1
|
Santos GM, Albuquerque RP, Barros CF, Ancapichún S, Oelkers R, Andreu-Hayles L, de Faria SM, De Pol-Holz R, das Neves Brandes AF. High-precision 14C measurements of parenchyma-rich Hymenolobium petraeum tree species confirm bomb-peak atmospheric levels and reveal local fossil-fuel CO 2 emissions in the Central Amazon. ENVIRONMENTAL RESEARCH 2022; 214:113994. [PMID: 35931185 DOI: 10.1016/j.envres.2022.113994] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 07/10/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
Atmospheric radiocarbon (14C) recorded in tree rings has been widely used for atmospheric 14C calibration purposes and climate studies. But atmospheric 14C records have been limited along tropical latitudes. Here we report a sequence from 1938 to 2007 of precisely measured 14C dates in tree rings of the parenchyma-rich Hymenolobium petraeum tree species (Porto Trombetas, 1°S, 56°W) from the Central Brazilian Amazon. H. petraeum has discernible growth ring boundaries that allow dating techniques to be employed to produce calendrical dates. Bomb-peak tree-ring 14C reconstruction coincides with the broader changes associated with reported values of the Southern Hemisphere atmospheric 14C curve (SH zone 3; values within the ±2σ interval), suggesting that inter-hemispheric air-mass transport of excess-14C injected into the stratosphere during intensive atmospheric nuclear tests is relatively uniform across distinct longitudinal regions. From the early 1980s onwards, H. petraeum had lower 14C values than other pantropical 14C records. Through 14C-based estimation, we found a strong influence of fossil-fuel CO2 contributions from Porto Trombetas mining operations and shipping traffic on inland waterways. An increase of at least 6.3 ± 0.8 ppm of fossil-fuel CO2 has been detected by 14C. Our findings invite further 14C analyses using tree rings of tropical tree species as a potential tracer for a wide range of environmental sources of atmospheric 14C-variability.
Collapse
Affiliation(s)
- Guaciara M Santos
- Department of Earth System Science, University of California Irvine, Irvine, CA, 92697-3100, USA.
| | - Rafael Perpétuo Albuquerque
- Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Escola Nacional de Botânica Tropical, Rio de Janeiro, RJ, 22460-030, Brazil
| | - Cláudia Franca Barros
- Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Escola Nacional de Botânica Tropical, Rio de Janeiro, RJ, 22460-030, Brazil
| | - Santiago Ancapichún
- Centro de Investigación GAIA Antártica (CIGA), Universidad de Magallanes, Punta Arenas, Chile; Postgraduate School in Oceanography, Faculty of Natural and Oceanographic Sciences, Universidad de Concepción, Concepción, Chile
| | - Rose Oelkers
- Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY, USA
| | - Laia Andreu-Hayles
- Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY, USA; CREAF, Barcelona, Spain; ICREA, Barcelona, Spain
| | - Sergio Miana de Faria
- Centro Nacional de Pesquisa de Agrobiologia, Empresa Brasileira de Pesquisa Agropecuária, Seropédica, RJ, 23890-000, Brazil
| | - Ricardo De Pol-Holz
- Centro de Investigación GAIA Antártica (CIGA), Universidad de Magallanes, Punta Arenas, Chile
| | - Arno Fritz das Neves Brandes
- Departamento de Biologia Geral, Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, 24210-201, Brazil.
| |
Collapse
|
2
|
Diao H, Wang A, Yuan F, Guan D, Wu J. Autotrophic respiration modulates the carbon isotope composition of soil respiration in a mixed forest. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:150834. [PMID: 34627921 DOI: 10.1016/j.scitotenv.2021.150834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 09/24/2021] [Accepted: 10/02/2021] [Indexed: 06/13/2023]
Abstract
Carbon isotopic composition of soil respired CO2 (soil δ13CR) has been regarded as a good indicator of the linkages between aboveground processes and soil respiration. However, whether δ13CR of autotrophic or heterotrophic component of soil respiration dominates the temporal variability of total soil δ13CR was rarely examined by previous studies. In this study, carbon isotopic composition of atmospheric CO2 (δ13Cair) and soil δ13CR in control (with roots) and trenched (without roots) plots were measured in a temperated mixed forest. A 13C isotopic profile system and an automated soil respiration system were used for δ 13Cair and soil δ13CR measurements, respectively. We found that soil δ13CR in the control plots changed substantially in the growing season and it was more negative (by ~0.6‰) than that in the trenched plots, while soil δ13CR in the trenched plots showed a minor temporal variability. This suggests that δ13CR from the autotrophic respiration is the key decider of the seasonal variation pattern of the soil δ13CR. Moreover, the seasonal variation of soil δ13CR in the control plots showed a similar pattern with the seasonal variation of δ13Cair. A significant time-lag was found between δ13Cair and soil δ13CR, showing that soil δ13CR generally lagged behind δ13Cair 15 days. This result supports the hypothesis that soil respiration is closely related to carbon assimilation at the leaf-level and also stressed the importance of δ13Cair in shaping soil δ13CR. These findings are highly valuable to develop the process-based models of the carbon cycle of forest ecosystems.
Collapse
Affiliation(s)
- Haoyu Diao
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Anzhi Wang
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Fenghui Yuan
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Dexin Guan
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Jiabing Wu
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China.
| |
Collapse
|
3
|
Wang A, Siegwolf RTW, Joseph J, Thomas FM, Werner W, Gessler A, Rigling A, Schaub M, Saurer M, Li MH, Lehmann MM. Effects of soil moisture, needle age and leaf morphology on carbon and oxygen uptake, incorporation and allocation: a dual labeling approach with 13CO2 and H218O in foliage of a coniferous forest. TREE PHYSIOLOGY 2021; 41:50-62. [PMID: 32879961 DOI: 10.1093/treephys/tpaa114] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 08/25/2020] [Indexed: 06/11/2023]
Abstract
The carbon and oxygen isotopic composition of water and assimilates in plants reveals valuable information on plant responses to climatic conditions. Yet, the carbon and oxygen uptake, incorporation and allocation processes determining isotopic compositions are not fully understood. We carried out a dual-isotope labeling experiment at high humidity with 18O-enriched water (H218O) and 13C-enriched CO2 (13CO2) with attached Scots pine (Pinus sylvestris L.) branches and detached twigs of hemiparasitic mistletoes (Viscum album ssp. austriacum) in a naturally dry coniferous forest, where also a long-term irrigation takes place. After 4 h of label exposure, we sampled previous- and recent-year leaves, twig phloem and twig xylem over 192 h for the analysis of isotope ratios in water and assimilates. For both species, the uptake into leaf water and the incorporation of the 18O-label into leaf assimilates was not influenced by soil moisture, while the 13C-label incorporation into assimilates was significantly higher under irrigation compared with control dry conditions. Species-specific differences in leaf morphology or needle age did not affect 18O-label uptake into leaf water, but the incorporation of both tracers into assimilates was two times lower in mistletoe than in pine. The 18O-label allocation in water from pine needles to twig tissues was two times higher for phloem than for xylem under both soil moisture conditions. In contrast, the allocation of both tracers in pine assimilates were similar and not affected by soil moisture, twig tissue or needle age. Soil moisture effects on 13C-label but not on 18O-label incorporation into assimilates can be explained by the stomatal responses at high humidity, non-stomatal pathways for water and isotope exchange reactions. Our results suggest that non-photosynthetic 18O-incorporation processes may have masked prevalent photosynthetic processes. Thus, isotopic variation in leaf water could also be imprinted on assimilates when photosynthetic assimilation rates are low.
Collapse
Affiliation(s)
- Ao Wang
- Forest Dynamics, Swiss Federal Research Institute WSL Birmensdorf, Zuercherstrasse 111, 8903 Birmensdorf, Switzerland
- Institute of Terrestrial Ecosystems, ETH Zurich, Universitaetsstrasse 16, 8092 Zurich, Switzerland
| | - Rolf T W Siegwolf
- Forest Dynamics, Swiss Federal Research Institute WSL Birmensdorf, Zuercherstrasse 111, 8903 Birmensdorf, Switzerland
| | - Jobin Joseph
- Forest Dynamics, Swiss Federal Research Institute WSL Birmensdorf, Zuercherstrasse 111, 8903 Birmensdorf, Switzerland
| | - Frank M Thomas
- Geobotany, University of Trier, Behringstrasse 21, 54296 Trier, Germany
| | - Willy Werner
- Geobotany, University of Trier, Behringstrasse 21, 54296 Trier, Germany
| | - Arthur Gessler
- Forest Dynamics, Swiss Federal Research Institute WSL Birmensdorf, Zuercherstrasse 111, 8903 Birmensdorf, Switzerland
- Institute of Terrestrial Ecosystems, ETH Zurich, Universitaetsstrasse 16, 8092 Zurich, Switzerland
| | - Andreas Rigling
- Forest Dynamics, Swiss Federal Research Institute WSL Birmensdorf, Zuercherstrasse 111, 8903 Birmensdorf, Switzerland
- Institute of Terrestrial Ecosystems, ETH Zurich, Universitaetsstrasse 16, 8092 Zurich, Switzerland
| | - Marcus Schaub
- Forest Dynamics, Swiss Federal Research Institute WSL Birmensdorf, Zuercherstrasse 111, 8903 Birmensdorf, Switzerland
| | - Matthias Saurer
- Forest Dynamics, Swiss Federal Research Institute WSL Birmensdorf, Zuercherstrasse 111, 8903 Birmensdorf, Switzerland
| | - Mai-He Li
- Forest Dynamics, Swiss Federal Research Institute WSL Birmensdorf, Zuercherstrasse 111, 8903 Birmensdorf, Switzerland
| | - Marco M Lehmann
- Forest Dynamics, Swiss Federal Research Institute WSL Birmensdorf, Zuercherstrasse 111, 8903 Birmensdorf, Switzerland
| |
Collapse
|
4
|
Štursová M, Kohout P, Human ZR, Baldrian P. Production of Fungal Mycelia in a Temperate Coniferous Forest Shows Distinct Seasonal Patterns. J Fungi (Basel) 2020; 6:E190. [PMID: 32993121 PMCID: PMC7712845 DOI: 10.3390/jof6040190] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/23/2020] [Accepted: 09/24/2020] [Indexed: 02/06/2023] Open
Abstract
In temperate forests, climate seasonality restricts the photosynthetic activity of primary producers to the warm season from spring to autumn, while the cold season with temperatures below the freezing point represents a period of strongly reduced plant activity. Although soil microorganisms are active all-year-round, their expressions show seasonal patterns. This is especially visible on the ectomycorrhizal fungi, the most abundant guild of fungi in coniferous forests. We quantified the production of fungal mycelia using ingrowth sandbags in the organic layer of soil in temperate coniferous forest and analysed the composition of fungal communities in four consecutive seasons. We show that fungal biomass production is as low as 0.029 µg g-1 of sand in December-March, while it reaches 0.122 µg g-1 in June-September. The majority of fungi show distinct patterns of seasonal mycelial production, with most ectomycorrhizal fungi colonising ingrowth bags in the spring or summer, while the autumn and winter colonisation was mostly due to moulds. Our results indicate that fungal taxa differ in their seasonal patterns of mycelial production. Although fungal biomass turnover appears all-year-round, its rates are much faster in the period of plant activity than in the cold season.
Collapse
Affiliation(s)
- Martina Štursová
- Laboratory of Environmental Microbiology, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220 Prague, Czech Republic; (P.K.); (Z.R.H.)
| | | | | | - Petr Baldrian
- Laboratory of Environmental Microbiology, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220 Prague, Czech Republic; (P.K.); (Z.R.H.)
| |
Collapse
|
5
|
Prescott CE, Grayston SJ, Helmisaari HS, Kaštovská E, Körner C, Lambers H, Meier IC, Millard P, Ostonen I. Surplus Carbon Drives Allocation and Plant-Soil Interactions. Trends Ecol Evol 2020; 35:1110-1118. [PMID: 32928565 DOI: 10.1016/j.tree.2020.08.007] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 08/11/2020] [Accepted: 08/18/2020] [Indexed: 11/18/2022]
Abstract
Plant growth is usually constrained by the availability of nutrients, water, or temperature, rather than photosynthetic carbon (C) fixation. Under these conditions leaf growth is curtailed more than C fixation, and the surplus photosynthates are exported from the leaf. In plants limited by nitrogen (N) or phosphorus (P), photosynthates are converted into sugars and secondary metabolites. Some surplus C is translocated to roots and released as root exudates or transferred to root-associated microorganisms. Surplus C is also produced under low moisture availability, low temperature, and high atmospheric CO2 concentrations, with similar below-ground effects. Many interactions among above- and below-ground ecosystem components can be parsimoniously explained by the production, distribution, and release of surplus C under conditions that limit plant growth.
Collapse
Affiliation(s)
- Cindy E Prescott
- Department of Forest and Conservation Sciences, University of British Columbia, 2424 Main Mall, Vancouver, BC, Canada V6T1Z4.
| | - Sue J Grayston
- Department of Forest and Conservation Sciences, University of British Columbia, 2424 Main Mall, Vancouver, BC, Canada V6T1Z4
| | - Heljä-Sisko Helmisaari
- Department of Forest Sciences, University of Helsinki, P.O. Box 27, FI-00014 Helsinki, Finland
| | - Eva Kaštovská
- Department of Ecosystem Biology, University of South Bohemia, Branisovska 1760, Ceske Budejovice 37005, Czech Republic
| | - Christian Körner
- Institute of Botany, University of Basel, Schönbeinstr. 6, CH-4056 Basel, Switzerland
| | - Hans Lambers
- School of Biological Sciences, The University of Western Australia, Crawley (Perth), WA 6009, Australia
| | - Ina C Meier
- Plant Ecology, Albrecht-von-Haller Institute for Plant Sciences, University of Goettingen, 37073 Göttingen, Germany
| | - Peter Millard
- Manaaki Whenua - Landcare Research, Lincoln 7640, New Zealand
| | - Ivika Ostonen
- Institute of Ecology and Earth Sciences, University of Tartu, Vanemuise 46, 51014, Tartu, Estonia
| |
Collapse
|
6
|
Rog I, Rosenstock NP, Körner C, Klein T. Share the wealth: Trees with greater ectomycorrhizal species overlap share more carbon. Mol Ecol 2020; 29:2321-2333. [PMID: 31923325 PMCID: PMC7116085 DOI: 10.1111/mec.15351] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 12/24/2019] [Accepted: 01/05/2020] [Indexed: 01/03/2023]
Abstract
The mutualistic symbiosis between forest trees and ectomycorrhizal fungi (EMF) is among the most ubiquitous and successful interactions in terrestrial ecosystems. Specific species of EMF are known to colonize specific tree species, benefitting from their carbon source, and in turn, improving their access to soil water and nutrients. EMF also form extensive mycelial networks that can link multiple root-tips of different trees. Yet the number of tree species connected by such mycelial networks, and the traffic of material across them, are just now under study. Recently we reported substantial belowground carbon transfer between Picea, Pinus, Larix and Fagus trees in a mature forest. Here, we analyze the EMF community of these same individual trees and identify the most likely taxa responsible for the observed carbon transfer. Among the nearly 1,200 EMF root-tips examined, 50%-70% belong to operational taxonomic units (OTUs) that were associated with three or four tree host species, and 90% of all OTUs were associated with at least two tree species. Sporocarp 13 C signals indicated that carbon originating from labelled Picea trees was transferred among trees through EMF networks. Interestingly, phylogenetically more closely related tree species exhibited more similar EMF communities and exchanged more carbon. Our results show that belowground carbon transfer is well orchestrated by the evolution of EMFs and tree symbiosis.
Collapse
Affiliation(s)
- Ido Rog
- Department of Plant & Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | | | - Christian Körner
- Department of Environmental Sciences -Botany, University of Basel, Basel, Switzerland
| | - Tamir Klein
- Department of Plant & Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
7
|
Merganičová K, Merganič J, Lehtonen A, Vacchiano G, Sever MZO, Augustynczik ALD, Grote R, Kyselová I, Mäkelä A, Yousefpour R, Krejza J, Collalti A, Reyer CPO. Forest carbon allocation modelling under climate change. TREE PHYSIOLOGY 2019; 39:1937-1960. [PMID: 31748793 PMCID: PMC6995853 DOI: 10.1093/treephys/tpz105] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 06/03/2019] [Accepted: 09/24/2019] [Indexed: 05/19/2023]
Abstract
Carbon allocation plays a key role in ecosystem dynamics and plant adaptation to changing environmental conditions. Hence, proper description of this process in vegetation models is crucial for the simulations of the impact of climate change on carbon cycling in forests. Here we review how carbon allocation modelling is currently implemented in 31 contrasting models to identify the main gaps compared with our theoretical and empirical understanding of carbon allocation. A hybrid approach based on combining several principles and/or types of carbon allocation modelling prevailed in the examined models, while physiologically more sophisticated approaches were used less often than empirical ones. The analysis revealed that, although the number of carbon allocation studies over the past 10 years has substantially increased, some background processes are still insufficiently understood and some issues in models are frequently poorly represented, oversimplified or even omitted. Hence, current challenges for carbon allocation modelling in forest ecosystems are (i) to overcome remaining limits in process understanding, particularly regarding the impact of disturbances on carbon allocation, accumulation and utilization of nonstructural carbohydrates, and carbon use by symbionts, and (ii) to implement existing knowledge of carbon allocation into defence, regeneration and improved resource uptake in order to better account for changing environmental conditions.
Collapse
Affiliation(s)
- Katarína Merganičová
- Czech University of Life Sciences, Prague, Faculty of Forestry and Wood Sciences, Kamýcká 129, 16500 Praha-Suchdol, Czech Republic
- Technical University Zvolen, Forestry Faculty, T. G. Masaryka 24, 96053 Zvolen, Slovakia
| | - Ján Merganič
- Technical University Zvolen, Forestry Faculty, T. G. Masaryka 24, 96053 Zvolen, Slovakia
| | - Aleksi Lehtonen
- The Finnish Forest Research Institute - Luke, PO Box 18 (Jokiniemenkuja 1), FI-01301 Vantaa, Finland
| | - Giorgio Vacchiano
- Università degli Studi di Milano, DISAA. Via Celoria 2, 20132 Milano, Italy
| | - Maša Zorana Ostrogović Sever
- Croatian Forest Research Institute, Department for forest management and forestry economics, Cvjetno naselje 41, 10450 Jastrebarsko, Croatia
| | | | - Rüdiger Grote
- Institute of Meteorology and Climate Research (IMK-IFU), Karlsruhe Institute of Technology, Garmisch-Partenkirchen, Germany
| | - Ina Kyselová
- Global Change Research Institute CAS, Bělidla 986/4a, 603 00 Brno, Czech Republic
| | - Annikki Mäkelä
- University of Helsinki, Department of Forest Science, Latokartanonkaari 7, P.O. Box 27, 00014 Helsinki, Finland
| | - Rasoul Yousefpour
- University of Freiburg, Tennenbacher Str. 4 (2. OG), D-79106 Freiburg, Germany
| | - Jan Krejza
- Global Change Research Institute CAS, Bělidla 986/4a, 603 00 Brno, Czech Republic
| | - Alessio Collalti
- National Research Council of Italy, Institute for Agriculture and Forestry Systems in the Mediterranean (CNR-ISAFOM), 87036 Rende, Italy
- Department of Innovation in Biological, Agro-food and Forest Systems, University of Tuscia, 01100 Viterbo, Italy
| | - Christopher P O Reyer
- Potsdam Institute for Climate Impact Research, Telegraphenberg, PO Box 601203, D-14473 Potsdam, Germany
| |
Collapse
|
8
|
Wang J, Wang H, Deng T, Liu Z, Wang X. Time-coursed transcriptome analysis identifies key expressional regulation in growth cessation and dormancy induced by short days in Paulownia. Sci Rep 2019; 9:16602. [PMID: 31719639 PMCID: PMC6851391 DOI: 10.1038/s41598-019-53283-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 10/30/2019] [Indexed: 12/18/2022] Open
Abstract
Maintaining the viability of the apical shoot is critical for continued vertical growth in plants. Terminal shoot of tree species Paulownia cannot regrow in subsequent years. The short day (SD) treatment leads to apical growth cessation and dormancy. To understand the molecular basis of this, we further conducted global RNA-Seq based transcriptomic analysis in apical shoots to check regulation of gene expression. We obtained ~219 million paired-end 125-bp Illumina reads from five time-courses and de novo assembled them to yield 49,054 unigenes. Compared with the untreated control, we identified 1540 differentially expressed genes (DEGs) which were found to involve in 116 metabolic pathways. Expression of 87% of DEGs exhibited switch-on or switch-off pattern, indicating key roles in growth cessation. Most DEGs were enriched in the biological process of gene ontology categories and at later treatment stages. The pathways of auxin and circadian network were most affected and the expression of associated DEGs was characterised. During SD induction, auxin genes IAA, ARF and SAURs were down-regulated and circadian genes including PIF3 and PRR5 were up-regulated. PEPC in photosynthesis was constitutively upregulated, suggesting a still high CO2 concentrating activity; however, the converting CO2 to G3P in the Calvin cycle is low, supported by reduced expression of GAPDH encoding the catalysing enzyme for this step. This indicates a de-coupling point in the carbon fixation. The results help elucidate the molecular mechanisms for SD inducing dormancy and cessation in apical shoots.
Collapse
Affiliation(s)
- Jiayuan Wang
- College of Forestry, Henan Agricultural University, Zhengzhou, Henan, 450002, China
| | - Hongyan Wang
- School of life science, Liaoning University, Shenyang, 110000, China
| | - Tao Deng
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Zhen Liu
- College of Forestry, Henan Agricultural University, Zhengzhou, Henan, 450002, China.
| | - Xuewen Wang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China. .,Department of Genetics, University of Georgia, Athens, 30602, USA.
| |
Collapse
|
9
|
Klesse S, Weigt R, Treydte K, Saurer M, Schmid L, Siegwolf RTW, Frank DC. Oxygen isotopes in tree rings are less sensitive to changes in tree size and relative canopy position than carbon isotopes. PLANT, CELL & ENVIRONMENT 2018; 41:2899-2914. [PMID: 30107635 DOI: 10.1111/pce.13424] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 07/31/2018] [Accepted: 08/06/2018] [Indexed: 06/08/2023]
Abstract
Stable isotope ratios in tree rings have become an important proxy for palaeoclimatology, particularly in temperate regions. Yet temperate forests are often characterized by heterogeneous stand structures, and the effects of stand dynamics on carbon (δ13 C) and oxygen isotope ratios (δ18 O) in tree rings are not well explored. In this study, we investigated long-term trends and offsets in δ18 O and δ13 C of Picea abies and Fagus sylvatica in relation to tree age, size, and distance to the upper canopy at seven temperate sites across Europe. We observed strong positive trends in δ13 C that are best explained by the reconstructed dynamics of individual trees below the upper canopy, highlighting the influence of light attenuation on δ13 C in shade-tolerant species. We also detected positive trends in δ18 O with increasing tree size. However, the observed slopes are less steep and consistent between trees of different ages and thus can be more easily addressed. We recommend restricting the use of δ13 C to years when trees are in a dominant canopy position to infer long-term climate signals in δ13 C when relying on material from shade-tolerant species, such as beech and spruce. For such species, δ18 O should be in principle the superior proxy for climate reconstructions.
Collapse
Affiliation(s)
- Stefan Klesse
- Forest Dynamics, Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
- Forest Dynamics, Oeschger Centre for Climate Change Research, Bern, Switzerland
- Laboratory of Tree-Ring Research, University of Arizona, Tucson, Arizona
| | - Rosemarie Weigt
- Forest Dynamics, Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
- Forest Dynamics, Paul Scherrer Institute, Villigen, Switzerland
| | - Kerstin Treydte
- Forest Dynamics, Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
| | - Matthias Saurer
- Forest Dynamics, Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
- Forest Dynamics, Paul Scherrer Institute, Villigen, Switzerland
| | - Lola Schmid
- Forest Dynamics, Paul Scherrer Institute, Villigen, Switzerland
| | - Rolf T W Siegwolf
- Forest Dynamics, Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
- Forest Dynamics, Paul Scherrer Institute, Villigen, Switzerland
| | - David C Frank
- Forest Dynamics, Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
- Forest Dynamics, Oeschger Centre for Climate Change Research, Bern, Switzerland
- Laboratory of Tree-Ring Research, University of Arizona, Tucson, Arizona
| |
Collapse
|
10
|
Liesche J, Schulz A. Phloem transport in gymnosperms: a question of pressure and resistance. CURRENT OPINION IN PLANT BIOLOGY 2018; 43:36-42. [PMID: 29304388 DOI: 10.1016/j.pbi.2017.12.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Revised: 12/14/2017] [Accepted: 12/15/2017] [Indexed: 06/07/2023]
Abstract
Even in the highest trees, carbon is efficiently distributed from leaves to heterotrophic tissues like fruit, flowers and roots. This long-distance transport happens in the highly specialized sieve elements of the phloem. In gymnosperms, sieve element anatomy appears to be less suited for mass flow of phloem sap than that of angiosperms. This review covers available data on gymnosperm phloem to evaluate if it functions differently from that of angiosperms. Although current evidence suggests that, despite a higher pathway resistance, a single source-to-sink turgor pressure gradient can drive mass flow, several questions remain unanswered. These include how endoplasmic reticulum-complexes in sieve elements influence flow, as well as what the effect of symplasmic coupling along the whole phloem pathway could be.
Collapse
Affiliation(s)
- Johannes Liesche
- College of Life Science, Department of Biology, Northwest A&F University, 3 Taicheng Road, 712100 Yangling, Shaanxi, China
| | - Alexander Schulz
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark.
| |
Collapse
|
11
|
Morris H, Brodersen C, Schwarze FWMR, Jansen S. The Parenchyma of Secondary Xylem and Its Critical Role in Tree Defense against Fungal Decay in Relation to the CODIT Model. FRONTIERS IN PLANT SCIENCE 2016; 7:1665. [PMID: 27881986 PMCID: PMC5101214 DOI: 10.3389/fpls.2016.01665] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Accepted: 10/24/2016] [Indexed: 05/22/2023]
Abstract
This review examines the roles that ray and axial parenchyma (RAP) plays against fungal pathogens in the secondary xylem of wood within the context of the CODIT model (Compartmentalization of Decay in Trees), a defense concept first conceived in the early 1970s by Alex Shigo. This model, simplistic in its design, shows how a large woody perennial is highly compartmented. Anatomical divisions in place at the time of infection or damage, (physical defense) alongside the 'active' response by the RAP during and after wounding work together in forming boundaries that function to restrict air or decay spread. The living parenchyma cells play a critical role in all of the four walls (differing anatomical constructs) that the model comprises. To understand how living cells in each of the walls of CODIT cooperate, we must have a clear vision of their complex interconnectivity from a three-dimensional perspective, along with knowledge of the huge variation in ray parenchyma (RP) and axial parenchyma (AP) abundance and patterns. Crucial patterns for defense encompass the symplastic continuum between both RP and AP and the dead tissues, with the latter including the vessel elements, libriform fibers, and imperforate tracheary elements (i.e., vasicentric and vascular tracheids). Also, the heartwood, a chemically altered antimicrobial non-living substance that forms the core of many trees, provides an integral part of the defense system. In the heartwood, dead RAP can play an important role in defense, depending on the genetic constitution of the species. Considering the array of functions that RAP are associated with, from capacitance, through to storage, and long-distance water transport, deciding how their role in defense fits into this suite of functions is a challenge for plant scientists, and likely depends on a range of factors. Here, we explore the important role of RAP in defense against fungal pathogens and the trade-offs involved from a viewpoint for structure-function relations, while also examining how fungi can breach the defense system using an array of enzymes in conjunction with the physically intrusive hyphae.
Collapse
Affiliation(s)
- Hugh Morris
- Institute of Systematic Botany and Ecology, Ulm UniversityUlm, Germany
| | - Craig Brodersen
- School of Forestry and Environmental Studies, Yale University, New HavenCT, USA
| | - Francis W. M. R. Schwarze
- Laboratory for Applied Wood Materials, Empa-Swiss Federal Laboratories for Materials Testing and ResearchSt. Gallen, Switzerland
| | - Steven Jansen
- Institute of Systematic Botany and Ecology, Ulm UniversityUlm, Germany
| |
Collapse
|
12
|
Hartmann H, Trumbore S. Understanding the roles of nonstructural carbohydrates in forest trees - from what we can measure to what we want to know. THE NEW PHYTOLOGIST 2016; 211:386-403. [PMID: 27061438 DOI: 10.1111/nph.13955] [Citation(s) in RCA: 315] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 03/01/2016] [Indexed: 05/17/2023]
Abstract
Contents 386 I. 386 II. 388 III. 392 IV. 392 V. 396 VI. 399 399 References 399 SUMMARY: Carbohydrates provide the building blocks for plant structures as well as versatile resources for metabolic processes. The nonstructural carbohydrates (NSC), mainly sugars and starch, fulfil distinct functional roles, including transport, energy metabolism and osmoregulation, and provide substrates for the synthesis of defence compounds or exchange with symbionts involved in nutrient acquisition or defence. At the whole-plant level, NSC storage buffers the asynchrony of supply and demand on diel, seasonal or decadal temporal scales and across plant organs. Despite its central role in plant function and in stand-level carbon cycling, our understanding of storage dynamics, its controls and response to environmental stresses is very limited, even after a century of research. This reflects the fact that often storage is defined by what we can measure, that is, NSC concentrations, and the interpretation of these as a proxy for a single function, storage, rather than the outcome of a range of NSC source and sink functions. New isotopic tools allow direct quantification of timescales involved in NSC dynamics, and show that NSC-C fixed years to decades previously is used to support tree functions. Here we review recent advances, with emphasis on the context of the interactions between NSC, drought and tree mortality.
Collapse
Affiliation(s)
- Henrik Hartmann
- Max-Planck Institute for Biogeochemistry, Hans Knöll Str. 10, 07745, Jena, Germany
| | - Susan Trumbore
- Max-Planck Institute for Biogeochemistry, Hans Knöll Str. 10, 07745, Jena, Germany
| |
Collapse
|
13
|
Klein T, Siegwolf RTW, Korner C. Belowground carbon trade among tall trees in a temperate forest. Science 2016; 352:342-4. [DOI: 10.1126/science.aad6188] [Citation(s) in RCA: 141] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Accepted: 03/02/2016] [Indexed: 11/02/2022]
|
14
|
Voelker SL, Brooks JR, Meinzer FC, Anderson R, Bader MKF, Battipaglia G, Becklin KM, Beerling D, Bert D, Betancourt JL, Dawson TE, Domec JC, Guyette RP, Körner C, Leavitt SW, Linder S, Marshall JD, Mildner M, Ogée J, Panyushkina I, Plumpton HJ, Pregitzer KS, Saurer M, Smith AR, Siegwolf RTW, Stambaugh MC, Talhelm AF, Tardif JC, Van de Water PK, Ward JK, Wingate L. A dynamic leaf gas-exchange strategy is conserved in woody plants under changing ambient CO2 : evidence from carbon isotope discrimination in paleo and CO2 enrichment studies. GLOBAL CHANGE BIOLOGY 2016; 22:889-902. [PMID: 26391334 DOI: 10.1111/gcb.13102] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 08/24/2015] [Accepted: 09/08/2015] [Indexed: 06/05/2023]
Abstract
Rising atmospheric [CO2 ], ca , is expected to affect stomatal regulation of leaf gas-exchange of woody plants, thus influencing energy fluxes as well as carbon (C), water, and nutrient cycling of forests. Researchers have proposed various strategies for stomatal regulation of leaf gas-exchange that include maintaining a constant leaf internal [CO2 ], ci , a constant drawdown in CO2 (ca - ci ), and a constant ci /ca . These strategies can result in drastically different consequences for leaf gas-exchange. The accuracy of Earth systems models depends in part on assumptions about generalizable patterns in leaf gas-exchange responses to varying ca . The concept of optimal stomatal behavior, exemplified by woody plants shifting along a continuum of these strategies, provides a unifying framework for understanding leaf gas-exchange responses to ca . To assess leaf gas-exchange regulation strategies, we analyzed patterns in ci inferred from studies reporting C stable isotope ratios (δ(13) C) or photosynthetic discrimination (∆) in woody angiosperms and gymnosperms that grew across a range of ca spanning at least 100 ppm. Our results suggest that much of the ca -induced changes in ci /ca occurred across ca spanning 200 to 400 ppm. These patterns imply that ca - ci will eventually approach a constant level at high ca because assimilation rates will reach a maximum and stomatal conductance of each species should be constrained to some minimum level. These analyses are not consistent with canalization toward any single strategy, particularly maintaining a constant ci . Rather, the results are consistent with the existence of a broadly conserved pattern of stomatal optimization in woody angiosperms and gymnosperms. This results in trees being profligate water users at low ca , when additional water loss is small for each unit of C gain, and increasingly water-conservative at high ca , when photosystems are saturated and water loss is large for each unit C gain.
Collapse
Affiliation(s)
- Steven L Voelker
- Department of Forest Ecosystems & Society, Oregon State University, Corvallis, OR, 97331, USA
| | - J Renée Brooks
- Western Ecology Division, National Health and Environmental Effects Research Laboratory (NHEERL), U.S. Environmental Protection Agency, 200 SW 35th Street, Corvallis, OR, 97333, USA
| | - Frederick C Meinzer
- U.S.D.A. Forest Service, Pacific Northwest Research Station, 3200 SW Jefferson Way, Corvallis, OR, 97331, USA
| | - Rebecca Anderson
- Jack Baskin Engineering, University of California Santa Cruz, Santa Cruz, CA, 95604, USA
| | - Martin K-F Bader
- New Zealand Forest Research Institute (SCION), Te Papa Tipu Innovation Park, 20 Sala Street, 3046, Rotorua, New Zealand
| | - Giovanna Battipaglia
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Second University of Naples, 81100, Caserta, Italy
- Ecole Pratique des Hautes Etudes, Centre for Bio-Archaeology and Ecology, Institut de Botanique, University of Montpellier 2, Montpellier, F-34090, France
| | - Katie M Becklin
- Department of Ecology and Evolutionary Biology, University of Kansas, 1200 Sunnyside Avenue, Lawrence, KS, 66045, USA
| | - David Beerling
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, UK
| | - Didier Bert
- UMR1202 BIOGECO, INRA, F-33610, Cestas, France
- UMR 1202 BIOGECO, University of Bordeaux, F-33615, Pessac, France
| | - Julio L Betancourt
- National Research Program, Water Mission Area, U.S. Geological Survey, Mail Stop 430, 12201 Sunrise Valley Drive, Reston, VA, 20192, USA
| | - Todd E Dawson
- Department of Integrative Biology, University of California Berkeley, 1105 Valley Life Science Bldg #3140, Berkeley, CA, 94720, USA
| | - Jean-Christophe Domec
- Bordeaux Sciences Agro, UMR ISPA 1391, INRA, 33175, Gradignan, France
- Nicholas School of the Environment, Duke University, Box 90328, Durham, NC, 27708, USA
| | - Richard P Guyette
- Department of Forestry, University of Missouri, 203 ABNR Building, Columbia, MO, 65211, USA
| | - Christian Körner
- Institute of Botany, University of Basel, Schonbeinstrasse 6, CH-4056, Basel, Switzerland
| | | | - Sune Linder
- Laboratory for Tree-Ring Research, University of Arizona, 1215 E. Lowell St., Tucson, AZ, 85721-0045, USA
| | - John D Marshall
- Southern Swedish Forest Research Centre, Swedish University of Agricultural Sciences, PO Box 49, SE-230 53, Alnarp, Sweden
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, SE-901 83, Umeå, Sweden
| | - Manuel Mildner
- Institute of Botany, University of Basel, Schonbeinstrasse 6, CH-4056, Basel, Switzerland
| | - Jérôme Ogée
- Bordeaux Sciences Agro, UMR ISPA 1391, INRA, 33175, Gradignan, France
- UMR1391 ISPA, INRA, 33140, Villenave d'Ornon, France
| | - Irina Panyushkina
- Laboratory for Tree-Ring Research, University of Arizona, 1215 E. Lowell St., Tucson, AZ, 85721-0045, USA
| | | | - Kurt S Pregitzer
- Department of Forest, Rangeland and Fire Sciences, University of Idaho, 875 Perimeter Drive, Moscow, ID, 83844, USA
| | | | - Andrew R Smith
- School of the Environment, Natural Resources and Geography, Bangor University, Gwynedd, LL57 2UW, UK
| | | | - Michael C Stambaugh
- Department of Forestry, University of Missouri, 203 ABNR Building, Columbia, MO, 65211, USA
| | - Alan F Talhelm
- Department of Forest, Rangeland and Fire Sciences, University of Idaho, 875 Perimeter Drive, Moscow, ID, 83844, USA
| | - Jacques C Tardif
- Centre for Forest Interdisciplinary Research (C-FIR), University of Winnipeg, 515 Avenue Portage, Winnipeg, MB, Canada, R3B 2E9
| | - Peter K Van de Water
- Department of Earth & Environmental Sciences, California State University, Fresno, 2576 E. San Ramon Ave., Mail Stop ST-24, Fresno, CA, 93740, USA
| | - Joy K Ward
- Department of Ecology and Evolutionary Biology, University of Kansas, 1200 Sunnyside Avenue, Lawrence, KS, 66045, USA
| | - Lisa Wingate
- Bordeaux Sciences Agro, UMR ISPA 1391, INRA, 33175, Gradignan, France
- UMR1391 ISPA, INRA, 33140, Villenave d'Ornon, France
| |
Collapse
|
15
|
Liesche J, Windt C, Bohr T, Schulz A, Jensen KH. Slower phloem transport in gymnosperm trees can be attributed to higher sieve element resistance. TREE PHYSIOLOGY 2015; 35:376-86. [PMID: 25787331 DOI: 10.1093/treephys/tpv020] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 02/10/2015] [Indexed: 05/09/2023]
Abstract
In trees, carbohydrates produced in photosynthesizing leaves are transported to roots and other sink organs over distances of up to 100 m inside a specialized transport tissue, the phloem. Angiosperm and gymnosperm trees have a fundamentally different phloem anatomy with respect to cell size, shape and connectivity. Whether these differences have an effect on the physiology of carbohydrate transport, however, is not clear. A meta-analysis of the experimental data on phloem transport speed in trees yielded average speeds of 56 cm h(-1) for angiosperm trees and 22 cm h(-1) for gymnosperm trees. Similar values resulted from theoretical modeling using a simple transport resistance model. Analysis of the model parameters clearly identified sieve element (SE) anatomy as the main factor for the significantly slower carbohydrate transport speed inside the phloem in gymnosperm compared with angiosperm trees. In order to investigate the influence of SE anatomy on the hydraulic resistance, anatomical data on SEs and sieve pores were collected by transmission electron microscopy analysis and from the literature for 18 tree species. Calculations showed that the hydraulic resistance is significantly higher in the gymnosperm than in angiosperm trees. The higher resistance is only partially offset by the considerably longer SEs of gymnosperms.
Collapse
Affiliation(s)
- Johannes Liesche
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg, Denmark
| | - Carel Windt
- Forschungszentrum Jülich, IBG-2: Plant Sciences, 52428 Jülich, Germany
| | - Tomas Bohr
- Department of Physics, Technical University of Denmark, 2800 Kgs Lyngby, Denmark
| | - Alexander Schulz
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg, Denmark
| | - Kaare H Jensen
- Department of Physics, Technical University of Denmark, 2800 Kgs Lyngby, Denmark
| |
Collapse
|