1
|
Brizio M, Mancini M, Lora M, Joy S, Zhu S, Brilland B, Reinhardt DP, Farge D, Langlais D, Colmegna I. Cytokine priming enhances the antifibrotic effects of human adipose derived mesenchymal stromal cells conditioned medium. Stem Cell Res Ther 2024; 15:329. [PMID: 39334258 PMCID: PMC11438190 DOI: 10.1186/s13287-024-03916-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 09/02/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Fibrosis is a pathological scarring process characterized by persistent myofibroblast activation with excessive accumulation of extracellular matrix (ECM). Fibrotic disorders represent an increasing burden of disease-associated morbidity and mortality worldwide for which there are limited therapeutic options. Reversing fibrosis requires the elimination of myofibroblasts, remodeling of the ECM, and regeneration of functional tissue. Multipotent mesenchymal stromal cells (MSC) have antifibrotic properties mediated by secreted factors present in their conditioned medium (MSC-CM). However, there are no standardized in vitro assays to predict the antifibrotic effects of human MSC. As a result, we lack evidence on the effect of cytokine priming on MSC's antifibrotic effects. We hypothesize that the MSC-CM promotes fibrosis resolution in vitro and that this effect is enhanced following MSC cytokine priming. METHODS We compared the antifibrotic effects of resting versus interferon gamma (IFN-γ) and tumor necrosis factor alpha (TNF-α) primed MSC-CM in four in vitro assays: prevention of fibroblast activation, myofibroblasts deactivation, ECM degradation and fibrosis resolution in lung explant cultures. Furthermore, we performed transcriptomic analysis of myofibroblasts treated or not with resting or primed MSC-CM and proteomic characterization of resting and primed MSC-CM. RESULTS We isolated MSC from adipose tissue of 8 donors, generated MSC-CM and tested each MSC-CM independently. We report that MSC-CM treatment prevented TGF-β induced fibroblast activation to a similar extent as nintedanib but, in contrast to nintedanib, MSC-CM reduced fibrogenic myofibroblasts (i.e. transcriptomic upregulation of apoptosis, senescence, and inflammatory pathways). These effects were larger when primed rather than resting MSC-CM were used. Priming increased the ability of MSC-CM to remodel the ECM, reducing its content of collagen I and fibronectin, and reduced the fibrotic load in TGF-β treated lung explant cultures. Priming increased the following antifibrotic proteins in MSC-CM: DKK1, MMP-1, MMP-3, follistatin and cathepsin S. Inhibition of DKK1 reduced the antifibrotic effects of MSC-CM. CONCLUSIONS In vitro, MSC-CM promote fibrosis resolution, an effect enhanced following MSC cytokine priming. Specifically, MSC-CM reduces fibrogenic myofibroblasts through apoptosis, senescence, and by enhancing ECM degradation. Future studies will establish the in vivo relevance of MSC priming to fibrosis resolution.
Collapse
Affiliation(s)
- Marianela Brizio
- Division of Experimental Medicine, McGill University, Montreal, QC, Canada
| | - Mathieu Mancini
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
- Department of Human Genetics, Dahdaleh Institute of Genomic Medicine, McGill University, Montreal, QC, Canada
| | - Maximilien Lora
- The Research Institute of the McGill University Health Centre (RI-MUHC), Montreal, QC, Canada
| | - Sydney Joy
- Division of Experimental Medicine, McGill University, Montreal, QC, Canada
| | - Shirley Zhu
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | - Benoit Brilland
- Department of Human Genetics, Dahdaleh Institute of Genomic Medicine, McGill University, Montreal, QC, Canada
- Service de Néphrologie-Dialyse-Transplantation, CHU Angers, Angers, France
- Univ Angers, Nantes Université, Inserm, CNRS, ICAT, CRCI2NA, Angers, SFR, France
| | - Dieter P Reinhardt
- Faculty of Medicine and Health Sciences, Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC, Canada
| | - Dominique Farge
- Division of Experimental Medicine, McGill University, Montreal, QC, Canada
- Internal Médicine Unit (04): CRMR MATHEC, Maladies Auto-Immunes Et Thérapie Cellulaire, AP-HP, Hôpital Saint-Louis, Université Paris Cité, Centre de Référence Des Maladies Auto-Immunes Systémiques Rares d'Ile-de-France, Paris, France
| | - David Langlais
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
- Department of Human Genetics, Dahdaleh Institute of Genomic Medicine, McGill University, Montreal, QC, Canada
| | - Inés Colmegna
- Division of Experimental Medicine, McGill University, Montreal, QC, Canada.
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada.
- The Research Institute of the McGill University Health Centre (RI-MUHC), Montreal, QC, Canada.
- Division of Rheumatology, McGill University Health Centre, Montreal, QC, Canada.
| |
Collapse
|
2
|
Hu J, Wang N, Jiang Y, Li Y, Qin B, Wang Z, Gao L. BMSCs promote alveolar epithelial cell autophagy to reduce pulmonary fibrosis by inhibiting core fucosylation modifications. Stem Cells 2024; 42:809-820. [PMID: 38982795 DOI: 10.1093/stmcls/sxae044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 06/06/2024] [Indexed: 07/11/2024]
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (PF) is a chronic progressive interstitial lung disease characterized by alveolar epithelial cell (AEC) injury and fibroblast activation. Inadequate autophagy in AECs may result from the activation of several signaling pathways following AEC injury, with glycoproteins serving as key receptor proteins. The core fucosylation (CF) modification in glycoproteins is crucial. Mesenchymal stem cells derived from bone marrow (BMSCs) have the ability to regenerate damaged tissue and treat PF. This study aimed to elucidate the relationship and mechanism of interaction between BMSCs, CF modification, and autophagy in PF. METHODS C57BL/6 male mice, AEC-specific FUT8 conditional knockout (CKO) mice, and MLE12 cells were administered bleomycin (BLM), FUT8 siRNA, and mouse BMSCs, respectively. Experimental techniques including tissue staining, Western blotting, immunofluorescence, autophagic flux detection, and flow cytometry were used in this study. RESULTS First, we found that autophagy was inhibited while FUT8 expression was elevated in PF mice and BLM-induced AEC injury models. Subsequently, CKO mice and MLE12 cells transfected with FUT8 siRNA were used to demonstrate that inhibition of CF modification induces autophagy in AECs and mitigates PF. Finally, mouse BMSCs were used to demonstrate that they alleviate the detrimental autophagy of AECs by inhibiting CF modification and decreasing PF. CONCLUSIONS Suppression of CF modification enhanced the suppression of AEC autophagy and reduced PF in mice. Additionally, through the prevention of CF modification, BMSCs can assist AECs deficient in autophagy and partially alleviate PF.
Collapse
Affiliation(s)
- Jinying Hu
- Department of Respiratory Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, People's Republic of China
| | - Nan Wang
- Department of Respiratory Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, People's Republic of China
| | - Yu Jiang
- Department of Respiratory Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, People's Republic of China
| | - Yina Li
- Department of Respiratory Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, People's Republic of China
| | - Biaojie Qin
- Department of Nephrology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, People's Republic of China
| | - Zhongzhen Wang
- Department of Cardiology, Institute of Cardiovascular Diseases, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, People's Republic of China
| | - Lili Gao
- Department of Respiratory Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, People's Republic of China
| |
Collapse
|
3
|
Yan Z, Zhu J, Liu Y, Li Z, Liang X, Zhou S, Hou Y, Chen H, Zhou L, Wang P, Ao X, Gao S, Huang X, Zhou P, Gu Y. DNA-PKcs/AKT1 inhibits epithelial-mesenchymal transition during radiation-induced pulmonary fibrosis by inducing ubiquitination and degradation of Twist1. Clin Transl Med 2024; 14:e1690. [PMID: 38760896 PMCID: PMC11101672 DOI: 10.1002/ctm2.1690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 04/21/2024] [Accepted: 04/26/2024] [Indexed: 05/20/2024] Open
Abstract
INTRODUCTION Radiation-induced pulmonary fibrosis (RIPF) is a chronic, progressive, irreversible lung interstitial disease that develops after radiotherapy. Although several previous studies have focused on the mechanism of epithelial-mesenchymal transition (EMT) in lung epithelial cells, the essential factors involved in this process remain poorly understood. The DNA-dependent protein kinase catalytic subunit (DNA-PKcs) exhibits strong repair capacity when cells undergo radiation-induced damage; whether DNA-PKcs regulates EMT during RIPF remains unclear. OBJECTIVES To investigate the role and molecular mechanism of DNA-PKcs in RIPF and provide an important theoretical basis for utilising DNA-PKcs-targeted drugs for preventing RIPF. METHODS DNA-PKcs knockout (DPK-/-) mice were generated via the Cas9/sgRNA technique and subjected to whole chest ionizing radiation (IR) at a 20 Gy dose. Before whole chest IR, the mice were intragastrically administered the DNA-PKcs-targeted drug VND3207. Lung tissues were collected at 1 and 5 months after IR. RESULTS The expression of DNA-PKcs is low in pulmonary fibrosis (PF) patients. DNA-PKcs deficiency significantly exacerbated RIPF by promoting EMT in lung epithelial cells. Mechanistically, DNA-PKcs deletion by shRNA or inhibitor NU7441 maintained the protein stability of Twist1. Furthermore, AKT1 mediated the interaction between DNA-PKcs and Twist1. High Twist1 expression and EMT-associated changes caused by DNA-PKcs deletion were blocked by insulin-like growth factor-1 (IGF-1), an AKT1 agonist. The radioprotective drug VND3207 prevented IR-induced EMT and alleviated RIPF in mice by stimulating the kinase activity of DNA-PKcs. CONCLUSION Our study clarified the critical role and mechanism of DNA-PKcs in RIPF and showed that it could be a potential target for preventing RIPF.
Collapse
Affiliation(s)
- Ziyan Yan
- Beijing Key Laboratory for RadiobiologyBeijing Institute of Radiation MedicineBeijingChina
| | - Jiaojiao Zhu
- Beijing Key Laboratory for RadiobiologyBeijing Institute of Radiation MedicineBeijingChina
| | - Yuhao Liu
- Beijing Key Laboratory for RadiobiologyBeijing Institute of Radiation MedicineBeijingChina
| | - Zhongqiu Li
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of ZoologyChinese Academy of SciencesBeijingChina
| | - Xinxin Liang
- Hengyang Medical CollegeUniversity of South ChinaHengyangChina
| | - Shenghui Zhou
- Hengyang Medical CollegeUniversity of South ChinaHengyangChina
| | - Yifan Hou
- College of Life SciencesHebei UniversityBaodingChina
| | - Huixi Chen
- Hengyang Medical CollegeUniversity of South ChinaHengyangChina
| | - Lin Zhou
- Beijing Key Laboratory for RadiobiologyBeijing Institute of Radiation MedicineBeijingChina
| | - Ping Wang
- Beijing Key Laboratory for RadiobiologyBeijing Institute of Radiation MedicineBeijingChina
| | - Xingkun Ao
- Hengyang Medical CollegeUniversity of South ChinaHengyangChina
| | - Shanshan Gao
- Beijing Key Laboratory for RadiobiologyBeijing Institute of Radiation MedicineBeijingChina
| | - Xin Huang
- Beijing Key Laboratory for RadiobiologyBeijing Institute of Radiation MedicineBeijingChina
| | - Ping‐Kun Zhou
- Beijing Key Laboratory for RadiobiologyBeijing Institute of Radiation MedicineBeijingChina
| | - Yongqing Gu
- Beijing Key Laboratory for RadiobiologyBeijing Institute of Radiation MedicineBeijingChina
- Hengyang Medical CollegeUniversity of South ChinaHengyangChina
- College of Life SciencesHebei UniversityBaodingChina
| |
Collapse
|
4
|
Huang X, Sun W, Nie B, Li JJ, Jing F, Zhou XL, Ni XY, Ni XC. Adipose-derived stem cells repair radiation-induced chronic lung injury via inhibiting TGF-β1/Smad 3 signaling pathway. Open Med (Wars) 2023; 18:20230850. [PMID: 38025537 PMCID: PMC10655693 DOI: 10.1515/med-2023-0850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/17/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
To investigate the effect of adipose-derived stem cells (ASCs) transplantation on radiation-induced lung injury (RILI), Sprague-Dawley rats were divided into phosphate-buffered saline (PBS) group, ASCs group, Radiation + PBS group, and Radiation + ASCs group. Radiation + PBS and Radiation + ASCs groups received single dose of 30 Gy X-ray radiation to the right chest. The Radiation + PBS group received 1 mL PBS suspension and Radiation + ASCs group received 1 mL PBS suspension containing 1 × 107 CM-Dil-labeled ASCs. The right lung tissue was collected on Days 30, 90, and 180 after radiation. Hematoxylin-eosin and Masson staining were performed to observe the pathological changes and collagen fiber content in the lung tissue. Immunohistochemistry (IHC) and western blot (WB) were used to detect levels of fibrotic markers collagen I (Collal), fibronectin (FN), as well as transforming growth factor-β1 (TGF-β1), p-Smad 3, and Smad 3. Compared with the non-radiation groups, the radiation groups showed lymphocyte infiltration on Day 30 after irradiation and thickened incomplete alveolar walls, collagen deposition, and fibroplasia on Days 90 and 180. ASCs relieved these changes on Day 180 (Masson staining, P = 0.0022). Compared with Radiation + PBS group, on Day 180 after irradiation, the Radiation + ASCs group showed that ASCs could significantly decrease the expressions of fibrosis markers Collal (IHC: P = 0.0022; WB: P = 0.0087) and FN (IHC: P = 0.0152; WB: P = 0.026) and inhibit the expressions of TGF-β1 (IHC: P = 0.026; WB: P = 0.0152) and p-Smad 3 (IHC: P = 0.0043; WB: P = 0.0087) in radiation-induced injured lung tissue. These indicated that ASCs could relieve RILI by inhibiting TGF-β1/Smad 3 signaling pathway.
Collapse
Affiliation(s)
- Xin Huang
- Department of Radiotherapy, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou Second People’s Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, Jiangsu, 213000, China
| | - Wei Sun
- Department of Radiotherapy, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou Second People’s Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, Jiangsu, 213000, China
| | - Bin Nie
- Department of Radiotherapy, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou Second People’s Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, Jiangsu, 213000, China
| | - Juan-juan Li
- Department of Radiotherapy, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou Second People’s Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, Jiangsu, 213000, China
| | - Fei Jing
- Department of Radiotherapy, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou Second People’s Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, Jiangsu, 213000, China
| | - Xiao-li Zhou
- Department of Pathology, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou Second People’s Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, Jiangsu, 213000, China
| | - Xin-ye Ni
- Department of Radiotherapy, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou Second People’s Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, Jiangsu, 213000, China
| | - Xin-chu Ni
- Department of Radiotherapy, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou Second People’s Hospital, Changzhou Medical Center, Nanjing Medical University, No. 68, Gehuzhonglu Road, Wujin District, Changzhou, Jiangsu, 213000, China
| |
Collapse
|
5
|
Gao Y, Yang Z, He K, Wang Z, Zhang T, Yi J, Zhao L. Voluntary wheel-running improved pulmonary fibrosis by reducing epithelial mesenchymal transformation. Life Sci 2023; 331:122066. [PMID: 37666388 DOI: 10.1016/j.lfs.2023.122066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/15/2023] [Accepted: 08/30/2023] [Indexed: 09/06/2023]
Abstract
AIMS Pulmonary fibrosis seriously affects the health and life quality of patients. Exercise has been shown to have anti-inflammatory and antioxidant effects, but its effect on pulmonary fibrosis is unclear. In this study, the effect and mechanism of exercise on pulmonary fibrosis induced by paraquat were detected. MAIN METHODS Three data sets were retrieved from GEO data. The biological significance of DEGs generation was determined by GO, KEGG, GSEA, and PPI. Thirty male BALB/C mice were randomly divided into control group, model group and exercise group. H&E staining, Masson staining, Immunohistochemistry and Western blot were used to explore the results. The levels of SOD, CAT, MDA, and GSH in lung tissue were analyzed with detection kits. The levels of inflammatory factors in serum and BALF were measured by ELISA. KEY FINDINGS Compared with the control group, the infiltration of inflammatory cells and fibrotic lesions were increased in the model group. Compared with the model group, voluntary wheel-running reducing the EMT of alveolar epithelial cells, the activation of the Wnt/β-catenin signaling pathway and the level of oxidative distress. Moreover, compared to model group, the serum IL-4, IL-10 and IFN-γ were increased, while the serum CXCL1 were decreased, while the levels of CXCL1, IL-6, IL-10, TNF-α and IFN-γ in the bronchoalveolar lavage fluid were decreased in exercise group. SIGNIFICANCE Voluntary wheel-running reduced inflammatory infiltration and upregulated the expression of antioxidative distress proteins, further to improve the degree of EMT, and ultimately alleviated paraquat induced pulmonary fibrosis.
Collapse
Affiliation(s)
- Yan Gao
- School of Nursing, Jilin University, Changchun 130012, Jilin, China
| | - Zhaoyun Yang
- School of Nursing, Jilin University, Changchun 130012, Jilin, China
| | - Kang He
- School of Nursing, Jilin University, Changchun 130012, Jilin, China
| | - Zeyu Wang
- School of Nursing, Jilin University, Changchun 130012, Jilin, China
| | - Tingyu Zhang
- School of Nursing, Jilin University, Changchun 130012, Jilin, China
| | - Jiang Yi
- Department of Rehabilitation, the Second Hospital of Jilin University, Changchun 130012, Jilin, China.
| | - Lijing Zhao
- School of Nursing, Jilin University, Changchun 130012, Jilin, China.
| |
Collapse
|
6
|
Yu Z, Xu C, Song B, Zhang S, Chen C, Li C, Zhang S. Tissue fibrosis induced by radiotherapy: current understanding of the molecular mechanisms, diagnosis and therapeutic advances. J Transl Med 2023; 21:708. [PMID: 37814303 PMCID: PMC10563272 DOI: 10.1186/s12967-023-04554-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 09/22/2023] [Indexed: 10/11/2023] Open
Abstract
Cancer remains the leading cause of death around the world. In cancer treatment, over 50% of cancer patients receive radiotherapy alone or in multimodal combinations with other therapies. One of the adverse consequences after radiation exposure is the occurrence of radiation-induced tissue fibrosis (RIF), which is characterized by the abnormal activation of myofibroblasts and the excessive accumulation of extracellular matrix. This phenotype can manifest in multiple organs, such as lung, skin, liver and kidney. In-depth studies on the mechanisms of radiation-induced fibrosis have shown that a variety of extracellular signals such as immune cells and abnormal release of cytokines, and intracellular signals such as cGAS/STING, oxidative stress response, metabolic reprogramming and proteasome pathway activation are involved in the activation of myofibroblasts. Tissue fibrosis is extremely harmful to patients' health and requires early diagnosis. In addition to traditional serum markers, histologic and imaging tests, the diagnostic potential of nuclear medicine techniques is emerging. Anti-inflammatory and antioxidant therapies are the traditional treatments for radiation-induced fibrosis. Recently, some promising therapeutic strategies have emerged, such as stem cell therapy and targeted therapies. However, incomplete knowledge of the mechanisms hinders the treatment of this disease. Here, we also highlight the potential mechanistic, diagnostic and therapeutic directions of radiation-induced fibrosis.
Collapse
Affiliation(s)
- Zuxiang Yu
- Laboratory of Radiation Medicine, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Chaoyu Xu
- Laboratory of Radiation Medicine, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Bin Song
- Laboratory of Radiation Medicine, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, China
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, 610051, China
- NHC Key Laboratory of Nuclear Technology Medical Transformation (Mianyang Central Hospital), Mianyang, 621099, China
| | - Shihao Zhang
- Laboratory of Radiation Medicine, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Chong Chen
- Department of Gastroenterology, The First People's Hospital of Xuzhou, Xuzhou Municipal Hospital Affiliated to Xuzhou Medical University, Xuzhou, 221200, China
| | - Changlong Li
- Laboratory of Radiation Medicine, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, China.
- Department of Molecular Biology and Biochemistry, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China.
| | - Shuyu Zhang
- Laboratory of Radiation Medicine, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, China.
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, 610051, China.
- NHC Key Laboratory of Nuclear Technology Medical Transformation (Mianyang Central Hospital), Mianyang, 621099, China.
| |
Collapse
|
7
|
Li J, Wei Q, Song K, Wang Y, Yang Y, Li M, Yu J, Su G, Peng L, Fu B, Yi P. Tangeretin attenuates bleomycin-induced pulmonary fibrosis by inhibiting epithelial-mesenchymal transition via the PI3K/Akt pathway. Front Pharmacol 2023; 14:1247800. [PMID: 37781713 PMCID: PMC10540689 DOI: 10.3389/fphar.2023.1247800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/06/2023] [Indexed: 10/03/2023] Open
Abstract
Background: Pulmonary fibrosis (PF) is a terminal pathological change in a variety of lung diseases characterized by excessive deposition of extracellular matrix, for which effective treatment is lacking. Tangeretin (Tan), a flavonoid derived from citrus, has been shown to have a wide range of pharmacological effects. This study aimed to investigate the role and potential mechanisms of Tan on pulmonary fibrosis. Methods: A model of pulmonary fibrosis was established by administering bleomycin through tracheal drip, followed by administering Tan or pirfenidone through gavage. HE and Masson staining were employed to assess the extent of pulmonary fibrosis. Subsequently, Western blot, enzyme-linked immunosorbent assay (ELISA), RNA sequencing, and immunohistochemistry techniques were employed to uncover the protective mechanism of Tan in PF mice. Furthermore, A549 cells were stimulated with TGF-β1 to induce epithelial-mesenchymal transition (EMT) and demonstrate the effectiveness of Tan in mitigating PF. Results: Tan significantly ameliorated bleomycin-induced pulmonary fibrosis, improved fibrotic pathological changes, and collagen deposition in the lungs, and reduced lung inflammation and oxidative stress. The KEGG pathway enrichment analysis revealed a higher number of enriched genes in the PI3K/Akt pathway. Additionally, Tan can inhibit the EMT process related to pulmonary fibrosis. Conclusion: Taken together, the above research results indicate that Tan suppresses inflammation, oxidative stress, and EMT in BLM-induced pulmonary fibrosis via the PI3K/Akt pathway and is a potential agent for the treatment of pulmonary fibrosis.
Collapse
Affiliation(s)
- Jiang Li
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Qian Wei
- Department of Internal Medicine-Cardiovascular, The Third Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Ke Song
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Youxin Wang
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yuxin Yang
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Miao Li
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Jiaying Yu
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Guangxu Su
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Luyuan Peng
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Bendong Fu
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Pengfei Yi
- College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
8
|
Basta MD, Petruk S, Mazo A, Walker JL. Fibrosis-the tale of H3K27 histone methyltransferases and demethylases. Front Cell Dev Biol 2023; 11:1193344. [PMID: 37476157 PMCID: PMC10354294 DOI: 10.3389/fcell.2023.1193344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/22/2023] [Indexed: 07/22/2023] Open
Abstract
Fibrosis, or excessive scarring, is characterized by the emergence of alpha-smooth muscle actin (αSMA)-expressing myofibroblasts and the excessive accumulation of fibrotic extracellular matrix (ECM). Currently, there is a lack of effective treatment options for fibrosis, highlighting an unmet need to identify new therapeutic targets. The acquisition of a fibrotic phenotype is associated with changes in chromatin structure, a key determinant of gene transcription activation and repression. The major repressive histone mark, H3K27me3, has been linked to dynamic changes in gene expression in fibrosis through alterations in chromatin structure. H3K27-specific homologous histone methylase (HMT) enzymes, Enhancer of zeste 1 and 2 (EZH1, EZH2), which are the alternative subunits of the Polycomb Repressive Complex 2 (PRC2) and demethylase (KDM) enzymes, Ubiquitously transcribed tetratricopeptide repeat, X chromosome (UTX), and Lysine demethylase 6B (KDM6B), are responsible for regulating methylation status of H3K27me3. In this review, we explore how these key enzymes regulate chromatin structure to alter gene expression in fibrosis, highlighting them as attractive targets for the treatment of fibrosis.
Collapse
Affiliation(s)
- Morgan D. Basta
- Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, PA, United States
| | - Svetlana Petruk
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Alexander Mazo
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Janice L. Walker
- Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, PA, United States
- Department of Ophthalmology, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
9
|
Wang Z, Yu Y, Jin L, Tan X, Liu B, Zhang Z, Wang Z, Long C, Shen L, Wei G, He D. HucMSC exosomes attenuate partial bladder outlet obstruction-induced renal injury and cell proliferation via the Wnt/β-catenin pathway. Eur J Pharmacol 2023:175523. [PMID: 36736526 DOI: 10.1016/j.ejphar.2023.175523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 12/28/2022] [Accepted: 01/18/2023] [Indexed: 02/03/2023]
Abstract
Bladder outlet obstruction (BOO) can cause serious complications including kidney damage; nevertheless, there are currently no animal models for studying BOO-induced kidney damage. Mesenchymal stem cells (MSCs) are widely used in therapeutic studies of renal fibrosis. However, MSC-derived exosomes show improved safety profile and more controllable characteristics compared with those of MSCs. Herein, we established a kidney injury mouse model of partial bladder outlet obstruction (PBOO) and evaluated the effects of human umbilical cord MSC-derived exosomes (hucMSC-Exos) on PBOO-induced reflux kidney injury in this model. Exosomes were isolated from a hucMSC-conditioned medium, purified by ultracentrifugation, and examined. Living image was performed to indicate the distribution of hucMSC-Exos. The PBOO-treated mice interacted with PBS (phosphate-buffered saline) or hucMSC-Exos. Morphologic changes and expression of interstitial-fibrosis-related, cell proliferation and Wnt/β-catenin signaling-pathway indices were evaluated. At 7 days after induction of PBOO, structural destruction of renal tubules was observed. Expression of the interstitial markers and the cellular-proliferation index increased significantly in the PBOO group compared with the control group (p < 0.05). The isolated exosomes were 30-150 nm in diameter, showing a round shape and bilayer membrane structure with CD63, TSG101, Alix expressed, enriched in the kidney of the PBOO group. Administering hucMSC-Exos to post-PBOO mice reversed renal injury and suppressed expression of Wnt/β-catenin signaling pathway-related proteins. hucMSC-Exos inhibited PBOO-induced kidney injury and cellular proliferation and suppressed the Wnt/β-catenin signaling pathway. Our findings will spur the development of novel hucMSC-Exo-mediated therapies for treating patients with renal fibrosis.
Collapse
Affiliation(s)
- Zhaoying Wang
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, 400014, PR China; Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, PR China; National Clinical Research Center for Child Health and Disorders, Chongqing, 400014, PR China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, 400014, PR China; Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, PR China
| | - Yihang Yu
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, 400014, PR China; Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, PR China; National Clinical Research Center for Child Health and Disorders, Chongqing, 400014, PR China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, 400014, PR China; Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, PR China
| | - Liming Jin
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, 400014, PR China; Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, PR China; National Clinical Research Center for Child Health and Disorders, Chongqing, 400014, PR China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, 400014, PR China; Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, PR China
| | - Xiaojun Tan
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, 400014, PR China; Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, PR China; National Clinical Research Center for Child Health and Disorders, Chongqing, 400014, PR China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, 400014, PR China; Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, PR China
| | - Bo Liu
- Department of Cardiothoracic Surgery, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, 400014, PR China; Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, PR China; National Clinical Research Center for Child Health and Disorders, Chongqing, 400014, PR China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, 400014, PR China; Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, PR China
| | - Zhaoxia Zhang
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, 400014, PR China; Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, PR China; National Clinical Research Center for Child Health and Disorders, Chongqing, 400014, PR China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, 400014, PR China; Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, PR China
| | - Zhang Wang
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, 400014, PR China; Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, PR China; National Clinical Research Center for Child Health and Disorders, Chongqing, 400014, PR China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, 400014, PR China; Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, PR China
| | - Chunlan Long
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, 400014, PR China; Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, PR China; National Clinical Research Center for Child Health and Disorders, Chongqing, 400014, PR China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, 400014, PR China; Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, PR China
| | - Lianju Shen
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, 400014, PR China; Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, PR China; National Clinical Research Center for Child Health and Disorders, Chongqing, 400014, PR China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, 400014, PR China; Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, PR China
| | - Guanghui Wei
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, 400014, PR China; Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, PR China; National Clinical Research Center for Child Health and Disorders, Chongqing, 400014, PR China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, 400014, PR China; Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, PR China
| | - Dawei He
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, 400014, PR China; Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, PR China; National Clinical Research Center for Child Health and Disorders, Chongqing, 400014, PR China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, 400014, PR China; Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, PR China.
| |
Collapse
|
10
|
Role of Ferroptosis in Regulating the Epithelial-Mesenchymal Transition in Pulmonary Fibrosis. Biomedicines 2023; 11:biomedicines11010163. [PMID: 36672671 PMCID: PMC9856078 DOI: 10.3390/biomedicines11010163] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/19/2022] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
Idiopathic pulmonary fibrosis is a chronic interstitial lung disease whose pathogenesis involves a complex interaction of cell types and signaling pathways. Lung epithelial cells responding to repeated injury experience persistent inflammation and sustained epithelial-mesenchymal transition (EMT). The persistence of EMT-induced signals generates extracellular matrix accumulation, thereby causing fibrosis. Ferroptosis is a newly characterized iron-dependent non-apoptotic regulated cell death. Increased iron accumulation can increase iron-induced oxidant damage in alveolar epithelial cells. Studies have demonstrated that iron steady states and oxidation steady states play an important role in the iron death regulation of EMT. This review summarizes the role of ferroptosis in regulating EMT in pulmonary fibrosis, aiming to provide a new idea for the prevention and treatment of this disease.
Collapse
|
11
|
Mesenchymal Stem Cells in Radiation-Induced Pulmonary Fibrosis: Future Prospects. Cells 2022; 12:cells12010006. [PMID: 36611801 PMCID: PMC9818136 DOI: 10.3390/cells12010006] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/14/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022] Open
Abstract
Radiation-induced pulmonary fibrosis (RIPF) is a general and fatal side effect of radiotherapy, while the pathogenesis has not been entirely understood yet. By now, there is still no effective clinical intervention available for treatment of RIPF. Recent studies revealed mesenchymal stromal cells (MSCs) as a promising therapy treatment due to their homing and differentiation ability, paracrine effects, immunomodulatory effects, and MSCs-derived exosomes. Nevertheless, problems and challenges in applying MSCs still need to be taken seriously. Herein, we reviewed the mechanisms and challenges in the applications of MSCs in treating RIPF.
Collapse
|
12
|
Hou G, Li J, Liu W, Wei J, Xin Y, Jiang X. Mesenchymal stem cells in radiation-induced lung injury: From mechanisms to therapeutic potential. Front Cell Dev Biol 2022; 10:1100305. [PMID: 36578783 PMCID: PMC9790971 DOI: 10.3389/fcell.2022.1100305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 11/30/2022] [Indexed: 12/14/2022] Open
Abstract
Radiotherapy (RT) is an effective treatment option for multiple thoracic malignant tumors, including lung cancers, thymic cancers, and tracheal cancers. Radiation-induced lung injury (RILI) is a serious complication of radiotherapy. Radiation causes damage to the pulmonary cells and tissues. Multiple factors contribute to the progression of Radiation-induced lung injury, including genetic alterations, oxidative stress, and inflammatory responses. Especially, radiation sources contribute to oxidative stress occurrence by direct excitation and ionization of water molecules, which leads to the decomposition of water molecules and the generation of reactive oxygen species (ROS), reactive nitrogen species (RNS). Subsequently, reactive oxygen species and reactive nitrogen species overproduction can induce oxidative DNA damage. Immune cells and multiple signaling molecules play a major role in the entire process. Mesenchymal stem cells (MSCs) are pluripotent stem cells with multiple differentiation potentials, which are under investigation to treat radiation-induced lung injury. Mesenchymal stem cells can protect normal pulmonary cells from injury by targeting multiple signaling molecules to regulate immune cells and to control balance between antioxidants and prooxidants, thereby inhibiting inflammation and fibrosis. Genetically modified mesenchymal stem cells can improve the natural function of mesenchymal stem cells, including cellular survival, tissue regeneration, and homing. These reprogrammed mesenchymal stem cells can produce the desired products, including cytokines, receptors, and enzymes, which can contribute to further advances in the therapeutic application of mesenchymal stem cells. Here, we review the molecular mechanisms of radiation-induced lung injury and discuss the potential of Mesenchymal stem cells for the prevention and treatment of radiation-induced lung injury. Clarification of these key issues will make mesenchymal stem cells a more fantastic novel therapeutic strategy for radiation-induced lung injury in clinics, and the readers can have a comprehensive understanding in this fields.
Collapse
Affiliation(s)
- Guowen Hou
- Jilin Provincial Key Laboratory of Radiation Oncology and Therapy, The First Hospital of Jilin University, and Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, China,Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, China
| | - Jinjie Li
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, China
| | - Wenyun Liu
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, China
| | - Jinlong Wei
- Jilin Provincial Key Laboratory of Radiation Oncology and Therapy, The First Hospital of Jilin University, and Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, China,Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, China,NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Ying Xin
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, China,*Correspondence: Ying Xin, ; Xin Jiang,
| | - Xin Jiang
- Jilin Provincial Key Laboratory of Radiation Oncology and Therapy, The First Hospital of Jilin University, and Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, China,Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, China,NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China,*Correspondence: Ying Xin, ; Xin Jiang,
| |
Collapse
|
13
|
Wang P, Yan Z, Zhou PK, Gu Y. The Promising Therapeutic Approaches for Radiation-Induced Pulmonary Fibrosis: Targeting Radiation-Induced Mesenchymal Transition of Alveolar Type II Epithelial Cells. Int J Mol Sci 2022; 23:ijms232315014. [PMID: 36499337 PMCID: PMC9737257 DOI: 10.3390/ijms232315014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/16/2022] [Accepted: 11/26/2022] [Indexed: 12/03/2022] Open
Abstract
Radiation-induced pulmonary fibrosis (RIPF) is a common consequence of radiation for thoracic tumors, and is accompanied by gradual and irreversible organ failure. This severely reduces the survival rate of cancer patients, due to the serious side effects and lack of clinically effective drugs and methods. Radiation-induced pulmonary fibrosis is a dynamic process involving many complicated and varied mechanisms, of which alveolar type II epithelial (AT2) cells are one of the primary target cells, and the epithelial-mesenchymal transition (EMT) of AT2 cells is very relevant in the clinical search for effective targets. Therefore, this review summarizes several important signaling pathways that can induce EMT in AT2 cells, and searches for molecular targets with potential effects on RIPF among them, in order to provide effective therapeutic tools for the clinical prevention and treatment of RIPF.
Collapse
|
14
|
Sun XY, Li HZ, Xie DF, Gao SS, Huang X, Guan H, Bai CJ, Zhou PK. LPAR5 confers radioresistance to cancer cells associated with EMT activation via the ERK/Snail pathway. J Transl Med 2022; 20:456. [PMID: 36199069 PMCID: PMC9533496 DOI: 10.1186/s12967-022-03673-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/25/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Epithelial-to-mesenchymal transition (EMT) is a critical event contributing to more aggressive phenotypes in cancer cells. EMT is frequently activated in radiation-targeted cells during the course of radiotherapy, which often endows cancers with acquired radioresistance. However, the upstream molecules driving the signaling pathways of radiation-induced EMT have not been fully delineated. METHODS In this study, RNA-seq-based transcriptome analysis was performed to identify the early responsive genes of HeLa cells to γ-ray irradiation. EMT-associated genes were knocked down by siRNA technology or overexpressed in HeLa cells and A549 cells, and the resulting changes in phenotypes of EMT and radiosensitivity were assessed using qPCR and Western blotting analyses, migration assays, colony-forming ability and apoptosis of flow cytometer assays. RESULTS Through RNA-seq-based transcriptome analysis, we found that LPAR5 is downregulated in the early response of HeLa cells to γ-ray irradiation. Radiation-induced alterations in LPAR5 expression were further revealed to be a bidirectional dynamic process in HeLa and A549 cells, i.e., the early downregulating phase at 2 ~ 4 h and the late upregulating phase at 24 h post-irradiation. Overexpression of LPAR5 prompts EMT programing and migration of cancer cells. Moreover, increased expression of LPAR5 is significantly associated with IR-induced EMT and confers radioresistance to cancer cells. Knockdown of LPAR5 suppressed IR-induced EMT by attenuating the activation of ERK signaling and downstream Snail, MMP1, and MMP9 expression. CONCLUSIONS LPAR5 is an important upstream regulator of IR-induced EMT that modulates the ERK/Snail pathway. This study provides further insights into understanding the mechanism of radiation-induced EMT and identifies promising targets for improving the effectiveness of cancer radiation therapy.
Collapse
Affiliation(s)
- Xiao-Ya Sun
- College of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China.,Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, People's Republic of China
| | - Hao-Zheng Li
- College of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China.,Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, People's Republic of China
| | - Da-Fei Xie
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, People's Republic of China
| | - Shan-Shan Gao
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, People's Republic of China
| | - Xin Huang
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, People's Republic of China
| | - Hua Guan
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, People's Republic of China.
| | - Chen-Jun Bai
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, People's Republic of China.
| | - Ping-Kun Zhou
- College of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China. .,Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, People's Republic of China.
| |
Collapse
|
15
|
CHEN Z, RUAN B, LONG G, LIN W. Adipose tissue-derived mesenchymal stem cells attenuate lung inflammation and fibrosis in the bleomycin-induced pulmonary fibrosis rat model via caveolin-1/NF-kB signaling axis. Physiol Res 2022; 71:657-666. [PMID: 36047729 PMCID: PMC9841806 DOI: 10.33549/physiolres.934892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Stem cells have emerged as promising therapeutic options for several human diseases, including pulmonary fibrosis (PF). In this study, we investigated the therapeutic effects of adipose tissue-derived mesenchymal stem cells (ADMSCs) in the bleomycin-induced PF model rats and the underlying mechanisms. The PF model rats were generated by intratracheal injections of 5 mg/kg bleomycin sulfate. The ADMSC group rats were generated by injecting 2×10(6) ADMSCs via the tail vein at 0, 12, and 24 h after bleomycin injection. The control, PF, and ADMSC group rats were sacrificed on day 21 after bleomycin injections and the changes in lung histology and the levels of pro-inflammatory cytokines, collagen I, and caveolin-1 (Cav-1), and the activity of the NF-kappaB signaling pathway in the lung tissues was assessed by hematoxylin-eosin staining, ELISA, and western blotting assays. The lung tissues of the PF model rats showed significant infiltration of neutrophils, tissue destruction, and collagen deposition, but these effects were abrogated by the ADMSCs. The levels of pro-inflammatory cytokines such as IL-6, IL-1beta, and TGF-beta1 were elevated in the lung tissues and the bronchoalveolar lavage fluid (BALF) of the bleomycin-induced PF model rats, but these effects were reversed by the ADMSCs. The lung tissues of the PF model rats showed significant downregulation of Cav-1 and significantly higher activation of the pro-inflammatory NF-kappaB pathway. However, administration of the ADMSCs restored the expression levels of Cav-1 and suppressed the NF-kappaB signaling pathway in the lungs of the bleomycin-induced PF model rats. In conclusion, this study demonstrated that the ADMSCs protected against bleomycin-induced PF in the rat model by modulating the Cav-1/NF-kappaB axis.
Collapse
Affiliation(s)
- Zhe CHEN
- Department of Respiratory and Critical Care Medicine, The First People’s Hospital of Wenling, Zhejiang, China
| | - Bingqing RUAN
- Department of Internal Medicine, Wenling Women’s and Children’s Hospital, Zhejiang, China
| | - Guangyan LONG
- Department of Infectious Diseases, The First People’s Hospital of Wenling, Zhejiang, China
| | - Wei LIN
- Department of Respirology, The First People’s Hospital of Wenling, Zhejiang, China
| |
Collapse
|
16
|
Lai X, Huang S, Lin S, Pu L, Wang Y, Lin Y, Huang W, Wang Z. Mesenchymal stromal cells attenuate alveolar type 2 cells senescence through regulating NAMPT-mediated NAD metabolism. Stem Cell Res Ther 2022; 13:12. [PMID: 35012648 PMCID: PMC8751376 DOI: 10.1186/s13287-021-02688-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 12/16/2021] [Indexed: 12/15/2022] Open
Abstract
Background Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive deadly fibrotic lung disease with high prevalence and mortality worldwide. The therapeutic potential of mesenchymal stem cells (MSCs) in pulmonary fibrosis may be attributed to the strong paracrine, anti-inflammatory, anti-apoptosis and immunoregulatory effects. However, the mechanisms underlying the therapeutic effects of MSCs in IPF, especially in terms of alveolar type 2 (AT2) cells senescence, are not well understood. The purpose of this study was to evaluate the role of MSCs in NAD metabolism and senescence of AT2 cells in vitro and in vivo. Methods MSCs were isolated from human bone marrow. The protective effects of MSCs injection in pulmonary fibrosis were assessed via bleomycin mouse models. The senescence of AT2 cells co-cultured with MSCs was evaluated by SA-β-galactosidase assay, immunofluorescence staining and Western blotting. NAD+ level and NAMPT expression in AT2 cells affected by MSCs were determined in vitro and in vivo. FK866 and NAMPT shRNA vectors were used to determine the role of NAMPT in MSCs inhibiting AT2 cells senescence. Results We proved that MSCs attenuate bleomycin-induced pulmonary fibrosis in mice. Senescence of AT2 cells was alleviated in MSCs-treated pulmonary fibrosis mice and when co-cultured with MSCs in vitro. Mechanistic studies showed that NAD+ and NAMPT levels were rescued in AT2 cells co-cultured with MSCs and MSCs could suppress AT2 cells senescence mainly via suppressing lysosome-mediated NAMPT degradation. Conclusions MSCs attenuate AT2 cells senescence by upregulating NAMPT expression and NAD+ levels, thus exerting protective effects in pulmonary fibrosis. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02688-w.
Collapse
Affiliation(s)
- Xiaofan Lai
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shaojie Huang
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Sijia Lin
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Lvya Pu
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yaqing Wang
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yingying Lin
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wenqi Huang
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Zhongxing Wang
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
17
|
Filidou E, Kandilogiannakis L, Tarapatzi G, Su C, Po ENF, Paspaliaris V, Kolios G. Conditioned medium from a human adipose-derived stem cell line ameliorates inflammation and fibrosis in a lung experimental model of idiopathic pulmonary fibrosis. Life Sci 2021; 287:120123. [PMID: 34748761 DOI: 10.1016/j.lfs.2021.120123] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/31/2021] [Accepted: 11/02/2021] [Indexed: 12/19/2022]
Abstract
Idiopathic pulmonary fibrosis is a chronic, progressive parenchymal lung disease that results in fibrogenesis and the conditioned medium from adipose-derived mesenchymal stem cells (CM-ADSCs) has been shown to be efficacious in pulmonary fibrosis animal models. The aim of the present study is to evaluate the effect of CM-ADSCs on lung inflammation and fibrosis in a Bleomycin (BLM)-induced pulmonary fibrosis model. CM-ADSCs safety and toxicity were evaluated in Sprague Dawley rats and no adverse effects were observed. Six-week-old female C57BL/6J mice were employed in the BLM-induced pulmonary fibrosis model and were divided into four groups: Group 1 (Sham): animals were kept without BLM and treatment, Group 2 (Control): BLM with vehicle DMEM, Group 3: 10 μg/kg CM-ADSCs and Group 4: 100 μg/kg CM-ADSCs. Body weight, fibrosis and inflammation histological analyses, mRNA and protein pro-inflammatory cytokine, and total hydroxyproline content calculation were performed in all groups upon sacrifice. The 100 μg/kg CM-ADSCs showed a significant increase in mean body weight compared to Controls. CM-ADSCs doses resulted in the amelioration of fibrosis, as seen by Masson's Trichrome-staining, Ashcroft scoring, and Sirius red-staining. Compared to Controls, inflammation was also significantly reduced in CM-ADSCs-treated mice, with reduced F4/80 macrophage antigen staining, TNF-α mRNA and IL-6 and IL-10 protein levels. Total hydroxyproline content was found significantly reduced in both groups of CM-ADSCs-treated mice. Overall, our study shows that the CM-ADSCs is safe and efficient against pulmonary fibrosis, as it significantly reduced inflammation and fibrosis, with the larger dose of 100 μg/kg CM-ADSCs being the most efficient one.
Collapse
Affiliation(s)
- Eirini Filidou
- Lab of Pharmacology, Faculty of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | | | - Gesthimani Tarapatzi
- Lab of Pharmacology, Faculty of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Colin Su
- Tithon Biotech Inc, San Diego, CA 92127, USA
| | | | | | - George Kolios
- Lab of Pharmacology, Faculty of Medicine, Democritus University of Thrace, Alexandroupolis, Greece.
| |
Collapse
|