1
|
Hua Y, Zhou L, Liu F, Yang H, Wang L, Huang C, Liu C, Lu Y, Wang H, Kan H. Association between ambient temperature and cause-specific mortality: An individual-level case-crossover study in Suzhou, China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 282:116687. [PMID: 38981395 DOI: 10.1016/j.ecoenv.2024.116687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/25/2024] [Accepted: 07/02/2024] [Indexed: 07/11/2024]
Abstract
The changing climate poses a growing challenge to the population health. The objective of this study was to assess the association between ambient temperature and cause-specific mortality in Suzhou. Based on the non-accidental mortality data collected during 2008-2022 in Suzhou, China, this study utilized an individual-level case-crossover design to evaluate the associations of temperature with cause-specific mortality. We applied a distributed lag nonlinear model with a maximum lag of 14 days to account for lag effects. Mortality risk due to extreme cold (<2.5th percentile) and extreme heat (>97.5th percentile) was analyzed. A total of 634,530 non-accidental deaths were analyzed in this study. An inverse J-shaped exposure-response relationship was observed between ambient temperature and non-accidental mortality, with the minimum mortality temperature (MMT) at 29.1℃. The relative risk (RR) of mortality associated with extreme cold (2.5th percentile) was 1.37 [95 % confidence interval (CI): 1.30, 1.44], higher than estimate of 1.09 (95 %CI: 1.07, 1.11) for extreme heat (97.5th percentile) relative to the MMT. Heat effect lasted for 2-3 days, while cold effect could persist for almost 14 days. Higher mortality risk estimates were observed for cardiorespiratory deaths compared to total deaths, with statistically significant between-group differences. Consequently, this study provides first-hand evidence on the associations between ambient temperatures and mortality risks from various causes, which could help local government and policy-makers in designing targeted strategies and public health measures against the menace of climate change.
Collapse
Affiliation(s)
- Yujie Hua
- Department of Non-communicable Chronic Disease Control and Prevention, Suzhou Center for Disease Control and Prevention, Suzhou 215004, China
| | - Lu Zhou
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, NHC Key Lab of Health Technology Assessment, IRDR ICoE on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Fudan University, Shanghai 200032, China
| | - Fang Liu
- Department of Non-communicable Chronic Disease Control and Prevention, Suzhou Center for Disease Control and Prevention, Suzhou 215004, China
| | - Haibing Yang
- Department of Non-communicable Chronic Disease Control and Prevention, Suzhou Center for Disease Control and Prevention, Suzhou 215004, China
| | - Linchi Wang
- Department of Non-communicable Chronic Disease Control and Prevention, Suzhou Center for Disease Control and Prevention, Suzhou 215004, China
| | - Chunyan Huang
- Department of Non-communicable Chronic Disease Control and Prevention, Suzhou Center for Disease Control and Prevention, Suzhou 215004, China
| | - Cong Liu
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, NHC Key Lab of Health Technology Assessment, IRDR ICoE on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Fudan University, Shanghai 200032, China
| | - Yan Lu
- Department of Non-communicable Chronic Disease Control and Prevention, Suzhou Center for Disease Control and Prevention, Suzhou 215004, China.
| | - Haitao Wang
- Department of Disease Control, SuZhou Municipal Health Commission, Suzhou 215002, China.
| | - Haidong Kan
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, NHC Key Lab of Health Technology Assessment, IRDR ICoE on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Fudan University, Shanghai 200032, China.
| |
Collapse
|
2
|
Falchetta G, De Cian E, Sue Wing I, Carr D. Global projections of heat exposure of older adults. Nat Commun 2024; 15:3678. [PMID: 38744815 PMCID: PMC11094092 DOI: 10.1038/s41467-024-47197-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 03/24/2024] [Indexed: 05/16/2024] Open
Abstract
The global population is aging at the same time as heat exposures are increasing due to climate change. Age structure, and its biological and socio-economic drivers, determine populations' vulnerability to high temperatures. Here we combine age-stratified demographic projections with downscaled temperature projections to mid-century and find that chronic exposure to heat doubles across all warming scenarios. Moreover, >23% of the global population aged 69+ will inhabit climates whose 95th percentile of daily maximum temperature exceeds the critical threshold of 37.5 °C, compared with 14% today, exposing an additional 177-246 million older adults to dangerous acute heat. Effects are most severe in Asia and Africa, which also have the lowest adaptive capacity. Our results facilitate regional heat risk assessments and inform public health decision-making.
Collapse
Affiliation(s)
- Giacomo Falchetta
- CMCC Foundation - Euro-Mediterranean Center on Climate Change, Venice, Italy.
- RFF-CMCC European Institute on Economics and the Environment, Venice, Italy.
- International Institute for Applied Systems Analysis, Laxenburg, Austria.
| | - Enrica De Cian
- CMCC Foundation - Euro-Mediterranean Center on Climate Change, Venice, Italy
- RFF-CMCC European Institute on Economics and the Environment, Venice, Italy
- Department of Economics, Ca' Foscari University, Venice, Italy
| | - Ian Sue Wing
- Department of Earth & Environment, Boston University, Boston, MA, 02215, USA
| | - Deborah Carr
- Department of Sociology, Boston University, Boston, MA, 02215, USA
| |
Collapse
|
3
|
Figueiredo T, Midão L, Rocha P, Cruz S, Lameira G, Conceição P, Ramos RJG, Batista L, Corvacho H, Almada M, Martins A, Rocha C, Ribeiro A, Alves F, Costa E. The interplay between climate change and ageing: A systematic review of health indicators. PLoS One 2024; 19:e0297116. [PMID: 38656926 PMCID: PMC11042704 DOI: 10.1371/journal.pone.0297116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 12/28/2023] [Indexed: 04/26/2024] Open
Abstract
Climate change and rapid population ageing pose challenges for communities and public policies. This systematic review aims to gather data from studies that present health indicators establishing the connection between climate change and the physical and mental health of the older population (≥ 65 years), who experience a heightened vulnerability to the impacts of climate change when compared to other age cohorts. This review was conducted according to the PICO strategy and following Cochrane and PRISMA guidelines. Three databases (PubMed, Scopus and Greenfile) were searched for articles from 2015 to 2022. After applying inclusion and exclusion criteria,nineteen studies were included. The findings indicated that various climate change phenomena are associated with an elevated risk of mortality and morbidity outcomes in older adults. These included cardiovascular, respiratory, renal, and mental diseases, along with physical injuries. Notably, the impact of climate change was influenced by gender, socioeconomic status, education level, and age-vulnerability factors. Climate change directly affected the health of older adults through ambient temperature variability, extreme and abnormal temperatures, strong winds, sea temperature variability, extreme El Niño-southern Oscillation (ENSO) conditions and droughts, and indirectly by air pollution resulting from wildfires. This review presents further evidence confirming that climate change significantly impacts the health and well-being of older adults. It highlights the urgency for implementing effective strategies to facilitate adaptation and mitigation, enhancing the overall quality of life for all individuals.
Collapse
Affiliation(s)
- Teodora Figueiredo
- Porto4Ageing—Competence Center on Active and Healthy Ageing of the University of Porto, Faculty of Pharmacy of the University of Porto, Associate Laboratory i4HB—Institute for Health and Bioeconomy and UCIBIO—Applied Biomolecular Sciences Unit, Faculty of Pharmacy of the University of Porto, Porto, Portugal
| | - Luís Midão
- Porto4Ageing—Competence Center on Active and Healthy Ageing of the University of Porto, Faculty of Pharmacy of the University of Porto, Associate Laboratory i4HB—Institute for Health and Bioeconomy and UCIBIO—Applied Biomolecular Sciences Unit, Faculty of Pharmacy of the University of Porto, Porto, Portugal
| | - Pedro Rocha
- CINTESIS@RISE, “Department of Behavioral Sciences”, ICBAS, University of Porto, Porto, Portugal
| | - Sara Cruz
- CITTA–Research Centre for Territory, Transports and Environment, Department of Civil Engineering, Faculty of Engineering of the University of Porto, Porto, Portugal
| | - Gisela Lameira
- Faculty of Architecture, University of Porto, Porto, Portugal
| | - Paulo Conceição
- CITTA–Research Centre for Territory, Transports and Environment, Department of Civil Engineering, Faculty of Engineering of the University of Porto, Porto, Portugal
| | - Rui J. G. Ramos
- Faculty of Architecture, University of Porto, Porto, Portugal
| | - Luísa Batista
- CITTA–Research Centre for Territory, Transports and Environment, Department of Civil Engineering, Faculty of Engineering of the University of Porto, Porto, Portugal
| | - Helena Corvacho
- CONSTRUCT (LFC), Faculty of Engineering University of Porto, Porto, Portugal
| | - Marta Almada
- Porto4Ageing—Competence Center on Active and Healthy Ageing of the University of Porto, Faculty of Pharmacy of the University of Porto, Associate Laboratory i4HB—Institute for Health and Bioeconomy and UCIBIO—Applied Biomolecular Sciences Unit, Faculty of Pharmacy of the University of Porto, Porto, Portugal
| | - Ana Martins
- Faculty of Architecture, University of Porto, Porto, Portugal
| | - Cecília Rocha
- CITTA–Research Centre for Territory, Transports and Environment, Department of Civil Engineering, Faculty of Engineering of the University of Porto, Porto, Portugal
| | - Anabela Ribeiro
- CITTA–Research Centre for Territory, Transports and Environment, Department of Civil Engineering, Faculty of Sciences and Technology of the University of Coimbra, Coimbra, Portugal
| | - Fernando Alves
- CITTA–Research Centre for Territory, Transports and Environment, Department of Civil Engineering, Faculty of Engineering of the University of Porto, Porto, Portugal
| | - Elísio Costa
- Porto4Ageing—Competence Center on Active and Healthy Ageing of the University of Porto, Faculty of Pharmacy of the University of Porto, Associate Laboratory i4HB—Institute for Health and Bioeconomy and UCIBIO—Applied Biomolecular Sciences Unit, Faculty of Pharmacy of the University of Porto, Porto, Portugal
| |
Collapse
|
4
|
Liu J, Li M, Yang Z, Liu D, Xiao T, Cheng J, Su H, Ou CQ, Yang J. Rising trend and regional disparities of the global burden of disease attributable to ambient low temperature, 1990-2019: An analysis of data from the Global Burden of Disease 2019 study. J Glob Health 2024; 14:04017. [PMID: 38635810 PMCID: PMC11026037 DOI: 10.7189/jogh.14.04017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024] Open
Abstract
Background Previous studies on the effect of global warming on the global burden of disease have mainly focussed on the impact of high temperatures, thereby providing limited evidence of the effect of lower temperatures. Methods We adopted a three-stage analysis approach using data from the Global Burden of Disease 2019 study. First, we explored the global burden of disease attributable to low temperatures, examining variations by gender, age, cause, region, and country. Second, we analysed temporal trends in low-temperature-related disease burdens from 1990 to 2019 by meta-regression. Finally, we fitted a mixed-effects meta-regression model to explore the effect modification of country-level characteristics. Results In 2019, low temperatures were responsible for 2.92% of global deaths and 1.03% of disability-adjusted life years (DALYs), corresponding to a death rate of 21.36 (95% uncertainty interval (UI) = 18.26, 24.73) and a DALY rate of 335 (95% UI = 280, 399) per 100 000 population. Most of the deaths (85.12%) and DALYs (94.38%) attributable to low temperatures were associated with ischaemic heart disease, stroke, and chronic obstructive pulmonary disease. In the last three decades, we observed an upward trend for the annual number of attributable deaths (P < 0.001) and a downward trend for the rates of death (P < 0.001) and DALYs (P < 0.001). The disease burden associated with low temperatures varied considerably among regions and countries, with higher burdens observed in regions with middle or high-middle socio-demographic indices, as well as countries with higher gross domestic product per capita and a larger proportion of ageing population. Conclusions Our findings emphasise the significance of raising public awareness and prioritising policies to protect global population health from the adverse effects of low temperatures, even in the face of global warming. Particular efforts should be targeted towards individuals with underlying diseases (e.g. cardiovascular diseases) and vulnerable countries or regions (e.g. Central Asia and central Europe).
Collapse
Affiliation(s)
- Jiangdong Liu
- Department of Environmental Health, School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, NHC Key Lab of Health Technology Assessment, IRDR ICoE on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Fudan University, Shanghai, China
- State Key Laboratory of Organ Failure Research, Department of Biostatistics, School of Public Health, Southern Medical University, Guangzhou, China
| | - Mengmeng Li
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Zhou Yang
- State Key Laboratory of Organ Failure Research, Department of Biostatistics, School of Public Health, Southern Medical University, Guangzhou, China
| | - Di Liu
- The Key Laboratory of Advanced Interdisciplinary Studies, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- School of Public Health, Guangzhou Medical University, Guangzhou, China
| | - Ting Xiao
- State Key Laboratory of Organ Failure Research, Department of Biostatistics, School of Public Health, Southern Medical University, Guangzhou, China
| | - Jian Cheng
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
| | - Hong Su
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
| | - Chun-Quan Ou
- State Key Laboratory of Organ Failure Research, Department of Biostatistics, School of Public Health, Southern Medical University, Guangzhou, China
| | - Jun Yang
- The Key Laboratory of Advanced Interdisciplinary Studies, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- School of Public Health, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
5
|
Ohashi Y, Ihara T, Oka K, Takane Y, Kikegawa Y. Machine learning analysis and risk prediction of weather-sensitive mortality related to cardiovascular disease during summer in Tokyo, Japan. Sci Rep 2023; 13:17020. [PMID: 37813975 PMCID: PMC10562479 DOI: 10.1038/s41598-023-44181-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 10/04/2023] [Indexed: 10/11/2023] Open
Abstract
Climate-sensitive diseases developing from heat or cold stress threaten human health. Therefore, the future health risk induced by climate change and the aging of society need to be assessed. We developed a prediction model for mortality due to cardiovascular diseases such as myocardial infarction and cerebral infarction, which are weather or climate sensitive, using machine learning (ML) techniques. We evaluated the daily mortality of ischaemic heart disease (IHD) and cerebrovascular disease (CEV) in Tokyo and Osaka City, Japan, during summer. The significance of delayed effects of daily maximum temperature and other weather elements on mortality was previously demonstrated using a distributed lag nonlinear model. We conducted ML by a LightGBM algorithm that included specified lag days, with several temperature- and air pressure-related elements, to assess the respective mortality risks for IHD and CEV, based on training and test data for summer 2010-2019. These models were used to evaluate the effect of climate change on the risk for IHD mortality in Tokyo by applying transfer learning (TL). ML with TL predicted that the daily IHD mortality risk in Tokyo would averagely increase by 29% and 35% at the 95th and 99th percentiles, respectively, using a high-level warming-climate scenario in 2045-2055, compared to the risk simulated using ML in 2009-2019.
Collapse
Affiliation(s)
- Yukitaka Ohashi
- Faculty of Biosphere-Geosphere Science, Okayama University of Science, Kita-Ku, Okayama City, Okayama, Japan.
| | - Tomohiko Ihara
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa City, Chiba, Japan
| | - Kazutaka Oka
- Center for Climate Change Adaptation, National Institute for Environmental Studies (NIES), Tsukuba City, Ibaraki, Japan
| | - Yuya Takane
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba City, Ibaraki, Japan
| | - Yukihiro Kikegawa
- School of Science and Engineering, Meisei University, Hino City, Tokyo, Japan
| |
Collapse
|
6
|
Ni W, Breitner S, Nikolaou N, Wolf K, Zhang S, Peters A, Herder C, Schneider A. Effects of Short- And Medium-Term Exposures to Lower Air Temperature on 71 Novel Biomarkers of Subclinical Inflammation: Results from the KORA F4 Study. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:12210-12221. [PMID: 37552838 PMCID: PMC10448716 DOI: 10.1021/acs.est.3c00302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 07/26/2023] [Accepted: 07/26/2023] [Indexed: 08/10/2023]
Abstract
Increasing evidence has revealed that exposure to low temperatures is linked to a higher risk of chronic diseases and death; however, the mechanisms underlying the observed associations are still poorly understood. We performed a cross-sectional analysis with 1115 participants from the population-based KORA F4 study, which was conducted in Augsburg, Germany, from 2006 to 2008. Seventy-one inflammation-related protein biomarkers were analyzed in serum using proximity extension assay technology. We employed generalized additive models to explore short- and medium-term effects of air temperature on biomarkers of subclinical inflammation at cumulative lags of 0-1 days, 2-6 days, 0-13 days, 0-27 days, and 0-55 days. We found that short- and medium-term exposures to lower air temperature were associated with higher levels in 64 biomarkers of subclinical inflammation, such as Protein S100-A12 (EN-RAGE), Interleukin-6 (IL-6), Interleukin-10 (IL-10), C-C motif chemokine 28 (CCL28), and Neurotrophin-3 (NT-3). More pronounced associations between lower air temperature and higher biomarker of subclinical inflammation were observed among older participants, people with cardiovascular disease or prediabetes/diabetes, and people exposed to higher levels of air pollution (PM2.5, NO2, and O3). Our findings provide intriguing insight into how low air temperature may cause adverse health effects by activating inflammatory pathways.
Collapse
Affiliation(s)
- Wenli Ni
- Institute
of Epidemiology, Helmholtz Zentrum München
- German Research Center for Environmental Health (GmbH), Neuherberg D-85764, Germany
- Institute
for Medical Information Processing, Biometry, and Epidemiology, Pettenkofer
School of Public Health, LMU Munich, Munich 81377, Germany
| | - Susanne Breitner
- Institute
of Epidemiology, Helmholtz Zentrum München
- German Research Center for Environmental Health (GmbH), Neuherberg D-85764, Germany
- Institute
for Medical Information Processing, Biometry, and Epidemiology, Pettenkofer
School of Public Health, LMU Munich, Munich 81377, Germany
| | - Nikolaos Nikolaou
- Institute
of Epidemiology, Helmholtz Zentrum München
- German Research Center for Environmental Health (GmbH), Neuherberg D-85764, Germany
- Institute
for Medical Information Processing, Biometry, and Epidemiology, Pettenkofer
School of Public Health, LMU Munich, Munich 81377, Germany
| | - Kathrin Wolf
- Institute
of Epidemiology, Helmholtz Zentrum München
- German Research Center for Environmental Health (GmbH), Neuherberg D-85764, Germany
| | - Siqi Zhang
- Institute
of Epidemiology, Helmholtz Zentrum München
- German Research Center for Environmental Health (GmbH), Neuherberg D-85764, Germany
| | - Annette Peters
- Institute
of Epidemiology, Helmholtz Zentrum München
- German Research Center for Environmental Health (GmbH), Neuherberg D-85764, Germany
- Institute
for Medical Information Processing, Biometry, and Epidemiology, Pettenkofer
School of Public Health, LMU Munich, Munich 81377, Germany
- German
Center for Diabetes Research (DZD), München-Neuherberg, Munich D-85764, Germany
- German Centre
for Cardiovascular Research (DZHK), Partner
Site Munich Heart Alliance, Munich 80802, Germany
| | - Christian Herder
- Institute
for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University
Düsseldorf, Düsseldorf 40225, Germany
- Division
of Endocrinology and Diabetology, Medical Faculty and University Hospital
Düsseldorf, Heinrich Heine University
Düsseldorf, Düsseldorf 40204, Germany
- German
Center for Diabetes Research (DZD), München-Neuherberg, Munich D-85764, Germany
| | - Alexandra Schneider
- Institute
of Epidemiology, Helmholtz Zentrum München
- German Research Center for Environmental Health (GmbH), Neuherberg D-85764, Germany
| |
Collapse
|
7
|
Requia WJ, Vicedo-Cabrera AM, de Schrijver E, Amini H. Low ambient temperature and hospitalization for cardiorespiratory diseases in Brazil. ENVIRONMENTAL RESEARCH 2023; 231:116231. [PMID: 37245579 DOI: 10.1016/j.envres.2023.116231] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/02/2023] [Accepted: 05/23/2023] [Indexed: 05/30/2023]
Abstract
Studies have shown that larger temperature-related health impacts may be associated with cold rather than with hot temperatures. Although it remains unclear the cold-related health burden in warmer regions, in particular at the national level in Brazil. We address this gap by examining the association between low ambient temperature and daily hospital admissions for cardiovascular and respiratory diseases in Brazil between 2008 and 2018. We first applied a case time series design in combination with distributed lag non-linear modeling (DLNM) framework to assess the association of low ambient temperature with daily hospital admissions by Brazilian region. Here, we also stratified the analyses by sex, age group (15-45, 46-65, and >65 years), and cause (respiratory and cardiovascular hospital admissions). In the second stage, we performed a meta-analysis to estimate pooled effects across the Brazilian regions. Our sample included more than 23 million hospitalizations for cardiovascular and respiratory diseases nationwide between 2008 and 2018, of which 53% were admissions for respiratory diseases and 47% for cardiovascular diseases. Our findings suggest that low temperatures are associated with a relative risk of 1.17 (95% CI: 1.07; 1.27) and 1.07 (95% CI: 1.01; 1.14) for cardiovascular and respiratory admissions in Brazil, respectively. The pooled national results indicate robust positive associations for cardiovascular and respiratory hospital admissions in most of the subgroup analyses. In particular, for cardiovascular hospital admissions, men and older adults (>65 years old) were slightly more impacted by cold exposure. For respiratory admissions, the results did not indicate differences among the population groups by sex and age. This study can help decision-makers to create adaptive measures to protect public health from the effects of cold temperature.
Collapse
Affiliation(s)
- Weeberb J Requia
- Center for Environment and Public Health Studies, School of Public Policy and Government, Fundação Getúlio Vargas, Brasília, Brazil.
| | - Ana Maria Vicedo-Cabrera
- Institute of Social and Preventive Medicine, Oeschger Center for Climate Change Research, University of Bern, Bern, Switzerland
| | - Evan de Schrijver
- Institute of Social and Preventive Medicine, Oeschger Center for Climate Change Research, Graduate School of Health Sciences, University of Bern, Bern, Switzerland
| | - Heresh Amini
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
8
|
Ni W, Nikolaou N, Ward-Caviness CK, Breitner S, Wolf K, Zhang S, Wilson R, Waldenberger M, Peters A, Schneider A. Associations between medium- and long-term exposure to air temperature and epigenetic age acceleration. ENVIRONMENT INTERNATIONAL 2023; 178:108109. [PMID: 37517177 PMCID: PMC10656697 DOI: 10.1016/j.envint.2023.108109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 07/12/2023] [Accepted: 07/20/2023] [Indexed: 08/01/2023]
Abstract
Climate change poses a serious threat to human health worldwide, while aging populations increase. However, no study has ever investigated the effects of air temperature on epigenetic age acceleration. This study involved 1,725 and 1,877 participants from the population-based KORA F4 (2006-2008) and follow-up FF4 (2013-2014) studies, respectively, conducted in Augsburg, Germany. The difference between epigenetic age and chronological age was referred to as epigenetic age acceleration and reflected by Horvath's epigenetic age acceleration (HorvathAA), Hannum's epigenetic age acceleration (HannumAA), PhenoAge acceleration (PhenoAA), GrimAge acceleration (GrimAA), and Epigenetic Skin and Blood Age acceleration (SkinBloodAA). Daily air temperature was estimated using hybrid spatiotemporal regression-based models. To explore the medium- and long-term effects of air temperature modeled in time and space on epigenetic age acceleration, we applied generalized estimating equations (GEE) with distributed lag non-linear models, and GEE, respectively. We found that high temperature exposure based on the 8-week moving average air temperature (97.5th percentile of temperature compared to median temperature) was associated with increased HorvathAA, HannumAA, GrimAA, and SkinBloodAA: 1.83 (95% CI: 0.29-3.37), 11.71 (95% CI: 8.91-14.50), 2.26 (95% CI: 1.03-3.50), and 5.02 (95% CI: 3.42-6.63) years, respectively. Additionally, we found consistent results with high temperature exposure based on the 4-week moving average air temperature was associated with increased HannumAA, GrimAA, and SkinBloodAA: 9.18 (95% CI: 6.60-11.76), 1.78 (95% CI: 0.66-2.90), and 4.07 (95% CI: 2.56-5.57) years, respectively. For the spatial variation in annual average temperature, a 1 °C increase was associated with an increase in all five measures of epigenetic age acceleration (HorvathAA: 0.41 [95% CI: 0.24-0.57], HannumAA: 2.24 [95% CI: 1.95-2.53], PhenoAA: 0.32 [95% CI: 0.05-0.60], GrimAA: 0.24 [95%: 0.11-0.37], and SkinBloodAA: 1.17 [95% CI: 1.00-1.35] years). In conclusion, our results provide first evidence that medium- and long-term exposures to high air temperature affect increases in epigenetic age acceleration.
Collapse
Affiliation(s)
- Wenli Ni
- Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, Neuherberg, Germany; Institute for Medical Information Processing, Biometry, and Epidemiology, Pettenkofer School of Public Health, LMU Munich, Munich, Germany.
| | - Nikolaos Nikolaou
- Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, Neuherberg, Germany; Institute for Medical Information Processing, Biometry, and Epidemiology, Pettenkofer School of Public Health, LMU Munich, Munich, Germany
| | - Cavin K Ward-Caviness
- Center for Public Health and Environmental Assessment, US Environmental Protection Agency, Chapel Hill, NC, USA
| | - Susanne Breitner
- Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, Neuherberg, Germany; Institute for Medical Information Processing, Biometry, and Epidemiology, Pettenkofer School of Public Health, LMU Munich, Munich, Germany
| | - Kathrin Wolf
- Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, Neuherberg, Germany
| | - Siqi Zhang
- Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, Neuherberg, Germany
| | - Rory Wilson
- Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, Neuherberg, Germany; Research Unit Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Melanie Waldenberger
- Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, Neuherberg, Germany; Research Unit Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany; German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, Neuherberg, Germany; Institute for Medical Information Processing, Biometry, and Epidemiology, Pettenkofer School of Public Health, LMU Munich, Munich, Germany; German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Alexandra Schneider
- Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, Neuherberg, Germany
| |
Collapse
|
9
|
Vésier C, Urban A. Gender inequalities in heat-related mortality in the Czech Republic. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2023:10.1007/s00484-023-02507-2. [PMID: 37428233 PMCID: PMC10386945 DOI: 10.1007/s00484-023-02507-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 03/22/2023] [Accepted: 05/10/2023] [Indexed: 07/11/2023]
Abstract
It is acknowledged that climate change exacerbates social inequalities, and women have been reported as more vulnerable to heat than men in many studies in Europe, including the Czech Republic. This study aimed at investigating the associations between daily temperature and mortality in the Czech Republic in the light of a sex and gender perspective, taking into account other factors such as age and marital status. Daily mean temperature and individual mortality data recorded during the five warmest months of the year (from May to September) over the period 1995-2019 were used to fit a quasi-Poisson regression model, which included a distributed lag non-linear model (DLNM) to account for the delayed and non-linear effects of temperature on mortality. The heat-related mortality risks obtained in each population group were expressed in terms of risk at the 99th percentile of summer temperature relative to the minimum mortality temperature. Women were found generally more at risk to die because of heat than men, and the difference was larger among people over 85 years old. Risks among married people were lower than risks among single, divorced, and widowed people, while risks in divorced women were significantly higher than in divorced men. This is a novel finding which highlights the potential role of gender inequalities in heat-related mortality. Our study underlines the relevance of including a sex and gender dimension in the analysis of the impacts of heat on the population and advocates the development of gender-based adaptation policies to extreme heat.
Collapse
Affiliation(s)
- Chloé Vésier
- Faculty of Environmental Sciences, Czech University of Life Sciences, Kamycka 129, 165 00, Prague, Czech Republic.
| | - Aleš Urban
- Faculty of Environmental Sciences, Czech University of Life Sciences, Kamycka 129, 165 00, Prague, Czech Republic
- Institute of Atmospheric Physics of the Czech Academy of Sciences, Boční II 1401, 141 00, Prague, Czech Republic
| |
Collapse
|
10
|
Navas-Martín MÁ, López-Bueno JA, Ascaso-Sánchez MS, Follos F, Vellón JM, Mirón IJ, Luna MY, Sánchez-Martínez G, Díaz J, Linares C. Territory Differences in Adaptation to Heat among Persons Aged 65 Years and Over in Spain (1983-2018). INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:4168. [PMID: 36901177 PMCID: PMC10002076 DOI: 10.3390/ijerph20054168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/23/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
Climate change is currently regarded as the greatest global threat to human health, and its health-related consequences take different forms according to age, sex, socioeconomic level, and type of territory. The aim of this study is to ascertain the differences in vulnerability and the heat-adaptation process through the minimum mortality temperature (MMT) among the Spanish population aged ≥65 years by territorial classification. A retrospective, longitudinal, ecological time-series study, using provincial data on daily mortality and maximum daily temperature across the period 1983-2018, was performed, differentiating between urban and nonurban populations. The MMTs in the study period were higher for the ≥65-year age group in urban provinces, with a mean value of 29.6 °C (95%CI 29.2-30.0) versus 28.1 °C (95%CI 27.7-28.5) in nonurban provinces. This difference was statistically significant (p < 0.05). In terms of adaptation levels, higher average values were obtained for nonurban areas, with values of 0.12 (95%CI -0.13-0.37), than for urban areas, with values of 0.09 (95%CI -0.27-0.45), though this difference was not statistically significant (p < 0.05). These findings may contribute to better planning by making it possible to implement more specific public health prevention plans. Lastly, they highlight the need to conduct studies on heat-adaptation processes, taking into account various differential factors, such as age and territory.
Collapse
Affiliation(s)
- Miguel Ángel Navas-Martín
- National School of Public Health, Carlos III Institute of Health, 28029 Madrid, Spain
- Doctorate Program in Biomedical Sciences and Public Health, National University of Distance Education, 28015 Madrid, Spain
| | | | | | - Fernando Follos
- Tdot Soluciones Sostenibles, SL. Ferrol, 15401 A Coruña, Spain
| | | | - Isidro Juan Mirón
- Regional Health Authority of Castile La Mancha, 45500 Torrijos, Spain
| | | | | | - Julio Díaz
- National School of Public Health, Carlos III Institute of Health, 28029 Madrid, Spain
| | - Cristina Linares
- National School of Public Health, Carlos III Institute of Health, 28029 Madrid, Spain
| |
Collapse
|
11
|
Psistaki K, Dokas IM, Paschalidou AK. Analysis of the heat- and cold-related cardiovascular mortality in an urban mediterranean environment through various thermal indices. ENVIRONMENTAL RESEARCH 2023; 216:114831. [PMID: 36402186 DOI: 10.1016/j.envres.2022.114831] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/31/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
During the last decades the effects of thermal stress on public health have been a great concern worldwide. Thermal stress is determined by air temperature in combination with other meteorological parameters, such as relative humidity and wind speed. The present study is focused on the Mediterranean city of Thessaloniki, Greece and it aims to explore the association between thermal stress and mortality from cardiovascular diseases, using both air temperature and other thermal indices as indicators. For that, an over-dispersed Poisson regression function was used, in combination with distributed lag non-linear models, in order to capture the delayed and nonlinear effects of temperature. Our results revealed a reverse J-shaped exposure-response curve for the total population and females and a U-shaped association for males. In all cases examined, the minimum mortality temperature was identified around the 80th percentile of each distribution. It is noteworthy that despite the fact that the highest risks of cardiovascular mortality were estimated for exposure to extreme temperatures, moderate temperatures were found to cause the highest burden of mortality. On the whole, our estimations demonstrated that the population in Thessaloniki is more susceptible to cold effects and in regard with gender, females seem to be more vulnerable to ambient thermal conditions.
Collapse
Affiliation(s)
- K Psistaki
- Department of Forestry and Management of the Environment and Natural Resources, Democritus University of Thrace, Orestiada, 68200, Greece
| | - I M Dokas
- Department of Civil Engineering, Democritus University of Thrace, Greece
| | - A K Paschalidou
- Department of Forestry and Management of the Environment and Natural Resources, Democritus University of Thrace, Orestiada, 68200, Greece.
| |
Collapse
|
12
|
Psistaki K, Dokas IM, Paschalidou AK. The Impact of Ambient Temperature on Cardiorespiratory Mortality in Northern Greece. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 20:555. [PMID: 36612877 PMCID: PMC9819162 DOI: 10.3390/ijerph20010555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
It is well-established that exposure to non-optimum temperatures adversely affects public health, with the negative impact varying with latitude, as well as various climatic and population characteristics. This work aims to assess the relationship between ambient temperature and mortality from cardiorespiratory diseases in Eastern Macedonia and Thrace, in Northern Greece. For this, a standard time-series over-dispersed Poisson regression was fit, along with a distributed lag nonlinear model (DLNM), using a maximum lag of 21 days, to capture the non-linear and delayed temperature-related effects. A U-shaped relationship was found between temperature and cardiorespiratory mortality for the overall population and various subgroups and the minimum mortality temperature was observed around the 65th percentile of the temperature distribution. Exposure to extremely high temperatures was found to put the highest risk of cardiorespiratory mortality in all cases, except for females which were found to be more sensitive to extreme cold. It is remarkable that the highest burden of temperature-related mortality was attributed to moderate temperatures and primarily to moderate cold. The elderly were found to be particularly susceptible to both cold and hot thermal stress. These results provide new evidence on the health response of the population to low and high temperatures and could be useful to local authorities and policy-makers for developing interventions and prevention strategies for reducing the adverse impact of ambient temperature.
Collapse
Affiliation(s)
- Kyriaki Psistaki
- Department of Forestry and Management of the Environment and Natural Resources, Democritus University of Thrace, 68200 Orestiada, Greece
| | - Ioannis M. Dokas
- Department of Civil Engineering, Democritus University of Thrace, 67100 Xanthi, Greece
| | - Anastasia K. Paschalidou
- Department of Forestry and Management of the Environment and Natural Resources, Democritus University of Thrace, 68200 Orestiada, Greece
| |
Collapse
|
13
|
Changes in Weather-Related Fatalities in the Czech Republic during the 1961–2020 Period. ATMOSPHERE 2022. [DOI: 10.3390/atmos13050688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Fatalities associated with severe weather, collected from newspapers and other documentary sources, were used to create a corresponding database for the 1961–2020 period for the Czech Republic. Fatalities attributed to floods, windstorms, convective storms, snow and glaze ice, frost, fog, and other severe weather, on the one hand, and vehicle accident fatalities connected with rain, snow, glaze ice, fog, and inclement weather, on the other, were analysed separately for two standard periods, 1961–1990 and 1991–2020. The number of weather-related fatalities between these two periods increased in the flood, windstorm, and especially frost categories, and decreased for the convective storm and fog categories. For snow and glaze ice they were the same. Despite significant differences in both 30-year periods, the highest proportions of fatalities corresponded to the winter months, and in individual fatality characteristics to males, adults, direct deaths, deaths by freezing or hypothermia, and to hazardous behaviour. A statistically significant (p < 0.05) Spearman rank correlation between fatalities and climate variables was only found in the 1991–2020 period for snow/glaze ice-related fatalities, with the number of days with snow cover depth and frost-related fatalities having days with daily minimum temperatures below −5 °C or −10 °C. Despite the highest proportions of the rain and wet road categories being in the number of vehicle accident fatalities, a statistically significant correlation was only found for the category of snow-related fatalities in the number of days with snowfall. The results and conclusions of this study have to be evaluated in the broader context of climatological, political, economic, and societal changes within the country, and have the potential to be used in risk management.
Collapse
|
14
|
Łyszczarz B, Sowa K. Production losses due to mortality associated with modifiable health risk factors in Poland. THE EUROPEAN JOURNAL OF HEALTH ECONOMICS : HEPAC : HEALTH ECONOMICS IN PREVENTION AND CARE 2022; 23:33-45. [PMID: 34236544 PMCID: PMC8882090 DOI: 10.1007/s10198-021-01345-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 07/01/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Epidemiological burden of modifiable mortality risk factors is recognized in literature; however, less is known on the economic losses due to a range of such risks. AIM To estimate production losses (indirect cost) of mortality associated with risk factors as classified in Global Burden of Disease 2019 Study in Poland in years 2000, 2010, and 2017. METHODS We relied on the human capital method and societal perspective and used sex-, age-, region-, and risk-specific data on mortality due to modifiable risk factors and a set of socio-economic measures. RESULTS The production losses due to mortality attributable to all investigated risk factors accounted for 19.6-21.0 billion PLN (Polish zloty; 2017 exchange rate: 1€ = 4.26 PLN) and 1.44-2.45% of gross domestic product, depending on year. Behavioural factors were the most important contributor to overall burden (16.7-18.2 billion PLN), followed by metabolic factors (6.8-7.6 billion PLN) and environmental and occupational factors (3.0-3.5 billion PLN). Of disaggregated risks, alcohol and tobacco, high systolic blood pressure, and dietary risks proved to lead to the highest losses. Cost per death was greatest for child and maternal malnutrition, followed by intimate partner violence and childhood sexual abuse and bullying. Moreover, a notable regional variation of indirect cost was identified with losses ranging from 1.21 to 1.81% of regional gross domestic product in 2017. CONCLUSION Our findings provide economically hierarchised list of modifiable risk factors and they contribute to inform policy-makers in prioritizing programmes to improve health.
Collapse
Affiliation(s)
- Błażej Łyszczarz
- Department of Health Economics, Nicolaus Copernicus University in Toruń, Toruń, Poland.
| | - Karolina Sowa
- Department of Analyses and Strategies, Ministry of Health, Warsaw, Poland
| |
Collapse
|
15
|
Rodrigues M, Santana P, Rocha A. Modelling of Temperature-Attributable Mortality among the Elderly in Lisbon Metropolitan Area, Portugal: A Contribution to Local Strategy for Effective Prevention Plans. J Urban Health 2021; 98:516-531. [PMID: 33844122 PMCID: PMC8040763 DOI: 10.1007/s11524-021-00536-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/26/2021] [Indexed: 11/21/2022]
Abstract
Epidemiological studies on the impact of determining environmental factors on human health have proved that temperature extremes and variability constitute mortality risk factors. However, few studies focus specifically on susceptible individuals living in Portuguese urban areas. This study aimed to estimate and assess the health burden of temperature-attributable mortality among age groups (0-64 years; 65-74 years; 75-84 years; and 85+ years) in Lisbon Metropolitan Area, from 1986-2015. Non-linear and delayed exposure-lag-response relationships between temperature and mortality were fitted with a distributed lag non-linear model (DLNM). In general, the adverse effects of cold and hot temperatures on mortality were greater in the older age groups, presenting a higher risk during the winter season. We found that, for all ages, 10.7% (95% CI: 9.3-12.1%) deaths were attributed to cold temperatures in the winter, and mostly due to moderately cold temperatures, 7.0% (95% CI: 6.2-7.8%), against extremely cold temperatures, 1.4% (95% CI: 0.9-1.8%). When stratified by age, people aged 85+ years were more burdened by cold temperatures (13.8%, 95% CI: 11.5-16.0%). However, for all ages, 5.6% of deaths (95% CI: 2.7-8.4%) can be attributed to hot temperatures. It was observed that the proportion of deaths attributed to exposure to extreme heat is higher than moderate heat. As with cold temperatures, people aged 85+ years are the most vulnerable age group to heat, 8.4% (95% CI: 3.9%, 2.7%), and mostly due to extreme heat, 1.3% (95% CI: 0.8-1.8%). These results provide new evidence on the health burdens associated with alert thresholds, and they can be used in early warning systems and adaptation plans.
Collapse
Affiliation(s)
- Mónica Rodrigues
- Department of Geography and Tourism, Centre of Studies on Geography and Spatial Planning, University of Coimbra, Coimbra, Portugal.
| | - Paula Santana
- Department of Geography and Tourism, Centre of Studies on Geography and Spatial Planning, University of Coimbra, Coimbra, Portugal
| | - Alfredo Rocha
- Department of Physics, Centre for Environmental and Marine Studies, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
16
|
Ma C, Yang J, Nakayama SF, Iwai-Shimada M, Jung CR, Sun XL, Honda Y. Cold Spells and Cause-Specific Mortality in 47 Japanese Prefectures: A Systematic Evaluation. ENVIRONMENTAL HEALTH PERSPECTIVES 2021; 129:67001. [PMID: 34128690 PMCID: PMC8204943 DOI: 10.1289/ehp7109] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
BACKGROUND Many studies have investigated the devastating health effects of heat waves, but less is known about health risks related to cold spells, despite evidence that extreme cold may contribute to a larger proportion of deaths. OBJECTIVES We aimed to systematically investigate the association between cold spells and mortality in Japan. METHODS Daily data for weather conditions and 12 common causes of death during the 1972-2015 cold seasons (November-March) were obtained from 47 Japanese prefectures. Cold spells were defined as ≥2 consecutive days with daily mean temperatures ≤5th percentile for the cold season in each prefecture. Quasi-Poisson regression was combined with a distributed lag model to estimate prefecture-specific associations, and pooled associations at the national level were obtained through random-effects meta-analysis. The potential influence of cold spell characteristics (intensity, duration, and timing in season) on associations between cold spells and mortality was examined using a similar two-stage approach. Temporal trends were investigated using a meta-regression model. RESULTS A total of 18,139,498 deaths were recorded during study period. Mortality was significantly higher during cold spell days vs. other days for all selected causes of death. Mortality due to age-related physical debilitation was more strongly associated with cold spells than with other causes of death. Associations between cold spells and mortality from all causes and several more specific outcomes were stronger for longer and more intense cold spells and for cold spells earlier in the cold season. However, although all outcomes were positively associated with cold spell duration, findings for cold spell intensity and seasonal timing were heterogeneous across the outcomes. Associations between cold spells and mortality due to cerebrovascular disease, cerebral infarction, and age-related physical debility decreased in magnitude over time, whereas temporal trends were relatively flat for all-cause mortality and other outcomes. DISCUSSION Our findings may have implications for establishing tailored public health strategies to prevent avoidable cold spell-related health consequences. https://doi.org/10.1289/EHP7109.
Collapse
Affiliation(s)
- Chaochen Ma
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, Tsukuba, Ibaraki, Japan
| | - Jun Yang
- Institute for Environmental and Climate Research, Jinan University, Guangzhou, Guangdong, China
| | - Shoji F. Nakayama
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, Tsukuba, Ibaraki, Japan
| | - Miyuki Iwai-Shimada
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, Tsukuba, Ibaraki, Japan
| | - Chau-Ren Jung
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, Tsukuba, Ibaraki, Japan
| | - Xian-Liang Sun
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, Tsukuba, Ibaraki, Japan
| | - Yasushi Honda
- Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|