1
|
Bunn RA, Corrêa A, Joshi J, Kaiser C, Lekberg Y, Prescott CE, Sala A, Karst J. What determines transfer of carbon from plants to mycorrhizal fungi? THE NEW PHYTOLOGIST 2024; 244:1199-1215. [PMID: 39352455 DOI: 10.1111/nph.20145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 08/18/2024] [Indexed: 10/18/2024]
Abstract
Biological Market Models are common evolutionary frameworks to understand the maintenance of mutualism in mycorrhizas. 'Surplus C' hypotheses provide an alternative framework where stoichiometry and source-sink dynamics govern mycorrhizal function. A critical difference between these frameworks is whether carbon transfer from plants is regulated by nutrient transfer from fungi or through source-sink dynamics. In this review, we: provide a historical perspective; summarize studies that asked whether plants transfer more carbon to fungi that transfer more nutrients; conduct a meta-analysis to assess whether mycorrhizal plant growth suppressions are related to carbon transfer; and review literature on cellular mechanisms for carbon transfer. In sum, current knowledge does not indicate that carbon transfer from plants is directly regulated by nutrient delivery from fungi. Further, mycorrhizal plant growth responses were linked to nutrient uptake rather than carbon transfer. These findings are more consistent with 'Surplus C' hypotheses than Biological Market Models. However, we also identify research gaps, and future research may uncover a mechanism directly linking carbon and nutrient transfer. Until then, we urge caution when applying economic terminology to describe mycorrhizas. We present a synthesis of ideas, consider knowledge gaps, and suggest experiments to advance the field.
Collapse
Affiliation(s)
- Rebecca A Bunn
- Department of Environmental Sciences, Western Washington University, 516 HIgh Street, Bellingham, WA, 98225, USA
| | - Ana Corrêa
- Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal
| | - Jaya Joshi
- Department of Wood Science, Faculty of Forestry, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Christina Kaiser
- Centre for Microbiology and Environmental Systems Science, University of Vienna, 1030, Vienna, Austria
| | - Ylva Lekberg
- MPG Ranch, Missoula, MT, 59833, USA
- Department of Ecosystem and Conservation Sciences, University of Montana, Missoula, MT, 59812, USA
| | - Cindy E Prescott
- Department of Forest and Conservation Sciences, Faculty of Forestry, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Anna Sala
- Division of Biological Sciences, University of Montana, Missoula, MT, 59812, USA
| | - Justine Karst
- Department of Renewable Resources, University of Alberta, Edmonton, AB, T6G 2H1, Canada
| |
Collapse
|
2
|
Chen Q, Strashnov I, van Dongen B, Johnson D, Cox F. Environmental dependency of ectomycorrhizal fungi as soil organic matter oxidizers. THE NEW PHYTOLOGIST 2024. [PMID: 39417445 DOI: 10.1111/nph.20205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/30/2024] [Indexed: 10/19/2024]
Abstract
Forest soils play a pivotal role as global carbon (C) sinks, where the dynamics of soil organic matter (SOM) are significantly influenced by ectomycorrhizal (ECM) fungi. While correlations between ECM fungal community composition and soil C storage have been documented, the underlying mechanisms behind this remain unclear. Here, we conducted controlled experiments using pure cultures growing on naturally complex SOM extracts to test how ECM fungi regulate soil C and nitrogen (N) dynamics in response to varying inorganic N availability, in both monoculture and mixed culture conditions. ECM species dominant in N-poor soils exhibited superior SOM decay capabilities compared with those prevalent in N-rich soils. Inorganic N addition alleviated N limitation for ECM species but exacerbated their C limitation, reflected by reduced N compound decomposition and increased C compound decomposition. In mixed cultures without inorganic N supplementation, ECM species with greater SOM decomposition potential facilitated the persistence of less proficient SOM decomposers. Regardless of inorganic N availability, ECM species in mixed cultures demonstrated a preference for C over N, intensifying relatively labile C compound decomposition. This study highlights the complex interactions between ECM species, their nutritional requirements, the nutritional environment of their habitat, and their role in modifying SOM.
Collapse
Affiliation(s)
- Qiuyu Chen
- Department of Earth and Environmental Sciences, The University of Manchester, Manchester, M13 9PT, UK
| | - Ilya Strashnov
- Department of Earth and Environmental Sciences, The University of Manchester, Manchester, M13 9PT, UK
| | - Bart van Dongen
- Department of Earth and Environmental Sciences, The University of Manchester, Manchester, M13 9PT, UK
| | - David Johnson
- Department of Earth and Environmental Sciences, The University of Manchester, Manchester, M13 9PT, UK
| | - Filipa Cox
- Department of Earth and Environmental Sciences, The University of Manchester, Manchester, M13 9PT, UK
| |
Collapse
|
3
|
Voller F, Ardanuy A, Taylor AFS, Johnson D. Maintenance of host specialisation gradients in ectomycorrhizal symbionts. THE NEW PHYTOLOGIST 2024; 242:1426-1435. [PMID: 37984824 DOI: 10.1111/nph.19395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/02/2023] [Indexed: 11/22/2023]
Abstract
Many fungi that form ectomycorrhizas exhibit a degree of host specialisation, and individual trees are frequently colonised by communities of mycorrhizal fungi comprising species that fall on a gradient of specialisation along genetic, functional and taxonomic axes of variation. By contrast, arbuscular mycorrhizal fungi exhibit little specialisation. Here, we propose that host tree root morphology is a key factor that gives host plants fine-scale control over colonisation and therefore opportunities for driving specialisation and speciation of ectomycorrhizal fungi. A gradient in host specialisation is likely driven by four proximate mechanistic 'filters' comprising partner availability, signalling recognition, competition for colonisation, and symbiotic function (trade, rewards and sanctions), and the spatially restricted colonisation seen in heterorhizic roots enables these mechanisms, especially symbiotic function, to be more effective in driving the evolution of specialisation. We encourage manipulation experiments that integrate molecular genetics and isotope tracers to test these mechanisms, alongside mathematical simulations of eco-evolutionary dynamics in mycorrhizal symbioses.
Collapse
Affiliation(s)
- Fay Voller
- Department of Earth and Environmental Sciences, The University of Manchester, Michael Smith Building, Dover Street, Manchester, M13 9PT, UK
| | - Agnès Ardanuy
- Department of Earth and Environmental Sciences, The University of Manchester, Michael Smith Building, Dover Street, Manchester, M13 9PT, UK
- Université de Toulouse, INRAE, UMR DYNAFOR, Castanet-Tolosan, 31320, France
| | - Andy F S Taylor
- Ecological Sciences Group, James Hutton Institute, Craigiebuckler, Aberdeen, AB15 8QH, UK
| | - David Johnson
- Department of Earth and Environmental Sciences, The University of Manchester, Michael Smith Building, Dover Street, Manchester, M13 9PT, UK
| |
Collapse
|
4
|
Wang C, Kuzyakov Y. Rhizosphere engineering for soil carbon sequestration. TRENDS IN PLANT SCIENCE 2024; 29:447-468. [PMID: 37867041 DOI: 10.1016/j.tplants.2023.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 08/10/2023] [Accepted: 09/30/2023] [Indexed: 10/24/2023]
Abstract
The rhizosphere is the central hotspot of water and nutrient uptake by plants, rhizodeposition, microbial activities, and plant-soil-microbial interactions. The plasticity of plants offers possibilities to engineer the rhizosphere to mitigate climate change. We define rhizosphere engineering as targeted manipulation of plants, soil, microorganisms, and management to shift rhizosphere processes for specific aims [e.g., carbon (C) sequestration]. The rhizosphere components can be engineered by agronomic, physical, chemical, biological, and genomic approaches. These approaches increase plant productivity with a special focus on C inputs belowground, increase microbial necromass production, protect organic compounds and necromass by aggregation, and decrease C losses. Finally, we outline multifunctional options for rhizosphere engineering: how to boost C sequestration, increase soil health, and mitigate global change effects.
Collapse
Affiliation(s)
- Chaoqun Wang
- Biogeochemistry of Agroecosystems, University of Goettingen, 37077 Goettingen, Germany.
| | - Yakov Kuzyakov
- Department of Soil Science of Temperate Ecosystems, University of Goettingen, 37077 Goettingen, Germany.
| |
Collapse
|
5
|
Horning AL, Koury SS, Meachum M, Kuehn KA, Hoeksema JD. Dirt cheap: an experimental test of controls on resource exchange in an ectomycorrhizal symbiosis. THE NEW PHYTOLOGIST 2023; 237:987-998. [PMID: 36346200 DOI: 10.1111/nph.18603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
To distinguish among hypotheses on the importance of resource-exchange ratios in outcomes of mutualisms, we measured resource (carbon (C), nitrogen (N), and phosphorus (P)) transfers and their ratios, between Pinus taeda seedlings and two ectomycorrhizal (EM) fungal species, Rhizopogon roseolus and Pisolithus arhizus in a laboratory experiment. We evaluated how ambient light affected those resource fluxes and ratios over three time periods (10, 20, and 30 wk) and the consequences for plant and fungal biomass accrual, in environmental chambers. Our results suggest that light availability is an important factor driving absolute fluxes of N, P, and C, but not exchange ratios, although its effects vary among EM fungal species. Declines in N : C and P : C exchange ratios over time, as soil nutrient availability likely declined, were consistent with predictions of biological market models. Absolute transfer of P was an important predictor of both plant and fungal biomass, consistent with the excess resource-exchange hypothesis, and N transfer to plants was positively associated with fungal biomass. Altogether, light effects on resource fluxes indicated mixed support for various theoretical frameworks, while results on biomass accrual better supported the excess resource-exchange hypothesis, although among-species variability is in need of further characterization.
Collapse
Affiliation(s)
- Amber L Horning
- Department of Biology, University of Mississippi, PO Box 1848, University, MS, 38677, USA
| | - Stephanie S Koury
- School of Biological, Environmental and Earth Sciences, The University of Southern Mississippi, 118 College Drive #5018, Hattiesburg, MS, 39406-0001, USA
| | - Mariah Meachum
- Department of Biology, University of Mississippi, PO Box 1848, University, MS, 38677, USA
| | - Kevin A Kuehn
- School of Biological, Environmental and Earth Sciences, The University of Southern Mississippi, 118 College Drive #5018, Hattiesburg, MS, 39406-0001, USA
| | - Jason D Hoeksema
- Department of Biology, University of Mississippi, PO Box 1848, University, MS, 38677, USA
| |
Collapse
|
6
|
Ibáñez TS, Wardle DA, Gundale MJ, Nilsson MC. Effects of Soil Abiotic and Biotic Factors on Tree Seedling Regeneration Following a Boreal Forest Wildfire. Ecosystems 2021. [DOI: 10.1007/s10021-021-00666-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AbstractWildfire disturbance is important for tree regeneration in boreal ecosystems. A considerable amount of literature has been published on how wildfires affect boreal forest regeneration. However, we lack understanding about how soil-mediated effects of fire disturbance on seedlings occur via soil abiotic properties versus soil biota. We collected soil from stands with three different severities of burning (high, low and unburned) and conducted two greenhouse experiments to explore how seedlings of tree species (Betula pendula, Pinus sylvestris and Picea abies) performed in live soils and in sterilized soil inoculated by live soil from each of the three burning severities. Seedlings grown in live soil grew best in unburned soil. When sterilized soils were reinoculated with live soil, seedlings of P. abies and P. sylvestris grew better in soil from low burn severity stands than soil from either high severity or unburned stands, demonstrating that fire disturbance may favor post-fire regeneration of conifers in part due to the presence of soil biota that persists when fire severity is low or recovers quickly post-fire. Betula pendula did not respond to soil biota and was instead driven by changes in abiotic soil properties following fire. Our study provides strong evidence that high fire severity creates soil conditions that are adverse for seedling regeneration, but that low burn severity promotes soil biota that stimulates growth and potential regeneration of conifers. It also shows that species-specific responses to abiotic and biotic soil characteristics are altered by variation in fire severity. This has important implications for tree regeneration because it points to the role of plant–soil–microbial feedbacks in promoting successful establishment, and potentially successional trajectories and species dominance in boreal forests in the future as fire regimes become increasingly severe through climate change.
Collapse
|
7
|
Henriksson N, Franklin O, Tarvainen L, Marshall J, Lundberg‐Felten J, Eilertsen L, Näsholm T. The mycorrhizal tragedy of the commons. Ecol Lett 2021; 24:1215-1224. [DOI: 10.1111/ele.13737] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/26/2021] [Accepted: 03/05/2021] [Indexed: 11/28/2022]
Affiliation(s)
- Nils Henriksson
- Department of Forest Ecology and Management Swedish University of Agricultural Sciences UmeåSE‐90183Sweden
| | - Oskar Franklin
- International Institute for Applied Systems Analysis Schlossplatz 1 LaxenburgA‐2361Austria
| | - Lasse Tarvainen
- Department of Biological and Environmental Sciences University of Gothenburg GothenburgSE‐40530Sweden
| | - John Marshall
- Department of Forest Ecology and Management Swedish University of Agricultural Sciences UmeåSE‐90183Sweden
| | - Judith Lundberg‐Felten
- Department of Forest Genetics and Plant Physiology Umeå Plant Science Centre Swedish University of Agricultural Sciences UmeåSE‐90183Sweden
| | - Lill Eilertsen
- Department of Forest Genetics and Plant Physiology Umeå Plant Science Centre Swedish University of Agricultural Sciences UmeåSE‐90183Sweden
| | - Torgny Näsholm
- Department of Forest Ecology and Management Swedish University of Agricultural Sciences UmeåSE‐90183Sweden
| |
Collapse
|
8
|
Soil nutrients differentially influence root colonisation patterns of AMF and DSE in Australian plant species. Symbiosis 2021. [DOI: 10.1007/s13199-021-00748-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
9
|
Szuba A, Marczak Ł, Ratajczak I, Kasprowicz-Maluśki A, Mucha J. Integrated proteomic and metabolomic analyses revealed molecular adjustments in Populus × canescens colonized with the ectomycorrhizal fungus Paxillus involutus, which limited plant host growth. Environ Microbiol 2020; 22:3754-3771. [PMID: 32608104 DOI: 10.1111/1462-2920.15146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 06/24/2020] [Accepted: 06/28/2020] [Indexed: 11/27/2022]
Abstract
Ectomycorrhizae (ECMs) are a highly context-dependent interactions that are not always beneficial for the plant host, sometimes leading to a decrease in plant growth. However, the molecular status of these plants remains unknown. We studied Populus × canescens microcuttings characterized by impaired growth in response to colonization by a Paxillus involutus strain via integrative proteomics-metabolomics analyses. The analysed strain was characterized by low compatibility and formed only mantles, not a Hartig net, in the majority of root tips. The increased abundance of photosynthetic proteins and foliar carbohydrates co-occurred with signals of intensified resource exchange via the stems of colonized plants. In the roots, intensified C metabolism resulted in the biosynthesis of secondary C compounds unavailable to the fungal partner but also C skeletons necessary to increase insufficient N uptake from the hyphae. The stress response was also detected in colonized plants but was similar to that reported previously during mutualistic ECM interactions. In colonized poplar plants, mechanisms to prevent imbalanced C/N trade-offs were activated. Root metabolism strongly depended on features of the whole plant, especially the foliar C/N budget. However, despite ECM-triggered growth impairment and the foliar nutrient status, the fungal partner was recognized to be a symbiotic partner.
Collapse
Affiliation(s)
- Agnieszka Szuba
- Polish Academy of Sciences, Institute of Dendrology, Parkowa 5, Kórnik, PL-62035, Poland
| | - Łukasz Marczak
- Polish Academy of Sciences, Institute of Bioorganic Chemistry, Noskowskiego 12/14, Poznań, PL-61704, Poland
| | - Izabela Ratajczak
- Department of Chemistry, Poznań University of Life Sciences, Wojska Polskiego 75, Poznań, PL-60625, Poland
| | | | - Joanna Mucha
- Polish Academy of Sciences, Institute of Dendrology, Parkowa 5, Kórnik, PL-62035, Poland
| |
Collapse
|
10
|
Plett KL, Singan VR, Wang M, Ng V, Grigoriev IV, Martin F, Plett JM, Anderson IC. Inorganic nitrogen availability alters Eucalyptus grandis receptivity to the ectomycorrhizal fungus Pisolithus albus but not symbiotic nitrogen transfer. THE NEW PHYTOLOGIST 2020; 226:221-231. [PMID: 31729063 DOI: 10.1111/nph.16322] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 11/05/2019] [Indexed: 05/27/2023]
Abstract
Forest trees are able to thrive in nutrient-poor soils in part because they obtain growth-limiting nutrients, especially nitrogen (N), through mutualistic symbiosis with ectomycorrhizal (ECM) fungi. Addition of inorganic N into these soils is known to disrupt this mutualism and reduce the diversity of ECM fungi. Despite its ecological impact, the mechanisms governing the observed effects of elevated inorganic N on mycorrhizal communities remain unknown. We address this by using a compartmentalized in vitro system to independently alter nutrients to each symbiont. Using stable isotopes, we traced the nutrient flux under different nutrient regimes between Eucalyptus grandis and its ectomycorrhizal symbiont, Pisolithus albus. We demonstrate that giving E. grandis independent access to N causes a significant reduction in root colonization by P. albus. Transcriptional analysis suggests that the observed reduction in colonization may be caused, in part, by altered transcription of microbe perception genes and defence genes. We show that delivery of N to host leaves is not increased by host nutrient deficiency but by fungal nutrient availability instead. Overall, this advances our understanding of the effects of N fertilization on ECM fungi and the factors governing nutrient transfer in the E. grandis-P. microcarpus interaction.
Collapse
Affiliation(s)
- Krista L Plett
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, 2753, Australia
| | - Vasanth R Singan
- US Department of Energy Joint Genome Institute, Walnut Creek, CA, 94598, USA
| | - Mei Wang
- US Department of Energy Joint Genome Institute, Walnut Creek, CA, 94598, USA
| | - Vivian Ng
- US Department of Energy Joint Genome Institute, Walnut Creek, CA, 94598, USA
| | - Igor V Grigoriev
- US Department of Energy Joint Genome Institute, Walnut Creek, CA, 94598, USA
| | - Francis Martin
- INRA, Interactions Arbres/Microorganismes, Laboratory of Excellence ARBRE, INRA-Nancy, Champenoux, 54280, France
| | - Jonathan M Plett
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, 2753, Australia
| | - Ian C Anderson
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, 2753, Australia
| |
Collapse
|
11
|
Szuba A, Marczak Ł, Karliński L, Mucha J, Tomaszewski D. Regulation of the leaf proteome by inoculation of Populus × canescens with two Paxillus involutus isolates differing in root colonization rates. MYCORRHIZA 2019; 29:503-517. [PMID: 31456074 DOI: 10.1007/s00572-019-00910-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 08/09/2019] [Indexed: 06/10/2023]
Abstract
During ectomycorrhizal symbioses, up to 30% of the carbon produced in leaves may be translocated to the fungal partner. Given that the leaf response to root colonization is largely unknown, we performed a leaf proteome analysis of Populus × canescens inoculated in vitro with two isolates of Paxillus involutus significantly differing in root colonization rates (65 ± 7% vs 14 ± 7%), together with plant growth and leaf biochemistry analyses to determine the response of plant leaves to ectomycorrhizal root colonization. The isolate that more efficiently colonized roots (isolate H) affected 9.1% of the leaf proteome compared with control plants. Simultaneously, ectomycorrhiza in isolate H-inoculated plants led to improved plant growth and an increased abundance of leaf proteins involved in protein turnover, stress response, carbohydrate metabolism, and photosynthesis. The protein increment was also correlated with increases in chlorophyll, foliar carbon, and carbohydrate contents. Although inoculation of P. × canescens roots with the other P. involutus isolate (isolate L, characterized by a low root colonization ratio) affected 6.8% of the leaf proteome compared with control plants, most proteins were downregulated. The proteomic signals of increased carbohydrate biosynthesis were not detected, and carbohydrate, carbon, and leaf pigment levels and plant biomass did not differ from the noninoculated plants. Our results revealed that the upregulation of the photosynthetic protein abundance and levels of leaf carbohydrate are positively related to rates of root colonization. Upregulation of photosynthetic proteins, chlorophyll, and leaf carbohydrate levels in ectomycorrhizal plants was positively related to root colonization rates and resulted in increased carbon translocation and sequestration underground.
Collapse
Affiliation(s)
- Agnieszka Szuba
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035, Kórnik, Poland.
| | - Łukasz Marczak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Z. Noskowskiego 12/14, 61-704, Poznań, Poland
| | - Leszek Karliński
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035, Kórnik, Poland
| | - Joanna Mucha
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035, Kórnik, Poland
| | - Dominik Tomaszewski
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035, Kórnik, Poland
| |
Collapse
|
12
|
Jiang J, Moore JAM, Priyadarshi A, Classen AT. Plant-mycorrhizal interactions mediate plant community coexistence by altering resource demand. Ecology 2018; 98:187-197. [PMID: 28052388 DOI: 10.1002/ecy.1630] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 10/10/2016] [Accepted: 10/13/2016] [Indexed: 11/11/2022]
Abstract
As the diversity of plants increases in an ecosystem, so does resource competition for soil nutrients, a process that mycorrhizal fungi can mediate. The influence of mycorrhizal fungi on plant biodiversity likely depends on the strength of the symbiosis between the plant and fungi, the differential plant growth responses to mycorrhizal inoculation, and the transfer rate of nutrients from the fungus to plant. However, our current understanding of how nutrient-plant-mycorrhizal interactions influence plant coexistence is conceptual and thus lacks a unified quantitative framework. To quantify the conditions of plant coexistence mediated by mycorrhizal fungi, we developed a mechanistic resource competition model that explicitly included plant-mycorrhizal symbioses. We found that plant-mycorrhizal interactions shape plant coexistence patterns by creating a tradeoff in resource competition. Especially, a tradeoff in resource competition was caused by differential payback in the carbon resources that plants invested in the fungal symbiosis and/or by the stoichiometric constraints on plants that required additional, less-beneficial, resources to sustain growth. Our results suggested that resource availability and the variation in plant-mycorrhizal interactions act in concert to drive plant coexistence patterns. Applying our framework, future empirical studies should investigate plant-mycorrhizal interactions under multiple levels of resource availability.
Collapse
Affiliation(s)
- Jiang Jiang
- Key Laboratory of Soil and Water Conservation and Ecological Restoration in Jiangsu Province, Collaborative Innovation Center of Sustainable Forestry in Southern China of Jiangsu Province, Nanjing Forestry University, Nanjing, 210037, China.,Department of Ecology and Evolutionary Biology, University of Tennessee, 569 Dabney Hall, Knoxville, Tennessee, 37996, USA
| | - Jessica A M Moore
- Department of Ecology and Evolutionary Biology, University of Tennessee, 569 Dabney Hall, Knoxville, Tennessee, 37996, USA
| | - Anupam Priyadarshi
- Department of Mathematics, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Aimée T Classen
- Department of Ecology and Evolutionary Biology, University of Tennessee, 569 Dabney Hall, Knoxville, Tennessee, 37996, USA.,The Center for Macroecology, Evolution and Climate, The Natural History Museum of Denmark, University of Copenhagen, Universitetsparken 15, Copenhagen Ø, 2100, Denmark
| |
Collapse
|
13
|
Keilhofer N, Nachtigall J, Kulik A, Ecke M, Hampp R, Süssmuth RD, Fiedler HP, Schrey SD. Streptomyces AcH 505 triggers production of a salicylic acid analogue in the fungal pathogen Heterobasidion abietinum that enhances infection of Norway spruce seedlings. Antonie Van Leeuwenhoek 2018; 111:691-704. [DOI: 10.1007/s10482-018-1017-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 01/11/2018] [Indexed: 03/19/2023]
|
14
|
Henriksson N, Tarvainen L, Lim H, Tor-Ngern P, Palmroth S, Oren R, Marshall J, Näsholm T. Stem compression reversibly reduces phloem transport in Pinus sylvestris trees. TREE PHYSIOLOGY 2015; 35:1075-1085. [PMID: 26377876 DOI: 10.1093/treephys/tpv078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 07/28/2015] [Indexed: 06/05/2023]
Abstract
Manipulating tree belowground carbon (C) transport enables investigation of the ecological and physiological roles of tree roots and their associated mycorrhizal fungi, as well as a range of other soil organisms and processes. Girdling remains the most reliable method for manipulating this flux and it has been used in numerous studies. However, girdling is destructive and irreversible. Belowground C transport is mediated by phloem tissue, pressurized through the high osmotic potential resulting from its high content of soluble sugars. We speculated that phloem transport may be reversibly blocked through the application of an external pressure on tree stems. Thus, we here introduce a technique based on compression of the phloem, which interrupts belowground flow of assimilates, but allows trees to recover when the external pressure is removed. Metal clamps were wrapped around the stems and tightened to achieve a pressure theoretically sufficient to collapse the phloem tissue, thereby aiming to block transport. The compression's performance was tested in two field experiments: a (13)C canopy labelling study conducted on small Scots pine (Pinus sylvestris L.) trees [2-3 m tall, 3-7 cm diameter at breast height (DBH)] and a larger study involving mature pines (∼15 m tall, 15-25 cm DBH) where stem respiration, phloem and root carbohydrate contents, and soil CO2 efflux were measured. The compression's effectiveness was demonstrated by the successful blockage of (13)C transport. Stem compression doubled stem respiration above treatment, reduced soil CO2 efflux by 34% and reduced phloem sucrose content by 50% compared with control trees. Stem respiration and soil CO2 efflux returned to normal within 3 weeks after pressure release, and (13)C labelling revealed recovery of phloem function the following year. Thus, we show that belowground phloem C transport can be reduced by compression, and we also demonstrate that trees recover after treatment, resuming C transport in the phloem.
Collapse
Affiliation(s)
- Nils Henriksson
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden
| | - Lasse Tarvainen
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden
| | - Hyungwoo Lim
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden
| | - Pantana Tor-Ngern
- Department of Environmental Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Sari Palmroth
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden Nicholas School of the Environment and Earth Sciences, Duke University, Durham, NC 27708, USA
| | - Ram Oren
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden Nicholas School of the Environment and Earth Sciences, Duke University, Durham, NC 27708, USA
| | - John Marshall
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden Department of Forest, Rangeland, and Fire Sciences, University of Idaho, 875 Perimeter Drive, Moscow, ID 83844-1133, USA
| | - Torgny Näsholm
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden
| |
Collapse
|
15
|
Valtanen K, Eissfeller V, Beyer F, Hertel D, Scheu S, Polle A. Carbon and nitrogen fluxes between beech and their ectomycorrhizal assemblage. MYCORRHIZA 2014; 24:645-50. [PMID: 24756632 DOI: 10.1007/s00572-014-0581-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Accepted: 04/09/2014] [Indexed: 05/15/2023]
Abstract
To determine the exchange of nitrogen and carbon between ectomycorrhiza and host plant, young beech (Fagus sylvatica) trees from natural regeneration in intact soil cores were labelled for one growing season in a greenhouse with (13)CO2 and (15)NO3 (15)NH4. The specific enrichments of (15)N and (13)C were higher in ectomycorrhizas (EMs) than in any other tissue. The enrichments of (13)C and (15)N were also higher in the fine-root segments directly connected with the EM (mainly second-order roots) than that in bulk fine or coarse roots. A strict, positive correlation was found between the specific (15)N enrichment in EM and the attached second-order roots. This finding indicates that strong N accumulators provide more N to their host than low N accumulators. A significant correlation was also found for the specific (13)C enrichment in EM and the attached second-order roots. However, the specific enrichments for (15)N and (13)C in EM were unrelated showing that under long-term conditions, C and N exchange between host and EMs are uncoupled. These findings suggest that EM-mediated N flux to the plant is not the main control on carbon flux to the fungus, probably because EMs provide many different services to their hosts in addition to N provision in their natural assemblages.
Collapse
Affiliation(s)
- Kerttu Valtanen
- Büsgen Institute, Forest Botany and Tree Physiology, Georg August University Göttingen, Büsgenweg 2, 37077, Göttingen, Germany
| | | | | | | | | | | |
Collapse
|
16
|
Lunn JE, Delorge I, Figueroa CM, Van Dijck P, Stitt M. Trehalose metabolism in plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 79:544-67. [PMID: 24645920 DOI: 10.1111/tpj.12509] [Citation(s) in RCA: 310] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 02/18/2014] [Accepted: 03/03/2014] [Indexed: 05/18/2023]
Abstract
Trehalose is a quantitatively important compatible solute and stress protectant in many organisms, including green algae and primitive plants. These functions have largely been replaced by sucrose in vascular plants, and trehalose metabolism has taken on new roles. Trehalose is a potential signal metabolite in plant interactions with pathogenic or symbiotic micro-organisms and herbivorous insects. It is also implicated in responses to cold and salinity, and in regulation of stomatal conductance and water-use efficiency. In plants, as in other eukaryotes and many prokaryotes, trehalose is synthesized via a phosphorylated intermediate, trehalose 6-phosphate (Tre6P). A meta-analysis revealed that the levels of Tre6P change in parallel with sucrose, which is the major product of photosynthesis and the main transport sugar in plants. We propose the existence of a bi-directional network, in which Tre6P is a signal of sucrose availability and acts to maintain sucrose concentrations within an appropriate range. Tre6P influences the relative amounts of sucrose and starch that accumulate in leaves during the day, and regulates the rate of starch degradation at night to match the demand for sucrose. Mutants in Tre6P metabolism have highly pleiotropic phenotypes, showing defects in embryogenesis, leaf growth, flowering, inflorescence branching and seed set. It has been proposed that Tre6P influences plant growth and development via inhibition of the SNF1-related protein kinase (SnRK1). However, current models conflict with some experimental data, and do not completely explain the pleiotropic phenotypes exhibited by mutants in Tre6P metabolism. Additional explanations for the diverse effects of alterations in Tre6P metabolism are discussed.
Collapse
Affiliation(s)
- John Edward Lunn
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | | | | | | | | |
Collapse
|
17
|
Soka G, Ritchie M. Arbuscular mycorrhizal symbiosis and ecosystem processes: Prospects for future research in tropical soils. ACTA ACUST UNITED AC 2014. [DOI: 10.4236/oje.2014.41002] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
18
|
Casieri L, Ait Lahmidi N, Doidy J, Veneault-Fourrey C, Migeon A, Bonneau L, Courty PE, Garcia K, Charbonnier M, Delteil A, Brun A, Zimmermann S, Plassard C, Wipf D. Biotrophic transportome in mutualistic plant-fungal interactions. MYCORRHIZA 2013; 23:597-625. [PMID: 23572325 DOI: 10.1007/s00572-013-0496-9] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 03/13/2013] [Indexed: 05/08/2023]
Abstract
Understanding the mechanisms that underlie nutrient use efficiency and carbon allocation along with mycorrhizal interactions is critical for managing croplands and forests soundly. Indeed, nutrient availability, uptake and exchange in biotrophic interactions drive plant growth and modulate biomass allocation. These parameters are crucial for plant yield, a major issue in the context of high biomass production. Transport processes across the polarized membrane interfaces are of major importance in the functioning of the established mycorrhizal association as the symbiotic relationship is based on a 'fair trade' between the fungus and the host plant. Nutrient and/or metabolite uptake and exchanges, at biotrophic interfaces, are controlled by membrane transporters whose regulation patterns are essential for determining the outcome of plant-fungus interactions and adapting to changes in soil nutrient quantity and/or quality. In the present review, we summarize the current state of the art regarding transport systems in the two major forms of mycorrhiza, namely ecto- and arbuscular mycorrhiza.
Collapse
Affiliation(s)
- Leonardo Casieri
- UMR Agroécologie INRA 1347/Agrosup/Université de Bourgogne, Pôle Interactions Plantes Microorganismes ERL 6300 CNRS, BP 86510, 21065, Dijon Cedex, France,
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Albarracín MV, Six J, Houlton BZ, Bledsoe CS. A nitrogen fertilization field study of carbon-13 and nitrogen-15 transfers in ectomycorrhizas of Pinus sabiniana. Oecologia 2013; 173:1439-50. [DOI: 10.1007/s00442-013-2734-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 07/08/2013] [Indexed: 11/24/2022]
|
20
|
Velmala SM, Rajala T, Haapanen M, Taylor AFS, Pennanen T. Genetic host-tree effects on the ectomycorrhizal community and root characteristics of Norway spruce. MYCORRHIZA 2013; 23:21-33. [PMID: 22644394 DOI: 10.1007/s00572-012-0446-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Accepted: 05/10/2012] [Indexed: 06/01/2023]
Abstract
A greenhouse experiment was used to study the effects of host genotype on short root formation and ectomycorrhizal (ECM) fungal community structure in Norway spruce (Picea abies (L.) Karst.). Rooted cuttings representing 55 clones were inoculated with a mix of vegetative hyphae of five ECM fungal species (Laccaria sp., Amphinema byssoides, Piloderma sp., Cadophora finlandia, Paxillus involutus). After one growing season, the ECM fungal community structure was determined by amplifying the fungal internal transcribed spacer (ITS) of ribosomal DNA directly from ECM root tips. Restriction profiles of obtained amplicons were then compared to those of the inoculated strains. Spruce clones differed in their ECM fungal community composition; we found a statistically significant clone-specific effect on ECM fungal diversity and dominating fungal species. Nevertheless, the broad sense heritabilities of the levels of Laccaria sp., Piloderma sp. and A. byssoides colonisations as well as the ECM fungal community structure were low (H(2) = 0.04-0.11), owing to the high within-clone variation. As nitrogen concentration of needles correlated negatively with ECM fungal richness, our results imply that in the experimental conditions nutrient acquisition of young trees may benefit from colonisation with only one or two ECM fungal species. The heritability of short root density was moderate (H(2) = 0.41) and highest among all the measured shoot and root growth characteristics of Norway spruce cuttings. We suggest that the genetic component determining root growth and short root formation is significant for the performance of young trees in natural environments as these traits drive the formation of the below-ground symbiotic interactions.
Collapse
Affiliation(s)
- S M Velmala
- Finnish Forest Research Institute-Metla, Jokiniemenkuja 1, Box 18, FI-01301 Vantaa, Finland.
| | | | | | | | | |
Collapse
|