1
|
Tucker SK, McHugh RE, Roe AJ. One problem, multiple potential targets: Where are we now in the development of small molecule inhibitors against Shiga toxin? Cell Signal 2024; 121:111253. [PMID: 38852937 DOI: 10.1016/j.cellsig.2024.111253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 06/11/2024]
Abstract
Shiga toxin-producing Escherichia coli (STEC) are a group of enteric pathogens which carry phage-encoded Shiga toxins (Stx). STEC infections begin with severe abdominal pain and non-bloody diarrhoea, which can progress to bloody diarrhoea after approximately 4-days post-infection. In high-risk groups such as children and the elderly, patients may develop haemolytic uremic syndrome (HUS). HUS is characterised by microangiopathic haemolytic anaemia, thrombocytopenia, and in severe disease acute renal failure. Traditional antibiotics have been linked with increased toxin production due to the activation of recA-mediated bacterial stress response, resulting in poorer patient outcomes. Therefore, treatment relies on supportive therapies. Antivirulence strategies have been explored as an alternative treatment for bacterial infections and blockers of virulence factors such as the Type III Secretion System. Recent improvements in the mechanistic understanding of the Stx pathway have led to the design of inhibitors to disrupt the pathway, leading to toxin-mediated ribosome damage. However, compounds have yet to progress beyond Phase III clinical trials successfully. This review explores the progress in developing small molecule inhibitors by collating lead compounds derived from in-silico and experimental approaches.
Collapse
Affiliation(s)
- Samantha K Tucker
- School of Infection and Immunity, University of Glasgow, Glasgow G12 8TA, United Kingdom
| | - Rebecca E McHugh
- School of Infection and Immunity, University of Glasgow, Glasgow G12 8TA, United Kingdom
| | - Andrew J Roe
- School of Infection and Immunity, University of Glasgow, Glasgow G12 8TA, United Kingdom.
| |
Collapse
|
2
|
AB 5 Enterotoxin-Mediated Pathogenesis: Perspectives Gleaned from Shiga Toxins. Toxins (Basel) 2022; 14:toxins14010062. [PMID: 35051039 PMCID: PMC8779504 DOI: 10.3390/toxins14010062] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/12/2022] [Accepted: 01/12/2022] [Indexed: 02/01/2023] Open
Abstract
Foodborne diseases affect an estimated 600 million people worldwide annually, with the majority of these illnesses caused by Norovirus, Vibrio, Listeria, Campylobacter, Salmonella, and Escherichia coli. To elicit infections in humans, bacterial pathogens express a combination of virulence factors and toxins. AB5 toxins are an example of such toxins that can cause various clinical manifestations, including dehydration, diarrhea, kidney damage, hemorrhagic colitis, and hemolytic uremic syndrome (HUS). Treatment of most bacterial foodborne illnesses consists of fluid replacement and antibiotics. However, antibiotics are not recommended for infections caused by Shiga toxin-producing E. coli (STEC) because of the increased risk of HUS development, although there are conflicting views and results in this regard. Lack of effective treatment strategies for STEC infections pose a public health threat during outbreaks; therefore, the debate on antibiotic use for STEC infections could be further explored, along with investigations into antibiotic alternatives. The overall goal of this review is to provide a succinct summary on the mechanisms of action and the pathogenesis of AB5 and related toxins, as expressed by bacterial foodborne pathogens, with a primary focus on Shiga toxins (Stx). The role of Stx in human STEC disease, detection methodologies, and available treatment options are also briefly discussed.
Collapse
|
3
|
Packialakshmi B, Stewart IJ, Burmeister DM, Chung KK, Zhou X. Large animal models for translational research in acute kidney injury. Ren Fail 2021; 42:1042-1058. [PMID: 33043785 PMCID: PMC7586719 DOI: 10.1080/0886022x.2020.1830108] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
While extensive research using animal models has improved the understanding of acute kidney injury (AKI), this knowledge has not been translated into effective treatments. Many promising interventions for AKI identified in mice and rats have not been validated in subsequent clinical trials. As a result, the mortality rate of AKI patients remains high. Inflammation plays a fundamental role in the pathogenesis of AKI, and one reason for the failure to translate promising therapeutics may lie in the profound difference between the immune systems of rodents and humans. The immune systems of large animals such as swine, nonhuman primates, sheep, dogs and cats, more closely resemble the human immune system. Therefore, in the absence of a basic understanding of the pathophysiology of human AKI, large animals are attractive models to test novel interventions. However, there is a lack of reviews on large animal models for AKI in the literature. In this review, we will first highlight differences in innate and adaptive immunities among rodents, large animals, and humans in relation to AKI. After illustrating the potential merits of large animals in testing therapies for AKI, we will summarize the current state of the evidence in terms of what therapeutics have been tested in large animal models. The aim of this review is not to suggest that murine models are not valid to study AKI. Instead, our objective is to demonstrate that large animal models can serve as valuable and complementary tools in translating potential therapeutics into clinical practice.
Collapse
Affiliation(s)
| | - Ian J Stewart
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - David M Burmeister
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Kevin K Chung
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Xiaoming Zhou
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| |
Collapse
|
4
|
Hwang SB, Chelliah R, Kang JE, Rubab M, Banan-MwineDaliri E, Elahi F, Oh DH. Role of Recent Therapeutic Applications and the Infection Strategies of Shiga Toxin-Producing Escherichia coli. Front Cell Infect Microbiol 2021; 11:614963. [PMID: 34268129 PMCID: PMC8276698 DOI: 10.3389/fcimb.2021.614963] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 05/07/2021] [Indexed: 12/17/2022] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) is a global foodborne bacterial pathogen that is often accountable for colon disorder or distress. STEC commonly induces severe diarrhea in hosts but can cause critical illnesses due to the Shiga toxin virulence factors. To date, there have been a significant number of STEC serotypes have been evolved. STECs vary from nausea and hemorrhoid (HC) to possible lethal hemolytic-based uremic syndrome (HUS), thrombotic thrombocytopenic purpura (TTP). Inflammation-based STEC is usually a foodborne illness with Shiga toxins (Stx 1 and 2) thought to be pathogenesis. The STEC's pathogenicity depends significantly on developing one or more Shiga toxins, which can constrain host cell protein synthesis leading to cytotoxicity. In managing STEC infections, antimicrobial agents are generally avoided, as bacterial damage and discharge of accumulated toxins are thought the body. It has also been documented that certain antibiotics improve toxin production and the development of these species. Many different groups have attempted various therapies, including toxin-focused antibodies, toxin-based polymers, synbiotic agents, and secondary metabolites remedies. Besides, in recent years, antibiotics' efficacy in treating STEC infections has been reassessed with some encouraging methods. Nevertheless, the primary role of synbiotic effectiveness (probiotic and prebiotic) against pathogenic STEC and other enteropathogens is less recognized. Additional studies are required to understand the mechanisms of action of probiotic bacteria and yeast against STEC infection. Because of the consensus contraindication of antimicrobials for these bacterial pathogens, the examination was focused on alternative remedy strategies for STEC infections. The rise of novel STEC serotypes and approaches employed in its treatment are highlighted.
Collapse
Affiliation(s)
- Su-bin Hwang
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, South Korea
| | - Ramachandran Chelliah
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, South Korea
| | - Ji Eun Kang
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, South Korea
| | - Momna Rubab
- School of Food and Agricultural Sciences, University of Management and Technology, Lahore, Pakistan
| | - Eric Banan-MwineDaliri
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, South Korea
| | - Fazle Elahi
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, South Korea
| | - Deog-Hwan Oh
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, South Korea
| |
Collapse
|
5
|
Mühlen S, Dersch P. Treatment Strategies for Infections With Shiga Toxin-Producing Escherichia coli. Front Cell Infect Microbiol 2020; 10:169. [PMID: 32435624 PMCID: PMC7218068 DOI: 10.3389/fcimb.2020.00169] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 03/31/2020] [Indexed: 01/07/2023] Open
Abstract
Infections with Shiga toxin-producing Escherichia coli (STEC) cause outbreaks of severe diarrheal disease in children and the elderly around the world. The severe complications associated with toxin production and release range from bloody diarrhea and hemorrhagic colitis to hemolytic-uremic syndrome, kidney failure, and neurological issues. As the use of antibiotics for treatment of the infection has long been controversial due to reports that antibiotics may increase the production of Shiga toxin, the recommended therapy today is mainly supportive. In recent years, a variety of alternative treatment approaches such as monoclonal antibodies or antisera directed against Shiga toxin, toxin receptor analogs, and several vaccination strategies have been developed and evaluated in vitro and in animal models. A few strategies have progressed to the clinical trial phase. Here, we review the current understanding of and the progress made in the development of treatment options against STEC infections and discuss their potential.
Collapse
Affiliation(s)
- Sabrina Mühlen
- Institute for Infectiology, University of Münster, Münster, Germany.,German Center for Infection Research (DZIF), Associated Site University of Münster, Münster, Germany
| | - Petra Dersch
- Institute for Infectiology, University of Münster, Münster, Germany.,German Center for Infection Research (DZIF), Associated Site University of Münster, Münster, Germany
| |
Collapse
|
6
|
Watanabe-Takahashi M, Yamasaki S, Murata M, Kano F, Motoyama J, Yamate J, Omi J, Sato W, Ukai H, Shimasaki K, Ikegawa M, Tamura-Nakano M, Yanoshita R, Nishino Y, Miyazawa A, Natori Y, Toyama-Sorimachi N, Nishikawa K. Exosome-associated Shiga toxin 2 is released from cells and causes severe toxicity in mice. Sci Rep 2018; 8:10776. [PMID: 30018364 PMCID: PMC6050230 DOI: 10.1038/s41598-018-29128-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 06/27/2018] [Indexed: 12/20/2022] Open
Abstract
Shiga toxin (Stx), a major virulence factor of enterohemorrhagic Escherichia coli (EHEC), is classified into two subgroups, Stx1 and Stx2. Clinical data clearly indicate that Stx2 is associated with more severe toxicity than Stx1, but the molecular mechanism underlying this difference is not fully understood. Here, we found that after being incorporated into target cells, Stx2, can be transported by recycling endosomes, as well as via the regular retrograde transport pathway. However, transport via recycling endosome did not occur with Stx1. We also found that Stx2 is actively released from cells in a receptor-recognizing B-subunit dependent manner. Part of the released Stx2 is associated with microvesicles, including exosome markers (referred to as exo-Stx2), whose origin is in the multivesicular bodies that formed from late/recycling endosomes. Finally, intravenous administration of exo-Stx2 to mice causes more lethality and tissue damage, especially severe renal dysfunction and tubular epithelial cell damage, compared to a free form of Stx2. Thus, the formation of exo-Stx2 might contribute to the severity of Stx2 in vivo, suggesting new therapeutic strategies against EHEC infections.
Collapse
Affiliation(s)
- Miho Watanabe-Takahashi
- Department of Molecular Life Sciences, Graduate School of Life and Medical Sciences, Doshisha University, Kyoto, Japan
| | - Shinji Yamasaki
- International Prevention of Epidemics, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan
| | - Masayuki Murata
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Fumi Kano
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Tokyo, Japan
| | - Jun Motoyama
- Laboratory of Developmental Neurobiology, Graduate School of Brain Sciences, Doshisha University, Kyoto, Japan
| | - Jyoji Yamate
- Veterinary Pathology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan
| | - Jumpei Omi
- Department of Molecular Life Sciences, Graduate School of Life and Medical Sciences, Doshisha University, Kyoto, Japan
| | - Waka Sato
- Department of Molecular Life Sciences, Graduate School of Life and Medical Sciences, Doshisha University, Kyoto, Japan
| | - Hirofumi Ukai
- Department of Molecular Life Sciences, Graduate School of Life and Medical Sciences, Doshisha University, Kyoto, Japan
| | - Kentaro Shimasaki
- Department of Molecular Life Sciences, Graduate School of Life and Medical Sciences, Doshisha University, Kyoto, Japan
| | - Masaya Ikegawa
- Genomics, Proteomics and Biomedical Functions, Graduate School of Life and Medical Sciences, Doshisha University, Kyoto, Japan
| | - Miwa Tamura-Nakano
- Communal Laboratory, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Ryohei Yanoshita
- Department of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, Teikyo Heisei University, Tokyo, Japan
| | - Yuri Nishino
- Graduate School of Life Science, University of Hyogo, Hyogo, Japan
| | - Atsuo Miyazawa
- Graduate School of Life Science, University of Hyogo, Hyogo, Japan
| | - Yasuhiro Natori
- Department of Health Chemistry, School of Pharmacy, Iwate Medical University, Iwate, Japan
| | - Noriko Toyama-Sorimachi
- Department of Molecular Immunology and Inflammation, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Kiyotaka Nishikawa
- Department of Molecular Life Sciences, Graduate School of Life and Medical Sciences, Doshisha University, Kyoto, Japan.
| |
Collapse
|
7
|
Kampmeier S, Berger M, Mellmann A, Karch H, Berger P. The 2011 German Enterohemorrhagic Escherichia Coli O104:H4 Outbreak-The Danger Is Still Out There. Curr Top Microbiol Immunol 2018; 416:117-148. [PMID: 30062592 DOI: 10.1007/82_2018_107] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Enterohemorrhagic Escherichia coli (EHEC) are Shiga toxin (Stx) producing bacteria causing a disease characterized by bloody (or non-bloody) diarrhea, which might progress to hemolytic uremic syndrome (HUS). EHEC O104:H4 caused the largest ever recorded EHEC outbreak in Germany in 2011, which in addition showed the so far highest incidence rate of EHEC-related HUS worldwide. The aggressive outbreak strain carries an unusual combination of virulence traits characteristic to both EHEC-a chromosomally integrated Stx-encoding bacteriophage, and enteroaggregative Escherichia coli-pAA plasmid-encoded aggregative adherence fimbriae mediating its tight adhesion to epithelia cells. There are currently still open questions regarding the 2011 EHEC outbreak, e.g., with respect to the exact molecular mechanisms resulting in the hypervirulence of the strain, the natural reservoir of EHEC O104:H4, and suitable therapeutic strategies. Nevertheless, our knowledge on these issues has substantially expanded since 2011. Here, we present an overview of the epidemiological, clinical, microbiological, and molecular biological data available on the 2011 German EHEC O104:H4 outbreak.
Collapse
Affiliation(s)
| | - Michael Berger
- Institute of Hygiene, University of Münster, Münster, Germany
| | | | - Helge Karch
- Institute of Hygiene, University of Münster, Münster, Germany
| | - Petya Berger
- Institute of Hygiene, University of Münster, Münster, Germany.
| |
Collapse
|
8
|
Hall G, Kurosawa S, Stearns-Kurosawa DJ. Shiga Toxin Therapeutics: Beyond Neutralization. Toxins (Basel) 2017; 9:toxins9090291. [PMID: 28925976 PMCID: PMC5618224 DOI: 10.3390/toxins9090291] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 09/15/2017] [Accepted: 09/15/2017] [Indexed: 01/04/2023] Open
Abstract
Ribotoxic Shiga toxins are the primary cause of hemolytic uremic syndrome (HUS) in patients infected with Shiga toxin-producing enterohemorrhagic Escherichia coli (STEC), a pathogen class responsible for epidemic outbreaks of gastrointestinal disease around the globe. HUS is a leading cause of pediatric renal failure in otherwise healthy children, resulting in a mortality rate of 10% and a chronic morbidity rate near 25%. There are currently no available therapeutics to prevent or treat HUS in STEC patients despite decades of work elucidating the mechanisms of Shiga toxicity in sensitive cells. The preclinical development of toxin-targeted HUS therapies has been hindered by the sporadic, geographically dispersed nature of STEC outbreaks with HUS cases and the limited financial incentive for the commercial development of therapies for an acute disease with an inconsistent patient population. The following review considers potential therapeutic targeting of the downstream cellular impacts of Shiga toxicity, which include the unfolded protein response (UPR) and the ribotoxic stress response (RSR). Outcomes of the UPR and RSR are relevant to other diseases with large global incidence and prevalence rates, thus reducing barriers to the development of commercial drugs that could improve STEC and HUS patient outcomes.
Collapse
Affiliation(s)
- Gregory Hall
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA 02118, USA.
| | - Shinichiro Kurosawa
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA 02118, USA.
| | - Deborah J Stearns-Kurosawa
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA 02118, USA.
| |
Collapse
|
9
|
Gordon CE, Chitalia VC, Sloan JM, Salant DJ, Coleman DL, Quillen K, Ravid K, Francis JM. Thrombotic Microangiopathy: A Multidisciplinary Team Approach. Am J Kidney Dis 2017; 70:715-721. [PMID: 28720207 DOI: 10.1053/j.ajkd.2017.05.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 05/14/2017] [Indexed: 12/20/2022]
Abstract
Thrombotic microangiopathy (TMA) is characterized by the presence of microangiopathic hemolytic anemia and thrombocytopenia along with organ dysfunction, and pathologically, by the presence of microthrombi in multiple microvascular beds. Delays in diagnosis and initiation of therapy are common due to the low incidence, variable presentation, and poor awareness of these diseases, underscoring the need for interdisciplinary approaches to clinical care for TMA. We describe a new approach to improve clinical management via a TMA team that originally stemmed from an Affinity Research Collaborative team focused on thrombosis and hemostasis. The TMA team consists of clinical faculty from different disciplines who together are charged with the responsibility to quickly analyze clinical presentations, guide laboratory testing, and streamline prompt institution of treatment. The TMA team also includes faculty members from a broad range of disciplines collaborating to elucidate the pathogenesis of TMA. To this end, a clinical database and biorepository have been constructed. TMA leaders educate front-line providers from other departments through presentations in various forums across multiple specialties. Facilitated by an Affinity Research Collaborative mechanism, we describe an interdisciplinary team dedicated to improving both clinical care and translational research in TMA.
Collapse
Affiliation(s)
- Craig E Gordon
- Renal Section, Department of Medicine, Boston University School of Medicine, Boston, MA
| | - Vipul C Chitalia
- Renal Section, Department of Medicine, Boston University School of Medicine, Boston, MA
| | - J Mark Sloan
- Hematology-Oncology Section, Department of Medicine, Boston University School of Medicine, Boston, MA
| | - David J Salant
- Renal Section, Department of Medicine, Boston University School of Medicine, Boston, MA
| | - David L Coleman
- Department of Medicine, Boston University School of Medicine, Boston, MA
| | - Karen Quillen
- Hematology-Oncology Section, Department of Medicine, Boston University School of Medicine, Boston, MA
| | - Katya Ravid
- Department of Medicine, Boston University School of Medicine, Boston, MA; Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA
| | - Jean M Francis
- Renal Section, Department of Medicine, Boston University School of Medicine, Boston, MA.
| |
Collapse
|
10
|
Affiliation(s)
- Megan Garland
- Cancer
Biology Program, ‡Department of Pathology, §Department of Microbiology and Immunology, and ∥Department of
Chemical and Systems Biology, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, California 94305, United States
| | - Sebastian Loscher
- Cancer
Biology Program, ‡Department of Pathology, §Department of Microbiology and Immunology, and ∥Department of
Chemical and Systems Biology, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, California 94305, United States
| | - Matthew Bogyo
- Cancer
Biology Program, ‡Department of Pathology, §Department of Microbiology and Immunology, and ∥Department of
Chemical and Systems Biology, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, California 94305, United States
| |
Collapse
|
11
|
Affinity-Based Screening of Tetravalent Peptides Identifies Subtype-Selective Neutralizers of Shiga Toxin 2d, a Highly Virulent Subtype, by Targeting a Unique Amino Acid Involved in Its Receptor Recognition. Infect Immun 2016; 84:2653-61. [PMID: 27382021 DOI: 10.1128/iai.00149-16] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 06/24/2016] [Indexed: 12/11/2022] Open
Abstract
Shiga toxin (Stx), a major virulence factor of enterohemorrhagic Escherichia coli (EHEC), can be classified into two subgroups, Stx1 and Stx2, each consisting of various closely related subtypes. Stx2 subtypes Stx2a and Stx2d are highly virulent and linked with serious human disorders, such as acute encephalopathy and hemolytic-uremic syndrome. Through affinity-based screening of a tetravalent peptide library, we previously developed peptide neutralizers of Stx2a in which the structure was optimized to bind to the B-subunit pentamer. In this study, we identified Stx2d-selective neutralizers by targeting Asn16 of the B subunit, an amino acid unique to Stx2d that plays an essential role in receptor binding. We synthesized a series of tetravalent peptides on a cellulose membrane in which the core structure was exactly the same as that of peptides in the tetravalent library. A total of nine candidate motifs were selected to synthesize tetravalent forms of the peptides by screening two series of the tetravalent peptides. Five of the tetravalent peptides effectively inhibited the cytotoxicity of Stx2a and Stx2d, and notably, two of the peptides selectively inhibited Stx2d. These two tetravalent peptides bound to the Stx2d B subunit with high affinity dependent on Asn16. The mechanism of binding to the Stx2d B subunit differed from that of binding to Stx2a in that the peptides covered a relatively wide region of the receptor-binding surface. Thus, this highly optimized screening technique enables the development of subtype-selective neutralizers, which may lead to more sophisticated treatments of infections by Stx-producing EHEC.
Collapse
|
12
|
Abstract
Post-infectious hemolytic uremic syndrome (HUS) is caused by specific pathogens in patients with no identifiable HUS-associated genetic mutation or autoantibody. The majority of episodes is due to infections by Shiga toxin (Stx) producing Escherichia coli (STEC). This chapter reviews the epidemiology and pathogenesis of STEC-HUS, including bacterial-derived factors and host responses. STEC disease is characterized by hematological (microangiopathic hemolytic anemia), renal (acute kidney injury) and extrarenal organ involvement. Clinicians should always strive for an etiological diagnosis through the microbiological or molecular identification of Stx-producing bacteria and Stx or, if negative, serological assays. Treatment of STEC-HUS is supportive; more investigations are needed to evaluate the efficacy of putative preventive and therapeutic measures, such as non-phage-inducing antibiotics, volume expansion and anti-complement agents. The outcome of STEC-HUS is generally favorable, but chronic kidney disease, permanent extrarenal, mainly cerebral complication and death (in less than 5 %) occur and long-term follow-up is recommended. The remainder of this chapter highlights rarer forms of (post-infectious) HUS due to S. dysenteriae, S. pneumoniae, influenza A and HIV and discusses potential interactions between these pathogens and the complement system.
Collapse
Affiliation(s)
- Denis F. Geary
- Division of Nephrology, The Hospital for Sick Children, Toronto, Ontario Canada
| | - Franz Schaefer
- Division of Pediatric Nephrology, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
13
|
Picard C, Burtey S, Bornet C, Curti C, Montana M, Vanelle P. Pathophysiology and treatment of typical and atypical hemolytic uremic syndrome. ACTA ACUST UNITED AC 2015; 63:136-43. [DOI: 10.1016/j.patbio.2015.03.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 03/03/2015] [Indexed: 12/21/2022]
|
14
|
Ortiz A, Sanchez-Niño MD, Izquierdo MC, Martin-Cleary C, Garcia-Bermejo L, Moreno JA, Ruiz-Ortega M, Draibe J, Cruzado JM, Garcia-Gonzalez MA, Lopez-Novoa JM, Soler MJ, Sanz AB. Translational value of animal models of kidney failure. Eur J Pharmacol 2015; 759:205-20. [PMID: 25814248 DOI: 10.1016/j.ejphar.2015.03.026] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 02/08/2015] [Accepted: 03/12/2015] [Indexed: 11/28/2022]
Abstract
Acute kidney injury (AKI) and chronic kidney disease (CKD) are associated with decreased renal function and increased mortality risk, while the therapeutic armamentarium is unsatisfactory. The availability of adequate animal models may speed up the discovery of biomarkers for disease staging and therapy individualization as well as design and testing of novel therapeutic strategies. Some longstanding animal models have failed to result in therapeutic advances in the clinical setting, such as kidney ischemia-reperfusion injury and diabetic nephropathy models. In this regard, most models for diabetic nephropathy are unsatisfactory in that they do not evolve to renal failure. Satisfactory models for additional nephropathies are needed. These include anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis, IgA nephropathy, anti-phospholipase-A2-receptor (PLA2R) membranous nephropathy and Fabry nephropathy. However, recent novel models hold promise for clinical translation. Thus, the AKI to CKD translation has been modeled, in some cases with toxins of interest for human CKD such as aristolochic acid. Genetically modified mice provide models for Alport syndrome evolving to renal failure that have resulted in clinical recommendations, polycystic kidney disease models that have provided clues for the development of tolvaptan, that was recently approved for the human disease in Japan; and animal models also contributed to target C5 with eculizumab in hemolytic uremic syndrome. Some ongoing trials explore novel concepts derived from models, such TWEAK targeting as tissue protection for lupus nephritis. We now review animal models reproducing diverse, genetic and acquired, causes of AKI and CKD evolving to kidney failure and discuss the contribution to clinical translation and prospects for the future.
Collapse
Affiliation(s)
- Alberto Ortiz
- Nephrology, IIS-Fundacion Jimenez Diaz, Madrid, Spain; REDinREN, Madrid, Spain; Universidad Autonoma de Madrid, Madrid, Spain; IRSIN, Madrid, Spain
| | | | - Maria C Izquierdo
- Nephrology, IIS-Fundacion Jimenez Diaz, Madrid, Spain; REDinREN, Madrid, Spain
| | | | - Laura Garcia-Bermejo
- REDinREN, Madrid, Spain; Dpt. of Pathology, Instituto Ramón y Cajal de Investigación Sanitaria, IRYCIS, Madrid, Spain
| | - Juan A Moreno
- Nephrology, IIS-Fundacion Jimenez Diaz, Madrid, Spain
| | - Marta Ruiz-Ortega
- Nephrology, IIS-Fundacion Jimenez Diaz, Madrid, Spain; REDinREN, Madrid, Spain; Universidad Autonoma de Madrid, Madrid, Spain
| | - Juliana Draibe
- REDinREN, Madrid, Spain; Nephrology Department, Hospital Universitari de Bellvitge, IDIBELL, L׳Hospitalet de Llobregat, Barcelona, Spain
| | - Josep M Cruzado
- REDinREN, Madrid, Spain; Nephrology Department, Hospital Universitari de Bellvitge, IDIBELL, L׳Hospitalet de Llobregat, Barcelona, Spain
| | - Miguel A Garcia-Gonzalez
- REDinREN, Madrid, Spain; Laboratorio de Nefrología, Complexo Hospitalario de Santiago de Compostela (CHUS), Instituto de Investigación Sanitaria (IDIS), Santiago de Compostela, Spain
| | - Jose M Lopez-Novoa
- REDinREN, Madrid, Spain; Departamento de Fisiología y Farmacología, Universidad de Salamanca, Salamnca, Spain
| | - Maria J Soler
- REDinREN, Madrid, Spain; Nephrology Department, Hospital del Mar, Barcelona, Spain
| | - Ana B Sanz
- Nephrology, IIS-Fundacion Jimenez Diaz, Madrid, Spain; REDinREN, Madrid, Spain.
| | | |
Collapse
|
15
|
Rahal EA, Fadlallah SM, Nassar FJ, Kazzi N, Matar GM. Approaches to treatment of emerging Shiga toxin-producing Escherichia coli infections highlighting the O104:H4 serotype. Front Cell Infect Microbiol 2015; 5:24. [PMID: 25853096 PMCID: PMC4364364 DOI: 10.3389/fcimb.2015.00024] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 03/04/2015] [Indexed: 11/13/2022] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) are a group of diarrheagenic bacteria associated with foodborne outbreaks. Infection with these agents may result in grave sequelae that include fatality. A large number of STEC serotypes has been identified to date. E. coli serotype O104:H4 is an emerging pathogen responsible for a 2011 outbreak in Europe that resulted in over 4000 infections and 50 deaths. STEC pathogenicity is highly reliant on the production of one or more Shiga toxins that can inhibit protein synthesis in host cells resulting in a cytotoxicity that may affect various organ systems. Antimicrobials are usually avoided in the treatment of STEC infections since they are believed to induce bacterial cell lysis and the release of stored toxins. Some antimicrobials have also been reported to enhance toxin synthesis and production from these organisms. Various groups have attempted alternative treatment approaches including the administration of toxin-directed antibodies, toxin-adsorbing polymers, probiotic agents and natural remedies. The utility of antibiotics in treating STEC infections has also been reconsidered in recent years with certain modalities showing promise.
Collapse
Affiliation(s)
- Elias A Rahal
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut Beirut, Lebanon
| | - Sukayna M Fadlallah
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut Beirut, Lebanon
| | - Farah J Nassar
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut Beirut, Lebanon
| | - Natalie Kazzi
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut Beirut, Lebanon
| | - Ghassan M Matar
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut Beirut, Lebanon
| |
Collapse
|
16
|
Parello CSL, Mayer CL, Lee BC, Motomochi A, Kurosawa S, Stearns-Kurosawa DJ. Shiga toxin 2-induced endoplasmic reticulum stress is minimized by activated protein C but does not correlate with lethal kidney injury. Toxins (Basel) 2015; 7:170-86. [PMID: 25609181 PMCID: PMC4303821 DOI: 10.3390/toxins7010170] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 12/22/2014] [Accepted: 01/14/2015] [Indexed: 12/26/2022] Open
Abstract
Enterohemorrhagic Escherichia coli produce ribotoxic Shiga toxins (Stx), which are responsible for kidney injury and development of hemolytic uremic syndrome. The endoplasmic reticulum (ER) stress response is hypothesized to induce apoptosis contributing to organ injury; however, this process has been described only in vitro. ER stress marker transcripts of spliced XBP1 (1.78-fold), HSP40 (4.45-fold) and CHOP (7.69-fold) were up-regulated early in kidneys of Stx2 challenged mice compared to saline controls. Anti-apoptotic Bcl2 decreased (−2.41-fold vs. saline) and pro-apoptotic DR5 increased (6.38-fold vs. saline) at later time points. Cytoprotective activated protein C (APC) reduced early CHOP expression (−3.3-fold vs. untreated), increased later Bcl2 expression (5.8-fold vs. untreated), and had early effects on survival but did not alter DR5 expression. Changes in kidney ER stress and apoptotic marker transcripts were observed in Stx2-producing C. rodentium challenged mice compared to mice infected with a non-toxigenic control strain. CHOP (4.14-fold) and DR5 (2.81-fold) were increased and Bcl2 (−1.65-fold) was decreased. APC reduced CHOP expression and increased Bcl2 expression, but did not alter mortality. These data indicate that Stx2 induces renal ER stress and apoptosis in murine models of Stx2-induced kidney injury, but decreasing these processes alone was not sufficient to alter survival outcome.
Collapse
Affiliation(s)
- Caitlin S L Parello
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, 670 Albany Street, Boston, MA 02118, USA.
| | - Chad L Mayer
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, 670 Albany Street, Boston, MA 02118, USA.
| | - Benjamin C Lee
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, 670 Albany Street, Boston, MA 02118, USA.
| | - Amanda Motomochi
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, 670 Albany Street, Boston, MA 02118, USA.
| | - Shinichiro Kurosawa
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, 670 Albany Street, Boston, MA 02118, USA.
| | - Deborah J Stearns-Kurosawa
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, 670 Albany Street, Boston, MA 02118, USA.
| |
Collapse
|
17
|
Kurosawa S, Stearns-Kurosawa DJ. Complement, thrombotic microangiopathy and disseminated intravascular coagulation. J Intensive Care 2014; 2:65. [PMID: 25705421 PMCID: PMC4336180 DOI: 10.1186/s40560-014-0061-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 10/17/2014] [Indexed: 02/07/2023] Open
Abstract
In the blurring boundaries between clinical practice and scientific observations, it is increasingly attractive to propose shared disease mechanisms that could explain clinical experience. With the advent of available therapeutic options for complement inhibition, there is a push for more widespread application in patients, despite a lack of clinically relevant research. Patients with disseminated intravascular coagulation (DIC) and thrombotic microangiopathies (TMA) frequently exhibit complement activation and share the clinical consequences of thrombocytopenia, microangiopathic hemolytic anemia, and microvascular thrombosis. However, they arise from very different molecular etiologies giving rise to cautious questions about inclusive treatment approaches because most clinical observations are associative and not cause-and-effect. Complement inhibition is successful in many cases of atypical hemolytic uremic syndrome, greatly reducing morbidity and mortality of patients by minimizing thrombocytopenia, microangiopathic hemolytic anemia, and microvascular thrombosis. But is this success due to targeting disease etiology or because complement is a sufficiently systemic target or both? These questions are important because complement activation and similar clinical features also are observed in many DIC patients, and there are mounting calls for systemic inhibition of complement mediators despite the enormous differences in the primary diseases complicated by DIC. We are in great need of thoughtful and standardized assessment with respect to both beneficial and potentially harmful consequences of complement activation in these patient populations. In this review, we discuss about what needs to be done in terms of establishing the strategy for complement inhibition in TMA and DIC, based on the current knowledge.
Collapse
Affiliation(s)
- Shinichiro Kurosawa
- Boston University School of Medicine, 670 Albany Street, Boston, MA 02118 USA
| | | |
Collapse
|
18
|
Identification of a wide range of motifs inhibitory to shiga toxin by affinity-driven screening of customized divalent peptides synthesized on a membrane. Appl Environ Microbiol 2014; 81:1092-100. [PMID: 25452283 DOI: 10.1128/aem.03517-14] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Shiga toxin (Stx), a major virulence factor of enterohemorrhagic Escherichia coli, binds to target cells through a multivalent interaction between its B-subunit pentamer and the cell surface receptor globotriaosylceramide, resulting in a remarkable increase in its binding affinity. This phenomenon is referred to as the "clustering effect." Previously, we developed a multivalent peptide library that can exert the clustering effect and identified Stx neutralizers with tetravalent peptides by screening this library for high-affinity binding to the specific receptor-binding site of the B subunit. However, this technique yielded only a limited number of binding motifs, with some redundancy in amino acid selectivity. In this study, we established a novel technique to synthesize up to 384 divalent peptides whose structures were customized to exert the clustering effect on the B subunit on a single cellulose membrane. By targeting Stx1a, a major Stx subtype, the customized divalent peptides were screened to identify high-affinity binding motifs. The sequences of the peptides were designed based on information obtained from the multivalent peptide library technique. A total of 64 candidate motifs were successfully identified, and 11 of these were selected to synthesize tetravalent forms of the peptides. All of the synthesized tetravalent peptides bound to the B subunit with high affinities and effectively inhibited the cytotoxicity of Stx1a in Vero cells. Thus, the combination of the two techniques results in greatly improved efficiency in identifying biologically active neutralizers of Stx.
Collapse
|
19
|
Abstract
ABSTRACT
Shiga toxin (Stx)-producing
Escherichia coli
(STEC) is an etiologic agent of bloody diarrhea. A serious sequela of disease, the hemolytic uremic syndrome (HUS) may arise in up to 25% of patients. The development of HUS after STEC infection is linked to the presence of Stx. STEC strains may produce one or more Stxs, and the Stxs come in two major immunological groups, Stx1 and Stx2. A multitude of possible therapeutics designed to inhibit the actions of the Stxs have been developed over the past 30 years. Such therapeutics are important because antibiotic treatment of STEC infections is contraindicated due to an increased potential for development of HUS. The reason for the increased risk of HUS after antibiotic treatment is likely because certain antibiotics induce expression of the Stxs, which are generally associated with lysogenic bacteriophages. There are a few potential therapeutics that either try to kill STEC without inducing Stx expression or target gene expression within STEC. However, the vast majority of the treatments under development are designed to limit Stx receptor generation or to prevent toxin binding, trafficking, processing, or activity within the cell. The potential therapies described in this review include some that have only been tested in vitro and several that demonstrate efficacy in animals. The therapeutics that are currently the furthest along in development (completed phase I and II trials) are monoclonal antibodies directed against Stx1 and Stx2.
Collapse
|
20
|
Oral intoxication of mice with Shiga toxin type 2a (Stx2a) and protection by anti-Stx2a monoclonal antibody 11E10. Infect Immun 2013; 82:1213-21. [PMID: 24379294 DOI: 10.1128/iai.01264-13] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Shiga toxin (Stx)-producing Escherichia coli (STEC) strains cause food-borne outbreaks of hemorrhagic colitis and, less commonly, a serious kidney-damaging sequela called the hemolytic uremic syndrome (HUS). Stx, the primary virulence factor expressed by STEC, is an AB5 toxin with two antigenically distinct forms, Stx1a and Stx2a. Although both toxins have similar biological activities, Stx2a is more frequently produced by STEC strains that cause HUS than is Stx1a. Here we asked whether Stx1a and Stx2a act differently when delivered orally by gavage. We found that Stx2a had a 50% lethal dose (LD50) of 2.9 μg, but no morbidity occurred after oral intoxication with up to 157 μg of Stx1a. We also compared several biochemical and histological parameters in mice intoxicated orally versus intraperitoneally with Stx2a. We discovered that both intoxication routes caused similar increases in serum creatinine and blood urea nitrogen, indicative of kidney damage, as well as electrolyte imbalances and weight loss in the animals. Furthermore, kidney sections from Stx2a-intoxicated mice revealed multifocal, acute tubular necrosis (ATN). Of particular note, we detected Stx2a in kidney sections from orally intoxicated mice in the same region as the epithelial cell type in which ATN was detected. Lastly, we showed reduced renal damage, as determined by renal biomarkers and histopathology, and full protection of orally intoxicated mice with monoclonal antibody (MAb) 11E10 directed against the toxin A subunit; conversely, an irrelevant MAb had no therapeutic effect. Orally intoxicated mice could be rescued by MAb 11E10 6 h but not 24 h after Stx2a delivery.
Collapse
|
21
|
Croxen MA, Law RJ, Scholz R, Keeney KM, Wlodarska M, Finlay BB. Recent advances in understanding enteric pathogenic Escherichia coli. Clin Microbiol Rev 2013; 26:822-80. [PMID: 24092857 PMCID: PMC3811233 DOI: 10.1128/cmr.00022-13] [Citation(s) in RCA: 861] [Impact Index Per Article: 71.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Although Escherichia coli can be an innocuous resident of the gastrointestinal tract, it also has the pathogenic capacity to cause significant diarrheal and extraintestinal diseases. Pathogenic variants of E. coli (pathovars or pathotypes) cause much morbidity and mortality worldwide. Consequently, pathogenic E. coli is widely studied in humans, animals, food, and the environment. While there are many common features that these pathotypes employ to colonize the intestinal mucosa and cause disease, the course, onset, and complications vary significantly. Outbreaks are common in developed and developing countries, and they sometimes have fatal consequences. Many of these pathotypes are a major public health concern as they have low infectious doses and are transmitted through ubiquitous mediums, including food and water. The seriousness of pathogenic E. coli is exemplified by dedicated national and international surveillance programs that monitor and track outbreaks; unfortunately, this surveillance is often lacking in developing countries. While not all pathotypes carry the same public health profile, they all carry an enormous potential to cause disease and continue to present challenges to human health. This comprehensive review highlights recent advances in our understanding of the intestinal pathotypes of E. coli.
Collapse
|
22
|
Plasma bacterial and mitochondrial DNA distinguish bacterial sepsis from sterile systemic inflammatory response syndrome and quantify inflammatory tissue injury in nonhuman primates. Shock 2013; 39:55-62. [PMID: 23247122 DOI: 10.1097/shk.0b013e318276f4ca] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Systemic inflammatory response syndrome (SIRS) is a fundamental host response common to bacterial infection and sterile tissue injury. Systemic inflammatory response syndrome can cause organ dysfunction and death, but its mechanisms are incompletely understood. Moreover, SIRS can progress to organ failure or death despite being sterile or after control of the inciting infection. Biomarkers discriminating between sepsis, sterile SIRS, and postinfective SIRS would therefore help direct care. Circulating mitochondrial DNA (mtDNA) is a damage-associated molecular pattern reflecting cellular injury. Circulating bacterial 16S DNA (bDNA) is a pathogen-associated pattern (PAMP) reflecting ongoing infection. We developed quantitative polymerase chain reaction assays to quantify these markers, and predicting their plasma levels might help distinguish sterile injury from infection. To study these events in primates, we assayed banked serum from Papio baboons that had undergone a brief challenge of intravenous Bacillus anthracis delta Sterne (modified to remove toxins) followed by antibiotics (anthrax) that causes organ failure and death. To investigate the progression of sepsis to "severe" sepsis and death, we studied animals where anthrax was pretreated with drotrecogin alfa (activated protein C), which attenuates sepsis in baboons. We also contrasted lethal anthrax bacteremia against nonlethal E. coli bacteremia and against sterile tissue injury from Shiga-like toxin 1. Bacterial DNA and mtDNA levels in timed samples were correlated with blood culture results and assays of organ function. Sterile injury by Shiga-like toxin 1 increased mtDNA, but bDNA was undetectable: consistent with the absence of infection. The bacterial challenges caused parallel early bDNA and mtDNA increases, but bDNA detected pathogens even after bacteria were undetectable by culture. Sublethal E. coli challenge only caused transient rises in mtDNA consistent with a self-limited injury. In lethal anthrax challenge (n = 4), bDNA increased transiently, but mtDNA levels remained elevated until death, consistent with persistent septic tissue damage after bacterial clearance. Critically, activated protein C pretreatment (n = 4) allowed mtDNA levels to decay after bacterial clearance with sparing of organ function and survival. In summary, host tissue injury correlates with mtDNA whether infective or sterile. Mitochondrial DNA and bDNA polymerase chain reactions can quantify tissue injury incurred by septic or sterile mechanisms and suggest the source of SIRS of unknown origin.
Collapse
|
23
|
Quiescent complement in nonhuman primates during E coli Shiga toxin-induced hemolytic uremic syndrome and thrombotic microangiopathy. Blood 2013; 122:803-6. [PMID: 23733336 DOI: 10.1182/blood-2013-03-490060] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) produce ribosome-inactivating Shiga toxins (Stx1, Stx2) responsible for development of hemolytic uremic syndrome (HUS) and acute kidney injury (AKI). Some patients show complement activation during EHEC infection, raising the possibility of therapeutic targeting of complement for relief. Our juvenile nonhuman primate (Papio baboons) models of endotoxin-free Stx challenge exhibit full spectrum HUS, including thrombocytopenia, hemolytic anemia, and AKI with glomerular thrombotic microangiopathy. There were no significant increases in soluble terminal complement complex (C5b-9) levels after challenge with lethal Stx1 (n = 6) or Stx2 (n = 5) in plasma samples from T0 to euthanasia at 49.5 to 128 hours post-challenge. d-dimer and cell injury markers (HMGB1, histones) confirmed coagulopathy and cell injury. Thus, complement activation is not required for the development of thrombotic microangiopathy and HUS induced by EHEC Shiga toxins in these preclinical models, and benefits or risks of complement inhibition should be studied further for this infection.
Collapse
|
24
|
Barnett Foster D. Modulation of the enterohemorrhagic E. coli virulence program through the human gastrointestinal tract. Virulence 2013; 4:315-23. [PMID: 23552827 PMCID: PMC3710334 DOI: 10.4161/viru.24318] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Enteric pathogens must not only survive passage through the gastrointestinal tract but must also coordinate expression of virulence determinants in response to localized microenvironments with the host. Enterohemorrhagic Escherichia coli (EHEC), a serious food and waterborne human pathogen, is well equipped with an arsenal of molecular factors that allows it to survive passage through the gastrointestinal tract and successfully colonize the large intestine. This review will explore how EHEC responds to various environmental cues associated with particular microenvironments within the host and how it employs these cues to modulate virulence factor expression, with a view to developing a conceptual framework for understanding modulation of EHEC’s virulence program in response to the host. In vitro studies offer significant insights into the role of individual environmental cues but in vivo studies using animal models as well as data from natural infections will ultimately provide a more comprehensive picture of the highly regulated virulence program of this pathogen.
Collapse
Affiliation(s)
- Debora Barnett Foster
- Department of Chemistry and Biology, Faculty of Science, Ryerson University, Toronto, ONT, Canada.
| |
Collapse
|
25
|
Stearns-Kurosawa DJ, Oh SY, Cherla RP, Lee MS, Tesh VL, Papin J, Henderson J, Kurosawa S. Distinct renal pathology and a chemotactic phenotype after enterohemorrhagic Escherichia coli shiga toxins in non-human primate models of hemolytic uremic syndrome. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 182:1227-38. [PMID: 23402998 PMCID: PMC3620421 DOI: 10.1016/j.ajpath.2012.12.026] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Revised: 12/13/2012] [Accepted: 12/24/2012] [Indexed: 12/31/2022]
Abstract
Enterohemorrhagic Escherichia coli cause approximately 1.5 million infections globally with 176,000 cases occurring in the United States annually from ingesting contaminated food, most frequently E. coli O157:H7 in ground beef or fresh produce. In severe cases, the painful prodromal hemorrhagic colitis is complicated by potentially lethal hemolytic uremic syndrome (HUS), particularly in children. Bacterial Shiga-like toxins (Stx1, Stx2) are primarily responsible for HUS and the kidney and neurologic damage that ensue. Small animal models are hampered by the inability to reproduce HUS with thrombotic microangiopathy, hemolytic anemia, and acute kidney injury. Earlier, we showed that nonhuman primates (Papio) recapitulated clinical HUS after Stx challenge and that novel therapeutic intervention rescued the animals. Here, we present detailed light and electron microscopic pathology examination of the kidneys from these Stx studies. Stx1 challenge resulted in more severe glomerular endothelial injury, whereas the glomerular injury after Stx2 also included prominent mesangiolysis and an eosinophilic inflammatory infiltration. Both toxins induced glomerular platelet-rich thrombi, interstitial hemorrhage, and tubular injury. Analysis of kidney and other organs for inflammation biomarkers showed a striking chemotactic profile, with extremely high mRNA levels for IL-8, monocyte chemoattractant protein 1, and macrophage inflammatory protein 1α and elevated urine chemokines at 48 hours after challenge. These observations give unique insight into the pathologic consequences of each toxin in a near human setting and present potential pathways for therapeutic intervention.
Collapse
Affiliation(s)
- Deborah J. Stearns-Kurosawa
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Sun-Young Oh
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Rama P. Cherla
- Department of Microbial and Molecular Pathogenesis, Texas A&M Health Science Center, Bryan, Texas
| | - Moo-Seung Lee
- Department of Microbial and Molecular Pathogenesis, Texas A&M Health Science Center, Bryan, Texas
| | - Vernon L. Tesh
- Department of Microbial and Molecular Pathogenesis, Texas A&M Health Science Center, Bryan, Texas
| | - James Papin
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Joel Henderson
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Shinichiro Kurosawa
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts
| |
Collapse
|
26
|
Identification of a peptide-based neutralizer that potently inhibits both Shiga toxins 1 and 2 by targeting specific receptor-binding regions. Infect Immun 2013; 81:2133-8. [PMID: 23545297 DOI: 10.1128/iai.01256-12] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Shiga toxin (Stx) is a major virulence factor of enterohemorrhagic Escherichia coli that occasionally causes fatal systemic complications. We recently developed a tetravalent peptide (PPP-tet) that neutralizes the cytotoxicity of Stx2 using a multivalent peptide library approach. In this study, we used this technique to identify a series of tetravalent peptides that bound to Stx1, another major Stx family member, with high affinity by targeting one receptor-binding site of the B subunit. One peptide, MMA-tet, markedly inhibited Stx1 and Stx2 cytotoxicity with greater potency than PPP-tet. After forming a complex with Stx1 through its specific receptor-binding region, MMA-tet did not affect vesicular transport of the toxin to the endoplasmic reticulum but substantially rescued inhibition of the protein synthesis induced by Stx1. Oral application of MMA-tet protected mice from a fatal dose of an E. coli O157:H7 strain producing both toxins. MMA-tet may be a promising therapeutic agent against the infection.
Collapse
|
27
|
Mayer CL, Leibowitz CS, Kurosawa S, Stearns-Kurosawa DJ. Shiga toxins and the pathophysiology of hemolytic uremic syndrome in humans and animals. Toxins (Basel) 2012; 4:1261-87. [PMID: 23202315 PMCID: PMC3509707 DOI: 10.3390/toxins4111261] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 11/01/2012] [Accepted: 11/02/2012] [Indexed: 12/25/2022] Open
Abstract
Food-borne diseases are estimated at 76 million illnesses and 5000 deaths every year in the United States with the greatest burden on young children, the elderly and immunocompromised populations. The impact of efficient food distribution systems and a truly global food supply ensures that outbreaks, previously sporadic and contained locally, are far more widespread and emerging pathogens have far more frequent infection opportunities. Enterohemorrhagic E. coli is an emerging food- and water-borne pathogen family whose Shiga-like toxins induce painful hemorrhagic colitis with potentially lethal complications of hemolytic uremic syndrome (HUS). The clinical manifestations of Shiga toxin-induced HUS overlap with other related syndromes yet molecular mechanisms differ considerably. As discussed herein, understanding these differences and the novel properties of the toxins is imperative for clinical management decisions, design of appropriate animal models, and choices of adjunctive therapeutics. The emergence of new strains with rapidly aggressive virulence makes clinical and research initiatives in this field a high public health priority.
Collapse
Affiliation(s)
- Chad L Mayer
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA 02118, USA.
| | | | | | | |
Collapse
|
28
|
Keir LS, Marks SD, Kim JJ. Shigatoxin-associated hemolytic uremic syndrome: current molecular mechanisms and future therapies. DRUG DESIGN DEVELOPMENT AND THERAPY 2012; 6:195-208. [PMID: 22888220 PMCID: PMC3414372 DOI: 10.2147/dddt.s25757] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hemolytic uremic syndrome is the leading cause of acute kidney injury in childhood. Ninety percent of cases are secondary to gastrointestinal infection with shigatoxin-producing bacteria. In this review, we discuss the molecular mechanisms of shigatoxin leading to hemolytic uremic syndrome and the emerging role of the complement system and vascular endothelial growth factor in its pathogenesis. We also review the evidence for treatment options to date, in particular antibiotics, plasma exchange, and immunoadsorption, and link this to the molecular pathology. Finally, we discuss future avenues of treatment, including shigatoxin-binding agents and complement inhibitors, such as eculizumab.
Collapse
|
29
|
Shiga toxin-producing Escherichia coli O104:H4: a new challenge for microbiology. Appl Environ Microbiol 2012; 78:4065-73. [PMID: 22504816 DOI: 10.1128/aem.00217-12] [Citation(s) in RCA: 152] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
In 2011, Germany experienced the largest outbreak with a Shiga toxin-producing Escherichia coli (STEC) strain ever recorded. A series of environmental and trace-back and trace-forward investigations linked sprout consumption with the disease, but fecal-oral transmission was also documented. The genome sequences of the pathogen revealed a clonal outbreak with enteroaggregative E. coli (EAEC). Some EAEC virulence factors are carried on the virulence plasmid pAA. From an unknown source, the epidemic strains acquired a lambdoid prophage carrying the gene for the Shiga toxin. The resulting strains therefore possess two different mobile elements, a phage and a plasmid, contributing essential virulence genes. Shiga toxin is released by decaying bacteria in the gut, migrates through the intestinal barrier, and is transported via the blood to target organs, like the kidney. In a mouse model, probiotic bifidobacteria interfered with transport of the toxin through the gut mucosa. Researchers explored bacteriophages, bacteriocins, and low-molecular-weight inhibitors against STEC. Randomized controlled clinical trials of enterohemorrhagic E. coli (EHEC)-associated hemolytic uremic syndrome (HUS) patients found none of the interventions superior to supportive therapy alone. Antibodies against one subtype of Shiga toxin protected pigs against fatal neurological infection, while treatment with a toxin receptor decoy showed no effect in a clinical trial. Likewise, a monoclonal antibody directed against a complement protein led to mixed results. Plasma exchange and IgG immunoadsoprtion ameliorated the condition in small uncontrolled trials. The epidemic O104:H4 strains were resistant to all penicillins and cephalosporins but susceptible to carbapenems, which were recommended for treatment.
Collapse
|
30
|
Ivarsson ME, Leroux JC, Castagner B. Targeting bacterial toxins. Angew Chem Int Ed Engl 2012; 51:4024-45. [PMID: 22441768 DOI: 10.1002/anie.201104384] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Revised: 09/21/2011] [Indexed: 12/18/2022]
Abstract
Protein toxins constitute the main virulence factors of several species of bacteria and have proven to be attractive targets for drug development. Lead candidates that target bacterial toxins range from small molecules to polymeric binders, and act at each of the multiple steps in the process of toxin-mediated pathogenicity. Despite recent and significant advances in the field, a rationally designed drug that targets toxins has yet to reach the market. This Review presents the state of the art in bacterial toxin targeted drug development with a critical consideration of achieved breakthroughs and withstanding challenges. The discussion focuses on A-B-type protein toxins secreted by four species of bacteria, namely Clostridium difficile (toxins A and B), Vibrio cholerae (cholera toxin), enterohemorrhagic Escherichia coli (Shiga toxin), and Bacillus anthracis (anthrax toxin), which are the causative agents of diseases for which treatments need to be improved.
Collapse
Affiliation(s)
- Mattias E Ivarsson
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology Zurich, Wolfgang-Pauli-Strasse 10, Zurich, Switzerland
| | | | | |
Collapse
|
31
|
|
32
|
Goldwater PN, Bettelheim KA. Treatment of enterohemorrhagic Escherichia coli (EHEC) infection and hemolytic uremic syndrome (HUS). BMC Med 2012; 10:12. [PMID: 22300510 PMCID: PMC3286370 DOI: 10.1186/1741-7015-10-12] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Accepted: 02/02/2012] [Indexed: 11/10/2022] Open
Abstract
Verotoxigenic Escherichia coli (VTEC) are a specialized group of E. coli that can cause severe colonic disease and renal failure. Their pathogenicity derives from virulence factors that enable the bacteria to colonize the colon and deliver extremely powerful toxins known as verotoxins (VT) or Shiga toxins (Stx) to the systemic circulation. The recent devastating E. coli O104:H4 epidemic in Europe has shown how helpless medical professionals are in terms of offering effective therapies. By examining the sources and distribution of these bacteria, and how they cause disease, we will be in a better position to prevent and treat the inevitable future cases of sporadic disease and victims of common source outbreaks. Due to the complexity of pathogenesis, it is likely a multitargeted approach is warranted. Developments in terms of these treatments are discussed.
Collapse
Affiliation(s)
- Paul N Goldwater
- Microbiology and Infectious Diseases, SA Pathology at the Women's and Children's Hospital, and Discipline of Paediatrics, University of Adelaide, 72 King William Road, North Adelaide, South Australia, Australia.
| | | |
Collapse
|