Orthopaedic and Trauma Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, 00128 Rome, Italy; (L.A.); (R.P.); (V.D.)
- Research Unit of Orthopaedic and Trauma Surgery, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, 01128 Rome, Italy;
| | - Vincenzo Denaro
- Operative Research Unit of Orthopaedic and Trauma Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, 00128 Rome, Italy; (L.A.); (R.P.); (V.D.)
| |
Collapse
|
13
|
Chen X, Zhang A, Zhao K, Gao H, Shi P, Chen Y, Cheng Z, Zhou W, Zhang Y. The role of oxidative stress in intervertebral disc degeneration: Mechanisms and therapeutic implications. Ageing Res Rev 2024; 98:102323. [PMID: 38734147 DOI: 10.1016/j.arr.2024.102323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/19/2024] [Accepted: 05/03/2024] [Indexed: 05/13/2024]
Abstract
Oxidative stress is one of the main driving mechanisms of intervertebral disc degeneration(IDD). Oxidative stress has been associated with inflammation in the intervertebral disc, cellular senescence, autophagy, and epigenetics of intervertebral disc cells. It and the above pathological mechanisms are closely linked through the common hub reactive oxygen species(ROS), and promote each other in the process of disc degeneration and promote the development of the disease. This reveals the important role of oxidative stress in the process of IDD, and the importance and great potential of IDD therapy targeting oxidative stress. The efficacy of traditional therapy is unstable or cannot be maintained. In recent years, due to the rise of materials science, many bioactive functional materials have been applied in the treatment of IDD, and through the combination with traditional drugs, satisfactory efficacy has been achieved. At present, the research review of antioxidant bioactive materials in the treatment of IDD is not complete. Based on the existing studies, the mechanism of oxidative stress in IDD and the common antioxidant therapy were summarized in this paper, and the strategies based on emerging bioactive materials were reviewed.
Collapse
Affiliation(s)
- Xianglong Chen
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Anran Zhang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Kangcheng Zhao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Haiyang Gao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Pengzhi Shi
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yuhang Chen
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhangrong Cheng
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Wenjuan Zhou
- Department of Operating Room, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Yukun Zhang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
14
|
Tian Z, Gao H, Xia W, Lou Z. S1PR3 suppresses the inflammatory response and extracellular matrix degradation in human nucleus pulposus cells. Exp Ther Med 2024; 27:265. [PMID: 38756905 PMCID: PMC11097297 DOI: 10.3892/etm.2024.12553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 02/13/2024] [Indexed: 05/18/2024] Open
Abstract
Sphingosine 1-phosphate receptor 3 (S1PR3) participates in the inflammatory response in multiple types of diseases. However, the biological role of S1PR3 in intervertebral disc degeneration and the underlying mechanism are unclear. The aim of the present study was to investigate the functional role and the mechanism of S1PR3 in lipopolysaccharide (LPS)-induced human nucleus pulposus cells. The expression of S1PR3 and Toll-like receptor (TLR) 2 in LPS-induced nucleus pulposus (NP) cells was investigated using western blotting. The Cell Counting Kit-8 assay was used to detect cell proliferation, and the levels of inflammatory factors were detected using ELISA. Flow cytometry and western blotting were used for the assessment of apoptosis. The deposition of extracellular matrix (ECM) proteins was investigated using reverse transcription-quantitative PCR and western blotting. In addition, western blotting was used to investigate the protein expression levels of phosphorylated (p)-STAT3, STAT3, p-JNK, JNK, p-ERK, ERK, p-p38 and p38associated with STAT3 and MAPK signaling. S1PR3 expression was reduced, while TLR2 expression was elevated in LPS-induced human nucleus pulposus cells (HNPC). S1PR3 overexpression increased HNPC viability, inhibited the inflammatory response and suppressed apoptosis. Meanwhile, S1PR3 overexpression regulated the expression of ECM-related proteins. Additionally, overexpression of S1PR3 inhibited the expression of the TLR2-regulated STAT3 and MAPK pathways in LPS-induced HNPCs. Furthermore, TLR2 overexpression partially offset the impacts of S1PR3 overexpression on HNPC viability, apoptosis level, inflammation and as ECM degradation. In conclusion, STAT3 overexpression suppressed viability injury, the inflammatory response and the level of apoptosis and alleviated ECM protein deposition in HNPCs through the TLR2/STAT3 and TLR2/MAPK pathways, which may offer a promising candidate for the amelioration of intervertebral disc degeneration.
Collapse
Affiliation(s)
- Zhen Tian
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Haoran Gao
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Wenjun Xia
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Zhaohui Lou
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| |
Collapse
|
15
|
Li E, Tan J, Xu K, Pan Y, Xu P. Global burden and socioeconomic impact of knee osteoarthritis: a comprehensive analysis. Front Med (Lausanne) 2024; 11:1323091. [PMID: 38818397 PMCID: PMC11137242 DOI: 10.3389/fmed.2024.1323091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/30/2024] [Indexed: 06/01/2024] Open
Abstract
Objective To report the trend changes of the prevalence, incidence, and disability-adjusted life years (DALYs) of knee osteoarthritis (KOA) according to age, sex, sociodemographic index (SDI), and income. Methods This analysis used estimates from the broader Global Burden of Disease (GBD) study 2019, which covered 201 countries from 1990 to 2019. National prevalence, incidence, and DALYs were shown by using ggplot2 and maps packages. Five-year intervals were used for age groupings. The Commonwealth and the World Bank income classifications were used for income grouping. Results Globally, there were ~364.58 million prevalent cases (females: 225.16 million), 29.51 million incident cases (females: 17.53 million), and 11.53 million DALYs (females: 7.09 million) due to KOA in 2019. The Western Pacific Region had a high endemicity of ~7,319.87 cases per 100,000 people (7.64%). Japan's prevalence rate (12,610.12 cases per 100,000 population) was 10 times that of Somalia (1,178.23) in 2019. In 200 countries (except the United Arab Emirates), the prevalence, incidence, and DALY rates of KOA in 2019 were higher among females than among males and increased with age up to the oldest age group. The prevalence was highest in the high-middle SDI countries, and the incidence and DALYs were highest in the middle SDI countries. Conclusion There was a large burden of KOA worldwide, with some notable intercountry variation. Some countries had 10 times the burden of other countries. Increasing population awareness regarding the prevalence, incidence, and DALYs of KOA with a focus on the population in the Western Pacific Region is needed, particularly for older females. informs health policy development, and contributes to improving the efficiency, equity, and effectiveness of healthcare systems.
Collapse
Affiliation(s)
- Erliang Li
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
- Department of Orthopedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jianshi Tan
- Department of Orthopedics, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Ke Xu
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Ying Pan
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Peng Xu
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
16
|
Liu N, Jiang J, Liu T, Chen H, Jiang N. Compositional, Structural, and Biomechanical Properties of Three Different Soft Tissue-Hard Tissue Insertions: A Comparative Review. ACS Biomater Sci Eng 2024; 10:2659-2679. [PMID: 38697939 DOI: 10.1021/acsbiomaterials.3c01796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
Connective tissue attaches to bone across an insertion with spatial gradients in components, microstructure, and biomechanics. Due to regional stress concentrations between two mechanically dissimilar materials, the insertion is vulnerable to mechanical damage during joint movements and difficult to repair completely, which remains a significant clinical challenge. Despite interface stress concentrations, the native insertion physiologically functions as the effective load-transfer device between soft tissue and bone. This review summarizes tendon, ligament, and meniscus insertions cross-sectionally, which is novel in this field. Herein, the similarities and differences between the three kinds of insertions in terms of components, microstructure, and biomechanics are compared in great detail. This review begins with describing the basic components existing in the four zones (original soft tissue, uncalcified fibrocartilage, calcified fibrocartilage, and bone) of each kind of insertion, respectively. It then discusses the microstructure constructed from collagen, glycosaminoglycans (GAGs), minerals and others, which provides key support for the biomechanical properties and affects its physiological functions. Finally, the review continues by describing variations in mechanical properties at the millimeter, micrometer, and nanometer scale, which minimize stress concentrations and control stretch at the insertion. In summary, investigating the contrasts between the three has enlightening significance for future directions of repair strategies of insertion diseases and for bioinspired approaches to effective soft-hard interfaces and other tough and robust materials in medicine and engineering.
Collapse
Affiliation(s)
- Nian Liu
- West China School of Stomatology, Sichuan University, Chengdu, Sichuan 610207, China
| | - Jialing Jiang
- West China School of Stomatology, Sichuan University, Chengdu, Sichuan 610207, China
| | - Tiancheng Liu
- West China Hospital, Sichuan University, Chengdu, Sichuan 610207, China
| | - Haozhe Chen
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Nan Jiang
- State Key Laboratory of Oral Diseases, & National Clinical Research Center for Oral Disease, & West China Hospital of Stomatology and the Research Center for Nano Biomaterials, Analytical & Testing Center, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
17
|
Teng C, Wu J, Zhang Z, Wang J, Yang Y, Dong C, Wu L, Lin Z, Hu Y, Wang J, Zhang X, Lin Z. Fucoxanthin ameliorates endoplasmic reticulum stress and inhibits apoptosis and alleviates intervertebral disc degeneration in rats by upregulating Sirt1. Phytother Res 2024; 38:2114-2127. [PMID: 37918392 DOI: 10.1002/ptr.8057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 06/21/2023] [Accepted: 10/15/2023] [Indexed: 11/04/2023]
Abstract
Endoplasmic reticulum stress (ERS) and apoptosis of nucleus pulposus (NP) cells are considered to be the main pathological factors of intervertebral disc degeneration (IDD). Fucoxanthin (FX), a marine carotenoid extracted from microalgae, has antioxidant, anti-inflammatory, and anticancer properties. The aim of this study was to investigate the effect of FX on NP cells induced by oxidative stress and its molecular mechanism. Primary NP cells of the lumbar vertebrae of rats were extracted and tested in vitro. qRT-PCR, western blot, immunofluorescence, and TUNEL staining were used to detect apoptosis, ERS, extracellular matrix (ECM), and Sirt1-related pathways. In vivo experiments, the recovery of IDD rats was determined by X-ray, hematoxylin and eosin, Safranin-O/Fast Green, Alcian staining, and immunohistochemistry. Our study showed that oxidative stress induced ERS, apoptosis, and ECM degradation in NP cells. After the use of FX, the expression of Sirt1 was up-regulated, the activation of PERK-eIF2α-ATF4-CHOP was decreased, and apoptosis and ECM degradation were decreased. At the same time, FX improved the degree of disc degeneration in rats in vivo. Our study demonstrates the effect of FX on improving IDD in vivo and in vitro, suggesting that FX may be a potential drug for the treatment of IDD.
Collapse
Affiliation(s)
- Cheng Teng
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jingtao Wu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhao Zhang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jinquan Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ye Yang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Chengji Dong
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Long Wu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhen Lin
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yuezheng Hu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jing Wang
- Department of Orthopaedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaolei Zhang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Chinese Orthopaedic Regenerative Medicine Society, Hangzhou, Zhejiang, China
| | - Zhongke Lin
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
18
|
Foltz L, Avabhrath N, Lanchy JM, Levy T, Possemato A, Ariss M, Peterson B, Grimes M. Craniofacial chondrogenesis in organoids from human stem cell-derived neural crest cells. iScience 2024; 27:109585. [PMID: 38623327 PMCID: PMC11016914 DOI: 10.1016/j.isci.2024.109585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 02/27/2024] [Accepted: 03/25/2024] [Indexed: 04/17/2024] Open
Abstract
Knowledge of cell signaling pathways that drive human neural crest differentiation into craniofacial chondrocytes is incomplete, yet essential for using stem cells to regenerate craniomaxillofacial structures. To accelerate translational progress, we developed a differentiation protocol that generated self-organizing craniofacial cartilage organoids from human embryonic stem cell-derived neural crest stem cells. Histological staining of cartilage organoids revealed tissue architecture and staining typical of elastic cartilage. Protein and post-translational modification (PTM) mass spectrometry and snRNA-seq data showed that chondrocyte organoids expressed robust levels of cartilage extracellular matrix (ECM) components: many collagens, aggrecan, perlecan, proteoglycans, and elastic fibers. We identified two populations of chondroprogenitor cells, mesenchyme cells and nascent chondrocytes, and the growth factors involved in paracrine signaling between them. We show that ECM components secreted by chondrocytes not only create a structurally resilient matrix that defines cartilage, but also play a pivotal autocrine cell signaling role in determining chondrocyte fate.
Collapse
Affiliation(s)
- Lauren Foltz
- Division of Biological Sciences, Center for Biomolecular Structure and Dynamics, Center for Structural and Functional Neuroscience, The University of Montana, Missoula, MT 59812, USA
| | - Nagashree Avabhrath
- Division of Biological Sciences, Center for Biomolecular Structure and Dynamics, Center for Structural and Functional Neuroscience, The University of Montana, Missoula, MT 59812, USA
| | - Jean-Marc Lanchy
- Division of Biological Sciences, Center for Biomolecular Structure and Dynamics, Center for Structural and Functional Neuroscience, The University of Montana, Missoula, MT 59812, USA
| | - Tyler Levy
- Cell Signaling Technology, Danvers, MA 01923, USA
| | | | - Majd Ariss
- Cell Signaling Technology, Danvers, MA 01923, USA
| | | | - Mark Grimes
- Division of Biological Sciences, Center for Biomolecular Structure and Dynamics, Center for Structural and Functional Neuroscience, The University of Montana, Missoula, MT 59812, USA
| |
Collapse
|
19
|
Wang P, Zhu P, Yin W, Wu J, Zhang S. ICA/SDF-1α/PBMSCs loaded onto alginate and gelatin cross-linked scaffolds promote damaged cartilage repair. J Cell Mol Med 2024; 28:e18236. [PMID: 38509746 PMCID: PMC10955157 DOI: 10.1111/jcmm.18236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 01/13/2024] [Accepted: 02/28/2024] [Indexed: 03/22/2024] Open
Abstract
A three-dimensional alginate-coated scaffold (GAIS) was constructed in the present study to showcase the multidifferentiation potential of peripheral blood mesenchymal stem cells (PBMSCs) and to investigate the role and mechanism by which Icariin (ICA)/stromal cell-derived factor (SDF-1α)/PBMSCs promote damaged articular repair. In addition, the ability of ICA, in combination with SDF-1α, to promote the migration and proliferation of stem cells was validated through the utilization of CCK-8 and migration experiments. The combination of ICA and SDF-1α inhibited the differentiation of PBMSCs into cartilage, as demonstrated by in vivo experiments and histological staining. Both PCR and western blot experiments showed that GAIS could upregulate the expression of particular genes in chondrocytes. In comparison to scaffolds devoid of alginate (G0), PBMSCs seeded into GAIS scaffolds exhibited a greater rate of proliferation, and the conditioned medium derived from scaffolds containing SDF-1α enhanced the capacity for cell migration. Moreover, after a 12-week treatment period, GAIS, when successfully transplanted into osteochondral defects of mice, was found to promote cartilage regeneration and repair. The findings, therefore, demonstrate that GAIS enhanced the in vitro capabilities of PBMSCs, including proliferation, migration, homing and chondrogenic differentiation. In addition, ICA and SDF-1α effectively collaborated to support cartilage formation in vivo. Thus, the ICA/SDF-1α/PBMSC-loaded biodegradable alginate-gelatin scaffolds showcase considerable potential for use in cartilage repair.
Collapse
Affiliation(s)
- Pengzhen Wang
- Guangzhou Institute of Traumatic SurgeryGuangzhou Red Cross Hospital of Jinan UniversityGuangzhouGuangdongChina
- Key Laboratory of Regenerative Medicine, Ministry of EducationJinan UniversityGuangzhouGuangdongChina
| | - Pingping Zhu
- Department of NeurologyGuangzhou Red Cross Hospital of Jinan UniversityGuangzhouGuangdongChina
| | - Wenhui Yin
- Department of CardiologyGuangzhou Red Cross Hospital of Jinan UniversityGuangzhouGuangdongChina
| | - Jian Wu
- Department of OtorhinolaryngologyGuangzhou Red Cross Hospital of Jinan UniversityGuangzhouGuangdongChina
| | - Shaoheng Zhang
- Department of CardiologyGuangzhou Red Cross Hospital of Jinan UniversityGuangzhouGuangdongChina
| |
Collapse
|
20
|
Li X, Chen W, Liu D, Chen P, Wang S, Li F, Chen Q, Lv S, Li F, Chen C, Guo S, Yuan W, Li P, Hu Z. Pathological progression of osteoarthritis: a perspective on subchondral bone. Front Med 2024; 18:237-257. [PMID: 38619691 DOI: 10.1007/s11684-024-1061-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/17/2024] [Indexed: 04/16/2024]
Abstract
Osteoarthritis (OA) is a degenerative bone disease associated with aging. The rising global aging population has led to a surge in OA cases, thereby imposing a significant socioeconomic burden. Researchers have been keenly investigating the mechanisms underlying OA. Previous studies have suggested that the disease starts with synovial inflammation and hyperplasia, advancing toward cartilage degradation. Ultimately, subchondral-bone collapse, sclerosis, and osteophyte formation occur. This progression is deemed as "top to bottom." However, recent research is challenging this perspective by indicating that initial changes occur in subchondral bone, precipitating cartilage breakdown. In this review, we elucidate the epidemiology of OA and present an in-depth overview of the subchondral bone's physiological state, functions, and the varied pathological shifts during OA progression. We also introduce the role of multifunctional signal pathways (including osteoprotegerin (OPG)/receptor activator of nuclear factor-kappa B ligand (RANKL)/receptor activator of nuclear factor-kappa B (RANK), and chemokine (CXC motif) ligand 12 (CXCL12)/CXC motif chemokine receptor 4 (CXCR4)) in the pathology of subchondral bone and their role in the "bottom-up" progression of OA. Using vivid pattern maps and clinical images, this review highlights the crucial role of subchondral bone in driving OA progression, illuminating its interplay with the condition.
Collapse
Affiliation(s)
- Xuefei Li
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Wenhua Chen
- Research and Development Center of Chinese Medicine Resources and Biotechnology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Dan Liu
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Pinghua Chen
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Shiyun Wang
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Fangfang Li
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Qian Chen
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Shunyi Lv
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Fangyu Li
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Chen Chen
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Suxia Guo
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Weina Yuan
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Pan Li
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Zhijun Hu
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| |
Collapse
|
21
|
Chelstrom BP, Chawla D, Henak CR. Failure in articular cartilage: Finite element predictions of stress, strain, and pressure under micro-indentation induced fracture. J Mech Behav Biomed Mater 2024; 150:106300. [PMID: 38104488 DOI: 10.1016/j.jmbbm.2023.106300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/31/2023] [Accepted: 12/02/2023] [Indexed: 12/19/2023]
Abstract
Articular cartilage is found at the distal end of long bones and is responsible for assisting in joint articulation. While articular cartilage has remarkable resistance to failure, once initially damaged, degeneration is nearly irreversible. Thus, understanding damage initiation is important. There are a few proposed mechanisms for articular cartilage failure initiation: (A) a single collagen fibril stress-based regime; (B) a rate-dependent regime captured by brittle failure at slow displacement rates (SDR) and ductile failure at fast displacement rates (FDR); and (C) a rate-dependent regime where failure is governed by pressurization fragmentation at SDR and governed by strain at FDR. The objective of this study was to use finite element (FE) models to provide evidence to support or refute these proposed failure mechanisms. Models were developed of microfracture experiments that investigated osmolarity (hypo-osmolar, normal osmolarity, and hyper-osmolar) and displacement rate (FDR and SDR) effects. Cartilage was modeled with a neo-Hookean ground matrix, strain-dependent permeability, nonlinear fibril reinforcement with viscoelastic fibril terms, and Donnan equilibrium swelling. Total stress, solid matrix stress, Lagrange strain, and fluid pressure were determined under the indenter tip at the moment of microfracture. Results indicated significant rate dependence across multiple outputs, which does not support (A) a single failure regime. Larger solid and fluid pressures at FDR than SDR did not support (C) a rate-dependent regime split by pressurization at SDR and strain at FDR. Consistent solid shear stresses at SDR and consistent third principal solid stresses at FDR support (B) the ductile-brittle failure regime. These findings help to shed light on the underlying mechanisms of articular cartilage failure, which have implications for the development of osteoarthritis.
Collapse
Affiliation(s)
- Brandon P Chelstrom
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Dipul Chawla
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Corinne R Henak
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA; Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI, USA; Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
22
|
Jahn J, Ehlen QT, Huang CY. Finding the Goldilocks Zone of Mechanical Loading: A Comprehensive Review of Mechanical Loading in the Prevention and Treatment of Knee Osteoarthritis. Bioengineering (Basel) 2024; 11:110. [PMID: 38391596 PMCID: PMC10886318 DOI: 10.3390/bioengineering11020110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 01/15/2024] [Accepted: 01/18/2024] [Indexed: 02/24/2024] Open
Abstract
In this review, we discuss the interaction of mechanical factors influencing knee osteoarthritis (KOA) and post-traumatic osteoarthritis (PTOA) pathogenesis. Emphasizing the importance of mechanotransduction within inflammatory responses, we discuss its capacity for being utilized and harnessed within the context of prevention and rehabilitation of osteoarthritis (OA). Additionally, we introduce a discussion on the Goldilocks zone, which describes the necessity of maintaining a balance of adequate, but not excessive mechanical loading to maintain proper knee joint health. Expanding beyond these, we synthesize findings from current literature that explore the biomechanical loading of various rehabilitation exercises, in hopes of aiding future recommendations for physicians managing KOA and PTOA and athletic training staff strategically planning athlete loads to mitigate the risk of joint injury. The integration of these concepts provides a multifactorial analysis of the contributing factors of KOA and PTOA, in order to spur further research and illuminate the potential of utilizing the body's own physiological responses to mechanical stimuli in the management of OA.
Collapse
Affiliation(s)
- Jacob Jahn
- University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Quinn T Ehlen
- University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Chun-Yuh Huang
- Department of Biomedical Engineering, College of Engineering, University of Miami, Coral Gables, FL 33146, USA
| |
Collapse
|
23
|
Josino R, Stimamiglio MA. Bioactive decellularized extracellular matrix-based hydrogel supports human adipose tissue-derived stem cell maintenance and fibrocartilage phenotype. Front Bioeng Biotechnol 2024; 11:1304030. [PMID: 38260748 PMCID: PMC10800544 DOI: 10.3389/fbioe.2023.1304030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/20/2023] [Indexed: 01/24/2024] Open
Abstract
Articular cartilage is a highly specialized tissue able to tolerate physical stress. However, its capacity for restoration is restricted, and injuries to the cartilage do not recover spontaneously. Interest in mesenchymal stem cells derived from human adipose tissue (hASCs) is growing due to their potential to improve tissue healing and recovery. Decellularized extracellular matrix (dECM)-based hydrogels combined with hASCs could serve as an interface for studying behavior and differentiation properties in a cartilage microenvironment. In the present study, we described the behavior of hASCs cultured in a commercial dECM MatriXpec™. The structural microtopography of MatriXpec™ was analyzed by scanning electron micrography, and its protein composition was accessed by mass spectrometry. The protein composition of MatriXpec™ is mainly represented by collagen proteins, building its fibrous ultrastructure. hASCs were cultured three-dimensionally (3D) on MatriXpec™ to perform cell viability, growth, and cartilage differentiation analysis. We showed that MatriXpec™ could be loaded with hASCs and that it supports cell maintenance for several days. We observed that the three-dimensional ultrastructure of the biomaterial is composed of nanofibers, and its protein composition reflects the tissue from which it was harvested. Finally, we showed that the molecular cues from the hydrogel are biologically active as these influence cell behavior and differentiation phenotype, increasing the expression of fibrocartilage-related genes such as SOX9, COL1, COL10, and MMP13. MatriXpec™ hydrogel can be used as an interface for 3D hASCs culture studies as it maintains cell viability and supports its differentiation process.
Collapse
|
24
|
Barceló X, Eichholz K, Gonçalves I, Kronemberger GS, Dufour A, Garcia O, Kelly DJ. Bioprinting of scaled-up meniscal grafts by spatially patterning phenotypically distinct meniscus progenitor cells within melt electrowritten scaffolds. Biofabrication 2023; 16:015013. [PMID: 37939395 DOI: 10.1088/1758-5090/ad0ab9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 11/07/2023] [Indexed: 11/10/2023]
Abstract
Meniscus injuries are a common problem in orthopedic medicine and are associated with a significantly increased risk of developing osteoarthritis. While developments have been made in the field of meniscus regeneration, the engineering of cell-laden constructs that mimic the complex structure, composition and biomechanics of the native tissue remains a significant challenge. This can be linked to the use of cells that are not phenotypically representative of the different zones of the meniscus, and an inability to direct the spatial organization of engineered meniscal tissues. In this study we investigated the potential of zone-specific meniscus progenitor cells (MPCs) to generate functional meniscal tissue following their deposition into melt electrowritten (MEW) scaffolds. We first confirmed that fibronectin selected MPCs from the inner and outer regions of the meniscus maintain their differentiation capacity with prolonged monolayer expansion, opening their use within advanced biofabrication strategies. By depositing MPCs within MEW scaffolds with elongated pore shapes, which functioned as physical boundaries to direct cell growth and extracellular matrix production, we were able to bioprint anisotropic fibrocartilaginous tissues with preferentially aligned collagen networks. Furthermore, by using MPCs isolated from the inner (iMPCs) and outer (oMPCs) zone of the meniscus, we were able to bioprint phenotypically distinct constructs mimicking aspects of the native tissue. An iterative MEW process was then implemented to print scaffolds with a similar wedged-shaped profile to that of the native meniscus, into which we deposited iMPCs and oMPCs in a spatially controlled manner. This process allowed us to engineer sulfated glycosaminoglycan and collagen rich constructs mimicking the geometry of the meniscus, with MPCs generating a more fibrocartilage-like tissue compared to the mesenchymal stromal/stem cells. Taken together, these results demonstrate how the convergence of emerging biofabrication platforms with tissue-specific progenitor cells can enable the engineering of complex tissues such as the meniscus.
Collapse
Affiliation(s)
- Xavier Barceló
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin D02 R590, Ireland
- Department of Mechanical, Manufacturing, & Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin D02 R590, Ireland
- Advanced Materials & Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland & Trinity College Dublin, Dublin D02 F6N2, Ireland
| | - Kian Eichholz
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin D02 R590, Ireland
- Department of Mechanical, Manufacturing, & Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin D02 R590, Ireland
- Advanced Materials & Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland & Trinity College Dublin, Dublin D02 F6N2, Ireland
| | - Inês Gonçalves
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin D02 R590, Ireland
- Department of Mechanical, Manufacturing, & Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin D02 R590, Ireland
- Advanced Materials & Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland & Trinity College Dublin, Dublin D02 F6N2, Ireland
| | - Gabriela S Kronemberger
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin D02 R590, Ireland
- Department of Mechanical, Manufacturing, & Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin D02 R590, Ireland
- Advanced Materials & Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland & Trinity College Dublin, Dublin D02 F6N2, Ireland
| | - Alexandre Dufour
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin D02 R590, Ireland
- Department of Mechanical, Manufacturing, & Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin D02 R590, Ireland
- Advanced Materials & Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland & Trinity College Dublin, Dublin D02 F6N2, Ireland
| | - Orquidea Garcia
- Johnson & Johnson 3D Printing Innovation & Customer Solutions, Johnson & Johnson Services, Inc, Dublin D02 R590, Ireland
| | - Daniel J Kelly
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin D02 R590, Ireland
- Department of Mechanical, Manufacturing, & Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin D02 R590, Ireland
- Advanced Materials & Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland & Trinity College Dublin, Dublin D02 F6N2, Ireland
- Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin D02 YN77, Ireland
| |
Collapse
|
25
|
Zhang M, Wan L, Li R, Li X, Zhu T, Lu H. Engineered exosomes for tissue regeneration: from biouptake, functionalization and biosafety to applications. Biomater Sci 2023; 11:7247-7267. [PMID: 37794789 DOI: 10.1039/d3bm01169k] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
Exosomes are increasingly recognized as important effector molecules that regulate intercellular signaling pathways. Notably, certain types of exosomes can induce therapeutic responses, including cell proliferation, angiogenesis, and tissue repair. The use of exosomes in therapy is a hot spot in current research, especially in regenerative medicine. Despite the therapeutic potential, problems have hindered their success in clinical applications. These shortcomings include low concentration, poor targeting and limited loading capability. To fully realize their therapeutic potential, certain modifications are needed in native exosomes. In the present review, we summarize the exosome modification and functionalization strategies. In addition, we provide an overview of potential clinical applications and highlight the issues associated with the biosafety and biocompatibility of engineered exosomes in applications.
Collapse
Affiliation(s)
- Mu Zhang
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China.
| | - Lei Wan
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China.
| | - Ruiqi Li
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China.
| | - Xiaoling Li
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China.
| | - Taifu Zhu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China.
| | - Haibin Lu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China.
- The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, 510900, China
| |
Collapse
|
26
|
Yan W, Zhu J, Wu Y, Wang Y, Du C, Cheng J, Hu X, Ao Y. Meniscal Fibrocartilage Repair Based on Developmental Characteristics: A Proof-of-Concept Study. Am J Sports Med 2023; 51:3509-3522. [PMID: 37743771 DOI: 10.1177/03635465231194028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
BACKGROUND Unlike the adult meniscus, the fetal meniscus possesses robust healing capacity. The dense and stiff matrix of the adult meniscus provides a biophysical barrier for cell migration, which is not present in the fetal meniscus. Inspired by developmental characteristics, modifying the matrix of the adult meniscus into a fetal-like, loose and soft microenvironment holds opportunity to facilitate repair, especially in the avascular zone. HYPOTHESIS Modifying the dense and stiff matrix of the adult meniscus into a fetal-like, loose and soft microenvironment could enhance cell migration to the tear interface and subsequent robust healing capacity. STUDY DESIGN Controlled laboratory study. METHODS Fresh porcine menisci were treated with hyaluronidase or collagenase. The density and arrangement of collagen fibers were assessed. The degradation of proteoglycans and collagen was evaluated histologically. Cell migration within the meniscus or the infiltration of exogenous cells into the meniscus was examined. Dendritic silica nanoparticles with relatively large pores were used to encapsulate hyaluronidase for rapid release. Mesoporous silica nanoparticles with relatively small pores were used to encapsulate transforming growth factor-beta 3 (TGF-β3) for slow release. A total of 24 mature male rabbits were included. A longitudinal vertical tear (0.5 cm in length) was prepared in the avascular zone of the medial meniscus. The tear was repaired with suture, repaired with suture in addition to blank silica nanoparticles, or repaired with suture in addition to silica nanoparticles releasing hyaluronidase and TGF-β3. Animals were sacrificed at 12 months postoperatively. Meniscal repair was evaluated macroscopically and histologically. RESULTS The gaps between collagen bundles increased after hyaluronidase treatment, while collagenase treatment resulted in collagen disruption. Proteoglycans degraded after hyaluronidase treatment in a dose-dependent manner, but collagen integrity was maintained. Hyaluronidase treatment enhanced the migration and infiltration of cells within meniscal tissue. Last, the application of fibrin gel and the delivery system of silica nanoparticles encapsulating hyaluronidase and TGF-β3 enhanced meniscal repair responses in an orthotopic longitudinal vertical tear model. CONCLUSION The gradient release of hyaluronidase and TGF-β3 removed biophysical barriers for cell migration, creating a fetal-like, loose and soft microenvironment, and enhanced the fibrochondrogenic phenotype of reparative cells, facilitating the synthesis of matrix and tissue integration. CLINICAL RELEVANCE Modifying the adult matrix into a fetal-like, loose and soft microenvironment via the local gradient release of hyaluronidase and TGF-β3 enhanced the healing capacity of the meniscus.
Collapse
Affiliation(s)
- Wenqiang Yan
- Department of Sports Medicine, Institute of Sports Medicine, Peking University Third Hospital, Peking University, Beijing, China
- Beijing Key Laboratory of Sports Injuries, Beijing, China
- Engineering Research Center of Sports Trauma Treatment Technology and Devices, Ministry of Education, Beijing, China
| | - Jingxian Zhu
- Department of Sports Medicine, Institute of Sports Medicine, Peking University Third Hospital, Peking University, Beijing, China
- Beijing Key Laboratory of Sports Injuries, Beijing, China
- Engineering Research Center of Sports Trauma Treatment Technology and Devices, Ministry of Education, Beijing, China
| | - Yue Wu
- Department of Sports Medicine, Institute of Sports Medicine, Peking University Third Hospital, Peking University, Beijing, China
- Beijing Key Laboratory of Sports Injuries, Beijing, China
- Engineering Research Center of Sports Trauma Treatment Technology and Devices, Ministry of Education, Beijing, China
| | - Yiqun Wang
- Department of Sports Medicine, Institute of Sports Medicine, Peking University Third Hospital, Peking University, Beijing, China
- Beijing Key Laboratory of Sports Injuries, Beijing, China
- Engineering Research Center of Sports Trauma Treatment Technology and Devices, Ministry of Education, Beijing, China
| | - Cancan Du
- Department of Sports Medicine, Institute of Sports Medicine, Peking University Third Hospital, Peking University, Beijing, China
- Beijing Key Laboratory of Sports Injuries, Beijing, China
- Engineering Research Center of Sports Trauma Treatment Technology and Devices, Ministry of Education, Beijing, China
| | - Jin Cheng
- Department of Sports Medicine, Institute of Sports Medicine, Peking University Third Hospital, Peking University, Beijing, China
- Beijing Key Laboratory of Sports Injuries, Beijing, China
- Engineering Research Center of Sports Trauma Treatment Technology and Devices, Ministry of Education, Beijing, China
| | - Xiaoqing Hu
- Department of Sports Medicine, Institute of Sports Medicine, Peking University Third Hospital, Peking University, Beijing, China
- Beijing Key Laboratory of Sports Injuries, Beijing, China
- Engineering Research Center of Sports Trauma Treatment Technology and Devices, Ministry of Education, Beijing, China
| | - Yingfang Ao
- Department of Sports Medicine, Institute of Sports Medicine, Peking University Third Hospital, Peking University, Beijing, China
- Beijing Key Laboratory of Sports Injuries, Beijing, China
- Engineering Research Center of Sports Trauma Treatment Technology and Devices, Ministry of Education, Beijing, China
| |
Collapse
|
27
|
Thomas V, Mercuri J. In vitro and in vivo efficacy of naturally derived scaffolds for cartilage repair and regeneration. Acta Biomater 2023; 171:1-18. [PMID: 37708926 DOI: 10.1016/j.actbio.2023.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/13/2023] [Accepted: 09/07/2023] [Indexed: 09/16/2023]
Abstract
Intrinsically present bioactive cues allow naturally derived materials to mimic important characteristics of cartilage while also facilitating cellular recruitment, infiltration, and differentiation. Such traits are often what tissue engineers desire when they fabricate scaffolds, and yet, literature from the past decade is replete with examples of how most natural constructs with native biomolecules have only offered sub-optimal results in the treatment of cartilage defects. This paper provides an in-depth investigation of the performance of such scaffolds through a review of a collection of natural materials that have been used so far in repairing/regenerating articular cartilage. Although in vivo and clinical studies are the best indicators of scaffold efficacy, it was, however, observed that a large number of natural constructs had very promising scaffold characteristics to begin with, and would often show good in vitro/in vivo results. Finally, an examination of the biochemistry and biomechanics of repair tissues in studies that reported positive outcomes showed that these attributes often approached target cartilage values. The paper concludes with an outline of current trends as well as future directions for the field. STATEMENT OF SIGNIFICANCE: This review offers an exclusive focus on natural scaffold materials for cartilage repair and regeneration and provides a quantitative and qualitative analysis of their performance under a variety of in vitro and in vivo conditions. Readers can learn about environments where natural scaffolds have had the most success and tailor strategies to optimize their own work. Furthermore, given how the glycosaminoglycan (GAG) to hydroxyproline (HYP) ratio and moduli are fundamental attributes of hyaline cartilage, this paper adds to the body of knowledge by exploring how these characteristics reflect in preclinical outcomes. Such perspectives can greatly aid researchers better utilize natural materials for Cartilage Tissue Engineering (CTE).
Collapse
Affiliation(s)
- Vishal Thomas
- The Laboratory of Orthopaedic Tissue Regeneration & Orthobiologics, Department of Bioengineering, 401-5 Rhodes Engineering Research Center, Clemson, SC 29631, USA
| | - Jeremy Mercuri
- The Laboratory of Orthopaedic Tissue Regeneration & Orthobiologics, Department of Bioengineering, 401-5 Rhodes Engineering Research Center, Clemson, SC 29631, USA.
| |
Collapse
|
28
|
Yang L, Li Z, Zhang C, Li S, Chen L, Yang S, Guo Y. Psoralen synergizes with exosome-loaded SPC25 to alleviate senescence of nucleus pulposus cells in intervertebral disc degeneration. J Orthop Surg Res 2023; 18:622. [PMID: 37872583 PMCID: PMC10594823 DOI: 10.1186/s13018-023-04085-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 08/07/2023] [Indexed: 10/25/2023] Open
Abstract
OBJECTIVE To explore the mechanism of psoralen synergized with exosomes (exos)-loaded SPC25 on nucleus pulposus (NP) cell senescence in intervertebral disc degeneration (IVDD). METHODS IVDD cellular models were established on NP cells by tert-butyl hydroperoxide (TBHP) induction, followed by the treatment of psoralen or/and exos from adipose-derived stem cells (ADSCs) transfected with SPC25 overexpression vector (ADSCs-oe-SPC25-Exos). The viability, cell cycle, apoptosis, and senescence of NP cells were examined, accompanied by the expression measurement of aggrecan, COL2A1, Bcl-2, Bax, CDK2, p16, and p21. RESULTS After TBHP-induced NP cells were treated with psoralen or ADSCs-oe-SPC25-Exos, cell proliferation and the expression of aggrecan, COL2A1, Bcl-2, and CDK2 were promoted; however, the expression of Bax, p16, p21, and inflammatory factors was decreased, and cell senescence, cycle arrest, and apoptosis were inhibited. Of note, psoralen combined with ADSCs-oe-SPC25-Exos further decelerated NP cell senescence and cycle arrest compared to psoralen or ADSCs-oe-SPC25-Exos alone. CONCLUSION Combined treatment of psoralen and ADSCs-oe-SPC25-Exos exerted an alleviating effect on NP cell senescence, which may provide an insightful idea for IVDD treatment.
Collapse
Affiliation(s)
- Lei Yang
- Department of Spine, The First Affiliated Hospital of Hunan University of Traditional Chinese Medicine, No. 95 Shaoshan Middle Road, Yuhua District, Changsha, 410007, Hunan, People's Republic of China
| | - Zhaoyong Li
- Department of Spine, The First Affiliated Hospital of Hunan University of Traditional Chinese Medicine, No. 95 Shaoshan Middle Road, Yuhua District, Changsha, 410007, Hunan, People's Republic of China
| | - Chao Zhang
- Department of Spine, The First Affiliated Hospital of Hunan University of Traditional Chinese Medicine, No. 95 Shaoshan Middle Road, Yuhua District, Changsha, 410007, Hunan, People's Republic of China
| | - Shuofu Li
- Department of Spine, The First Affiliated Hospital of Hunan University of Traditional Chinese Medicine, No. 95 Shaoshan Middle Road, Yuhua District, Changsha, 410007, Hunan, People's Republic of China
| | - Long Chen
- Department of Spine, The First Affiliated Hospital of Hunan University of Traditional Chinese Medicine, No. 95 Shaoshan Middle Road, Yuhua District, Changsha, 410007, Hunan, People's Republic of China
| | - Shaofeng Yang
- Department of Spine, The First Affiliated Hospital of Hunan University of Traditional Chinese Medicine, No. 95 Shaoshan Middle Road, Yuhua District, Changsha, 410007, Hunan, People's Republic of China
| | - Yantao Guo
- Department of Spine, The First Affiliated Hospital of Hunan University of Traditional Chinese Medicine, No. 95 Shaoshan Middle Road, Yuhua District, Changsha, 410007, Hunan, People's Republic of China.
| |
Collapse
|
29
|
Karchevskaya AE, Poluektov YM, Korolishin VA. Understanding Intervertebral Disc Degeneration: Background Factors and the Role of Initial Injury. Biomedicines 2023; 11:2714. [PMID: 37893088 PMCID: PMC10604877 DOI: 10.3390/biomedicines11102714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 10/29/2023] Open
Abstract
The etiology of intervertebral disc degeneration (IVDD) is complex and multifactorial, and it is still not fully understood. A better understanding of the pathogenesis of IVDD will help to improve treatment regimens and avoid unnecessary surgical aggression. In order to summarize recent research data on IVDD pathogenesis, including genetic and immune factors, a literature review was conducted. The pathogenesis of IVDD is a complex multifactorial process without an evident starting point. There are extensive data on the role of the different genetic factors affecting the course of the disease, such as mutations in structural proteins and enzymes involved in the immune response. However, these factors alone are not sufficient for the development of the disease. Nevertheless, like mechanical damage, they can also be considered risk factors for IVDD. In conclusion, currently, there is no consensus on a single concept for the pathogenesis of IVDD. We consider the intervertebral disc autoimmune damage hypothesis to be the most promising hypothesis for clinicians, because it can be extrapolated to all populations and does not counteract other factors. The genetic factors currently known do not allow for building effective predictive models; however, they can be used to stratify the risks of individual populations.
Collapse
Affiliation(s)
- Anna E. Karchevskaya
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 5A Butlerova Str., 117485 Moscow, Russia;
- Medical Faculty, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 8-2 Trubetskaya Str., 119991 Moscow, Russia
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str. 32, 119334 Moscow, Russia
| | - Yuri M. Poluektov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str. 32, 119334 Moscow, Russia
- Department of Spinal Surgery, Burdenko Neurosurgical Institute, 4th-Tverskaya-Yamskaya Str. 16, 125047 Moscow, Russia
| | - Vasiliy A. Korolishin
- Russian Medical Academy of Postgraduate Education Studies, 2/1 Barrikadnaya Str., Building 1, 125993 Moscow, Russia;
| |
Collapse
|
30
|
Zhang F, Liu L, Wang H, Chen L. Effects of prenatal acetaminophen exposure at different stages, doses and courses on articular cartilage of offspring mice. Food Chem Toxicol 2023; 180:114003. [PMID: 37633638 DOI: 10.1016/j.fct.2023.114003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 08/28/2023]
Abstract
Previous studies showed that chondrodysplasia has intrauterine origin. Although prenatal acetaminophen exposure (PAcE) can cause nervous and reproductive abnormalities in offspring, its effect on cartilage is uninvestigated. Herein, mice were treated with different doses and courses of acetaminophen at various gestational stages (100 or 400 mg/kg∙d on gestational days 10-12 (GD10-12), 400 mg/kg∙d on GD12 or GD15-17) based on clinical administration and conversion between humans and mice. Fetal knee joints were harvested on GD18 to analyze cartilage morphology, chondrocyte proliferation and apoptosis, and matrix content, synthesis and degradation. Results showed that 400 mg/kg∙d acetaminophen exposure during GD10-12 decreased chondrocyte numbers, safranin O staining, proliferation and matrix synthesis, without elevating matrix degradation and apoptosis. Low-dose, single-course, or late-pregnancy exposure had no effect on above indexes. Moreover, Tgfβ pathway was inhibited, showing a positive correlation with the expression of Col2a1, Acan, Ki67, and Pcna. Overall, clinical doses of PAcE can inhibit chondrocyte proliferation and matrix synthesis, causing fetal mice chondrodysplasia, especially after multi-course exposure of 400 mg/kg∙d acetaminophen during GD10-12, the mechanism of which might involve Tgfβ pathway inhibition. This study provides an experimental basis for assessing fetal developmental toxicity and standardizing the clinical use of acetaminophen during pregnancy.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Orthopedic Surgery, Division of Joint Surgery and Sports Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Liang Liu
- Department of Orthopedic Surgery, Division of Joint Surgery and Sports Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Hui Wang
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China.
| | - Liaobin Chen
- Department of Orthopedic Surgery, Division of Joint Surgery and Sports Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China.
| |
Collapse
|
31
|
Zhang P, Wang Q, Chen J, Ci Z, Zhang W, Liu Y, Wang X, Zhou G. Chondrogenic medium in combination with a c-Jun N-terminal kinase inhibitor mediates engineered cartilage regeneration by regulating matrix metabolism and cell proliferation. Regen Biomater 2023; 10:rbad079. [PMID: 38020237 PMCID: PMC10640392 DOI: 10.1093/rb/rbad079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/11/2023] [Accepted: 08/28/2023] [Indexed: 12/01/2023] Open
Abstract
Cartilage tissue engineering is a promising strategy for repairing cartilage defects. However, achieving satisfactory cartilage regeneration in vitro and maintaining its stability in vivo remains a challenge. The key to achieving this goal is establishing an efficient cartilage regeneration culture system to retain sufficient active cells with physiological functions, generate abundant cartilage extracellular matrix (ECM) and maintain a low level of cartilage ECM degradation. The current chondrogenic medium (CM) can effectively promote cartilage ECM production; however, it has a negative effect on cell proliferation. Meanwhile, the specific c-Jun N-terminal kinase pathway inhibitor SP600125 promotes chondrocyte proliferation but inhibits ECM synthesis. Here, we aimed to construct a three-dimensional cartilage regeneration model using a polyglycolic acid/polylactic acid scaffold in combination with chondrocytes to investigate the effect of different culture modes with CM and SP600125 on in vitro cartilage regeneration and their long-term outcomes in vivo systematically. Our results demonstrate that the long-term combination of CM and SP600125 made up for each other and maximized their respective advantages to obtain optimal cartilage regeneration in vitro. Moreover, the long-term combination achieved stable cartilage regeneration after implantation in vivo with a relatively low initial cell-seeding concentration. Therefore, the long-term combination of CM and SP600125 enhanced in vitro and in vivo cartilage regeneration stability with fewer initial seeding cells and thus optimized the cartilage regeneration culture system.
Collapse
Affiliation(s)
- Peiling Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200023, China
- National Tissue Engineering Center of China, Shanghai, 200241, China
| | - Qianyi Wang
- National Tissue Engineering Center of China, Shanghai, 200241, China
- Department of Research Institute of Plastic Surgery, Wei Fang Medical College, Wei Fang, Shandong, 261041, China
| | - Jie Chen
- National Tissue Engineering Center of China, Shanghai, 200241, China
- Department of Anesthesiology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200023, China
| | - Zheng Ci
- National Tissue Engineering Center of China, Shanghai, 200241, China
| | - Wei Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200023, China
- National Tissue Engineering Center of China, Shanghai, 200241, China
- Department of Research Institute of Plastic Surgery, Wei Fang Medical College, Wei Fang, Shandong, 261041, China
| | - Yu Liu
- National Tissue Engineering Center of China, Shanghai, 200241, China
- Department of Research Institute of Plastic Surgery, Wei Fang Medical College, Wei Fang, Shandong, 261041, China
| | - Xiaoyun Wang
- Department of Plastic Surgery, Tong Ren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200050, China
| | - Guangdong Zhou
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200023, China
- National Tissue Engineering Center of China, Shanghai, 200241, China
- Department of Research Institute of Plastic Surgery, Wei Fang Medical College, Wei Fang, Shandong, 261041, China
| |
Collapse
|
32
|
Lichtig A, Bedi A, Koh J, Amirouche F. A Transplant or a Patch? A Review of the Biologic Integration of Meniscus Allograft Transplantation. JBJS Rev 2023; 11:01874474-202309000-00003. [PMID: 37678287 DOI: 10.2106/jbjs.rvw.23.00023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
» After transplantation revascularization does occur although data are only available for animal models.» The time zero biomechanics, that is, the biomechanical properties at the time of transplant, of a meniscus allograft transplantation appear to appropriately mimic the original so long as the graft is sized correctly within 10% of the original and bone plug fixation is used.» Allograft type, that is, fresh vs. frozen, does not appear to affect the integration of the allograft.
Collapse
Affiliation(s)
| | - Asheesh Bedi
- NorthShore University Health System, Evanston, Illinois
| | - Jason Koh
- NorthShore University Health System, Evanston, Illinois
| | - Farid Amirouche
- University of Illinois Chicago, Chicago, Illinois
- NorthShore University Health System, Evanston, Illinois
| |
Collapse
|
33
|
Han Y, Cao L, Li G, Zhou F, Bai L, Su J. Harnessing Nucleic Acids Nanotechnology for Bone/Cartilage Regeneration. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301996. [PMID: 37116115 DOI: 10.1002/smll.202301996] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/29/2023] [Indexed: 06/19/2023]
Abstract
The effective regeneration of weight-bearing bone defects and critical-sized cartilage defects remains a significant clinical challenge. Traditional treatments such as autologous and allograft bone grafting have not been successful in achieving the desired outcomes, necessitating the need for innovative therapeutic approaches. Nucleic acids have attracted significant attention due to their ability to be designed to form discrete structures and programmed to perform specific functions at the nanoscale. The advantages of nucleic acid nanotechnology offer numerous opportunities for in-cell and in vivo applications, and hold great promise for advancing the field of biomaterials. In this review, the current abilities of nucleic acid nanotechnology to be applied in bone and cartilage regeneration are summarized and insights into the challenges and future directions for the development of this technology are provided.
Collapse
Affiliation(s)
- Yafei Han
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
| | - Liehu Cao
- Department of Orthopedics, Shanghai Luodian Hospital, Shanghai, 201908, China
| | - Guangfeng Li
- Department of Orthopedics, Shanghai Zhongye Hospital, Shanghai, 201941, China
| | - Fengjin Zhou
- Department of Orthopaedics, Honghui Hospital, Xi'an Jiao Tong University, Xi'an, 710000, China
| | - Long Bai
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
| | - Jiacan Su
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
| |
Collapse
|
34
|
Hunziker EB, Shintani N, Lippuner K, Vögelin E, Keel MJB. In major joint diseases the human synovium retains its potential to form repair cartilage. Sci Rep 2023; 13:10375. [PMID: 37365169 DOI: 10.1038/s41598-023-34841-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 05/09/2023] [Indexed: 06/28/2023] Open
Abstract
The inner surface layer of human joints, the synovium, is a source of stem cells for the repair of articular cartilage defects. We investigated the potential of the normal human synovium to form novel cartilage and compared its chondrogenic capacity with that of two patient groups suffering from major joint diseases: young adults with femoro-acetabular impingement syndromes of the hip (FAI), and elderly individuals with osteoarthritic degeneration of the knee (OA). Synovial membrane explants of these three patient groups were induced in vitro to undergo chondrogenesis by growth factors: bone morphogenetic protein-2 (BMP-2) alone, transforming growth factor-β1 (TGF-β1) alone, or a combination of these two. Quantitative evaluations of the newly formed cartilages were performed respecting their gene activities, as well as the histochemical, immunhistochemical, morphological and histomorphometrical characteristics. Formation of adult articular-like cartilage was induced by the BMP-2/TGF-β1 combination within all three groups, and was confirmed by adequate gene-expression levels of the anabolic chondrogenic markers; the levels of the catabolic markers remained low. Our data reveal that the chondrogenic potential of the normal human synovium remains uncompromised, both in FAI and OA. The potential of synovium-based clinical repair of joint cartilage may thus not be impaired by age-related joint pathologies.
Collapse
Affiliation(s)
- Ernst B Hunziker
- Departments of Osteoporosis and Orthopaedic Surgery, Inselspital Bern University Hospital, Freiburgstrasse 3, 3010, Bern, Switzerland.
| | - Nahoko Shintani
- Department of Osteoporosis, Inselspital Bern University Hospital, Bern, Switzerland
| | - Kurt Lippuner
- Department of Osteoporosis, Inselspital Bern University Hospital, Bern, Switzerland
| | - Esther Vögelin
- Departments of Plastic and Hand Surgery, Inselspital Bern University Hospital, Bern, Switzerland
| | - Marius J B Keel
- Trauma Center Hirslanden, Clinic Hirslanden, Zurich, Switzerland
- Medical School, University of Zurich, Zurich, Switzerland
- Department of Orthopaedic Surgery, Inselspital Bern University Hospital, Bern, Switzerland
| |
Collapse
|
35
|
Hagizawa H, Koyamatsu S, Okada S, Kaito T, Tsumaki N. Chondrocyte-like cells in nucleus pulposus and articular chondrocytes have similar transcriptomic profiles and are paracrine-regulated by hedgehog from notochordal cells and subchondral bone. Front Cell Dev Biol 2023; 11:1151947. [PMID: 37255604 PMCID: PMC10225674 DOI: 10.3389/fcell.2023.1151947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 05/02/2023] [Indexed: 06/01/2023] Open
Abstract
Objective: The nucleus pulposus (NP) comprises notochordal NP cells (NCs) and chondrocyte-like NP cells (CLCs). Although morphological similarities between CLCs and chondrocytes have been reported, interactions between CLCs and NCs remain unclear. In this study, we aimed to clarify regulatory mechanisms of cells in the NP and chondrocytes. Design: We performed single-cell RNA sequencing (scRNA-seq) analysis of the articular cartilage (AC) and NP of three-year-old cynomolgus monkeys in which NCs were present. We then performed immunohistochemical analysis of NP and distal femur. We added sonic hedgehog (SHH) to primary chondrocyte culture. Results: The scRNA-seq analysis revealed that CLCs and some articular chondrocytes had similar gene expression profiles, particularly related to GLI1, the nuclear mediator of the hedgehog pathway. In the NP, cell-cell interaction analysis revealed SHH expression in NCs, resulting in hedgehog signaling to CLCs. In contrast, no hedgehog ligands were expressed by chondrocytes in AC samples. Immunohistochemical analysis of the distal end of femur indicated that SHH and Indian hedgehog (IHH) were expressed around the subchondral bone that was excluded from our scRNA-seq sample. scRNA-seq data analysis and treatment of primary chondrocytes with SHH revealed that hedgehog proteins mediated an increase in hypoxia-inducible factor 1-alpha (HIF-1α) levels. Conclusion: CLCs and some articular chondrocytes have similar transcriptional profiles, regulated by paracrine hedgehog proteins secreted from NCs in the NP and from the subchondral bone in the AC to promote the HIF-1α pathway.
Collapse
Affiliation(s)
- Hiroki Hagizawa
- Department of Tissue Biochemistry, Graduate School of Medicine and Frontier Biosciences, Osaka University, Osaka, Japan
- Department of Orthopaedic Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Saeko Koyamatsu
- Department of Tissue Biochemistry, Graduate School of Medicine and Frontier Biosciences, Osaka University, Osaka, Japan
| | - Seiji Okada
- Department of Orthopaedic Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Takashi Kaito
- Department of Orthopaedic Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Noriyuki Tsumaki
- Department of Tissue Biochemistry, Graduate School of Medicine and Frontier Biosciences, Osaka University, Osaka, Japan
- Department of Clinical Application, Center for IPS Cell Research and Application, Kyoto University, Kyoto, Japan
- Premium Research Institute for Human Metaverse Medicine (WPI-PRIMe), Osaka University, Osaka, Japan
| |
Collapse
|
36
|
Lagneau N, Tournier P, Nativel F, Maugars Y, Guicheux J, Le Visage C, Delplace V. Harnessing cell-material interactions to control stem cell secretion for osteoarthritis treatment. Biomaterials 2023; 296:122091. [PMID: 36947892 DOI: 10.1016/j.biomaterials.2023.122091] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 03/08/2023] [Accepted: 03/12/2023] [Indexed: 03/16/2023]
Abstract
Osteoarthritis (OA) is the most common debilitating joint disease, yet there is no curative treatment for OA to date. Delivering mesenchymal stromal cells (MSCs) as therapeutic cells to mitigate the inflammatory symptoms associated with OA is attracting increasing attention. In principle, MSCs could respond to the pro-inflammatory microenvironment of an OA joint by the secretion of anti-inflammatory, anti-apoptotic, immunomodulatory and pro-regenerative factors, therefore limiting pain, as well as the disease development. However, the microenvironment of MSCs is known to greatly affect their survival and bioactivity, and using tailored biomaterial scaffolds could be key to the success of intra-articular MSC-based therapies. The aim of this review is to identify and discuss essential characteristics of biomaterial scaffolds to best promote MSC secretory functions in the context of OA. First, a brief introduction to the OA physiopathology is provided, followed by an overview of the MSC secretory functions, as well as the current limitations of MSC-based therapy. Then, we review the current knowledge on the effects of cell-material interactions on MSC secretion. These considerations allow us to define rational guidelines for next-generation biomaterial design to improve the MSC-based therapy of OA.
Collapse
Affiliation(s)
- Nathan Lagneau
- Nantes Université, Oniris, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000, France
| | - Pierre Tournier
- Nantes Université, Oniris, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000, France
| | - Fabien Nativel
- Nantes Université, Oniris, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000, France; Nantes Université, UFR Sciences Biologiques et Pharmaceutiques, Nantes, F-44035, France
| | - Yves Maugars
- Nantes Université, Oniris, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000, France
| | - Jérôme Guicheux
- Nantes Université, Oniris, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000, France.
| | - Catherine Le Visage
- Nantes Université, Oniris, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000, France
| | - Vianney Delplace
- Nantes Université, Oniris, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000, France
| |
Collapse
|
37
|
She Y, Tang S, Zhu Z, Sun Y, Deng W, Wang S, Jiang N. Comparison of temporomandibular joint disc, meniscus, and intervertebral disc in fundamental characteristics and tissue engineering. J Biomed Mater Res B Appl Biomater 2023; 111:717-729. [PMID: 36221912 DOI: 10.1002/jbm.b.35178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 09/24/2022] [Accepted: 09/27/2022] [Indexed: 01/21/2023]
Abstract
The temporomandibular joint (TMJ) disc, meniscus and intervertebral disc (IVD) are three fibrocartilage discs, which play critical roles in our daily life. Their degeneration contributes to diseases such as TMJ disorders, osteoarthritis and degenerative disc disease, affecting patients' quality of life and causing substantial morbidity and mortality. Interestingly, similar in some aspects of fundamental characteristics, they exhibit differences in other aspects such as biomechanical properties. Highlighting these similarities and differences can not only benefit a comprehensive understanding of them and their pathology but also assist in future research of tissue engineering. Likewise, comparing their tissue engineering in cell sources, scaffold and stimuli can guide imitation and improvement of their engineered discs. However, the anatomical structure, function, and biomechanical characteristics of the IVD, TMJ, and Meniscus have not been compared in any meaningful depth needed to advance current tissue engineering research on these joints, resulting in incomplete understanding of them and their pathology and ultimately limiting future research of tissue engineering. This review, for the first time, comprehensively compares three fibrocartilage discs in those aspects to cast light on their similarities and differences.
Collapse
Affiliation(s)
- Yilin She
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Disease and West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Shiyi Tang
- West China Medical School, Sichuan University, Chengdu, China
| | - Zilin Zhu
- College of Life Sciences, Sichuan University, Chengdu, China
| | - Yixin Sun
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Disease and West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wanyu Deng
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Disease and West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Sicheng Wang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Disease and West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Nan Jiang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Disease and West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
38
|
Yang Z, Fan Z, Wang D, Li H, He Z, Xing D, Lin J. Bibliometric and visualization analysis of stem cell therapy for meniscal regeneration from 2012 to 2022. Front Bioeng Biotechnol 2023; 11:1107209. [PMID: 36865032 PMCID: PMC9971621 DOI: 10.3389/fbioe.2023.1107209] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 02/03/2023] [Indexed: 02/16/2023] Open
Abstract
Background: Meniscus injuries, a common joint disease caused by long-term wear, trauma and inflammation, usually cause chronic dysfunction and pain in the joint. Current clinical surgeries mainly aim to remove the diseased tissue to alleviate patient suffering instead of helping with meniscus regeneration. As an emerging treatment, stem cell therapy has been verified to facilitate meniscus regeneration effectively. The purpose of this study is to investigate the publication conditions of stem cell therapy for meniscal regeneration and to visualize the research trends and frontiers. Methods: Relevant publications relevant to stem cells for meniscal regeneration was retrieved SCI-Expanded of the Web of Science database from 2012 to 2022. Research trends in the field were analysed and visualized by CiteSpace and VOSviewer. Results: A total of 354 publications were collected and analysed. The United States contributed the largest number of publications (118, 34.104%). Tokyo Medical Dental University has contributed the largest number of publications (34) among all full-time institutions. Stem cell research therapy has published the largest number of researches on stem cells for meniscal regeneration (17). SEKIYA. I contributed the majority of publications in this field (31), while Horie, M was the most frequently cited authors (166). #1 tissue engineering, #2 articular cartilage, #3 anterior cruciate ligament, #4 regenerative medicine, #5 scaffold are the chief keywords. This indicates that the current research hotspot has been transformed from basic surgical research to tissue engineering. Conclusion: Stem cell therapy is a promising therapeutic method for meniscus regeneration. This is the first visualized and bibliometric study to thoroughly construct the development trends and knowledge structure in the research field of stem cell therapy for meniscal regeneration in the past 10 years. The results thoroughly summarize and visualize the research frontiers, which will shed light on the research direction of stem cell therapy for meniscal regeneration.
Collapse
Affiliation(s)
- Zhen Yang
- Arthritis Clinical and Research Center, Peking University People’s Hospital, Beijing, China,Arthritis Institute, Peking University, Beijing, China
| | - Zejun Fan
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Du Wang
- Arthritis Clinical and Research Center, Peking University People’s Hospital, Beijing, China,Arthritis Institute, Peking University, Beijing, China
| | - Hui Li
- Arthritis Clinical and Research Center, Peking University People’s Hospital, Beijing, China,Arthritis Institute, Peking University, Beijing, China
| | - Zihao He
- Arthritis Clinical and Research Center, Peking University People’s Hospital, Beijing, China,Arthritis Institute, Peking University, Beijing, China
| | - Dan Xing
- Arthritis Clinical and Research Center, Peking University People’s Hospital, Beijing, China,Arthritis Institute, Peking University, Beijing, China,*Correspondence: Dan Xing, ; Jianhao Lin,
| | - Jianhao Lin
- Arthritis Clinical and Research Center, Peking University People’s Hospital, Beijing, China,Arthritis Institute, Peking University, Beijing, China,*Correspondence: Dan Xing, ; Jianhao Lin,
| |
Collapse
|
39
|
Cell surface markers for mesenchymal stem cells related to the skeletal system: A scoping review. Heliyon 2023; 9:e13464. [PMID: 36865479 PMCID: PMC9970931 DOI: 10.1016/j.heliyon.2023.e13464] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/26/2023] [Accepted: 01/31/2023] [Indexed: 02/12/2023] Open
Abstract
Multipotent mesenchymal stromal cells (MSCs) have been described as bone marrow stromal cells, which can form cartilage, bone or hematopoietic supportive stroma. In 2006, the International Society for Cell Therapy (ISCT) established a set of minimal characteristics to define MSCs. According to their criteria, these cells must express CD73, CD90 and CD105 surface markers; however, it is now known they do not represent true stemness epitopes. The objective of the present work was to determine the surface markers for human MSCs associated with skeletal tissue reported in the literature (1994-2021). To this end, we performed a scoping review for hMSCs in axial and appendicular skeleton. Our findings determined the most widely used markers were CD105 (82.9%), CD90 (75.0%) and CD73 (52.0%) for studies performed in vitro as proposed by the ISCT, followed by CD44 (42.1%), CD166 (30.9%), CD29 (27.6%), STRO-1 (17.7%), CD146 (15.1%) and CD271 (7.9%) in bone marrow and cartilage. On the other hand, only 4% of the articles evaluated in situ cell surface markers. Even though most studies use the ISCT criteria, most publications in adult tissues don't evaluate the characteristics that establish a stem cell (self-renewal and differentiation), which will be necessary to distinguish between a stem cell and progenitor populations. Collectively, MSCs require further understanding of their characteristics if they are intended for clinical use.
Collapse
|
40
|
Zhou Z, Zheng J, Meng X, Wang F. Effects of Electrical Stimulation on Articular Cartilage Regeneration with a Focus on Piezoelectric Biomaterials for Articular Cartilage Tissue Repair and Engineering. Int J Mol Sci 2023; 24:ijms24031836. [PMID: 36768157 PMCID: PMC9915254 DOI: 10.3390/ijms24031836] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/10/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023] Open
Abstract
There is increasing evidence that chondrocytes within articular cartilage are affected by endogenous force-related electrical potentials. Furthermore, electrical stimulation (ES) promotes the proliferation of chondrocytes and the synthesis of extracellular matrix (ECM) molecules, which accelerate the healing of cartilage defects. These findings suggest the potential application of ES in cartilage repair. In this review, we summarize the pathogenesis of articular cartilage injuries and the current clinical strategies for the treatment of articular cartilage injuries. We then focus on the application of ES in the repair of articular cartilage in vivo. The ES-induced chondrogenic differentiation of mesenchymal stem cells (MSCs) and its potential regulatory mechanism are discussed in detail. In addition, we discuss the potential of applying piezoelectric materials in the process of constructing engineering articular cartilage, highlighting the important advances in the unique field of tissue engineering.
Collapse
Affiliation(s)
- Zhengjie Zhou
- The Key Laboratory of Pathobiology Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Jingtong Zheng
- The Key Laboratory of Pathobiology Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Xiaoting Meng
- Department of Histology & Embryology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
- Correspondence: (X.M.); (F.W.); Tel.: +86-0431-8561-9486 (X.M. & F.W.)
| | - Fang Wang
- The Key Laboratory of Pathobiology Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
- Correspondence: (X.M.); (F.W.); Tel.: +86-0431-8561-9486 (X.M. & F.W.)
| |
Collapse
|
41
|
Jin P, Liu L, Chen X, Cheng L, Zhang W, Zhong G. Applications and prospects of different functional hydrogels in meniscus repair. Front Bioeng Biotechnol 2022; 10:1082499. [PMID: 36568293 PMCID: PMC9773848 DOI: 10.3389/fbioe.2022.1082499] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 11/28/2022] [Indexed: 12/14/2022] Open
Abstract
The meniscus is a kind of fibrous cartilage structure that serves as a cushion in the knee joint to alleviate the mechanical load. It is commonly injured, but it cannot heal spontaneously. Traditional meniscectomy is not currently recommended as this treatment tends to cause osteoarthritis. Due to their good biocompatibility and versatile regulation, hydrogels are emerging biomaterials in tissue engineering. Hydrogels are excellent candidates in meniscus rehabilitation and regeneration because they are fine-tunable, easily modified, and capable of delivering exogenous drugs, cells, proteins, and cytokines. Various hydrogels have been reported to work well in meniscus-damaged animals, but few hydrogels are effective in the clinic, indicating that hydrogels possess many overlooked problems. In this review, we summarize the applications and problems of hydrogels in extrinsic substance delivery, meniscus rehabilitation, and meniscus regeneration. This study will provide theoretical guidance for new therapeutic strategies for meniscus repair.
Collapse
Affiliation(s)
- Pan Jin
- Health Science Center, Yangtze University, Jingzhou, China,Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning, China,*Correspondence: Pan Jin, ; Gang Zhong,
| | - Lei Liu
- Articular Surgery, The Second Nanning People’s Hospital (Third Affiliated Hospital of Guangxi Medical University), Nanning, China
| | - Xichi Chen
- Health Science Center, Yangtze University, Jingzhou, China
| | - Lin Cheng
- Health Science Center, Yangtze University, Jingzhou, China
| | - Weining Zhang
- Health Science Center, Yangtze University, Jingzhou, China
| | - Gang Zhong
- Center for Materials Synthetic Biology, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China,*Correspondence: Pan Jin, ; Gang Zhong,
| |
Collapse
|
42
|
O'Connell CD, Duchi S, Onofrillo C, Caballero‐Aguilar LM, Trengove A, Doyle SE, Zywicki WJ, Pirogova E, Di Bella C. Within or Without You? A Perspective Comparing In Situ and Ex Situ Tissue Engineering Strategies for Articular Cartilage Repair. Adv Healthc Mater 2022; 11:e2201305. [PMID: 36541723 PMCID: PMC11468013 DOI: 10.1002/adhm.202201305] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 10/21/2022] [Indexed: 11/23/2022]
Abstract
Human articular cartilage has a poor ability to self-repair, meaning small injuries often lead to osteoarthritis, a painful and debilitating condition which is a major contributor to the global burden of disease. Existing clinical strategies generally do not regenerate hyaline type cartilage, motivating research toward tissue engineering solutions. Prospective cartilage tissue engineering therapies can be placed into two broad categories: i) Ex situ strategies, where cartilage tissue constructs are engineered in the lab prior to implantation and ii) in situ strategies, where cells and/or a bioscaffold are delivered to the defect site to stimulate chondral repair directly. While commonalities exist between these two approaches, the core point of distinction-whether chondrogenesis primarily occurs "within" or "without" (outside) the body-can dictate many aspects of the treatment. This difference influences decisions around cell selection, the biomaterials formulation and the surgical implantation procedure, the processes of tissue integration and maturation, as well as, the prospects for regulatory clearance and clinical translation. Here, ex situ and in situ cartilage engineering strategies are compared: Highlighting their respective challenges, opportunities, and prospects on their translational pathways toward long term human cartilage repair.
Collapse
Affiliation(s)
- Cathal D. O'Connell
- Discipline of Electrical and Biomedical EngineeringRMIT UniversityMelbourneVictoria3000Australia
- Aikenhead Centre for Medical Discovery (ACMD)St Vincent's Hospital MelbourneFitzroyVictoria3065Australia
| | - Serena Duchi
- Aikenhead Centre for Medical Discovery (ACMD)St Vincent's Hospital MelbourneFitzroyVictoria3065Australia
- Department of SurgerySt Vincent's HospitalUniversity of MelbourneFitzroyVictoria3065Australia
| | - Carmine Onofrillo
- Aikenhead Centre for Medical Discovery (ACMD)St Vincent's Hospital MelbourneFitzroyVictoria3065Australia
- Department of SurgerySt Vincent's HospitalUniversity of MelbourneFitzroyVictoria3065Australia
| | - Lilith M. Caballero‐Aguilar
- Aikenhead Centre for Medical Discovery (ACMD)St Vincent's Hospital MelbourneFitzroyVictoria3065Australia
- School of ScienceComputing and Engineering TechnologiesSwinburne University of TechnologyMelbourneVictoria3122Australia
| | - Anna Trengove
- Aikenhead Centre for Medical Discovery (ACMD)St Vincent's Hospital MelbourneFitzroyVictoria3065Australia
- Department of Biomedical EngineeringUniversity of MelbourneMelbourneVictoria3010Australia
| | - Stephanie E. Doyle
- Discipline of Electrical and Biomedical EngineeringRMIT UniversityMelbourneVictoria3000Australia
- Aikenhead Centre for Medical Discovery (ACMD)St Vincent's Hospital MelbourneFitzroyVictoria3065Australia
| | - Wiktor J. Zywicki
- Aikenhead Centre for Medical Discovery (ACMD)St Vincent's Hospital MelbourneFitzroyVictoria3065Australia
- Department of Biomedical EngineeringUniversity of MelbourneMelbourneVictoria3010Australia
| | - Elena Pirogova
- Discipline of Electrical and Biomedical EngineeringRMIT UniversityMelbourneVictoria3000Australia
| | - Claudia Di Bella
- Aikenhead Centre for Medical Discovery (ACMD)St Vincent's Hospital MelbourneFitzroyVictoria3065Australia
- Department of SurgerySt Vincent's HospitalUniversity of MelbourneFitzroyVictoria3065Australia
- Department of MedicineSt Vincent's Hospital MelbourneFitzroyVictoria3065Australia
| |
Collapse
|
43
|
Fu L, Feng Q, Chen Y, Fu J, Zhou X, He C. Nanofibers for the Immunoregulation in Biomedical Applications. ADVANCED FIBER MATERIALS 2022; 4:1334-1356. [DOI: 10.1007/s42765-022-00191-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/19/2022] [Indexed: 01/06/2025]
|
44
|
Wang R, Shiu HT, Lee WYW. Emerging role of lncRNAs in osteoarthritis: An updated review. Front Immunol 2022; 13:982773. [PMID: 36304464 PMCID: PMC9593085 DOI: 10.3389/fimmu.2022.982773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/08/2022] [Indexed: 11/22/2022] Open
Abstract
Osteoarthritis (OA) is a prevalent joint disease, which is associated with progressive articular cartilage loss, synovial inflammation, subchondral sclerosis and meniscus injury. The molecular mechanism underlying OA pathogenesis is multifactorial. Long non-coding RNAs (lncRNAs) are non-protein coding RNAs with length more than 200 nucleotides. They have various functions such as modulating transcription and protein activity, as well as forming endogenous small interfering RNAs (siRNAs) and microRNA (miRNA) sponges. Emerging evidence suggests that lncRNAs might be involved in the pathogenesis of OA which opens up a new avenue for the development of new biomarkers and therapeutic strategies. The purpose of this review is to summarize the current clinical and basic experiments related to lncRNAs and OA with a focus on the extensively studied H19, GAS5, MALAT1, XIST and HOTAIR. The potential translational value of these lncRNAs as therapeutic targets for OA is also discussed.
Collapse
Affiliation(s)
- Rongliang Wang
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
- SH Ho Scoliosis Research Laboratory, Joint Scoliosis Research Center of the Chinese University of Hong Kong and Nanjing University, The Chinese University of Hong Kong, Hong Kong, China
| | - Hoi Ting Shiu
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Wayne Yuk Wai Lee
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
- SH Ho Scoliosis Research Laboratory, Joint Scoliosis Research Center of the Chinese University of Hong Kong and Nanjing University, The Chinese University of Hong Kong, Hong Kong, China
- *Correspondence: Wayne Yuk Wai Lee,
| |
Collapse
|
45
|
Gao D, Hu B, Ding B, Zhao Q, Zhang Y, Xiao L. N6-Methyladenosine-induced miR-143-3p promotes intervertebral disc degeneration by regulating SOX5. Bone 2022; 163:116503. [PMID: 35878746 DOI: 10.1016/j.bone.2022.116503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/18/2022] [Accepted: 07/19/2022] [Indexed: 11/02/2022]
Abstract
Intervertebral disc degeneration is the basic cause of lumbocrural pain, which not only causes pain and but also serious economic burdens on patients. Increasingly more evidence has shown that tumor necrosis factor-α (TNF-α) is involved in the pathological process of intervertebral disc degeneration, but the specific molecular mechanism is still unclear. This study investigated the potential mechanism and function of methyltransferase-like 3 (METTL3)/miR-143-3p/SOX5 regulatory axis in nucleus pulposus cells under the action of TNF-α. Human nucleus pulposus cells were treated with TNF-α to construct an in vitro model of intervertebral disc degeneration. Flow cytometry, quantitative reverse-transcription PCR (RT-qPCR), Western blot (WB) and luciferase assays were used to identify the mechanism of action of miR-143-3p in the course of intervertebral disc degeneration in vitro and the downstream targeted regulatory molecules. The role of miR-143-3p in intervertebral disc degeneration was also validated by in vivo. RT-qPCR, WB, coimmunoprecipitation (Co-IP) and flow cytometry were used to verify the regulatory effect of METTL3 on miR-143-3p maturation. RT-qPCR and WB were adopted to detect differences in METTL3, miR-143-3p and SOX5 expression in human nucleus pulposus tissue. miR-143-3p in nucleus pulposus cells was involved in the regulation of extracellular matrix metabolism and apoptosis after TNF-α stimulation, and intervertebral disc degeneration was relieved by effectively regulating miR-143-3p expression. Subsequent experiments showed that the downstream direct target gene of miR-143-3p was SOX5 and that miR-143-3p negatively regulated the expression of SOX5. In addition, METTL3 promoted miR-143-3p maturation, and METTL3 and miR-143-3p were significantly upregulated in degenerative nucleus pulposus, an effect that was significantly negatively correlated with low SOX5 expression. In conclusion, TNF-α upregulates METTL3, METTL3 promotes miR-143-3p maturation, and miR-143-3p inhibits the transcriptional activity of SOX5 through targeted binding, thereby inducing intervertebral disc degeneration. The inhibition of METTL3 or miR-143-3p expression may be an effective way to treat intervertebral disc degeneration.
Collapse
Affiliation(s)
- Daokuan Gao
- Department of Spine Surgery, Yijishan Hospital of Wannan Medical College, No. 2 Zheshan West Road, Wuhu 241001, Anhui, China
| | - Bo Hu
- Department of Spine Surgery, Yijishan Hospital of Wannan Medical College, No. 2 Zheshan West Road, Wuhu 241001, Anhui, China
| | - Baiyang Ding
- Department of Spine Surgery, Yijishan Hospital of Wannan Medical College, No. 2 Zheshan West Road, Wuhu 241001, Anhui, China
| | - Quanlai Zhao
- Department of Spine Surgery, Yijishan Hospital of Wannan Medical College, No. 2 Zheshan West Road, Wuhu 241001, Anhui, China
| | - Yu Zhang
- Department of Spine Surgery, Yijishan Hospital of Wannan Medical College, No. 2 Zheshan West Road, Wuhu 241001, Anhui, China
| | - Liang Xiao
- Key Laboratory of Non-Coding RNA Transformation Research of Anhui Higher Education Institution, No. 2 Zheshan West Road, Wuhu 241001, Anhui, China.
| |
Collapse
|
46
|
Camy C, Brioche T, Senni K, Bertaud A, Genovesio C, Lamy E, Fovet T, Chopard A, Pithioux M, Roffino S. Effects of hindlimb unloading and subsequent reloading on the structure and mechanical properties of Achilles tendon-to-bone attachment. FASEB J 2022; 36:e22548. [PMID: 36121701 DOI: 10.1096/fj.202200713r] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/10/2022] [Accepted: 09/02/2022] [Indexed: 11/11/2022]
Abstract
While muscle and bone adaptations to deconditioning have been widely described, few studies have focused on the tendon enthesis. Our study examined the effects of mechanical loading on the structure and mechanical properties of the Achilles tendon enthesis. We assessed the fibrocartilage surface area, the organization of collagen, the expression of collagen II, the presence of osteoclasts, and the tensile properties of the mouse enthesis both after 14 days of hindlimb suspension (HU) and after a subsequent 6 days of reloading. Although soleus atrophy was severe after HU, calcified fibrocartilage (CFc) was a little affected. In contrast, we observed a decrease in non-calcified fibrocartilage (UFc) surface area, collagen fiber disorganization, modification of morphological characteristics of the fibrocartilage cells, and altered collagen II distribution. Compared to the control group, restoring normal loads increased both UFc surface area and expression of collagen II, and led to a crimp pattern in collagen. Reloading induced an increase in CFc surface area, probably due to the mineralization front advancing toward the tendon. Functionally, unloading resulted in decreased enthesis stiffness and a shift in site of failure from the osteochondral interface to the bone, whereas 6 days of reloading restored the original elastic properties and site of failure. In the context of spaceflight, our results suggest that care must be taken when performing countermeasure exercises both during missions and during the return to Earth.
Collapse
Affiliation(s)
- Claire Camy
- Aix Marseille University, CNRS, ISM, Institute of Movement Sciences, Marseille, France
| | - Thomas Brioche
- DMEM, Montpellier University, INRAE, UMR 866, Montpellier, France
| | - Karim Senni
- Laboratoire EBInnov, Ecole de Biologie Industrielle-EBI, Cergy, France
| | - Alexandrine Bertaud
- Aix Marseille Univ, INSERM, INRAE, C2VN, Marseille, France.,Laboratoire de Biochimie, Faculté de Pharmacie, Marseille, France
| | - Cécile Genovesio
- Laboratoire de Biochimie, Faculté de Pharmacie, Marseille, France
| | - Edouard Lamy
- Aix Marseille University, CNRS, ISM, Institute of Movement Sciences, Marseille, France.,Laboratoire de Biochimie, Faculté de Pharmacie, Marseille, France
| | - Théo Fovet
- DMEM, Montpellier University, INRAE, UMR 866, Montpellier, France
| | - Angèle Chopard
- DMEM, Montpellier University, INRAE, UMR 866, Montpellier, France
| | - Martine Pithioux
- Aix Marseille University, CNRS, ISM, Institute of Movement Sciences, Marseille, France.,Department of Orthopaedics and Traumatology, Aix Marseille Univ, APHM, CNRS, ISM, Sainte-Marguerite Hospital, Institute for Locomotion, Marseille, France.,Aix Marseille Univ, APHM, CNRS, Centrale Marseille, ISM, Mecabio Platform, Anatomy Laboratory, Timone, Marseille, France
| | - Sandrine Roffino
- Aix Marseille University, CNRS, ISM, Institute of Movement Sciences, Marseille, France.,Aix Marseille Univ, APHM, CNRS, Centrale Marseille, ISM, Mecabio Platform, Anatomy Laboratory, Timone, Marseille, France
| |
Collapse
|
47
|
Martínez‐Moreno D, Venegas‐Bustos D, Rus G, Gálvez‐Martín P, Jiménez G, Marchal JA. Chondro-Inductive b-TPUe-Based Functionalized Scaffolds for Application in Cartilage Tissue Engineering. Adv Healthc Mater 2022; 11:e2200251. [PMID: 35857383 PMCID: PMC11468339 DOI: 10.1002/adhm.202200251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 05/13/2022] [Indexed: 01/27/2023]
Abstract
Osteoarthritis is a disease with a great socioeconomic impact and mainly affects articular cartilage, a tissue with reduced self-healing capacity. In this work, 3D printed 1,4 butanediol thermoplastic polyurethane (b-TPUe) scaffolds are functionalized and infrapatellar mesenchymal stem cells are used as the cellular source. Since b-TPUe is a biomaterial with mechanical properties similar to cartilage, but it does not provide the desired environment for cell adhesion, scaffolds are functionalized with two methods, one based on collagen type I and the other in 1-pyrenebutiric acid (PBA) as principal components. Alamar Blue and confocal assays display that PBA functionalized scaffolds support higher cell adhesion and proliferation for the first 21 days. However, collagen type I functionalization induces higher proliferation rates and similar cell viability than the PBA method. Further, both functionalization methods induce extracellular matrix synthesis, and the presence of chondrogenic markers (Sox9, Col2a, and Acan). Finally, SEM images probe that functionalized 3D printed scaffolds present much better cell/biomaterial interactions than controls and confirm early chondrogenesis. These results indicate that the two methods of functionalization in the highly hydrophobic b-TPUe enhance the cell-biomaterial interactions and the improvement in the chondro-inductive properties, which have great potential for application in cartilage tissue engineering.
Collapse
Affiliation(s)
- Daniel Martínez‐Moreno
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA)University Hospitals of Granada‐University of GranadaGranadaE‐18071Spain
- Biopathology and Regenerative Medicine Institute (IBIMER)Centre for Biomedical ResearchUniversity of GranadaGranadaE‐18100Spain
- Department of Human Anatomy and EmbryologyFaculty of MedicineUniversity of GranadaGranadaE‐18016Spain
- Excellence Research Unit “Modeling Nature” (MNat)University of GranadaGranadaE‐18016Spain
- BioFab i3D‐ Biofabrication and 3D (bio)printing laboratoryUniversity of GranadaGranadaE‐18100Spain
| | - Desiré Venegas‐Bustos
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA)University Hospitals of Granada‐University of GranadaGranadaE‐18071Spain
| | - Guillermo Rus
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA)University Hospitals of Granada‐University of GranadaGranadaE‐18071Spain
- Excellence Research Unit “Modeling Nature” (MNat)University of GranadaGranadaE‐18016Spain
- Department of Structural MechanicsUniversity of GranadaPolitécnico de FuentenuevaGranadaE‐18071Spain
| | - Patricia Gálvez‐Martín
- Department of Pharmacy and Pharmaceutical TechnologyFaculty of PharmacyUniversity of GranadaGranadaE‐18071Spain
| | - Gema Jiménez
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA)University Hospitals of Granada‐University of GranadaGranadaE‐18071Spain
- Biopathology and Regenerative Medicine Institute (IBIMER)Centre for Biomedical ResearchUniversity of GranadaGranadaE‐18100Spain
- Department of Human Anatomy and EmbryologyFaculty of MedicineUniversity of GranadaGranadaE‐18016Spain
- Excellence Research Unit “Modeling Nature” (MNat)University of GranadaGranadaE‐18016Spain
- BioFab i3D‐ Biofabrication and 3D (bio)printing laboratoryUniversity of GranadaGranadaE‐18100Spain
| | - Juan Antonio Marchal
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA)University Hospitals of Granada‐University of GranadaGranadaE‐18071Spain
- Biopathology and Regenerative Medicine Institute (IBIMER)Centre for Biomedical ResearchUniversity of GranadaGranadaE‐18100Spain
- Department of Human Anatomy and EmbryologyFaculty of MedicineUniversity of GranadaGranadaE‐18016Spain
- Excellence Research Unit “Modeling Nature” (MNat)University of GranadaGranadaE‐18016Spain
- BioFab i3D‐ Biofabrication and 3D (bio)printing laboratoryUniversity of GranadaGranadaE‐18100Spain
| |
Collapse
|
48
|
Kitahashi T, Kogawa R, Nakamura K, Sekiya I. Integrin β1, PDGFRβ, and type II collagen are essential for meniscus regeneration by synovial mesenchymal stem cells in rats. Sci Rep 2022; 12:14148. [PMID: 35986079 PMCID: PMC9391488 DOI: 10.1038/s41598-022-18476-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 08/12/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractSynovial mesenchymal stem cells (MSCs) injected into the knee promote meniscus regeneration in several animal models; however, the mode of action is unknown. Our purpose was to identify the molecules responsible for this meniscus regeneration. Rat synovial MSCs were treated with neutralizing antibodies for integrin β1, PDGFRβ, or CD44 or with the CRISPR/Cas9 system to delete Vcam1, Tnfr1, or Col2a1 genes. After partial meniscectomy, rat knees were injected with MSCs, and the regenerated meniscus area was quantified three weeks later. The in vivo and in vitro functions were compared between the treated and control MSCs. Anti-integrin β1 neutralizing antibody inhibited in vitro MSC adhesion to collagen-coated chambers, anti-PDGFRβ neutralizing antibody inhibited proliferation in culture dishes, and Col2a1 deletion inhibited in vitro chondrogenesis. In vivo, the regenerated meniscus area was significantly smaller after injection of MSCs treated with integrin β1 and PDGFRβ neutralizing antibodies or lacking type II collagen gene than after control MSC injection. By contrast, the regenerated areas were similar after injection of control, CD44-, Vcam1-, or Tnfr1 treated MSCs (n = 12–16) MSCs. Synovial MSCs injected into the knee joint promoted meniscus regeneration by adhesion to integrin β1 in the meniscectomized region, proliferation by PDGFRβ, and cartilage matrix production from type II collagen.
Collapse
|
49
|
Assessment of the Efficacy of Bone Marrow-Derived Mesenchymal Stem Cells against a Monoiodoacetate-Induced Osteoarthritis Model in Wistar Rats. Stem Cells Int 2022; 2022:1900403. [PMID: 36017131 PMCID: PMC9398859 DOI: 10.1155/2022/1900403] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 07/18/2022] [Accepted: 07/26/2022] [Indexed: 11/18/2022] Open
Abstract
Osteoarthritis (OA) of the knee is a debilitating condition that can severely limit an individual's mobility and quality of life. This study was designed to evaluate the efficacy of bone marrow-derived mesenchymal stem cell (BM-MSC) treatment in cartilage repair using a rat model of monoiodoacetate- (MIA-) induced knee OA. OA was induced in the knee joint of rats by an intracapsular injection of MIA (2 mg/50 μL) on day zero. The rats were divided into three groups (n = 6): a normal control group, an osteoarthritic control group, and an osteoarthritic group receiving a single intra-articular injection of BM-MSCs (5 × 106 cells/rat). The knee diameter was recorded once per week. By the end of the performed experiment, X-ray imaging and enzyme-linked immunosorbent assay analysis of serum inflammatory cytokines interleukin-1beta (IL-β), IL-6, and tumor necrosis factor-α (TNF-α) and anti-inflammatory cytokines interleukin-10 and transforming growth factor-beta (TGF-β) were carried out. In addition, RT-PCR was used to measure nuclear factor-kappa B (NF-κB), inducible nitric oxide synthase (iNOS), and type II collagen mRNA levels and Western blot analysis was used to determine caspase-3 protein levels in all treated groups. Finally, hematoxylin/and eosin stains were used for histopathological investigation. Administration of BM-MSCs significantly downregulated knee joint swelling and MIA-induced (IL-1β, IL-6, and TNF-α) and upregulated IL-10 and TGF-β as well. Moreover, BM-MSC-treated osteoarthritic rats exhibited decreased expression of NF-κB, iNOS, and apoptotic mediator (caspase-3) and increased expression of type II collagen when compared to rats treated with MIA alone. The hematoxylin/eosin-stained sections revealed that BM-MSC administration ameliorated the knee joint alterations in MIA-injected rats. BM-MSCs could be an effective treatment for inflamed knee joints in the MIA-treated rat model of osteoarthritis, and the effect may be mediated via its anti-inflammatory and antioxidant potential.
Collapse
|
50
|
Feedforward Control Combined with 4F Management on Postoperative Nursing Effects and Motor Function of Meniscus Sports Injuries: Based on a Prospective Case Analysis. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:5447509. [PMID: 35855835 PMCID: PMC9288311 DOI: 10.1155/2022/5447509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/01/2022] [Accepted: 06/24/2022] [Indexed: 11/17/2022]
Abstract
Background Because active functional training and management after knee cartilage sports injury is the key to treatment, care of patients after an operation with knee cartilage sports injury is critical. Aims To explore the effect of feedforward control combined with 4F management and after an operation nursing effect on patients with knee cartilage sports injury. Materials and Methods According to the random number table method, 100 patients with knee cartilage sports injury who were nursed in our hospital from June 2019 to June 2021 were selected as the research objects and divided into the control group and the instance of watching, noticing, or making a statement group with 50 cases in each group according to the different nursing order. Among them, the control group adopted 4F management combined with feedforward control nursing mode: all-weather, whole-process, whole-system, and all-around services for patients. On this basis, the instance of watching, noticing, or making a statement group cooperated with early healing/repairing training to compare fear and stress-related self-test of the two groups of patients after an operation. Knee function and quality of care are scored using tables. Results After nursing, the knee joint function score of the instance of watching, noticing, or making a statement group was higher than that of the control group, while the pain after the operation, sleep quality, fear, and stress self-rating scale scores were significantly lower than the control group (P < 0.05). The whole-process management, body position placement, risk evaluation, repairing training, all-weather service, whole-system management, and comprehensive service of the two groups of patients were very much improved. The nursing quality of watching, noticing, or making a statement group was significantly higher than the control group (P < 0.05). Conclusion Feedforward control combined with 4F management combined with early repairing training can effectively reduce the fear and stress after an operation pain and sleep quality of knee cartilage sports injury and help increase the recovery of knee combined function in a good way.
Collapse
|