1
|
Wei X, Han B, Zhang J, Shao X. Shifts in Structure and Assembly Processes of Root Endophytic Community Caused by Climate Warming and Precipitation Increase in Alpine Grassland. Microorganisms 2024; 12:1780. [PMID: 39338455 PMCID: PMC11434594 DOI: 10.3390/microorganisms12091780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/24/2024] [Accepted: 08/25/2024] [Indexed: 09/30/2024] Open
Abstract
Climate change poses great challenges to the survival of plants. Plant endophytes play important roles in improving plant adaptability. However, our knowledge of the effects of climate change on endophytic community structures is limited. Relying on a field experimental platform simulating climate warming, precipitation increases, and their combination in an alpine grassland, the root endophytic bacterial community structures and assembly processes of three coexisting plant species (Elymus nutans, Kobresia humilis, and Melissilus ruthenicus) were measured. The results indicated that Proteobacteria was the dominant phylum, with a relative abundance ranging from 50% to 80%, followed by Actinobacteria and Bacteroidetes. Bacterial diversity decreased significantly under the combined treatment for all three plant species, with the largest reduction observed in E. nutans. The climate manipulation treatments had a minimal effect on the endophytic bacterial community structures. The relative abundance of Burkholderiaceae increased significantly under the combined treatment for the three plant species. Moreover, the endophytic community assembly processes changed from stochastic dominated under control plots to deterministic dominated under the combined plots for E. nutans, while this shift was reversed for M. ruthenicus. The root endophytic bacterial community was affected by the soil's available nitrogen and stoichiometric ratio. These results revealed that the sensitivity of endophyte community structures to climate change varies with host plant species, which has implications for plant fitness differences.
Collapse
Affiliation(s)
- Xiaoting Wei
- Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing 100091, China;
| | - Bing Han
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China;
| | - Jinxin Zhang
- Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing 100091, China;
| | - Xinqing Shao
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China;
| |
Collapse
|
2
|
Baba T, Hirose D. Two novel Archaeorhizomyces species isolated from ericoid mycorrhizal roots and their association with ericaceous plants in vitro. Fungal Biol 2024; 128:1939-1953. [PMID: 39059849 DOI: 10.1016/j.funbio.2024.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 07/28/2024]
Abstract
Archaeorhizomyces is a diverse and ubiquitous genus of the subphylum Taphrinomycotina, which contains soil-inhabiting/root-associated fungi. Although ecological importance and root-associating lifestyles of Archaeorhizomyces can be postulated, morphological aspects of fungal body and root colonization are largely unknown due to the scarcity of cultures. We obtained three unidentified Archaeorhizomyces isolates from ericoid mycorrhizal (ErM) roots of Rhododendron scabrum and Rhododendron × obtusum collected in Japan. To advance our understanding of lifestyle of the genus, we investigated their general morphology, phylogeny, and in vitro root-colonizing ability in ericoid mycorrhizal hosts, Vaccinium virgatum and Rhododendron kaempferi. Some morphological characteristics, such as slow glowing white-to-creamy-colored colonies and formation of yeast-like or chlamydospore-like cells, were shared between our strains and two described species, Archaeorhizomycesfinlayi and Archaeorhizomyces borealis, but they were phylogenetically distant. Our strains were clearly distinguished as two undescribed species based on morphology and phylogenetic relationship. As seen in typical ErM fungi, both species frequently formed hyphal coils within vital rhizodermal cells of ErM plants in vitro. The morphology of hyphal coils was also different between species. Consequently, two novel species, Archaeorhizomyces notokirishimae sp. nov. and Archaeorhizomyces ryukyuensis sp. nov., were described.
Collapse
Affiliation(s)
- Takashi Baba
- Division of Fruit Tree Production Research, Institute of Fruit Tree and Tea Science, NARO, 92-24 Shimokuriyagawa, Morioka, Iwate 020-0123, Japan
| | - Dai Hirose
- School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi, Chiba 274-8555, Japan.
| |
Collapse
|
3
|
Harder CB, Miyauchi S, Virágh M, Kuo A, Thoen E, Andreopoulos B, Lu D, Skrede I, Drula E, Henrissat B, Morin E, Kohler A, Barry K, LaButti K, Salamov A, Lipzen A, Merényi Z, Hegedüs B, Baldrian P, Stursova M, Weitz H, Taylor A, Koriabine M, Savage E, Grigoriev IV, Nagy LG, Martin F, Kauserud H. Extreme overall mushroom genome expansion in Mycena s.s. irrespective of plant hosts or substrate specializations. CELL GENOMICS 2024; 4:100586. [PMID: 38942024 PMCID: PMC11293592 DOI: 10.1016/j.xgen.2024.100586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 01/28/2024] [Accepted: 05/28/2024] [Indexed: 06/30/2024]
Abstract
Mycena s.s. is a ubiquitous mushroom genus whose members degrade multiple dead plant substrates and opportunistically invade living plant roots. Having sequenced the nuclear genomes of 24 Mycena species, we find them to defy the expected patterns for fungi based on both their traditionally perceived saprotrophic ecology and substrate specializations. Mycena displayed massive genome expansions overall affecting all gene families, driven by novel gene family emergence, gene duplications, enlarged secretomes encoding polysaccharide degradation enzymes, transposable element (TE) proliferation, and horizontal gene transfers. Mainly due to TE proliferation, Arctic Mycena species display genomes of up to 502 Mbp (2-8× the temperate Mycena), the largest among mushroom-forming Agaricomycetes, indicating a possible evolutionary convergence to genomic expansions sometimes seen in Arctic plants. Overall, Mycena show highly unusual, varied mosaic-like genomic structures adaptable to multiple lifestyles, providing genomic illustration for the growing realization that fungal niche adaptations can be far more fluid than traditionally believed.
Collapse
Affiliation(s)
- Christoffer Bugge Harder
- Department of Biosciences, University of Oslo, Box 1066 Blindern, 0316 Oslo, Norway; Department of Biology, Microbial Ecology Group, Biology Department, Lund University, Lund, Sweden; University of Copenhagen, Department of Biology, Section of Terrestrial Ecology, 2100 Copenhagen Ø, Denmark.
| | - Shingo Miyauchi
- Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan; Université de Lorraine, INRAE, UMR Interactions Arbres/Microorganismes, Centre INRAE Grand Est Nancy, 54280 Champenoux, France
| | - Máté Virágh
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, HUN-REN Szeged, 6726 Szeged, Hungary
| | - Alan Kuo
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Ella Thoen
- Department of Biosciences, University of Oslo, Box 1066 Blindern, 0316 Oslo, Norway
| | - Bill Andreopoulos
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Dabao Lu
- Department of Biosciences, University of Oslo, Box 1066 Blindern, 0316 Oslo, Norway
| | - Inger Skrede
- Department of Biosciences, University of Oslo, Box 1066 Blindern, 0316 Oslo, Norway
| | - Elodie Drula
- Architecture et Fonction des Macromolécules Biologiques (AFMB), CNRS, Aix Marseille Université, 163 avenue de Luminy, 13288 Marseille, France; INRAE, UMR 1163, Biodiversité et Biotechnologie Fongiques, 13009 Marseille, France
| | - Bernard Henrissat
- Architecture et Fonction des Macromolécules Biologiques (AFMB), CNRS, Aix Marseille Université, 163 avenue de Luminy, 13288 Marseille, France
| | - Emmanuelle Morin
- Université de Lorraine, INRAE, UMR Interactions Arbres/Microorganismes, Centre INRAE Grand Est Nancy, 54280 Champenoux, France
| | - Annegret Kohler
- Université de Lorraine, INRAE, UMR Interactions Arbres/Microorganismes, Centre INRAE Grand Est Nancy, 54280 Champenoux, France
| | - Kerrie Barry
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Kurt LaButti
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Asaf Salamov
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Anna Lipzen
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Zsolt Merényi
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, HUN-REN Szeged, 6726 Szeged, Hungary
| | - Botond Hegedüs
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, HUN-REN Szeged, 6726 Szeged, Hungary
| | - Petr Baldrian
- Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 14220 Prague 4, Czech Republic
| | - Martina Stursova
- Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 14220 Prague 4, Czech Republic
| | - Hedda Weitz
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| | - Andy Taylor
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK; The James Hutton Institute, Aberdeen, UK
| | - Maxim Koriabine
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Emily Savage
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Igor V Grigoriev
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - László G Nagy
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, HUN-REN Szeged, 6726 Szeged, Hungary
| | - Francis Martin
- Université de Lorraine, INRAE, UMR Interactions Arbres/Microorganismes, Centre INRAE Grand Est Nancy, 54280 Champenoux, France.
| | - Håvard Kauserud
- Department of Biosciences, University of Oslo, Box 1066 Blindern, 0316 Oslo, Norway
| |
Collapse
|
4
|
Männistö MK, Ahonen SHK, Ganzert L, Tiirola M, Stark S, Häggblom MM. Bacterial and fungal communities in sub-Arctic tundra heaths are shaped by contrasting snow accumulation and nutrient availability. FEMS Microbiol Ecol 2024; 100:fiae036. [PMID: 38549428 PMCID: PMC10996926 DOI: 10.1093/femsec/fiae036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 02/26/2024] [Accepted: 03/27/2024] [Indexed: 04/06/2024] Open
Abstract
Climate change is affecting winter snow conditions significantly in northern ecosystems but the effects of the changing conditions for soil microbial communities are not well-understood. We utilized naturally occurring differences in snow accumulation to understand how the wintertime subnivean conditions shape bacterial and fungal communities in dwarf shrub-dominated sub-Arctic Fennoscandian tundra sampled in mid-winter, early, and late growing season. Phospholipid fatty acid (PLFA) and quantitative PCR analyses indicated that fungal abundance was higher in windswept tundra heaths with low snow accumulation and lower nutrient availability. This was associated with clear differences in the microbial community structure throughout the season. Members of Clavaria spp. and Sebacinales were especially dominant in the windswept heaths. Bacterial biomass proxies were higher in the snow-accumulating tundra heaths in the late growing season but there were only minor differences in the biomass or community structure in winter. Bacterial communities were dominated by members of Alphaproteobacteria, Actinomycetota, and Acidobacteriota and were less affected by the snow conditions than the fungal communities. The results suggest that small-scale spatial patterns in snow accumulation leading to a mosaic of differing tundra heath vegetation shapes bacterial and fungal communities as well as soil carbon and nutrient availability.
Collapse
Affiliation(s)
- Minna K Männistö
- Natural Resources Institute Finland, Ounasjoentie 6, FI-96200 Rovaniemi, Finland
| | - Saija H K Ahonen
- Ecology and Genetics Research Unit, University of Oulu, Pentti Kaiteran katu 1, FI-90014 Oulu, Finland
| | - Lars Ganzert
- Natural Resources Institute Finland, Ounasjoentie 6, FI-96200 Rovaniemi, Finland
- Plankton and Microbial Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Zur alten Fischerhütte 2, 16775 Stechlin, Germany
| | - Marja Tiirola
- Department of Biological and Environmental Science, University of Jyväskylä, Survontie 9, FI-40014 Jyväskylä, Finland
| | - Sari Stark
- Arctic Centre, University of Lapland, Pohjoisranta 4, Fl-96101 Rovaniemi, Finland
| | - Max M Häggblom
- Natural Resources Institute Finland, Ounasjoentie 6, FI-96200 Rovaniemi, Finland
- Department of Biochemistry and Microbiology, Rutgers University, 76 Lipman Drive, New Brunswick, NJ 08901, United States
| |
Collapse
|
5
|
Baba T, Hirose D. A cryptic root isolate belonging to Geoglossales from potted Rhododendron: its molecular phylogeny and ability to colonize an ericoid mycorrhizal host in vitro. MYCORRHIZA 2023; 33:449-456. [PMID: 37882855 DOI: 10.1007/s00572-023-01130-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 10/16/2023] [Indexed: 10/27/2023]
Abstract
Although the lifestyle of Geoglossales remains largely unknown, recent advancements have established a hypothesis regarding the ericoid mycorrhizal lifestyle of geoglossoid fungi. In this study, we focused on one isolate of Geoglossales sp. obtained from surface-sterilized roots of potted Rhododendron transiens. We aimed to reveal the phylogenetic position and in vitro colonizing ability of this species in the hair roots of ericoid mycorrhizal plants. Based on our multigene phylogenetic tree, this species is a sister of the genus Sarcoleotia which has not been reported from either other studies or field environment. Its ascocarps could not be obtained, and conspecific sequences were not found in the databases and repositories examined. The Geoglossales sp. colonized the vital rhizodermal cells of blueberries in vitro with hyphal coils. There were relatively large morphological variations of coils consistent with extraradical hyphae; however, overall, the colonization morphologically resembled those by Sarcoleotia globosa and representative ericoid mycorrhizal fungi. The taxonomy and ecological significance of the species remain to be resolved; nevertheless, our results suggest that the ericoid mycorrhizal lifestyle may be widespread within Geoglossales.
Collapse
Affiliation(s)
- Takashi Baba
- Division of Fruit Tree Production Research, Institute of Fruit Tree and Tea Science, NARO, 92-24 , Shimokuriyagawa, Morioka, Iwate, Japan
| | - Dai Hirose
- School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi, Chiba, 274-8555, Japan.
| |
Collapse
|
6
|
Gao K, Li W, Gan E, Li J, Jiang L, Liu Y. Impacts of 10 Years of Elevated CO 2 and Warming on Soil Fungal Diversity and Network Complexity in a Chinese Paddy Field. MICROBIAL ECOLOGY 2023; 86:2386-2399. [PMID: 37247028 DOI: 10.1007/s00248-023-02248-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/20/2023] [Indexed: 05/30/2023]
Abstract
Climatic change conditions (elevated CO2 and warming) have been known to threaten agricultural sustainability and grain yield. Soil fungi play an important role in maintaining agroecosystem functions. However, little is known about the responses of fungal community in paddy field to elevated CO2 and warming. Herein, using internal transcribed spacer (ITS) gene amplicon sequencing and co-occurrence network methods, the responses of soil fungal community to factorial combinations of elevated CO2 (550 ppm), and canopy warming (+2 °C) were explored in an open-air field experiment for 10 years. Elevated CO2 significantly increased the operational taxonomic unit (OTU) richness and Shannon diversity of fungal communities in both rice rhizosphere and bulk soils, whereas the relative abundances of Ascomycota and Basidiomycota were significantly decreased and increased under elevated CO2, respectively. Co-occurrence network analysis showed that elevated CO2, warming, and their combination increased the network complexity and negative correlation of the fungal community in rhizosphere and bulk soils, suggesting that these factors enhanced the competition of microbial species. Warming resulted in a more complex network structure by altering topological roles and increasing the numbers of key fungal nodes. Principal coordinate analysis indicated that rice growth stages rather than elevated CO2 and warming altered soil fungal communities. Specifically, the changes in diversity and network complexity were greater at the heading and ripening stages than at the tillering stage. Furthermore, elevated CO2 and warming significantly increased the relative abundances of pathotrophic fungi and reduced those of symbiotrophic fungi in both rhizosphere and bulk soils. Overall, the results indicate that long-term CO2 exposure and warming enhance the complexity and stability of soil fungal community, potentially threatening crop health and soil functions through adverse effects on fungal community functions.
Collapse
Affiliation(s)
- Ke Gao
- Department of Bioengineering, College of Life Science, Huaibei Normal University, Huaibei, 235000, Anhui, People's Republic of China
| | - Weijie Li
- Department of Bioengineering, College of Life Science, Huaibei Normal University, Huaibei, 235000, Anhui, People's Republic of China
| | - Enze Gan
- Department of Bioengineering, College of Life Science, Huaibei Normal University, Huaibei, 235000, Anhui, People's Republic of China
| | - Jiahui Li
- Department of Bioengineering, College of Life Science, Huaibei Normal University, Huaibei, 235000, Anhui, People's Republic of China
| | - Li Jiang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Science, Urumqi, 830011, People's Republic of China.
| | - Yuan Liu
- Department of Bioengineering, College of Life Science, Huaibei Normal University, Huaibei, 235000, Anhui, People's Republic of China.
| |
Collapse
|
7
|
Harder CB, Hesling E, Botnen SS, Lorberau KE, Dima B, von Bonsdorff-Salminen T, Niskanen T, Jarvis SG, Ouimette A, Hester A, Hobbie EA, Taylor AFS, Kauserud H. Mycena species can be opportunist-generalist plant root invaders. Environ Microbiol 2023; 25:1875-1893. [PMID: 37188366 DOI: 10.1111/1462-2920.16398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 04/27/2023] [Indexed: 05/17/2023]
Abstract
Traditional strict separation of fungi into ecological niches as mutualist, parasite or saprotroph is increasingly called into question. Sequences of assumed saprotrophs have been amplified from plant root interiors, and several saprotrophic genera can invade and interact with host plants in laboratory growth experiments. However, it is uncertain if root invasion by saprotrophic fungi is a widespread phenomenon and if laboratory interactions mirror field conditions. Here, we focused on the widespread and speciose saprotrophic genus Mycena and performed (1) a systematic survey of their occurrences (in ITS1/ITS2 datasets) in mycorrhizal roots of 10 plant species, and (2) an analysis of natural abundances of 13 C/15 N stable isotope signatures of Mycena basidiocarps from five field locations to examine their trophic status. We found that Mycena was the only saprotrophic genus consistently found in 9 out of 10 plant host roots, with no indication that the host roots were senescent or otherwise vulnerable. Furthermore, Mycena basidiocarps displayed isotopic signatures consistent with published 13 C/15 N profiles of both saprotrophic and mutualistic lifestyles, supporting earlier laboratory-based studies. We argue that Mycena are widespread latent invaders of healthy plant roots and that Mycena species may form a spectrum of interactions besides saprotrophy also in the field.
Collapse
Affiliation(s)
- Christoffer Bugge Harder
- Department of Biosciences, University of Oslo, Oslo, Norway
- Department of Microbial Ecology, Lund University, Lund, Sweden
- Department of Biology, Section of Terrestrial Ecology, University of Copenhagen, Copenhagen, Denmark
| | - Emily Hesling
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| | - Synnøve S Botnen
- Department of Biosciences, University of Oslo, Oslo, Norway
- Oslo Metropolitan University, Oslo, Norway
| | - Kelsey E Lorberau
- Department of Biosciences, University of Oslo, Oslo, Norway
- Department of Arctic and Marine Biology, UiT-The Arctic University of Norway, Tromsø, Norway
| | - Bálint Dima
- Department of Plant Anatomy, Institute of Biology, Eötvös Loránd University, Budapest, Hungary
- Botany Unit, Finnish Museum of Natural History LUOMUS, University of Helsinki, Helsinki, Finland
| | | | - Tuula Niskanen
- Botany Unit, Finnish Museum of Natural History LUOMUS, University of Helsinki, Helsinki, Finland
- Jodrell Laboratory, Royal Botanic Gardens, Kew, Surrey, UK
| | | | - Andrew Ouimette
- Earth Systems Research Center, University of New Hampshire, Durham, New Hampshire, USA
| | | | - Erik A Hobbie
- Earth Systems Research Center, University of New Hampshire, Durham, New Hampshire, USA
| | - Andy F S Taylor
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK
- The James Hutton Institute, Aberdeen, UK
| | | |
Collapse
|
8
|
Vohník M, Réblová M. Fungi in hair roots of Vaccinium spp. (Ericaceae) growing on decomposing wood: colonization patterns, identity, and in vitro symbiotic potential. MYCORRHIZA 2023; 33:69-86. [PMID: 36700963 PMCID: PMC9938075 DOI: 10.1007/s00572-023-01101-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 01/05/2023] [Indexed: 05/04/2023]
Abstract
Most of our knowledge on the ericoid mycorrhizal (ErM) symbiosis comes from temperate heathlands characterized by acidic peaty soils and many experiments with a few ascomycetous fungi. However, ericaceous plants thrive in many other ecosystems and in temperate coniferous forests, their seedlings often prosper on decomposing wood. While wood is typically exploited by basidiomycetous ectomycorrhizal (EcM) and saprobic fungi, the role of ErM fungi (ErMF) is much less clear. We explored the cultivable mycobiota of surface sterilized hair roots of Vaccinium spp. growing on decomposing wood in two coniferous forests in Mid-Norway (Scandinavia) and Northern Bohemia (Central Europe). Obtained isolates were identified using molecular tools and their symbiotic potential was tested in vitro. While the detected community lacked the archetypal ErMF Hyaloscypha hepaticicola and the incidence of dark septate endophytes and EcM fungi was negligible, it comprised other frequent asexual ascomycetous ErMF, namely H. variabilis and Oidiodendron maius, together with several isolates displaying affinities to sexual saprobic H. daedaleae and H. fuckelii. Ascomycete-suppressing media revealed representatives of the saprobic basidiomycetous genera Coprinellus, Gymnopilus, Mycena (Agaricales), and Hypochnicium (Polyporales). In the resyntheses, the tested basidiomycetes occasionally penetrated the rhizodermal cells of their hosts but never formed ericoid mycorrhizae and in many cases overgrew and killed the inoculated seedlings. In contrast, a representative of the H. daedaleae/H. fuckelii-related isolates repeatedly formed what morphologically appears as the ErM symbiosis and supported host's growth. In conclusion, while basidiomycetous saprobic fungi have a potential to colonize healthy-looking ericaceous hair roots, the mode(-s) of their functioning remain obscure. For the first time, a lineage in Hyaloscypha s. str. (corresponding to the former Hymenoscyphus ericae aggregate) where sexual saprobes are intermingled with root symbionts has been revealed, shedding new light on the ecology and evolution of these prominent ascomycetous ErMF.
Collapse
Affiliation(s)
- Martin Vohník
- Department of Mycorrhizal Symbioses, Institute of Botany, Czech Academy of Sciences, Lesní 322, Průhonice, 252 43, Czechia.
| | - Martina Réblová
- Department of Taxonomy, Institute of Botany, Czech Academy of Sciences, Zámek 1, Průhonice, 252 43, Czechia
| |
Collapse
|
9
|
Gao K, Mao Z, Meng E, Li J, Liu X, Zhang Y, Zhang L, Wang G, Liu Y. Effects of elevated CO 2 and warming on the root-associated microbiota in an agricultural ecosystem. Environ Microbiol 2022; 24:6252-6266. [PMID: 36229422 DOI: 10.1111/1462-2920.16246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 10/12/2022] [Indexed: 01/12/2023]
Abstract
Plant root-associated microbial communities profoundly affect plant nutrition and productivity. Although elevated atmospheric CO2 and warming affect above- and belowground plant processes, it remains unclear how root-associated microbial communities respond to elevated CO2 and warming. In this study, an open-air field experiment was conducted to assay the interactive effects of elevated CO2 (500 ppm) and warming (+2°C) on the root-associated microbiota and soil enzyme activities in a rice-wheat rotation ecosystem. The results revealed that elevated CO2 significantly increased rhizosphere soil organic carbon (SOC) and total nitrogen contents. In addition, glucosidase, β-xylosidase, and phosphatase activities significantly increased. The richness and Shannon diversity indices were significantly higher in rhizosphere soil than in root endosphere. Elevated CO2 and warming significantly impacted the rhizosphere soil microbiota and altered their composition by changing the relative abundance of some specific groups. Soil pH, SOC, and available potassium content significantly altered the dominant bacterial phyla in the rhizosphere. SOC affected root endophytic bacterial phyla. Bacterial and fungal genera were significantly correlated with soil variables in the rhizosphere than in the root endosphere. These results indicate that microbial communities in the rhizosphere are more sensitive to elevated CO2 and warming than those in the root endosphere.
Collapse
Affiliation(s)
- Ke Gao
- College of Life Science, Huaibei Normal University, Huaibei, Anhui, People's Republic of China
| | - Zhenbo Mao
- College of Life Science, Huaibei Normal University, Huaibei, Anhui, People's Republic of China
| | - Enxi Meng
- College of Life Science, Huaibei Normal University, Huaibei, Anhui, People's Republic of China
| | - Jie Li
- Institute of Resources, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Xiaoyu Liu
- Institute of Resources, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Yingying Zhang
- College of Life Science, Huaibei Normal University, Huaibei, Anhui, People's Republic of China
| | - Long Zhang
- College of Life Science, Huaibei Normal University, Huaibei, Anhui, People's Republic of China
| | - Guangli Wang
- College of Life Science, Huaibei Normal University, Huaibei, Anhui, People's Republic of China
| | - Yuan Liu
- College of Life Science, Huaibei Normal University, Huaibei, Anhui, People's Republic of China
| |
Collapse
|
10
|
Andresen LC, Bodé S, Björk RG, Michelsen A, Aerts R, Boeckx P, Cornelissen JHC, Klanderud K, van Logtestijn RSP, Rütting T. Patterns of free amino acids in tundra soils reflect mycorrhizal type, shrubification, and warming. MYCORRHIZA 2022; 32:305-313. [PMID: 35307782 PMCID: PMC9184409 DOI: 10.1007/s00572-022-01075-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
The soil nitrogen (N) cycle in cold terrestrial ecosystems is slow and organically bound N is an important source of N for plants in these ecosystems. Many plant species can take up free amino acids from these infertile soils, either directly or indirectly via their mycorrhizal fungi. We hypothesized that plant community changes and local plant community differences will alter the soil free amino acid pool and composition; and that long-term warming could enhance this effect. To test this, we studied the composition of extractable free amino acids at five separate heath, meadow, and bog locations in subarctic and alpine Scandinavia, with long-term (13 to 24 years) warming manipulations. The plant communities all included a mixture of ecto-, ericoid-, and arbuscular mycorrhizal plant species. Vegetation dominated by grasses and forbs with arbuscular and non-mycorrhizal associations showed highest soil free amino acid content, distinguishing them from the sites dominated by shrubs with ecto- and ericoid-mycorrhizal associations. Warming increased shrub and decreased moss cover at two sites, and by using redundancy analysis, we found that altered soil free amino acid composition was related to this plant cover change. From this, we conclude that the mycorrhizal type is important in controlling soil N cycling and that expansion of shrubs with ectomycorrhiza (and to some extent ericoid mycorrhiza) can help retain N within the ecosystems by tightening the N cycle.
Collapse
Affiliation(s)
- Louise C Andresen
- Department of Earth Science, University of Gothenburg, Gothenburg, Sweden.
| | - Samuel Bodé
- Isotope Bioscience Laboratory (ISOFYS), Department of Green Chemistry and Technology, Ghent University, Ghent, Belgium
| | - Robert G Björk
- Department of Earth Science, University of Gothenburg, Gothenburg, Sweden
- Gothenburg Global Biodiversity Centre, Gothenburg, Sweden
| | | | - Rien Aerts
- Department of Ecological Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Pascal Boeckx
- Isotope Bioscience Laboratory (ISOFYS), Department of Green Chemistry and Technology, Ghent University, Ghent, Belgium
| | - J Hans C Cornelissen
- Department of Ecological Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Kari Klanderud
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Aas, Norway
| | | | - Tobias Rütting
- Department of Earth Science, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
11
|
Blaalid R, Davey ML. Habitat Protection Approaches Facilitate Conservation of Overlooked Fungal Diversity - A Case Study From the Norwegian Coastal Heathland System. FRONTIERS IN FUNGAL BIOLOGY 2022; 3:886685. [PMID: 37746238 PMCID: PMC10512255 DOI: 10.3389/ffunb.2022.886685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/02/2022] [Indexed: 09/26/2023]
Abstract
European coastal heathlands are distinct ecosystems shaped by land use tradition and they have experienced an 80% area reduction from their historical maximum. These mosaics of mires and wind exposed patches have ericaceous shrub dominated vegetation, and soils within coastal heathlands are characterized by low pH and high levels of recalcitrant debris. Using a culture-based approach with molecular identification of isolates, we characterized root-associated fungal communities of six ericaceous species in eight heathland localities along Norway's western coast. Site-level alpha diversity ranged from 21-38 OTUs, while the total estimated gamma diversity for culturable heathland root fungi was 190-231 OTUs. Most species recovered are previously reported at low abundance in Norway, suggesting the biodiversity in this community is underreported, rather than novel for science. The fungi recovered were primarily Ascomycota, specifically endophytic Phialocephala, and Pezicula, and no host specificity was observed in the communities. The fungal communities exhibited high turnover and low nestedness, both between ericaceous hosts and across heathland sites. We observed no spatial patterns in fungal betadiversity, and this heterogeneity may be a product of the unique historic land use practices at each locality creating a distinct mycofloral "fingerprint". Robust diversity estimates will be key for managing fungal biodiversity in coastal heathlands. Our results indicate that sampling schemes that maximize the number of host plants sampled per site, rather than the number of cultures per plant yield improved alpha diversity estimates. Similarly, gamma diversity estimates are improved by maximizing the total number of localities sampled, rather than increasing the number of plants sampled per locality. We argue that while the current protected status of coastal heathland habitats and restoration efforts have knock-on effects for the conservation of fungal biodiversity, fungi have a vital functional role in the ecosystem and holistic conservation plans that consider fungal biodiversity would be beneficial.
Collapse
Affiliation(s)
- Rakel Blaalid
- Department of Natural History, University Museum of Bergen, Bergen, Norway
- Norwegian Institute for Nature Research, NINA Bergen, Bergen, Norway
| | - Marie L. Davey
- Norwegian Institute for Nature Research, Terrestrial Biodiversity Department, Trondheim, Norway
| |
Collapse
|
12
|
Khalid M, Tan H, Ali M, Rehman A, Liu X, Su L, Zhao C, Li X, Hui N. Karst rocky desertification diverged the soil residing and the active ectomycorrhizal fungal communities thereby fostering distinctive extramatrical mycelia. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:151016. [PMID: 34666083 DOI: 10.1016/j.scitotenv.2021.151016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/09/2021] [Accepted: 10/12/2021] [Indexed: 06/13/2023]
Abstract
Ectomycorrhizal fungi (EMF) are mutualists that play crucial roles in liberation, nutrient acquisition, transfer of growth-limiting resources and provision of water to host plants in terrestrial ecosystems, particularly in stressed prone climates. In this study, a field-based experiment was performed in Yunnan, China to assess the effect of karst rocky desertification (KRD) and natural forests (non-KRD) sites on the richness and composition of EMF communities. Inert sand-filled mesh bags were employed to characterize the active EMF and quantify the production of extramatrical mycelium (EMM). Results indicated that, EMF exhibited a significant differentiation among KRD and non-KRD sites, richness and diversity were higher across KRD areas, whereas the evenness showed the opposite trend. Ascomycota and Zygomycota were greater across KRD sites, however, Basidiomycota showed no difference across both study sites. The relative abundance of Clavaria, Butyriboletus, Odontia, Phyloporus, Helvella, Russula and Tomentella were higher across the KRD sites, whereas, Clavulinopsis, Endogone, Amanita, Inocybe and Clavulina were higher across the non-KRD sites. It's worth noting that, saprophytic (SAP) fungal community was found to be more abundant in the soil than the mesh bags at both sites particularly at KRD sites, which likely provide more free space and less competition for the EMF to thrive well in the mesh bags. In similar pattern, ergosterol concentration in mesh bags was observed relatively higher at KRD sites than the non-KRD sites. The Entoloma, Amanita, and Sebacina were found to be substantially higher in mesh bags than soil across both sites. Delicatula, Helvella and Tomentella on the other hand, showed higher relative abundance in mesh bags than soil over KRD sites, however they did not differ across non-KRD sites. Taken together, the presented results highlight relationship between the EMF community and the complex KRD environment, which is very important for the restoration of disturbed karst landscapes.
Collapse
Affiliation(s)
- Muhammad Khalid
- Key Laboratory of Urban Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Haoxin Tan
- Key Laboratory of Urban Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Mehran Ali
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Asad Rehman
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xinxin Liu
- Key Laboratory of Urban Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lantian Su
- Key Laboratory of Urban Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chang Zhao
- Key Laboratory of Urban Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaoxiao Li
- Key Laboratory of Urban Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Nan Hui
- Key Laboratory of Urban Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, 800 Dongchuan Rd, Shanghai 200240, China; Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, 800 Dongchuan Rd., Shanghai 200240, China.
| |
Collapse
|
13
|
Marian M, Licciardello G, Vicelli B, Pertot I, Perazzolli M. Ecology and potential functions of plant-associated microbial communities in cold environments. FEMS Microbiol Ecol 2022; 98:fiab161. [PMID: 34910139 PMCID: PMC8769928 DOI: 10.1093/femsec/fiab161] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 12/13/2021] [Indexed: 11/13/2022] Open
Abstract
Complex microbial communities are associated with plants and can improve their resilience under harsh environmental conditions. In particular, plants and their associated communities have developed complex adaptation strategies against cold stress. Although changes in plant-associated microbial community structure have been analysed in different cold regions, scarce information is available on possible common taxonomic and functional features of microbial communities across cold environments. In this review, we discuss recent advances in taxonomic and functional characterization of plant-associated microbial communities in three main cold regions, such as alpine, Arctic and Antarctica environments. Culture-independent and culture-dependent approaches are analysed, in order to highlight the main factors affecting the taxonomic structure of plant-associated communities in cold environments. Moreover, biotechnological applications of plant-associated microorganisms from cold environments are proposed for agriculture, industry and medicine, according to biological functions and cold adaptation strategies of bacteria and fungi. Although further functional studies may improve our knowledge, the existing literature suggest that plants growing in cold environments harbor complex, host-specific and cold-adapted microbial communities, which may play key functional roles in plant growth and survival under cold conditions.
Collapse
Affiliation(s)
- Malek Marian
- Center Agriculture Food Environment (C3A), University of Trento, via E. Mach 1, 38098 San Michele all'Adige, Italy
- Research and Innovation Centre, Fondazione Edmund Mach, via E. Mach 1, 38098 San Michele all'Adige, Italy
| | - Giorgio Licciardello
- Center Agriculture Food Environment (C3A), University of Trento, via E. Mach 1, 38098 San Michele all'Adige, Italy
- Research and Innovation Centre, Fondazione Edmund Mach, via E. Mach 1, 38098 San Michele all'Adige, Italy
| | - Bianca Vicelli
- Center Agriculture Food Environment (C3A), University of Trento, via E. Mach 1, 38098 San Michele all'Adige, Italy
- Research and Innovation Centre, Fondazione Edmund Mach, via E. Mach 1, 38098 San Michele all'Adige, Italy
| | - Ilaria Pertot
- Center Agriculture Food Environment (C3A), University of Trento, via E. Mach 1, 38098 San Michele all'Adige, Italy
- Research and Innovation Centre, Fondazione Edmund Mach, via E. Mach 1, 38098 San Michele all'Adige, Italy
| | - Michele Perazzolli
- Center Agriculture Food Environment (C3A), University of Trento, via E. Mach 1, 38098 San Michele all'Adige, Italy
- Research and Innovation Centre, Fondazione Edmund Mach, via E. Mach 1, 38098 San Michele all'Adige, Italy
| |
Collapse
|
14
|
Vohník M. Ericoid mycorrhizal symbiosis: theoretical background and methods for its comprehensive investigation. MYCORRHIZA 2020; 30:671-695. [PMID: 33043410 PMCID: PMC7548138 DOI: 10.1007/s00572-020-00989-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 09/14/2020] [Indexed: 05/20/2023]
Abstract
Despite decades of intensive research (especially from 1970s to 1990s), the ericoid mycorrhizal (ErM) hair root is still largely terra incognita and this simplified guide is intended to revive and promote the study of its mycobiota. Basic theoretical knowledge on the ErM symbiosis is summarized, followed by practical advices on Ericaceae root sample collection and handling, microscopic observations and photo-documentation of root fungal colonization, mycobiont isolation, maintenance and identification and resynthesis experiments with ericoid plants. The necessity of a proper selection of the root material and its surface sterilization prior to mycobiont isolation is stressed, together with the need of including suitable control treatments in inoculation experiments. The culture-dependent approach employing plating of single short (~ 2 mm) hair root segments on nutrient media is substantiated as a useful tool for characterization of Ericaceae root-associated fungal communities; it targets living mycelium and provides metabolically active cultures that can be used in physiological experiments and taxonomic studies, thus providing essential reference material for culture-independent approaches. On the other hand, it is stressed that not every mycobiont isolated from an ericoid hair root necessarily represent an ErM fungus. Likewise, not every intracellular hyphal coil formed in the Ericaceae rhizodermis necessarily represents the ErM symbiosis. Taxonomy of the most important ericoid mycobionts is updated, mutualism in the ErM symbiosis is briefly discussed from the mycobiont perspective, and some interesting lines of possible future research are highlighted.
Collapse
Affiliation(s)
- Martin Vohník
- Department of Mycorrhizal Symbioses, Institute of Botany, Czech Academy of Sciences, Průhonice, 252 43, Czech Republic.
| |
Collapse
|
15
|
Thoen E, Harder CB, Kauserud H, Botnen SS, Vik U, Taylor AFS, Menkis A, Skrede I. In vitro evidence of root colonization suggests ecological versatility in the genus Mycena. THE NEW PHYTOLOGIST 2020; 227:601-612. [PMID: 32171021 DOI: 10.1111/nph.16545] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 03/03/2020] [Indexed: 06/10/2023]
Abstract
The root-associated habit has evolved on numerous occasions in different fungal lineages, suggesting a strong evolutionary pressure for saprotrophic fungi to switch to symbiotic associations with plants. Species within the ubiquitous, saprotrophic genus Mycena are frequently major components in molecular studies of root-associated fungal communities, suggesting that an evaluation of their trophic status is warranted. Here, we report on interactions between a range of Mycena species and the plant Betula pendula. In all, 17 Mycena species were inoculated onto B. pendula seedlings. Physical interactions between hyphae and fine roots were examined using differential staining and fluorescence microscopy. Physiological interactions were investigated using 14 C and 32 P to show potential transfer between symbionts. All Mycena species associated closely with fine roots, showing hyphal penetration into the roots, which in some cases were intracellular. Seven species formed mantle-like structures around root tips, but none formed a Hartig net. Mycena pura and Mycena galopus both enhanced seedling growth, with M. pura showing significant transfer of 32 P to the seedlings. Our results support the view that several Mycena species can associate closely with plant roots and some may potentially occupy a transitional state between saprotrophy and biotrophy.
Collapse
Affiliation(s)
- Ella Thoen
- Department of Biosciences, University of Oslo, PO Box 1066, Blindern, 0316, Oslo, Norway
| | - Christoffer Bugge Harder
- Department of Biosciences, University of Oslo, PO Box 1066, Blindern, 0316, Oslo, Norway
- Department of Plant and Soil Science, Texas Tech University, PO Box 42122, Lubbock, TX, 79409, USA
| | - Håvard Kauserud
- Department of Biosciences, University of Oslo, PO Box 1066, Blindern, 0316, Oslo, Norway
| | - Synnøve S Botnen
- Department of Biosciences, University of Oslo, PO Box 1066, Blindern, 0316, Oslo, Norway
| | - Unni Vik
- Department of Biosciences, University of Oslo, PO Box 1066, Blindern, 0316, Oslo, Norway
| | - Andy F S Taylor
- School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, UK
- The James Hutton Institute, Craigiebuckler, Aberdeen, AB15 8QH, UK
| | - Audrius Menkis
- Department of Forest Mycology and Plant Pathology, Uppsala BioCenter, Swedish University of Agricultural Sciences, PO Box 7026, SE-75007, Uppsala, Sweden
| | - Inger Skrede
- Department of Biosciences, University of Oslo, PO Box 1066, Blindern, 0316, Oslo, Norway
| |
Collapse
|
16
|
Fehrer J, Réblová M, Bambasová V, Vohník M. The root-symbiotic Rhizoscyphus ericae aggregate and Hyaloscypha ( Leotiomycetes) are congeneric: Phylogenetic and experimental evidence. Stud Mycol 2019; 92:195-225. [PMID: 31998413 PMCID: PMC6976342 DOI: 10.1016/j.simyco.2018.10.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Data mining for a phylogenetic study including the prominent ericoid mycorrhizal fungus Rhizoscyphus ericae revealed nearly identical ITS sequences of the bryophilous Hyaloscypha hepaticicola suggesting they are conspecific. Additional genetic markers and a broader taxonomic sampling furthermore suggested that the sexual Hyaloscypha and the asexual Meliniomyces may be congeneric. In order to further elucidate these issues, type strains of all species traditionally treated as members of the Rhizoscyphus ericae aggregate (REA) and related taxa were subjected to phylogenetic analyses based on ITS, nrLSU, mtSSU, and rpb2 markers to produce comparable datasets while an in vitro re-synthesis experiment was conducted to examine the root-symbiotic potential of H. hepaticicola in the Ericaceae. Phylogenetic evidence demonstrates that sterile root-associated Meliniomyces, sexual Hyaloscypha and Rhizoscyphus, based on R. ericae, are indeed congeneric. To this monophylum also belongs the phialidic dematiaceous hyphomycetes Cadophora finlandica and Chloridium paucisporum. We provide a taxonomic revision of the REA; Meliniomyces and Rhizoscyphus are reduced to synonymy under Hyaloscypha. Pseudaegerita, typified by P. corticalis, an asexual morph of H. spiralis which is a core member of Hyaloscypha, is also transferred to the synonymy of the latter genus. Hyaloscypha melinii is introduced as a new root-symbiotic species from Central Europe. Cadophora finlandica and C. paucisporum are confirmed conspecific, and four new combinations in Hyaloscypha are proposed. Based on phylogenetic analyses, some sexually reproducing species can be attributed to their asexual counterparts for the first time whereas the majority is so far known only in the sexual or asexual state. Hyaloscypha bicolor sporulating in vitro is reported for the first time. Surprisingly, the mycological and mycorrhizal sides of the same coin have never been formally associated, mainly because the sexual and asexual morphs of these fungi have been studied in isolation by different research communities. Evaluating all these aspects allowed us to stabilize the taxonomy of a widespread and ecologically well-studied group of root-associated fungi and to link their various life-styles including saprobes, bryophilous fungi, root endophytes as well as fungi forming ericoid mycorrhizae and ectomycorrhizae.
Collapse
Affiliation(s)
- J. Fehrer
- Institute of Botany, Czech Academy of Sciences, 252 43 Průhonice, Czech Republic
| | - M. Réblová
- Institute of Botany, Czech Academy of Sciences, 252 43 Průhonice, Czech Republic
| | - V. Bambasová
- Institute of Botany, Czech Academy of Sciences, 252 43 Průhonice, Czech Republic
| | - M. Vohník
- Institute of Botany, Czech Academy of Sciences, 252 43 Průhonice, Czech Republic
- Department of Plant Experimental Biology, Faculty of Science, Charles University, 128 44 Prague, Czech Republic
| |
Collapse
|
17
|
Botnen SS, Davey ML, Halvorsen R, Kauserud H. Sequence clustering threshold has little effect on the recovery of microbial community structure. Mol Ecol Resour 2018; 18:1064-1076. [PMID: 29673081 DOI: 10.1111/1755-0998.12894] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 03/21/2018] [Accepted: 04/11/2018] [Indexed: 11/27/2022]
Abstract
Analysis of microbial community structure by multivariate ordination methods, using data obtained by high-throughput sequencing of amplified markers (i.e., DNA metabarcoding), often requires clustering of DNA sequences into operational taxonomic units (OTUs). Parameters for the clustering procedure tend not to be justified but are set by tradition rather than being based on explicit knowledge. In this study, we explore the extent to which ordination results are affected by variation in parameter settings for the clustering procedure. Amplicon sequence data from nine microbial community studies, representing different sampling designs, spatial scales and ecosystems, were subjected to clustering into OTUs at seven different similarity thresholds (clustering thresholds) ranging from 87% to 99% sequence similarity. The 63 data sets thus obtained were subjected to parallel DCA and GNMDS ordinations. The resulting community structures were highly similar across all clustering thresholds. We explain this pattern by the existence of strong ecological structuring gradients and phylogenetically diverse sets of abundant OTUs that are highly stable across clustering thresholds. Removing low-abundance, rare OTUs had negligible effects on community patterns. Our results indicate that microbial data sets with a clear gradient structure are highly robust to choice of sequence clustering threshold.
Collapse
Affiliation(s)
- Synnøve Smebye Botnen
- Section for Genetics and Evolutionary Biology (EVOGENE), Department of Biosciences, University of Oslo, Oslo, Norway
- The University Centre in Svalbard, Longyearbyen, Norway
| | - Marie Louise Davey
- Section for Genetics and Evolutionary Biology (EVOGENE), Department of Biosciences, University of Oslo, Oslo, Norway
| | - Rune Halvorsen
- Department of Research and Collections, Natural History Museum, University of Oslo, Oslo, Norway
| | - Håvard Kauserud
- Section for Genetics and Evolutionary Biology (EVOGENE), Department of Biosciences, University of Oslo, Oslo, Norway
| |
Collapse
|
18
|
Kennedy PG, Mielke LA, Nguyen NH. Ecological responses to forest age, habitat, and host vary by mycorrhizal type in boreal peatlands. MYCORRHIZA 2018; 28:315-328. [PMID: 29504037 DOI: 10.1007/s00572-018-0821-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Accepted: 01/05/2018] [Indexed: 05/17/2023]
Abstract
Despite covering vast areas of boreal North America, the ecological factors structuring mycorrhizal fungal communities in peatland forests are relatively poorly understood. To assess how these communities vary by age (younger vs. mature), habitat (fen vs. bog), and host (conifer trees vs. ericaceous shrub), we sampled the roots of two canopy trees (Larix laricina and Picea mariana) and an ericaceous shrub (Ledum groenlandicum) at four sites in northern Minnesota, USA. To characterize the specific influence of host co-occurrence on mycorrhizal fungal community structure, we also conducted a greenhouse bioassay using the same three hosts. Root samples were assessed using Illumina-based high-throughput sequencing (HTS) of the ITS1 rRNA gene region. As expected, we found that the relative abundance of ectomycorrhizal fungi was high on both Larix and Picea, whereas ericoid mycorrhizal fungi had high relative abundance only on Ledum. Ericoid mycorrhizal fungal richness was significantly higher in mature forests, in bogs, and on Ledum hosts, while ectomycorrhizal fungal richness did not differ significantly across any of these three variables. In terms of community composition, ericoid mycorrhizal fungi were more strongly influenced by host while ectomycorrhizal fungi were more influenced by habitat. In the greenhouse bioassay, the presence of Ledum had consistently stronger effects on the composition of ectomycorrhizal, ericoid, and ericoid-ectomycorrhizal fungal communities than either Larix or Picea. Collectively, these results suggest that partitioning HTS-based datasets by mycorrhizal type in boreal peatland forests is important, as their responses to rapidly changing environmental conditions are not likely to be uniform.
Collapse
Affiliation(s)
- Peter G Kennedy
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN, USA.
- Department of Ecology, Evolution, and Behavior, University of Minnesota, 1445 Gortner Ave, St. Paul, MN, USA.
| | - Louis A Mielke
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN, USA
| | - Nhu H Nguyen
- Department of Tropical Plant and Soil Sciences, University of Hawai'i-Manoa, Honolulu, HI, USA
| |
Collapse
|
19
|
Grelet GA, Ba R, Goeke DF, Houliston GJ, Taylor AFS, Durall DM. A plant growth-promoting symbiosis between Mycena galopus and Vaccinium corymbosum seedlings. MYCORRHIZA 2017; 27:831-839. [PMID: 28842791 DOI: 10.1007/s00572-017-0797-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 08/09/2017] [Indexed: 05/21/2023]
Abstract
Typically, Mycena species are viewed as saprotrophic fungi. However, numerous detections of Mycena spp. in the roots of green plants suggest that a continuum from saprotrophy to biotrophy could exist. In particular, mycenoid species have repeatedly been found in Ericaceae plant roots. Our study asked whether (1) Mycena species are commonly found in the roots of green Ericaceae plants; (2) Mycena sequences are limited to a single group/lineage within the genus; and (3) a Mycena sp. can behave as a beneficial root associate with a typical ericoid mycorrhizal plant (Vaccinium corymbosum), regardless of how much external labile carbon is available. We detected Mycena sequences in roots of all sampled Ericaceae plants. Our Mycena sequences clustered in four different groups distributed across the Mycena genus. Only one group could be assigned with confidence to a named species (M. galopus). Our Mycena sequences clustered with other Mycena sequences detected in roots of ericoid mycorrhizal plant species collected throughout Europe, America, and Australia. An isolate of M. galopus promoted growth of V. corymbosum seedlings in vitro regardless of external carbon supply in the media. Seedlings inoculated with M. galopus grew as well as those inoculated with the ericoid mycorrhizal fungus Rhizoscyphus ericae. Surprisingly, this M. galopus isolate colonized Vaccinium roots and formed distinctive peg-like structures. Our results suggest that Mycena species might operate along a saprotroph-symbiotic continuum with a range of ericoid mycorrhizal plant species. We discuss our results in terms of fungal partner recruitment by Ericaceae plants.
Collapse
Affiliation(s)
- Gwen-Aëlle Grelet
- Landcare Research, Gerald Street, Lincoln, 7608, New Zealand.
- School of Biological Sciences, University of Aberdeen, Cruickshank Building, St. Machar Drive, Aberdeen, AB24 3UU, Scotland, UK.
| | - Ren Ba
- School of Biological Sciences, University of Aberdeen, Cruickshank Building, St. Machar Drive, Aberdeen, AB24 3UU, Scotland, UK
- The James Hutton Institute, Craigiebuckler, Aberdeen, AB15 8QH, Scotland, UK
| | - Dagmar F Goeke
- Landcare Research, Gerald Street, Lincoln, 7608, New Zealand
| | | | - Andy F S Taylor
- The James Hutton Institute, Craigiebuckler, Aberdeen, AB15 8QH, Scotland, UK
| | - Daniel M Durall
- Biology, Irving K. Barber School of Arts and Sciences, University of British Columbia, Okanagan 1177 Research Road, Science Building, Kelowna, BC, V1V 1V7, Canada
| |
Collapse
|