1
|
Nejad FS, Alizade-Harakiyan M, Haghi M, Ebrahimi R, Zangeneh MM, Farajollahi A, Fathi R, Mohammadi R, Miandoab SS, Asl MH, Asgharian P, Divband B, Ahmadi A. Investigating the effectiveness of iron nanoparticles synthesized by green synthesis method in chemoradiotherapy of colon cancer. Heliyon 2024; 10:e28343. [PMID: 38560153 PMCID: PMC10981048 DOI: 10.1016/j.heliyon.2024.e28343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/15/2024] [Accepted: 03/15/2024] [Indexed: 04/04/2024] Open
Abstract
Current methods of colon cancer treatment, especially chemotherapy, require new treatment methods due to adverse side effects. One important area of interest in recent years is the use of nanoparticles as drug delivery vehicles since several studies have revealed that they can improve the target specificity of the treatment thus lowering the dosage of the drugs while preserving the effectiveness of the treatment thus reducing the side effects. The use of traditional medicine has also been a favorite topic of interest in recent years in medical research, especially cancer research. In this research work, the green synthesis of Fe nanoparticles was carried out using Mentha spicata extract and the synthesized nanoparticles were identified using FT-IR, XRD, FE-SEM and EDS techniques. Then the effect of Mentha spicata, Fe nanoparticles, and Mentha spicata -loaded Fe nanoparticles on LS174t colon cancer cells, and our result concluded that all three, especially Mentha spicata -loaded Fe nanoparticles, have great cytotoxic effects against LS174t cells, and exposure to radiotherapy just further intensified these results. The in vitro condition revealed alterations in the expression of pro-apoptotic BAX and anti-apoptotic Bcl2, suggesting a pro-apoptotic effect from all three components, particularly the Mentha spicata-loaded Fe nanoparticles. After further clinical trials, these nanoparticles can be used to treat colon cancer.
Collapse
Affiliation(s)
- Farshad Seyed Nejad
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Radiation Oncology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mostafa Alizade-Harakiyan
- Department of Radiation Oncology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Medical Physics Department, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Haghi
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Rokhsareh Ebrahimi
- Medicinal Chemistry Department, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Mahdi Zangeneh
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
- Biotechnology and Medicinal Plants Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Alireza Farajollahi
- Department of Radiation Oncology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Medical Physics Department, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Medical Radiation Science Research Team, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Roghayeh Fathi
- Polymer Research Laboratory, Department of Organic and Biochemistry, University of Tabriz, Tabriz, Iran
| | - Reza Mohammadi
- Polymer Research Laboratory, Department of Organic and Biochemistry, University of Tabriz, Tabriz, Iran
| | | | | | - Parina Asgharian
- Department of Pharmacognosy, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Baharak Divband
- Department of Inorganic Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Amin Ahmadi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
2
|
Kamyab H, Chelliapan S, Hayder G, Yusuf M, Taheri MM, Rezania S, Hasan M, Yadav KK, Khorami M, Farajnezhad M, Nouri J. Exploring the potential of metal and metal oxide nanomaterials for sustainable water and wastewater treatment: A review of their antimicrobial properties. CHEMOSPHERE 2023; 335:139103. [PMID: 37271472 DOI: 10.1016/j.chemosphere.2023.139103] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/19/2023] [Accepted: 05/31/2023] [Indexed: 06/06/2023]
Abstract
Metallic nanoparticles (NPs) are of particular interest as antimicrobial agents in water and wastewater treatment due to their broad suppressive range against bacteria, viruses, and fungi commonly found in these environments. This review explores the potential of different types of metallic NPs, including zinc oxide, gold, copper oxide, and titanium oxide, for use as effective antimicrobial agents in water and wastewater treatment. This is due to the fact that metallic NPs possess a broad suppressive range against bacteria, viruses, as well as fungus. In addition to that, NPs are becoming an increasingly popular alternative to antibiotics for treating bacterial infections. Despite the fact that most research has been focused on silver NPs because of the antibacterial qualities that are known to be associated with them, curiosity about other metallic NPs as potential antimicrobial agents has been growing. Zinc oxide, gold, copper oxide, and titanium oxide NPs are included in this category since it has been demonstrated that these elements have antibacterial properties. Inducing oxidative stress, damage to the cellular membranes, and breakdowns throughout the protein and DNA chains are some of the ways that metallic NPs can have an influence on microbial cells. The purpose of this review was to engage in an in-depth conversation about the current state of the art regarding the utilization of the most important categories of metallic NPs that are used as antimicrobial agents. Several approaches for the synthesis of metal-based NPs were reviewed, including physical and chemical methods as well as "green synthesis" approaches, which are synthesis procedures that do not involve the employment of any chemical agents. Moreover, additional pharmacokinetics, physicochemical properties, and the toxicological hazard associated with the application of silver NPs as antimicrobial agents were discussed.
Collapse
Affiliation(s)
- Hesam Kamyab
- Faculty of Architecture and Urbanism, UTE University, Calle Rumipamba S/N and Bourgeois, Quito, Ecuador; Institute of Energy Infrastructure (IEI), Universiti Tenaga Nasional (UNITEN), Selangor Darul Ehsan, Kajang, 43000, Malaysia; Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, 600 077, India; Process Systems Engineering Centre (PROSPECT), Faculty of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia.
| | - Shreeshivadasan Chelliapan
- Engineering Department, Razak Faculty of Technology and Informatics, Universiti Teknologi Malaysia, Jln Sultan Yahya Petra, 54100, Kuala Lumpur, Malaysia.
| | - Gasim Hayder
- Institute of Energy Infrastructure (IEI), Universiti Tenaga Nasional (UNITEN), Selangor Darul Ehsan, Kajang, 43000, Malaysia; Department of Civil Engineering, College of Engineering, Universiti Tenaga Nasional (UNITEN), Selangor Darul Ehsan, Kajang, 43000, Malaysia
| | - Mohammad Yusuf
- Institute of Hydrocarbon Recovery, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Perak, 32610, Malaysia
| | - Mohammad Mahdi Taheri
- Department of Pharmaceutical Biomaterials, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahabaldin Rezania
- Department of Environment and Energy, Sejong University, Seoul, 05006, South Korea
| | - Mudassir Hasan
- Department of Chemical Engineering King Khalid University, Abha, Saudi Arabia
| | - Krishna Kumar Yadav
- Faculty of Science and Technology, Madhyanchal Professional University, Ratibad, Bhopal, 462044, India; Environmental and Atmospheric Sciences Research Group, Scientific Research Center, Al-Ayen University, Thi-Qar, Nasiriyah, 64001, Iraq
| | - Majid Khorami
- Faculty of Architecture and Urbanism, UTE University, Calle Rumipamba S/N and Bourgeois, Quito, Ecuador; Facultad de Ingeniería en Mecánica y Ciencias de la Producción, Escuela Superior Politécnica del Litoral, ESPOL, Campus Gustavo Galindo Km. 30.5 Vía Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuado
| | - Mohammad Farajnezhad
- Azman Hashim International Business School (AHIBS), Universiti Teknologi Malaysia Kuala Lumpur, 54100, Kuala Lumpur, Malaysia
| | - J Nouri
- Department of Environmental Health Engineering, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Alli YA, Ejeromedoghene O, Oladipo A, Adewuyi S, Amolegbe SA, Anuar H, Thomas S. Compressed Hydrogen-Induced Synthesis of Quaternary Trimethyl Chitosan-Silver Nanoparticles with Dual Antibacterial and Antifungal Activities. ACS APPLIED BIO MATERIALS 2022; 5:5240-5254. [PMID: 36270024 DOI: 10.1021/acsabm.2c00670] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Quaternary Trimethyl Chitosan (QTMC) and QTMC-Silver Nanoparticles (QTMC-AgNPs) have been synthesized, characterized, and tested as antibacterial agents against Staphylococcus aureus, Escherichia coli, and two plant fungi (Sclerotium rolfsil and Fusarium oxysporum). The as-prepared water-soluble QTMC was in situ reacted with silver nitrate in the presence of clean compressed hydrogen gas (3 bar) as a reducing agent to produce QTMC-AgNPs. UV-vis, ATR-FTIR, HR-TEM/SEM, XPS, DLS, XRD, and TGA/DTG were employed to assess the optical response, morphology/size, surface chemistry, particle size distribution, crystal nature, and thermal stability of the synthesized QTMC-AgNPs, respectively. The as-prepared QTMC-AgNPs were quasi-spherical in shape with an average particle size of 12.5 nm, as determined by ImageJ software utilizing HR-TEM images and further validated by DLS analysis. The development of crystalline nanoparticles was confirmed by the presence of distinct and consistent lattice fringes with an approximate interplanar d-spacing of 2.04 nm in QTMC-AgNPs. The QTMC-AgNPs exhibited significant antibacterial activity with a clear zone of inhibition of 30 mm and 26 mm around the disks against E. coli and S. aureus, respectively. In addition, QTMC-AgNPs showed highly efficient antifungal activity with 100% and 76.67% growth inhibition against two plant pathogens, S. rolfsii and F. oxysporum, respectively, whereas QTMC revealed no impact. Overall, QTMC-AgNPs showed a promising therapeutic potential and,thus, can be considered for drug design rationale.
Collapse
Affiliation(s)
- Yakubu Adekunle Alli
- LCC-CNRS, Université de Toulouse, CNRS, UPS, 205 Route de Narbonne, BP44099, 31077 CEDEX 4, Toulouse, France.,Department of Chemical Sciences, Faculty of Science and Computing, Ahman Pategi University, Patigi-Kpada Road, Patigi, Kwara State243105, Nigeria.,School of Energy Materials and International and Inter University Centre for Nanoscience and Nanotechnology (IIUCNN), Mahatma Gandi University, Kottayam, Kerala686560, India
| | - Onome Ejeromedoghene
- School of Chemistry and Chemical Engineering, Southeast University, 211189Nanjing, Jiangsu Province, P. R. China
| | - Abiodun Oladipo
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, 210037Nanjing, Jiangsu, China
| | - Sheriff Adewuyi
- Department of Chemistry, Federal University of Agriculture Abeokuta, Abeokuta, Ogun State2240, Nigeria
| | - Saliu Alao Amolegbe
- Department of Chemistry, Federal University of Agriculture Abeokuta, Abeokuta, Ogun State2240, Nigeria
| | - Hazleen Anuar
- Department of Manufacturing and Materials Engineering, Kulliyyah of Engineering, International Islamic University Malaysia, Jalan Gombak, 53100Kuala Lumpur, Malaysia
| | - Sabu Thomas
- School of Energy Materials and International and Inter University Centre for Nanoscience and Nanotechnology (IIUCNN), Mahatma Gandi University, Kottayam, Kerala686560, India
| |
Collapse
|
4
|
Avirdi E, Kamdem Paumo H, Pone Kamdem B, Babu Singh M, Kumari K, Maureen Katata-Seru L, Bahadur I. Influence of cation (imidazolium based ionic liquids) as “smart” stabilizers for silver nanoparticles and their evaluation as antibacterial activity on Escherichia coli, Staphylococcus aureus and Enterobacter cloacae. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
5
|
Sycz Z, Wojnicz D, Tichaczek-Goska D. Does Secondary Plant Metabolite Ursolic Acid Exhibit Antibacterial Activity against Uropathogenic Escherichia coli Living in Single- and Multispecies Biofilms? Pharmaceutics 2022; 14:pharmaceutics14081691. [PMID: 36015317 PMCID: PMC9415239 DOI: 10.3390/pharmaceutics14081691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/18/2022] [Accepted: 08/12/2022] [Indexed: 11/16/2022] Open
Abstract
Multispecies bacterial biofilms are the often cause of chronic recurrent urinary tract infections within the human population. Eradicating such a complex bacterial consortium with standard pharmacotherapy is often unsuccessful. Therefore, plant-derived compounds are currently being researched as an alternative strategy to antibiotic therapy for preventing bacterial biofilm formation and facilitating its eradication. Therefore, our research aimed to determine the effect of secondary plant metabolite ursolic acid (UA) on the growth and survival, the quantity of exopolysaccharides formed, metabolic activity, and morphology of uropathogenic Gram-negative rods living in single- and mixed-species biofilms at various stages of their development. Spectrophotometric methods were used for biofilm mass formation and metabolic activity determination. The survival of bacteria was established using the serial dilution assay. The decrease in survival and inhibition of biofilm creation, both single- and multispecies, as well as changes in the morphology of bacterial cells were noticed. As UA exhibited better activity against young biofilms, the use of UA-containing formulations, especially during the initial steps of urinary tract infection, seems to be reasonable. However, the future direction should be a thorough understanding of the mechanisms of UA activity as a bioactive substance.
Collapse
|
6
|
Khane Y, Benouis K, Albukhaty S, Sulaiman GM, Abomughaid MM, Al Ali A, Aouf D, Fenniche F, Khane S, Chaibi W, Henni A, Bouras HD, Dizge N. Green Synthesis of Silver Nanoparticles Using Aqueous Citrus limon Zest Extract: Characterization and Evaluation of Their Antioxidant and Antimicrobial Properties. NANOMATERIALS 2022; 12:nano12122013. [PMID: 35745352 PMCID: PMC9227472 DOI: 10.3390/nano12122013] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/21/2022] [Accepted: 06/08/2022] [Indexed: 02/04/2023]
Abstract
The current work concentrated on the green synthesis of silver nanoparticles (AgNPs) through the use of aqueous Citruslimon zest extract, optimizing the different experimental factors required for the formation and stability of AgNPs. The preparation of nanoparticles was confirmed by the observation of the color change of the mixture of silver nitrate, after the addition of the plant extract, from yellow to a reddish-brown colloidal suspension and was established by detecting the surface plasmon resonance band at 535.5 nm, utilizing UV-Visible analysis. The optimum conditions were found to be 1 mM of silver nitrate concentration, a 1:9 ratio extract of the mixture, and a 4 h incubation period. Fourier transform infrared spectroscopy spectrum indicated that the phytochemicals compounds present in Citrus limon zest extract had a fundamental effect on the production of AgNPs as a bio-reducing agent. The morphology, size, and elemental composition of AgNPs were investigated by zeta potential (ZP), dynamic light scattering (DLS), SEM, EDX, X-ray diffraction (XRD), and transmission electron microscopy (TEM) analysis, which showed crystalline spherical silver nanoparticles. In addition, the antimicrobial and antioxidant properties of this bioactive silver nanoparticle were also investigated. The AgNPs showed excellent antibacterial activity against one Gram-negative pathogens bacteria, Escherichia coli, and one Gram-positive bacteria, Staphylococcus aureus, as well as antifungal activity against Candida albicans. The obtained results indicate that the antioxidant activity of this nanoparticle is significant. This bioactive silver nanoparticle can be used in biomedical and pharmacological fields.
Collapse
Affiliation(s)
- Yasmina Khane
- Université de Ghardaia, BP455, Ghardaia 47000, Algeria
- Laboratory of Applied Chemistry (LAC), DGRSDT, Ctr. Univ. Bouchaib Belhadj, Ain Temouchent 46000, Algeria
- Correspondence: (Y.K.); (S.A.); (G.M.S.)
| | - Khedidja Benouis
- Laboratory of Process Engineering, Materials and Environment, Department of Energy and Process Engineering, Faculty of Technology, University of Sidi Bel-Abbes, Sidi Bel Abbes 22000, Algeria;
| | - Salim Albukhaty
- Department of Chemistry, College of Science, University of Misan, Maysan 62001, Iraq
- Correspondence: (Y.K.); (S.A.); (G.M.S.)
| | - Ghassan M. Sulaiman
- Department of Applied Sciences, University of Technology, Baghdad 10066, Iraq
- Correspondence: (Y.K.); (S.A.); (G.M.S.)
| | - Mosleh M. Abomughaid
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, 255, Bisha 67714, Saudi Arabia; (M.M.A.); (A.A.A.)
| | - Amer Al Ali
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, 255, Bisha 67714, Saudi Arabia; (M.M.A.); (A.A.A.)
| | - Djaber Aouf
- Laboratory of Dynamic Interactions and Reactivity of Systems, University of Kasdi Merbah, Ouargla 30000, Algeria; (D.A.); (F.F.); (A.H.)
| | - Fares Fenniche
- Laboratory of Dynamic Interactions and Reactivity of Systems, University of Kasdi Merbah, Ouargla 30000, Algeria; (D.A.); (F.F.); (A.H.)
| | - Sofiane Khane
- Department of Energy and Process Engineering, Faculty of Technology, University of Djillali Liabes, Sidi Bel Abbes 22000, Algeria;
| | - Wahiba Chaibi
- Scientific and Technical Research Center in Chemistry and Physics Analysis, Bousmail RP 42415, Algeria;
| | - Abdallah Henni
- Laboratory of Dynamic Interactions and Reactivity of Systems, University of Kasdi Merbah, Ouargla 30000, Algeria; (D.A.); (F.F.); (A.H.)
| | - Hadj Daoud Bouras
- Département de Physique, Ecole Normale Supérieure de Laghouat, RP Rue des Martyrs, Laghouat BP 4033, Algeria;
| | - Nadir Dizge
- Department of Environmental Engineering, Mersin University, Mersin 33343, Turkey;
| |
Collapse
|
7
|
Mohanta YK, Chakrabartty I, Mishra AK, Chopra H, Mahanta S, Avula SK, Patowary K, Ahmed R, Mishra B, Mohanta TK, Saravanan M, Sharma N. Nanotechnology in combating biofilm: A smart and promising therapeutic strategy. Front Microbiol 2022; 13:1028086. [PMID: 36938129 PMCID: PMC10020670 DOI: 10.3389/fmicb.2022.1028086] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 12/19/2022] [Indexed: 03/06/2023] Open
Abstract
Since the birth of civilization, people have recognized that infectious microbes cause serious and often fatal diseases in humans. One of the most dangerous characteristics of microorganisms is their propensity to form biofilms. It is linked to the development of long-lasting infections and more severe illness. An obstacle to eliminating such intricate structures is their resistance to the drugs now utilized in clinical practice (biofilms). Finding new compounds with anti-biofilm effect is, thus, essential. Infections caused by bacterial biofilms are something that nanotechnology has lately shown promise in treating. More and more studies are being conducted to determine whether nanoparticles (NPs) are useful in the fight against bacterial infections. While there have been a small number of clinical trials, there have been several in vitro outcomes examining the effects of antimicrobial NPs. Nanotechnology provides secure delivery platforms for targeted treatments to combat the wide range of microbial infections caused by biofilms. The increase in pharmaceuticals' bioactive potential is one of the many ways in which nanotechnology has been applied to drug delivery. The current research details the utilization of several nanoparticles in the targeted medication delivery strategy for managing microbial biofilms, including metal and metal oxide nanoparticles, liposomes, micro-, and nanoemulsions, solid lipid nanoparticles, and polymeric nanoparticles. Our understanding of how these nanosystems aid in the fight against biofilms has been expanded through their use.
Collapse
Affiliation(s)
- Yugal Kishore Mohanta
- Department of Applied Biology, School of Biological Sciences, University of Science and Technology Meghalaya (USTM), Techno City, Meghalaya, India
- *Correspondence: Yugal Kishore Mohanta,
| | - Ishani Chakrabartty
- Department of Applied Biology, School of Biological Sciences, University of Science and Technology Meghalaya (USTM), Techno City, Meghalaya, India
- Indegene Pvt. Ltd., Manyata Tech Park, Bangalore, India
| | | | - Hitesh Chopra
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Saurov Mahanta
- National Institute of Electronics and Information Technology (NIELIT), Guwahati Centre, Guwahati, Assam, India
| | - Satya Kumar Avula
- Natural and Medical Sciences Research Centre, University of Nizwa, Nizwa, Oman
| | - Kaustuvmani Patowary
- Department of Applied Biology, School of Biological Sciences, University of Science and Technology Meghalaya (USTM), Techno City, Meghalaya, India
| | - Ramzan Ahmed
- Department of Applied Biology, School of Biological Sciences, University of Science and Technology Meghalaya (USTM), Techno City, Meghalaya, India
- Department of Physics, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Bibhudutta Mishra
- Department of Gastroenterology and HNU, All India Institute of Medical Sciences, New Delhi, India
| | - Tapan Kumar Mohanta
- Natural and Medical Sciences Research Centre, University of Nizwa, Nizwa, Oman
- Tapan Kumar Mohanta,
| | - Muthupandian Saravanan
- AMR and Nanotherapeutics Laboratory, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, India
| | - Nanaocha Sharma
- Institute of Bioresources and Sustainable Development, Imphal, Manipur, India
- Nanaocha Sharma,
| |
Collapse
|
8
|
Khan AU, Rahman AU, Yuan Q, Ahmad A, Khan ZUH, Mahnashi MH, Alyami BA, Alqahtani YS, Ullah S, Wirman AP. Facile and eco-benign fabrication of Ag/Fe2O3 nanocomposite using Algaia Monozyga leaves extract and its’ efficient biocidal and photocatalytic applications. Photodiagnosis Photodyn Ther 2020; 32:101970. [DOI: 10.1016/j.pdpdt.2020.101970] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 08/07/2020] [Accepted: 08/14/2020] [Indexed: 02/07/2023]
|
9
|
Ghiulai R, Roşca OJ, Antal DS, Mioc M, Mioc A, Racoviceanu R, Macaşoi I, Olariu T, Dehelean C, Creţu OM, Voicu M, Şoica C. Tetracyclic and Pentacyclic Triterpenes with High Therapeutic Efficiency in Wound Healing Approaches. Molecules 2020; 25:E5557. [PMID: 33256207 PMCID: PMC7730621 DOI: 10.3390/molecules25235557] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 02/06/2023] Open
Abstract
Wounds are among the most common skin conditions, displaying a large etiological diversity and being characterized by different degrees of severity. Wound healing is a complex process that involves multiple steps such as inflammation, proliferation and maturation and ends with scar formation. Since ancient times, a widely used option for treating skin wounds are plant- based treatments which currently have become the subject of modern pharmaceutical formulations. Triterpenes with tetracyclic and pentacyclic structure are extensively studied for their implication in wound healing as well as to determine their molecular mechanisms of action. The current review aims to summarize the main results of in vitro, in vivo and clinical studies conducted on lupane, ursane, oleanane, dammarane, lanostane and cycloartane type triterpenes as potential wound healing treatments.
Collapse
Affiliation(s)
- Roxana Ghiulai
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Victor Babeş University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., 300041 Timişoara, Romania; (R.G.); (O.J.R.); (M.M.); (R.R.); (C.Ş.)
| | - Oana Janina Roşca
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Victor Babeş University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., 300041 Timişoara, Romania; (R.G.); (O.J.R.); (M.M.); (R.R.); (C.Ş.)
| | - Diana Simona Antal
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Victor Babeş University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., 300041 Timişoara, Romania
| | - Marius Mioc
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Victor Babeş University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., 300041 Timişoara, Romania; (R.G.); (O.J.R.); (M.M.); (R.R.); (C.Ş.)
| | - Alexandra Mioc
- Department of Anatomy, Physiology, Pathophysiology, Faculty of Pharmacy, Victor Babeş University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., 300041 Timişoara, Romania;
| | - Roxana Racoviceanu
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Victor Babeş University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., 300041 Timişoara, Romania; (R.G.); (O.J.R.); (M.M.); (R.R.); (C.Ş.)
| | - Ioana Macaşoi
- Department of Toxicology, Faculty of Pharmacy, Victor Babeş University of Medicine and Pharmacy, 2nd EftimieMurgu Sq., 300041 Timişoara, Romania; (I.M.); (C.D.)
| | - Tudor Olariu
- Department of Organic Chemistry, Faculty of Pharmacy, Victor Babeş University of Medicine and Pharmacy, 2nd EftimieMurgu Sq., 300041 Timişoara, Romania;
| | - Cristina Dehelean
- Department of Toxicology, Faculty of Pharmacy, Victor Babeş University of Medicine and Pharmacy, 2nd EftimieMurgu Sq., 300041 Timişoara, Romania; (I.M.); (C.D.)
| | - Octavian Marius Creţu
- Department of Surgery, Faculty of Medicine, Victor Babeş University of Medicine and Pharmacy, 2nd EftimieMurgu Sq., 300041 Timişoara, Romania;
| | - Mirela Voicu
- Department of Pharmacology, Faculty of Pharmacy, Victor Babeş University of Medicine and Pharmacy, 2nd EftimieMurgu Sq., 300041 Timişoara, Romania
| | - Codruţa Şoica
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Victor Babeş University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., 300041 Timişoara, Romania; (R.G.); (O.J.R.); (M.M.); (R.R.); (C.Ş.)
| |
Collapse
|
10
|
Abbot V, Sharma P. Thermodynamics and acoustic effects of quercetin on micellization and interaction behaviour of CTAB in different hydroethanol solvent systems. Z PHYS CHEM 2020. [DOI: 10.1515/zpch-2020-1603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Flavonoids amongst the class of secondary metabolites possess numerous health benefits, are known for its use in pharmaceutical industry. Quercetin, a flavonoid has more prominent medical advantages however its utilization is constrained because of various instability and insolubility issues and therefore, taken into consideration for studying its physico-chemical properties. In view of that, the thermodynamic and thermoacoustic properties of quercetin were examined in presence of cationic surfactant cetyltrimethylammonium bromide (CTAB) at different hydroethanolic concentrations and temperatures. The conductivity studies were used to calculate change in enthalpy (∆H
o
m
), change in entropy (∆S
o
m
) and change in Gibbs free Energy (∆G
o
m
) of micellization. The interactions between quercetin and CTAB were found to be endothermic, entropically controlled and spontaneous. Further, ultrasonic sound velocity and density studies were carried out and utilized for the calculation of thermoacoustic parameters i.e. apparent molar volume and apparent molar compressibility. Thermoacoustic properties revealed that at higher surfactant concentration, hydrophobic interactions are dominant. The results suggested that the flavonoid-surfactant interactions in hydroethanolic solutions is more favourable as compared with aqueous solution. Overall, the data is favourable for the framework to be used for detailing advancement, drug development, drug industry, pharmaceutical industry, medical administration and formulation development studies.
Collapse
Affiliation(s)
- Vikrant Abbot
- Department of Biotechnology and Bioinformatics , Jaypee University of Information Technology , Solan , India
| | - Poonam Sharma
- Department of Biotechnology and Bioinformatics , Jaypee University of Information Technology , Solan , India
| |
Collapse
|
11
|
Ramteke L, Gawali P, Jadhav BL, Chopade BA. Comparative Study on Antibacterial Activity of Metal Ions, Monometallic and Alloy Noble Metal Nanoparticles Against Nosocomial Pathogens. BIONANOSCIENCE 2020. [DOI: 10.1007/s12668-020-00771-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
12
|
Basavegowda N, Patra JK, Baek KH. Essential Oils and Mono/bi/tri-Metallic Nanocomposites as Alternative Sources of Antimicrobial Agents to Combat Multidrug-Resistant Pathogenic Microorganisms: An Overview. Molecules 2020; 25:E1058. [PMID: 32120930 PMCID: PMC7179174 DOI: 10.3390/molecules25051058] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 02/24/2020] [Accepted: 02/24/2020] [Indexed: 02/06/2023] Open
Abstract
Over the past few decades, many pathogenic bacteria have become resistant to existing antibiotics, which has become a threat to infectious disease control worldwide. Hence, there has been an extensive search for new, efficient, and alternative sources of antimicrobial agents to combat multidrug-resistant pathogenic microorganisms. Numerous studies have reported the potential of both essential oils and metal/metal oxide nanocomposites with broad spectra of bioactivities including antioxidant, anticancer, and antimicrobial attributes. However, only monometallic nanoparticles combined with essential oils have been reported on so far with limited data. Bi- and tri-metallic nanoparticles have attracted immense attention because of their diverse sizes, shapes, high surface-to-volume ratios, activities, physical and chemical stability, and greater degree of selectivity. Combination therapy is currently blooming and represents a potential area that requires greater attention and is worthy of future investigations. This review summarizes the synergistic effects of essential oils with other antimicrobial combinations such as mono-, bi-, and tri-metallic nanocomposites. Thus, the various aspects of this comprehensive review may prove useful in the development of new and alternative therapeutics against antibiotic resistant pathogens in the future.
Collapse
Affiliation(s)
- Nagaraj Basavegowda
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk 38451, Korea;
| | - Jayanta Kumar Patra
- Research Institute of Biotechnology and Medical Converged Science, Dongguk University-Seoul, Goyang 10326, Korea
| | - Kwang-Hyun Baek
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk 38451, Korea;
| |
Collapse
|
13
|
Monedeiro F, Pomastowski P, Milanowski M, Ligor T, Buszewski B. Monitoring of Bactericidal Effects of Silver Nanoparticles Based on Protein Signatures and VOC Emissions from Escherichia coli and Selected Salivary Bacteria. J Clin Med 2019; 8:E2024. [PMID: 31752439 PMCID: PMC6912796 DOI: 10.3390/jcm8112024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 11/19/2019] [Indexed: 01/13/2023] Open
Abstract
Escherichia coli and salivary Klebsiella oxytoca and Staphylococcus saccharolyticus were subjected to different concentrations of silver nanoparticles (AgNPs), namely: 12.5, 50, and 100 µg mL-1. Matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry (MALDI-TOF MS) spectra were acquired after specified periods: 0, 1, 4, and 12 h. For study of volatile metabolites, headspace solid-phase microextraction coupled to gas chromatography/mass spectrometry (HS-SPME-GC-MS) was employed-AgNPs were added to bacteria cultures and the headspace was analyzed immediately and after 12 h of incubation. Principal components analysis provided discrimination between clusters of protein profiles belonging to different strains. Canonical correlation, network analysis, and multiple linear regression approach revealed that dimethyl disulfide, dimethyl trisulfide, 2-heptanone, and dodecanal (related to the metabolism of sulfur-containing amino acids and fatty acids synthesis) are exemplary molecular indicators, whose response variation deeply correlated to the interaction with bacteria. Therefore, such species can serve as biomarkers of the agent's effectiveness. The present investigation pointed out that the used approaches can be useful in the monitoring of response to therapeutic treatment based on AgNPs. Furthermore, biochemical mechanisms enrolled in the bactericidal action of nanoparticles can be applied in the development of new agents with enhanced properties.
Collapse
Affiliation(s)
- Fernanda Monedeiro
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, 87-100 Toruń, Poland; (F.M.); (P.P.); (M.M.); (T.L.)
- Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University, 87-100 Toruń, Poland
- Department of Chemistry, Faculty of Philosophy, Science and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto CEP 14040-901, Brazil
| | - Paweł Pomastowski
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, 87-100 Toruń, Poland; (F.M.); (P.P.); (M.M.); (T.L.)
- Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University, 87-100 Toruń, Poland
| | - Maciej Milanowski
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, 87-100 Toruń, Poland; (F.M.); (P.P.); (M.M.); (T.L.)
- Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University, 87-100 Toruń, Poland
| | - Tomasz Ligor
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, 87-100 Toruń, Poland; (F.M.); (P.P.); (M.M.); (T.L.)
- Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University, 87-100 Toruń, Poland
| | - Bogusław Buszewski
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, 87-100 Toruń, Poland; (F.M.); (P.P.); (M.M.); (T.L.)
- Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University, 87-100 Toruń, Poland
| |
Collapse
|
14
|
Hydrophilic Silver Nanoparticles Loaded into Niosomes: Physical-Chemical Characterization in View of Biological Applications. NANOMATERIALS 2019; 9:nano9081177. [PMID: 31426465 PMCID: PMC6724070 DOI: 10.3390/nano9081177] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/02/2019] [Accepted: 08/15/2019] [Indexed: 12/11/2022]
Abstract
Silver nanoparticles (AgNPs) are widely used as antibacterial agents and anticancer drugs, but often their low stability limits their mass production and broad applications. The use of niosomes as a carrier to protect and envelop AgNPs gives a new perspective to solve these problems. In this study, AgNPs were functionalized with sodium 3-mercapto-1-propanesulfonate (3MPS) to induce hydrophilic behavior, improving loading in Tween 20 and Span 20 niosomes (NioTw20 and NioSp20, respectively). Entrapment efficiency was evaluated by UV analyses and is around 1–4%. Dimensions were investigated by means of dynamic light scattering (DLS) (<2RH> = 140 ± 4 nm and <2RH> = 251 ± 1 nm respectively for NioTw20 + AgNPs and NioSp20 + AgNPs) and were compared with those by atomic force microscopy (AFM) and small angle X ray scattering (SAXS) analyses. Stability was assessed in water up to 90 days, and both in bovine serum and human serum for up to 8 h. In order to characterize the local structure of niosomes, SAXS measurements have been performed on Tween 20 and Span 20 empty niosomes and loaded with AgNPs. The release profiles of hydrophilic probe calcein and lipophilic probe Nile Red were performed in HEPES buffer and in human serum. All these features contribute to conclude that the two systems, NioTw20 + AgNPs and NioSp20 + AgNPs, are suitable and promising in the field of biological applications.
Collapse
|
15
|
Zaheer Z, AL-Asfar A, Aazam ES. Adsorption of methyl red on biogenic Ag@Fe nanocomposite adsorbent: Isotherms, kinetics and mechanisms. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.03.030] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
16
|
Thomas J, Perikaruppan P, Thomas V, John J, Mathew RM, Thomas J, Rejeena I, Mathew S, Mujeeb A. Green Synthesized Plasmonic Silver Systems for Potential Non-Linear Optical Applications: Optical Limiting and Dual Beam Mode Matched Thermal Lensing. Aust J Chem 2019. [DOI: 10.1071/ch18617] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Bioactive compound functionalized plasmonic systems are evolving as a promising branch of nanotechnology. In this communication the synthesis of bioactive compound mimosine-based silver nanoparticles (AgNPs) and their non-linear optical and thermo-optic properties are presented. UV-Visible spectroscopy, optical bandgap measurement, fluorescence spectroscopy, and high-resolution transmission electron microscopy (HRTEM) techniques were used to characterize the synthesized AgNPs. An open aperture z-scan technique was used to determine the non-linear optical parameters. A very strong reverse saturable absorption (RSA) and low optical limiting threshold were observed for the present mimosine decorated AgNP system. The thermo-optic property of the present system was evaluated using a highly sensitive dual beam mode matched thermal lensing spectroscopic technique. A comparison of the low limiting threshold (242MWcm−2) and thermo-optic property (thermal diffusivity, D=1.13×10−7m2s−1) with similar systems proves its capability for non-linear optical and thermo-optic applications.
Collapse
|
17
|
Al-Asfar A, Zaheer Z, Aazam ES. Eco-friendly green synthesis of Ag@Fe bimetallic nanoparticles: Antioxidant, antimicrobial and photocatalytic degradation of bromothymol blue. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2018; 185:143-152. [PMID: 29906655 DOI: 10.1016/j.jphotobiol.2018.05.028] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 05/21/2018] [Accepted: 05/25/2018] [Indexed: 11/15/2022]
Abstract
Silver-iron bimetallic nanoparticles (BMNPs) were synthesized by using AgNO3 and Fe(NO3)3 as an Ag/Fe source in presence of Palm dates fruit. Upon addition of extract to a solution of Ag+ and Fe3+, a prefect transparent stable dark brown color appears with in a few minuets at room temperature. In order to conform the nature of resulting color, UV-visible spectroscopy, transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDX) techniques were used. The absence of surface plasmon resonance (SPR) peaks in the entire UV-visible region suggests the formation of silvercore-ironshell BMNPs. The obtained nanoparticles were used as a catalyst for the degradation of bromothymol blue (BTB) in absence and presence of sunlight. The degradation kinetics was studied in presence of electron acceptors and scavengers, such as hydrogen peroxide, ammonium oxalate, ammonium per sulphate, benzoquinone, isopropyl alcohol, n-butanol, potassium bromate and potassium iodide. Radical trapping experiments demonstrates that active holes (h+) and generated hydroxy radical are primary species involved in H2O2 assisted catalytic degradation process. The free-radical scavenging, antioxidant and antimicrobial activities were determined for extract and BMNPs. The 1,1-diphenyl-2-picrylhydrazyl (DPPH) scavenging activities were found to increase with increasing the amounts of extract. The silver-iron showed good invitro antibacterial activities against human pathogens.
Collapse
Affiliation(s)
- Aisha Al-Asfar
- Department of Chemistry, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Zoya Zaheer
- Department of Chemistry, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia.
| | - Elham Shafik Aazam
- Department of Chemistry, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| |
Collapse
|
18
|
Zaheer Z. Biogenic synthesis, optical, catalytic, and in vitro antimicrobial potential of Ag-nanoparticles prepared using Palm date fruit extract. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2018; 178:584-592. [DOI: 10.1016/j.jphotobiol.2017.12.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 11/27/2017] [Accepted: 12/01/2017] [Indexed: 10/18/2022]
|
19
|
Slavin YN, Asnis J, Häfeli UO, Bach H. Metal nanoparticles: understanding the mechanisms behind antibacterial activity. J Nanobiotechnology 2017; 15:65. [PMID: 28974225 PMCID: PMC5627441 DOI: 10.1186/s12951-017-0308-z] [Citation(s) in RCA: 1002] [Impact Index Per Article: 143.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 09/25/2017] [Indexed: 11/25/2022] Open
Abstract
As the field of nanomedicine emerges, there is a lag in research surrounding the topic of nanoparticle (NP) toxicity, particularly concerned with mechanisms of action. The continuous emergence of bacterial resistance has challenged the research community to develop novel antibiotic agents. Metal NPs are among the most promising of these because show strong antibacterial activity. This review summarizes and discusses proposed mechanisms of antibacterial action of different metal NPs. These mechanisms of bacterial killing include the production of reactive oxygen species, cation release, biomolecule damages, ATP depletion, and membrane interaction. Finally, a comprehensive analysis of the effects of NPs on the regulation of genes and proteins (transcriptomic and proteomic) profiles is discussed.
Collapse
Affiliation(s)
- Yael N. Slavin
- Department of Medicine, Division of Infectious Diseases, University of British Columbia, 410-2660 Oak St., Vancouver, BC V6H3Z6 Canada
| | - Jason Asnis
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC Canada
| | - Urs O. Häfeli
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC Canada
| | - Horacio Bach
- Department of Medicine, Division of Infectious Diseases, University of British Columbia, 410-2660 Oak St., Vancouver, BC V6H3Z6 Canada
| |
Collapse
|
20
|
Oves M, Qari HA, Felemban NM, Khan MZ, Rehan ZA, Ismail IMI. Marinobacter lipolyticus from Red Sea for lipase production and modulation of silver nanomaterials for anti-candidal activities. IET Nanobiotechnol 2017; 11:403-410. [PMID: 28530189 PMCID: PMC8676228 DOI: 10.1049/iet-nbt.2016.0104] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 09/19/2016] [Accepted: 09/23/2016] [Indexed: 11/19/2022] Open
Abstract
In this study, the bacterial strain CEES 33 was isolated from the coastal area of the Red Sea, Jeddah, Kingdom of Saudi Arabia. The bacterium isolate was identified and characterized by using biochemical and molecular methods. The isolate CEES 33 has been identified as Gram-negative rod shaped and cream pigmented spherical colonies. It also demonstrated a positive result for nitrate reduction, oxidase, catalase, citrate utilization, lipase and exopolysaccharide production. Strain CEES 33 was characterized at the molecular level by partial 16S rRNA sequencing and it has been identified as Marinobacter lipolyticus (EMBL|LN835275.1). The lipolytic activity of the isolate was also observed 2.105 nkatml-1. Furthermore, the bacterial aqueous extract was used for green synthesis of silver nanoparticles (AgNPs), which was further confirmed by UV-visible spectra (430 nm), XRD and SEM analysis. Moreover, the biological functional group that involved in AgNPs synthesis was confirmed by FTIR spectra. The biological activities of AgNPs were also investigated, which showed a significant growth inhibition of Candida albicans with 16 ± 2 mm zone of inhibition at 10 μg dose/wells. Therefore, bacterium Marinobacter lipolyticus might be used in future for lipase production and nanoparticles fabrication for biomedical application, to control fungal diseases caused by C. albicans.
Collapse
Affiliation(s)
- Mohammad Oves
- Center of Excellence in Environmental Studies, King Abdulaziz University, Jeddah 21589, Kingdom of Saudi Arabia.
| | - Huda A Qari
- Department of Biological Science, King Abdulaziz University, Jeddah 21589, Kingdom of Saudi Arabia
| | - Nadeen M Felemban
- Center of Excellence in Environmental Studies, King Abdulaziz University, Jeddah 21589, Kingdom of Saudi Arabia
| | - Mohammad Z Khan
- Department of Chemistry, Division Industrial Chemistry, Aligarh Muslim University, Aligarh, 202002, India
| | - Zulfiqar A Rehan
- Center of Excellence in Desalination Technology, King Abdulaziz University, Jeddah 21589, Kingdom of Saudi Arabia
| | - Iqbal M I Ismail
- Department of Chemistry, King Abdulaziz University, Jeddah 21589, Kingdom of Saudi Arabia
| |
Collapse
|
21
|
Feng J, Liu Y, Yin M, He Y, Zhao J, Sun J, Li D. Preparation and structure-property relationships of supported trimetallic PdAuAg catalysts for the selective hydrogenation of acetylene. J Catal 2016. [DOI: 10.1016/j.jcat.2016.08.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
22
|
Esmonde-White KA, Cuellar M, Uerpmann C, Lenain B, Lewis IR. Raman spectroscopy as a process analytical technology for pharmaceutical manufacturing and bioprocessing. Anal Bioanal Chem 2016; 409:637-649. [PMID: 27491299 PMCID: PMC5233728 DOI: 10.1007/s00216-016-9824-1] [Citation(s) in RCA: 157] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 07/13/2016] [Accepted: 07/21/2016] [Indexed: 11/30/2022]
Abstract
Adoption of Quality by Design (QbD) principles, regulatory support of QbD, process analytical technology (PAT), and continuous manufacturing are major factors effecting new approaches to pharmaceutical manufacturing and bioprocessing. In this review, we highlight new technology developments, data analysis models, and applications of Raman spectroscopy, which have expanded the scope of Raman spectroscopy as a process analytical technology. Emerging technologies such as transmission and enhanced reflection Raman, and new approaches to using available technologies, expand the scope of Raman spectroscopy in pharmaceutical manufacturing, and now Raman spectroscopy is successfully integrated into real-time release testing, continuous manufacturing, and statistical process control. Since the last major review of Raman as a pharmaceutical PAT in 2010, many new Raman applications in bioprocessing have emerged. Exciting reports of in situ Raman spectroscopy in bioprocesses complement a growing scientific field of biological and biomedical Raman spectroscopy. Raman spectroscopy has made a positive impact as a process analytical and control tool for pharmaceutical manufacturing and bioprocessing, with demonstrated scientific and financial benefits throughout a product’s lifecycle.
Collapse
Affiliation(s)
- Karen A Esmonde-White
- Kaiser Optical System, Inc, 371 Parkland Plaza, Ann Arbor, MI, 48103, USA.
- University of Michigan Medical School, Ann Arbor, MI, 48109-5624, USA.
| | - Maryann Cuellar
- Kaiser Optical System, Inc, 371 Parkland Plaza, Ann Arbor, MI, 48103, USA
| | - Carsten Uerpmann
- Kaiser Optical Systems SARL, 5 Allée Moulin Berger, 69130, Ecully, France
| | - Bruno Lenain
- Kaiser Optical Systems SARL, 5 Allée Moulin Berger, 69130, Ecully, France
| | - Ian R Lewis
- Kaiser Optical System, Inc, 371 Parkland Plaza, Ann Arbor, MI, 48103, USA
| |
Collapse
|
23
|
Zaheer Z, Aazam ES, Hussain S. Reversible encapsulation of silver nanoparticles into the helix of amylose (water soluble starch). RSC Adv 2016. [DOI: 10.1039/c6ra09319a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Natural biodegradable polymeric starch capped Ag-nanoparticles (AgNPs) were prepared by using extract of Dioscorea deltoidea in the presence of starch.
Collapse
Affiliation(s)
- Zoya Zaheer
- Department of Chemistry
- Faculty of Science
- King Abdulaziz University
- Jeddah
- Saudi Arabia
| | - Elham Shafik Aazam
- Department of Chemistry
- Faculty of Science
- King Abdulaziz University
- Jeddah
- Saudi Arabia
| | - Shokit Hussain
- Department of Chemistry
- Govt Degree College Poonch
- Higher Education Department
- India
| |
Collapse
|