1
|
Villa J, Cury J, Kessler L, Tan X, Richter CP. Enhancing biocompatibility of the brain-machine interface: A review. Bioact Mater 2024; 42:531-549. [PMID: 39308547 PMCID: PMC11416625 DOI: 10.1016/j.bioactmat.2024.08.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/05/2024] [Accepted: 08/27/2024] [Indexed: 09/25/2024] Open
Abstract
In vivo implantation of microelectrodes opens the door to studying neural circuits and restoring damaged neural pathways through direct electrical stimulation and recording. Although some neuroprostheses have achieved clinical success, electrode material properties, inflammatory response, and glial scar formation at the electrode-tissue interfaces affect performance and sustainability. Those challenges can be addressed by improving some of the materials' mechanical, physical, chemical, and electrical properties. This paper reviews materials and designs of current microelectrodes and discusses perspectives to advance neuroprosthetics performance.
Collapse
Affiliation(s)
- Jordan Villa
- Northwestern University-Feinberg School of Medicine, Department of Otolaryngology, USA
| | - Joaquin Cury
- Northwestern University-Feinberg School of Medicine, Department of Otolaryngology, USA
| | - Lexie Kessler
- Northwestern University-Feinberg School of Medicine, Department of Otolaryngology, USA
| | - Xiaodong Tan
- Northwestern University-Feinberg School of Medicine, Department of Otolaryngology, USA
- The Hugh Knowles Center, Department of Communication Sciences and Disorders, Northwestern University, USA
| | - Claus-Peter Richter
- Northwestern University-Feinberg School of Medicine, Department of Otolaryngology, USA
- The Hugh Knowles Center, Department of Communication Sciences and Disorders, Northwestern University, USA
- Department of Communication Sciences and Disorders, Northwestern University, USA
- Department of Biomedical Engineering, Northwestern University, USA
| |
Collapse
|
2
|
Ahuis TP, Smyk MK, Laloux C, Aulehner K, Bray J, Waldron AM, Miljanovic N, Seiffert I, Song D, Boulanger B, Jucker M, Potschka H, Platt B, Riedel G, Voehringer P, Nicholson JR, Drinkenburg WHIM, Kas MJH, Leiser SC. Evaluation of variation in preclinical electroencephalographic (EEG) spectral power across multiple laboratories and experiments: An EQIPD study. PLoS One 2024; 19:e0309521. [PMID: 39471212 PMCID: PMC11521305 DOI: 10.1371/journal.pone.0309521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 08/13/2024] [Indexed: 11/01/2024] Open
Abstract
The European Quality In Preclinical Data (EQIPD) consortium was born from the fact that publications report challenges with the robustness, rigor, and/or validity of research data, which may impact decisions about whether to proceed with further preclinical testing or to advance to clinical testing, as well as draw conclusions on the predictability of preclinical models. To address this, a consortium including multiple research laboratories from academia and industry participated in a series of electroencephalography (EEG) experiments in mice aimed to detect sources of variance and to gauge how protocol harmonisation and data analytics impact such variance. Ultimately, the goal of this first ever between-laboratory comparison of EEG recordings and analyses was to validate the principles that supposedly increase data quality, robustness, and comparability. Experiments consisted of a Localisation phase, which aimed to identify the factors that influence between-laboratory variability, a Harmonisation phase to evaluate whether harmonisation of standardized protocols and centralised processing and data analysis reduced variance, and a Ring-Testing phase to verify the ability of the harmonised protocol to generate consistent findings. Indeed, between-laboratory variability reduced from Localisation to Harmonisation and this reduction remained during the Ring-Testing phase. Results obtained in this multicentre preclinical qEEG study also confirmed the complex nature of EEG experiments starting from the surgery and data collection through data pre-processing to data analysis that ultimately influenced the results and contributed to variance in findings across laboratories. Overall, harmonisation of protocols and centralized data analysis were crucial in reducing laboratory-to-laboratory variability. To this end, it is recommended that standardized guidelines be updated and followed for collection and analysis of preclinical EEG data.
Collapse
Affiliation(s)
- Tim P. Ahuis
- Groningen Institute for Evolutionary Life Sciences (GELIFES), Neurobiology, University of Groningen, Groningen, The Netherlands
- Department of CNS Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Magdalena K. Smyk
- Groningen Institute for Evolutionary Life Sciences (GELIFES), Neurobiology, University of Groningen, Groningen, The Netherlands
- Department of Neuroscience, Janssen Research & Development, A Division of Janssen Pharmaceutica NV, Beerse, Belgium
| | | | - Katharina Aulehner
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians- Universität (LMU), Munich, Germany
| | - Jack Bray
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, Scotland, United Kingdom
| | - Ann-Marie Waldron
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians- Universität (LMU), Munich, Germany
| | - Nina Miljanovic
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians- Universität (LMU), Munich, Germany
| | - Isabel Seiffert
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians- Universität (LMU), Munich, Germany
| | - Dekun Song
- Translational EEG, PsychoGenics Inc., Paramus, New Jersey, United States of America
| | | | - Mathias Jucker
- Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Heidrun Potschka
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians- Universität (LMU), Munich, Germany
| | - Bettina Platt
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, Scotland, United Kingdom
| | - Gernot Riedel
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, Scotland, United Kingdom
| | - Patrizia Voehringer
- Department of CNS Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Janet R. Nicholson
- Department of CNS Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Wilhelmus H. I. M. Drinkenburg
- Groningen Institute for Evolutionary Life Sciences (GELIFES), Neurobiology, University of Groningen, Groningen, The Netherlands
- Department of Neuroscience, Janssen Research & Development, A Division of Janssen Pharmaceutica NV, Beerse, Belgium
| | - Martien J. H. Kas
- Groningen Institute for Evolutionary Life Sciences (GELIFES), Neurobiology, University of Groningen, Groningen, The Netherlands
| | - Steven C. Leiser
- Translational EEG, PsychoGenics Inc., Paramus, New Jersey, United States of America
| |
Collapse
|
3
|
Sifringer L, De Windt L, Bernhard S, Amos G, Clément B, Duru J, Tibbitt MW, Tringides CM. Photopatterning of conductive hydrogels which exhibit tissue-like properties. J Mater Chem B 2024; 12:10272-10284. [PMID: 39298131 DOI: 10.1039/d4tb00807c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2024]
Abstract
Hydrogels are three-dimensional, highly tunable material systems that can match the properties of extracellular matrices. In addition to being widely used to grow and modulate cell behavior, hydrogels can be made conductive to further modulate electrically active cells, such as neurons, and even incorporated into multielectrode arrays to interface with tissues. To enable conductive hydrogels, graphene flakes can be mechanically suspended into a hydrogel precursor. The conductivity of the hydrogel can be increased by increasing the weight percentage of graphene flakes in the precursor while maintaining the mechanical properties of the formed gel similar to the properties of neural tissue. By using a photocrosslinkable hydrogel matrix, such as gelatin methacrylate, with a photoabsorber, the conductive precursor solutions can be crosslinked into predefined complex patterns. Finally, the formulations can be used to support the growth of sensory neurons, derived from human induced pluripotent stem cells, for more than 7 weeks while the neurons remain viable. These scaffolds can be patterned into components of multielectrode arrays, to enable ultrasoft electrodes with tissue-matched properties for further interactions, both in vitro and in vivo, with the nervous systems.
Collapse
Affiliation(s)
- Léo Sifringer
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, Switzerland.
| | - Lina De Windt
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, Switzerland.
| | - Stéphane Bernhard
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zürich, Zurich, Switzerland
| | - Giulia Amos
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, Switzerland.
| | - Blandine Clément
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, Switzerland.
| | - Jens Duru
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, Switzerland.
| | - Mark W Tibbitt
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zürich, Zurich, Switzerland
| | - Christina M Tringides
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, Switzerland.
- Department of Materials Science and Nanoengineering, Rice University, Houston, TX, USA
| |
Collapse
|
4
|
Amirghasemi F, Al-Shami A, Ushijima K, Mousavi MPS. Flexible Acetylcholine Neural Probe with a Hydrophobic Laser-Induced Graphene Electrode and a Fluorous-Phase Sensing Membrane. ACS MATERIALS LETTERS 2024; 6:4158-4167. [PMID: 39309214 PMCID: PMC11415234 DOI: 10.1021/acsmaterialslett.4c00825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
This work develops the first laser-induced graphene (LIG)-based electrochemical sensor with a superhydrophobic fluorous membrane for a flexible acetylcholine (ACh) sensor. ACh regulates several physiological functions, including synaptic transmission and glandular secretion. The ACh sensing membrane is doped with a fluorophilic cation-exchanger that can selectively measure ACh based on the inherent selectivity of the fluorous phase for hydrophobic ions, such as ACh. The fluorous-phase sensor improves the selectivity for ACh over Na+ and K+ by 2 orders of magnitude (compared to traditional lipophilic membranes), thus lowering the detection limit in artificial cerebrospinal fluid (aCSF) from 331 to 0.38 μ M, thereby allowing measurement in physiologically relevant ranges of ACh. Engraving LIG under argon creates a hydrophobic surface with a 133.7° contact angle, which minimizes the formation of a water layer. The flexible solid-contact LIG fluorous sensor exhibited a slope of 59.3 mV/decade in aCSF and retained function after 20 bending cycles, thereby paving the way for studying ACh's role in memory and neurodegenerative diseases.
Collapse
Affiliation(s)
- Farbod Amirghasemi
- Alfred E. Mann Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, California 90089, United States
| | - Abdulrahman Al-Shami
- Alfred E. Mann Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, California 90089, United States
| | - Kara Ushijima
- Alfred E. Mann Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, California 90089, United States
| | - Maral P S Mousavi
- Alfred E. Mann Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
5
|
Shu J, Zhou Z, Liang H, Yang X. Polyimide as a biomedical material: advantages and applications. NANOSCALE ADVANCES 2024; 6:4309-4324. [PMID: 39170974 PMCID: PMC11334982 DOI: 10.1039/d4na00292j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 07/03/2024] [Indexed: 08/23/2024]
Abstract
Polyimides (PIs) are a class of polymers characterized by strong covalent bonds, which offer the advantages of high thermal weight, low weight, good electronic properties and superior mechanical properties. They have been successfully used in the fields of microelectronics, aerospace engineering, nanomaterials, lasers, energy storage and painting. Their biomedical applications have attracted extensive attention, and they have been explored for use as an implantable, detectable, and antibacterial material in recent years. This article summarizes the progress of PI in terms of three aspects: synthesis, properties, and application. First, the synthetic strategies of PI are summarized. Next, the properties of PI as a biological or medical material are analyzed. Finally, the applications of PI in electrodes, biosensors, drug delivery systems, bone tissue replacements, face masks or respirators, and antibacterial materials are discussed. This review provides a comprehensive understanding of the latest progress in PI, thereby providing a basis for developing new potentially promising materials for medical applications.
Collapse
Affiliation(s)
- Junjie Shu
- Department of Wound Infection and Drug, State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University (Third Military Medical University) Chongqing China
| | - Zhongfu Zhou
- Chongqing Institute of New Energy Storage Materials and Equipment Chongqing China
| | - Huaping Liang
- Department of Wound Infection and Drug, State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University (Third Military Medical University) Chongqing China
| | - Xia Yang
- Department of Wound Infection and Drug, State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University (Third Military Medical University) Chongqing China
| |
Collapse
|
6
|
Orlemann C, Boehler C, Kooijmans RN, Li B, Asplund M, Roelfsema PR. Flexible Polymer Electrodes for Stable Prosthetic Visual Perception in Mice. Adv Healthc Mater 2024; 13:e2304169. [PMID: 38324245 PMCID: PMC11468866 DOI: 10.1002/adhm.202304169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/01/2024] [Indexed: 02/08/2024]
Abstract
Brain interfaces that can stimulate neurons, cause minimal damage, and work for a long time will be central for future neuroprosthetics. Here, the long-term performance of highly flexible, thin polyimide shanks with several small (<15 µm) electrodes during electrical microstimulation of the visual cortex, is reported. The electrodes exhibit a remarkable stability when several billions of electrical pulses are applied in vitro. When the devices are implanted in the primary visual cortex (area V1) of mice and the animals are trained to detect electrical microstimulation, it is found that the perceptual thresholds are 2-20 microamperes (µA), which is far below the maximal currents that the electrodes can withstand. The long-term functionality of the devices in vivo is excellent, with stable performance for up to more than a year and little damage to the brain tissue. These results demonstrate the potential of thin floating electrodes for the long-term restoration of lost sensory functions.
Collapse
Affiliation(s)
- Corinne Orlemann
- Department of Vision and CognitionNetherlands Institute for NeuroscienceRoyal Netherlands Academy of Arts and SciencesAmsterdam1105 BAThe Netherlands
| | - Christian Boehler
- Department of Microsystems Engineering (IMTEK)University of Freiburg79110FreiburgGermany
- BrainLinks‐BrainTools CenterUniversity of Freiburg79110FreiburgGermany
| | - Roxana N. Kooijmans
- Department of Vision and CognitionNetherlands Institute for NeuroscienceRoyal Netherlands Academy of Arts and SciencesAmsterdam1105 BAThe Netherlands
- Institute for Neuroscience and Medicine (INM‐1)Forschungszentrum Jülich52428JülichGermany
| | - Bingshuo Li
- Department of Vision and CognitionNetherlands Institute for NeuroscienceRoyal Netherlands Academy of Arts and SciencesAmsterdam1105 BAThe Netherlands
| | - Maria Asplund
- Department of Microsystems Engineering (IMTEK)University of Freiburg79110FreiburgGermany
- BrainLinks‐BrainTools CenterUniversity of Freiburg79110FreiburgGermany
- Department of Microtechnology and NanoscienceChalmers University of TechnologyGothenburg412 96Sweden
| | - Pieter R. Roelfsema
- Department of Vision and CognitionNetherlands Institute for NeuroscienceRoyal Netherlands Academy of Arts and SciencesAmsterdam1105 BAThe Netherlands
- Laboratory of Visual Brain TherapySorbonne UniversitéInstitut National de la Santé et de la Recherche MédicaleCentre National de la Recherche ScientifiqueInstitut de la VisionParisF‐75012France
- Department of Integrative NeurophysiologyCentre for Neurogenomics and Cognitive ResearchVU UniversityAmsterdam1081 HVThe Netherlands
- Department of NeurosurgeryAmsterdam University Medical CenterUniversity of AmsterdamAmsterdam1105 AZThe Netherlands
| |
Collapse
|
7
|
Xiang Y, Zhao Y, Cheng T, Sun S, Wang J, Pei R. Implantable Neural Microelectrodes: How to Reduce Immune Response. ACS Biomater Sci Eng 2024; 10:2762-2783. [PMID: 38591141 DOI: 10.1021/acsbiomaterials.4c00238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Implantable neural microelectrodes exhibit the great ability to accurately capture the electrophysiological signals from individual neurons with exceptional submillisecond precision, holding tremendous potential for advancing brain science research, as well as offering promising avenues for neurological disease therapy. Although significant advancements have been made in the channel and density of implantable neural microelectrodes, challenges persist in extending the stable recording duration of these microelectrodes. The enduring stability of implanted electrode signals is primarily influenced by the chronic immune response triggered by the slight movement of the electrode within the neural tissue. The intensity of this immune response increases with a higher bending stiffness of the electrode. This Review thoroughly analyzes the sequential reactions evoked by implanted electrodes in the brain and highlights strategies aimed at mitigating chronic immune responses. Minimizing immune response mainly includes designing the microelectrode structure, selecting flexible materials, surface modification, and controlling drug release. The purpose of this paper is to provide valuable references and ideas for reducing the immune response of implantable neural microelectrodes and stimulate their further exploration in the field of brain science.
Collapse
Affiliation(s)
- Ying Xiang
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei 230026, PR China
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Yuewu Zhao
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Tingting Cheng
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Shengkai Sun
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Jine Wang
- Jiangxi Institute of Nanotechnology, Nanchang 330200, China
- College of Medicine and Nursing, Shandong Provincial Engineering Laboratory of Novel Pharmaceutical Excipients, Sustained and Controlled Release Preparations, Dezhou University, Dezhou 253023, China
| | - Renjun Pei
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei 230026, PR China
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| |
Collapse
|
8
|
Hillebrandt S, Moon CK, Taal AJ, Overhauser H, Shepard KL, Gather MC. High-Density Integration of Ultrabright OLEDs on a Miniaturized Needle-Shaped CMOS Backplane. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2300578. [PMID: 37470219 DOI: 10.1002/adma.202300578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 05/24/2023] [Accepted: 07/03/2023] [Indexed: 07/21/2023]
Abstract
Direct deposition of organic light-emitting diodes (OLEDs) on silicon-based complementary metal-oxide-semiconductor (CMOS) chips has enabled self-emissive microdisplays with high resolution and fill-factor. Emerging applications of OLEDs in augmented and virtual reality (AR/VR) displays and in biomedical applications, e.g., as brain implants for cell-specific light delivery in optogenetics, require light intensities orders of magnitude above those found in traditional displays. Further requirements often include a microscopic device footprint, a specific shape and ultrastable passivation, e.g., to ensure biocompatibility and minimal invasiveness of OLED-based implants. In this work, up to 1024 ultrabright, microscopic OLEDs are deposited directly on needle-shaped CMOS chips. Transmission electron microscopy and energy-dispersive X-ray spectroscopy are performed on the foundry-provided aluminum contact pads of the CMOS chips to guide a systematic optimization of the contacts. Plasma treatment and implementation of silver interlayers lead to ohmic contact conditions and thus facilitate direct vacuum deposition of orange- and blue-emitting OLED stacks leading to micrometer-sized pixels on the chips. The electronics in each needle allow each pixel to switch individually. The OLED pixels generate a mean optical power density of 0.25 mW mm-2, corresponding to >40 000 cd m-2, well above the requirement for daylight AR applications and optogenetic single-unit activation in the brain.
Collapse
Affiliation(s)
- Sabina Hillebrandt
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews, KY16 9SS, UK
- Humboldt Centre for Nano- and Biophotonics, Department of Chemistry, University of Cologne, Greinstr. 4-6, 50939, Cologne, Germany
| | - Chang-Ki Moon
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews, KY16 9SS, UK
- Humboldt Centre for Nano- and Biophotonics, Department of Chemistry, University of Cologne, Greinstr. 4-6, 50939, Cologne, Germany
| | | | | | | | - Malte C Gather
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews, KY16 9SS, UK
- Humboldt Centre for Nano- and Biophotonics, Department of Chemistry, University of Cologne, Greinstr. 4-6, 50939, Cologne, Germany
| |
Collapse
|
9
|
Liu X, Gong Y, Jiang Z, Stevens T, Li W. Flexible high-density microelectrode arrays for closed-loop brain-machine interfaces: a review. Front Neurosci 2024; 18:1348434. [PMID: 38686330 PMCID: PMC11057246 DOI: 10.3389/fnins.2024.1348434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 01/12/2024] [Indexed: 05/02/2024] Open
Abstract
Flexible high-density microelectrode arrays (HDMEAs) are emerging as a key component in closed-loop brain-machine interfaces (BMIs), providing high-resolution functionality for recording, stimulation, or both. The flexibility of these arrays provides advantages over rigid ones, such as reduced mismatch between interface and tissue, resilience to micromotion, and sustained long-term performance. This review summarizes the recent developments and applications of flexible HDMEAs in closed-loop BMI systems. It delves into the various challenges encountered in the development of ideal flexible HDMEAs for closed-loop BMI systems and highlights the latest methodologies and breakthroughs to address these challenges. These insights could be instrumental in guiding the creation of future generations of flexible HDMEAs, specifically tailored for use in closed-loop BMIs. The review thoroughly explores both the current state and prospects of these advanced arrays, emphasizing their potential in enhancing BMI technology.
Collapse
Affiliation(s)
- Xiang Liu
- Neuroscience Program, Department of Physiology, Michigan State University, East Lansing, MI, United States
- Institute for Quantitative Health Science and Engineering (IQ), East Lansing, MI, United States
| | - Yan Gong
- Institute for Quantitative Health Science and Engineering (IQ), East Lansing, MI, United States
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI, United States
| | - Zebin Jiang
- Institute for Quantitative Health Science and Engineering (IQ), East Lansing, MI, United States
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI, United States
| | - Trevor Stevens
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI, United States
| | - Wen Li
- Neuroscience Program, Department of Physiology, Michigan State University, East Lansing, MI, United States
- Institute for Quantitative Health Science and Engineering (IQ), East Lansing, MI, United States
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI, United States
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
10
|
Tsui CT, Mirkiani S, Roszko DA, Churchward MA, Mushahwar VK, Todd KG. In vitro biocompatibility evaluation of functional electrically stimulating microelectrodes on primary glia. Front Bioeng Biotechnol 2024; 12:1351087. [PMID: 38314352 PMCID: PMC10834782 DOI: 10.3389/fbioe.2024.1351087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 01/10/2024] [Indexed: 02/06/2024] Open
Abstract
Neural interfacing devices interact with the central nervous system to alleviate functional deficits arising from disease or injury. This often entails the use of invasive microelectrode implants that elicit inflammatory responses from glial cells and leads to loss of device function. Previous work focused on improving implant biocompatibility by modifying electrode composition; here, we investigated the direct effects of electrical stimulation on glial cells at the electrode interface. A high-throughput in vitro system that assesses primary glial cell response to biphasic stimulation waveforms at 0 mA, 0.15 mA, and 1.5 mA was developed and optimized. Primary mixed glial cell cultures were generated from heterozygous CX3CR-1+/EGFP mice, electrically stimulated for 4 h/day over 3 days using 75 μm platinum-iridium microelectrodes, and biomarker immunofluorescence was measured. Electrodes were then imaged on a scanning electron microscope to assess sustained electrode damage. Fluorescence and electron microscopy analyses suggest varying degrees of localized responses for each biomarker assayed (Hoescht, EGFP, GFAP, and IL-1β), a result that expands on comparable in vivo models. This system allows for the comparison of a breadth of electrical stimulation parameters, and opens another avenue through which neural interfacing device developers can improve biocompatibility and longevity of electrodes in tissue.
Collapse
Affiliation(s)
- Christopher T. Tsui
- Department of Biomedical Engineering, University of Alberta, Edmonton, AB, Canada
- Neurochemical Research Unit, Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
- Neuroscience and Mental Health Institute (NMHI), University of Alberta, Edmonton, AB, Canada
- Sensory Motor Adaptive Rehabilitation Technology (SMART) Network, University of Alberta, Edmonton, AB, Canada
| | - Soroush Mirkiani
- Neuroscience and Mental Health Institute (NMHI), University of Alberta, Edmonton, AB, Canada
- Sensory Motor Adaptive Rehabilitation Technology (SMART) Network, University of Alberta, Edmonton, AB, Canada
| | - David A. Roszko
- Neuroscience and Mental Health Institute (NMHI), University of Alberta, Edmonton, AB, Canada
- Sensory Motor Adaptive Rehabilitation Technology (SMART) Network, University of Alberta, Edmonton, AB, Canada
| | - Matthew A. Churchward
- Neurochemical Research Unit, Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
- Neuroscience and Mental Health Institute (NMHI), University of Alberta, Edmonton, AB, Canada
- Sensory Motor Adaptive Rehabilitation Technology (SMART) Network, University of Alberta, Edmonton, AB, Canada
- Department of Biological and Environmental Sciences, Concordia University of Edmonton, Edmonton, AB, Canada
| | - Vivian K. Mushahwar
- Neuroscience and Mental Health Institute (NMHI), University of Alberta, Edmonton, AB, Canada
- Sensory Motor Adaptive Rehabilitation Technology (SMART) Network, University of Alberta, Edmonton, AB, Canada
- Division of Physical Medicine and Rehabilitation, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Kathryn G. Todd
- Department of Biomedical Engineering, University of Alberta, Edmonton, AB, Canada
- Neurochemical Research Unit, Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
- Neuroscience and Mental Health Institute (NMHI), University of Alberta, Edmonton, AB, Canada
- Sensory Motor Adaptive Rehabilitation Technology (SMART) Network, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
11
|
Matter L, Harland B, Raos B, Svirskis D, Asplund M. Generation of direct current electrical fields as regenerative therapy for spinal cord injury: A review. APL Bioeng 2023; 7:031505. [PMID: 37736015 PMCID: PMC10511262 DOI: 10.1063/5.0152669] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 08/21/2023] [Indexed: 09/23/2023] Open
Abstract
Electrical stimulation (ES) shows promise as a therapy to promote recovery and regeneration after spinal cord injury. ES therapy establishes beneficial electric fields (EFs) and has been investigated in numerous studies, which date back nearly a century. In this review, we discuss the various engineering approaches available to generate regenerative EFs through direct current electrical stimulation and very low frequency electrical stimulation. We highlight the electrode-tissue interface, which is important for the appropriate choice of electrode material and stimulator circuitry. We discuss how to best estimate and control the generated field, which is an important measure for comparability of studies. Finally, we assess the methods used in these studies to measure functional recovery after the injury and treatment. This work reviews studies in the field of ES therapy with the goal of supporting decisions regarding best stimulation strategy and recovery assessment for future work.
Collapse
Affiliation(s)
- Lukas Matter
- Author to whom correspondence should be addressed:
| | - Bruce Harland
- School of Pharmacy, The University of Auckland, NZ 1023 Auckland, New Zealand
| | - Brad Raos
- School of Pharmacy, The University of Auckland, NZ 1023 Auckland, New Zealand
| | - Darren Svirskis
- School of Pharmacy, The University of Auckland, NZ 1023 Auckland, New Zealand
| | | |
Collapse
|
12
|
Trotier A, Bagnoli E, Walski T, Evers J, Pugliese E, Lowery M, Kilcoyne M, Fitzgerald U, Biggs M. Micromotion Derived Fluid Shear Stress Mediates Peri-Electrode Gliosis through Mechanosensitive Ion Channels. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301352. [PMID: 37518828 PMCID: PMC10520674 DOI: 10.1002/advs.202301352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/11/2023] [Indexed: 08/01/2023]
Abstract
The development of bioelectronic neural implant technologies has advanced significantly over the past 5 years, particularly in brain-machine interfaces and electronic medicine. However, neuroelectrode-based therapies require invasive neurosurgery and can subject neural tissues to micromotion-induced mechanical shear, leading to chronic inflammation, the formation of a peri-electrode void and the deposition of reactive glial scar tissue. These structures act as physical barriers, hindering electrical signal propagation and reducing neural implant functionality. Although well documented, the mechanisms behind the initiation and progression of these processes are poorly understood. Herein, in silico analysis of micromotion-induced peri-electrode void progression and gliosis is described. Subsequently, ventral mesencephalic cells exposed to milliscale fluid shear stress in vitro exhibited increased expression of gliosis-associated proteins and overexpression of mechanosensitive ion channels PIEZO1 (piezo-type mechanosensitive ion channel component 1) and TRPA1 (transient receptor potential ankyrin 1), effects further confirmed in vivo in a rat model of peri-electrode gliosis. Furthermore, in vitro analysis indicates that chemical inhibition/activation of PIEZO1 affects fluid shear stress mediated astrocyte reactivity in a mitochondrial-dependent manner. Together, the results suggest that mechanosensitive ion channels play a major role in the development of a peri-electrode void and micromotion-induced glial scarring at the peri-electrode region.
Collapse
Affiliation(s)
- Alexandre Trotier
- SFI Research Centre for Medical Devices (CÚRAM)University of GalwayGalwayH91 W2TYIreland
- Galway Neuroscience CentreUniversity of GalwayGalwayH91 W2TYIreland
| | - Enrico Bagnoli
- SFI Research Centre for Medical Devices (CÚRAM)University of GalwayGalwayH91 W2TYIreland
- Galway Neuroscience CentreUniversity of GalwayGalwayH91 W2TYIreland
| | - Tomasz Walski
- SFI Research Centre for Medical Devices (CÚRAM)University of GalwayGalwayH91 W2TYIreland
- Department of Biomedical EngineeringFaculty of Fundamental Problems of TechnologyWrocław University of Science and TechnologyWroclaw50‐370Poland
| | - Judith Evers
- School of Electrical and Electronic EngineeringUniversity College DublinDublin 4Ireland
| | - Eugenia Pugliese
- SFI Research Centre for Medical Devices (CÚRAM)University of GalwayGalwayH91 W2TYIreland
| | - Madeleine Lowery
- School of Electrical and Electronic EngineeringUniversity College DublinDublin 4Ireland
| | - Michelle Kilcoyne
- SFI Research Centre for Medical Devices (CÚRAM)University of GalwayGalwayH91 W2TYIreland
- Galway Neuroscience CentreUniversity of GalwayGalwayH91 W2TYIreland
- Carbohydrate Signalling GroupDiscipline of MicrobiologyUniversity of GalwayGalwayH91 W2TYIreland
| | - Una Fitzgerald
- SFI Research Centre for Medical Devices (CÚRAM)University of GalwayGalwayH91 W2TYIreland
- Galway Neuroscience CentreUniversity of GalwayGalwayH91 W2TYIreland
| | - Manus Biggs
- SFI Research Centre for Medical Devices (CÚRAM)University of GalwayGalwayH91 W2TYIreland
- Galway Neuroscience CentreUniversity of GalwayGalwayH91 W2TYIreland
| |
Collapse
|
13
|
Abstract
Soft robotics facilitates the deployment of large radial electrode arrays on the brain cortex through small craniotomies.
Collapse
Affiliation(s)
- Maria Asplund
- Department of Microtechnology and Nanoscience, Chalmers University of Technology, Gothenburg, Sweden
- Department of Health, Education and Technology, Luleå University of Technology, Luleå, Sweden
| |
Collapse
|
14
|
Böhler C, Vomero M, Soula M, Vöröslakos M, Porto Cruz M, Liljemalm R, Buzsaki G, Stieglitz T, Asplund M. Multilayer Arrays for Neurotechnology Applications (MANTA): Chronically Stable Thin-Film Intracortical Implants. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207576. [PMID: 36935361 DOI: 10.1002/advs.202207576] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/07/2023] [Indexed: 05/18/2023]
Abstract
Flexible implantable neurointerfaces show great promise in addressing one of the major challenges of implantable neurotechnology, namely the loss of signal connected to unfavorable probe tissue interaction. The authors here show how multilayer polyimide probes allow high-density intracortical recordings to be combined with a reliable long-term stable tissue interface, thereby progressing toward chronic stability of implantable neurotechnology. The probes could record 10-60 single units over 5 months with a consistent peak-to-peak voltage at dimensions that ensure robust handling and insulation longevity. Probes that remain in intimate contact with the signaling tissue over months to years are a game changer for neuroscience and, importantly, open up for broader clinical translation of systems relying on neurotechnology to interface the human brain.
Collapse
Affiliation(s)
- Christian Böhler
- Department of Microsystems Engineering (IMTEK), University of Freiburg, 79110, Freiburg, Germany
- BrainLinks-BrainTools Center, University of Freiburg, 79110, Freiburg, Germany
| | - Maria Vomero
- Department of Microsystems Engineering (IMTEK), University of Freiburg, 79110, Freiburg, Germany
- BrainLinks-BrainTools Center, University of Freiburg, 79110, Freiburg, Germany
| | - Marisol Soula
- Neuroscience Institute, Langone Medical Center, New York University, New York, 10016, USA
| | - Mihály Vöröslakos
- Neuroscience Institute, Langone Medical Center, New York University, New York, 10016, USA
| | - Maria Porto Cruz
- Department of Microsystems Engineering (IMTEK), University of Freiburg, 79110, Freiburg, Germany
- BrainLinks-BrainTools Center, University of Freiburg, 79110, Freiburg, Germany
| | - Rickard Liljemalm
- Department of Microsystems Engineering (IMTEK), University of Freiburg, 79110, Freiburg, Germany
| | - György Buzsaki
- Neuroscience Institute, Langone Medical Center, New York University, New York, 10016, USA
- Department of Physiology and Neuroscience, Langone Medical Center, New York University, New York, 10016, USA
- Department of Neurology, Langone Medical Center, New York University, New York, 10016, USA
| | - Thomas Stieglitz
- Department of Microsystems Engineering (IMTEK), University of Freiburg, 79110, Freiburg, Germany
- BrainLinks-BrainTools Center, University of Freiburg, 79110, Freiburg, Germany
- Bernstein Center Freiburg, University of Freiburg, 79110, Freiburg, Germany
| | - Maria Asplund
- Department of Microsystems Engineering (IMTEK), University of Freiburg, 79110, Freiburg, Germany
- BrainLinks-BrainTools Center, University of Freiburg, 79110, Freiburg, Germany
- Department of Microtechnology and Nanoscience, Chalmers University of Technology, Gothenburg, SE-41296, Sweden
- Division of Nursing and Medical Technology, Luleå University of Technology, Luleå, 97187, Sweden
- Freiburg Institute for Advanced Studies (FRIAS), University of Freiburg, 79110, Freiburg, Germany
| |
Collapse
|
15
|
Fekete Z, Zátonyi A, Kaszás A, Madarász M, Slézia A. Transparent neural interfaces: challenges and solutions of microengineered multimodal implants designed to measure intact neuronal populations using high-resolution electrophysiology and microscopy simultaneously. MICROSYSTEMS & NANOENGINEERING 2023; 9:66. [PMID: 37213820 PMCID: PMC10195795 DOI: 10.1038/s41378-023-00519-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 02/03/2023] [Accepted: 03/01/2023] [Indexed: 05/23/2023]
Abstract
The aim of this review is to present a comprehensive overview of the feasibility of using transparent neural interfaces in multimodal in vivo experiments on the central nervous system. Multimodal electrophysiological and neuroimaging approaches hold great potential for revealing the anatomical and functional connectivity of neuronal ensembles in the intact brain. Multimodal approaches are less time-consuming and require fewer experimental animals as researchers obtain denser, complex data during the combined experiments. Creating devices that provide high-resolution, artifact-free neural recordings while facilitating the interrogation or stimulation of underlying anatomical features is currently one of the greatest challenges in the field of neuroengineering. There are numerous articles highlighting the trade-offs between the design and development of transparent neural interfaces; however, a comprehensive overview of the efforts in material science and technology has not been reported. Our present work fills this gap in knowledge by introducing the latest micro- and nanoengineered solutions for fabricating substrate and conductive components. Here, the limitations and improvements in electrical, optical, and mechanical properties, the stability and longevity of the integrated features, and biocompatibility during in vivo use are discussed.
Collapse
Affiliation(s)
- Z. Fekete
- Research Group for Implantable Microsystems, Faculty of Information Technology & Bionics, Pázmány Péter Catholic University, Budapest, Hungary
- Institute of Cognitive Neuroscience & Psychology, Eotvos Lorand Research Network, Budapest, Hungary
| | - A. Zátonyi
- Research Group for Implantable Microsystems, Faculty of Information Technology & Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | - A. Kaszás
- Mines Saint-Etienne, Centre CMP, Département BEL, F - 13541 Gardanne, France
- Institut de Neurosciences de la Timone, CNRS UMR 7289 & Aix-Marseille Université, 13005 Marseille, France
| | - M. Madarász
- János Szentágothai PhD Program of Semmelweis University, Budapest, Hungary
- BrainVision Center, Budapest, Hungary
| | - A. Slézia
- Institut de Neurosciences de la Timone, CNRS UMR 7289 & Aix-Marseille Université, 13005 Marseille, France
| |
Collapse
|
16
|
Kang YN, Chu JU, Lee KH, Lee Y, Kim S. Design and simulation of a neural interface based on a microfluidic flexible interconnection cable for chemical delivery. MICRO AND NANO SYSTEMS LETTERS 2022. [DOI: 10.1186/s40486-022-00161-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
AbstractNeural interfaces are fundamental tools for transmitting information from the nervous system. Research on the immune response of an invasive neural interface is a field that requires continuous effort. Various efforts have been made to overcome or minimize limitations through modifying the designs and materials of neural interfaces, modifying surface characteristics, and adding functions to them. In this study, we demonstrate microfluidic channels with crater-shaped structures fabricated using parylene-C membranes for fluid delivery from the perspective of theory, design, and simulation. The simulation results indicated that the fluid flow depended on the size of the outlet and the alignment of microstructures inside the fluidic channel. All the results can be used to support the design of microfluidic channels made by membranes for drug delivery.
Collapse
|
17
|
Harland B, Aqrawe Z, Vomero M, Boehler C, Cheah E, Raos B, Asplund M, O'Carroll SJ, Svirskis D. A Subdural Bioelectronic Implant to Record Electrical Activity from the Spinal Cord in Freely Moving Rats. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105913. [PMID: 35499184 PMCID: PMC9284137 DOI: 10.1002/advs.202105913] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 04/06/2022] [Indexed: 05/28/2023]
Abstract
Bioelectronic devices have found use at the interface with neural tissue to investigate and treat nervous system disorders. Here, the development and characterization of a very thin flexible bioelectronic implant inserted along the thoracic spinal cord in rats directly in contact with and conformable to the dorsal surface of the spinal cord are presented. There is no negative impact on hind-limb functionality nor any change in the volume or shape of the spinal cord. The bioelectronic implant is maintained in rats for a period of 12 weeks. The first subdural recordings of spinal cord activity in freely moving animals are presented; rats are plugged in via a recording cable and allowed to freely behave and move around on a raised platform. Recordings contained multiple distinct voltage waveforms spatially localize to individual electrodes. This device has great potential to monitor electrical signaling in the spinal cord after an injury and in the future, this implant will facilitate the identification of biomarkers in spinal cord injury and recovery, while enabling the delivery of localized electroceutical and chemical treatments.
Collapse
Affiliation(s)
- Bruce Harland
- School of PharmacyThe University of AucklandAuckland1023New Zealand
| | - Zaid Aqrawe
- School of PharmacyThe University of AucklandAuckland1023New Zealand
| | - Maria Vomero
- Department of Microsystems Engineering (IMTEK)BrainLinks‐BrainTools CenterUniversity of FreiburgFreiburg79110Germany
| | - Christian Boehler
- Department of Microsystems Engineering (IMTEK)BrainLinks‐BrainTools CenterUniversity of FreiburgFreiburg79110Germany
| | - Ernest Cheah
- School of PharmacyThe University of AucklandAuckland1023New Zealand
| | - Brad Raos
- School of PharmacyThe University of AucklandAuckland1023New Zealand
| | - Maria Asplund
- Department of Microsystems Engineering (IMTEK)BrainLinks‐BrainTools Center and Freiburg Institute for Advanced Studies (FRIAS)University of FreiburgFreiburg79110Germany
- Division of Nursing and Medical TechnologyLuleå University of TechnologyLuleå971 87Sweden
| | - Simon J. O'Carroll
- Department of Anatomy & Medical ImagingSchool of Medical SciencesThe University of AucklandAuckland1023New Zealand
| | - Darren Svirskis
- School of PharmacyThe University of AucklandAuckland1023New Zealand
| |
Collapse
|
18
|
Schachtrup C. Modulating scar formation for improving brain repair: from coagulation and inflammation to cell therapy. Cell Tissue Res 2022; 387:315-318. [PMID: 35226205 PMCID: PMC8975772 DOI: 10.1007/s00441-022-03601-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Christian Schachtrup
- Department of Molecular Embryology, Institute of Anatomy and Cell Biology, University of Freiburg, Albertstrasse 17, 79104, Freiburg, Germany. .,Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|