1
|
Yakkou L, Houida S, El Baaboua A, Bilen S, Chelkha M, Okyay Kaya L, Aasfar A, Ameen F, Ahmad Bhat S, Raouane M, Amghar S, El Harti A. Unveiling resilience: coelomic fluid bacteria's impact on plant metabolism and abiotic stress tolerance. PLANT SIGNALING & BEHAVIOR 2024; 19:2363126. [PMID: 38832593 DOI: 10.1080/15592324.2024.2363126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 05/29/2024] [Indexed: 06/05/2024]
Abstract
Earthworms' coelomic fluid (CF) has been discovered to possess properties that promote plant development. In particular, the earthworm's coelomic fluid-associated bacteria (CFB) are the primary factor influencing the plants' response. To investigate this, we used bacteria isolated from the CF and selected based on different plant growth-promoting traits, in a mesocosm ecosystem that includes plants. This experiment aimed to assess their impact on the metabolism of plants growing under abiotic stress environments (alkaline soil and nitrogen (N), phosphate (P), and potassium (K) deficit) and compare the lipid profiles of plants under the various treatments. We used seven different bacterial species isolated from the CF of Aporrectodea molleri and as a plant model Zea mays L. For the metabolomic analysis method, we used gas chromatography-mass spectrometry lipidomic. After observing the metabolomic profiles, we found that a few molecular pathways are involved in how plants react to bacterial biostimulants. The bacterial isolates belonging to Pantoea vagans, Pseudomonas aeruginosa, Bacillus paramycoides, and Bacillus thuringiensis have led to a significant increase in synthesizing several metabolites belonging to various chemical categories. Contrary to predictions, abiotic stress did not cause a drop in the composition and concentration of lipids in plants treated with the CFB, demonstrating the rigidity of the protective mechanisms. The statistical analysis based on the Pearson method revealed a positive significant correlation between plant growth parameters (length of the aerial part, surface of the leaves, and biomass) and some metabolites belonging to fatty acids, carboxylic acids, benzene derivatives, and alkanes. Moreover, the standard metabolic components of all treatments in much higher concentrations during bacterial treatments than the control treatment suggests that the bacteria have stimulated the overexpression of these metabolic components. According to these results, we could assume that plants treated with CFB exhibit an adaptability of abiotic stress defense mechanisms, which may be attributed to the upregulation of genes involved in lipid biosynthesis pathways.
Collapse
Affiliation(s)
- Lamia Yakkou
- Laboratory of Microbial Biotechnologies and Plant Protection (LBVRN), Faculty of Sciences Agadir, University Ibn Zohr, Agadir, Morocco
- Faculty of Applied Sciences- Ait Melloul, University Ibn Zohr, Agadir, Morocco
| | - Sofia Houida
- Laboratory of Mycobacteria and Tuberculosis, Institut Pasteur of Morocco, Casablanca, Morocco
| | - Aicha El Baaboua
- Biotechnology and Applied Microbiology Team, Department of Biology, Faculty of Science, Abdelmalek-Essaadi University, Tetouan, Morocco
| | - Serdar Bilen
- Soil Science and Plant Nutrition Department, Faculty of Agriculture, Ataturk University, Erzurum, Turkey
| | - Maryam Chelkha
- Department of Entomology, Cornell University, Cornell AgriTech, Geneva, NY, USA
| | - Leyla Okyay Kaya
- Soil Science and Plant Nutrition Department, Faculty of Agriculture, Ataturk University, Erzurum, Turkey
| | - Abderrahim Aasfar
- Plant and Microbial Biotechnology Center, Moroccan Foundation for Advanced Science, Innovation and Research (MAScIR), Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | - Fuad Ameen
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | | | - Mohammed Raouane
- Research Team «Lumbricidae, Improving Soil Productivity and Environment (LAPSE)», Center "Water, Natural Resources, Environment and Sustainable Development, Ecole Normale Supérieure (ENS), Mohammed V University, Rabat, Morocco
| | - Souad Amghar
- Research Team «Lumbricidae, Improving Soil Productivity and Environment (LAPSE)», Center "Water, Natural Resources, Environment and Sustainable Development, Ecole Normale Supérieure (ENS), Mohammed V University, Rabat, Morocco
| | - Abdellatif El Harti
- Research Team «Lumbricidae, Improving Soil Productivity and Environment (LAPSE)», Center "Water, Natural Resources, Environment and Sustainable Development, Ecole Normale Supérieure (ENS), Mohammed V University, Rabat, Morocco
| |
Collapse
|
2
|
Novello G, Bona E, Nasuelli M, Massa N, Sudiro C, Campana DC, Gorrasi S, Hochart ML, Altissimo A, Vuolo F, Gamalero E. The Impact of Nitrogen-Fixing Bacteria-Based Biostimulant Alone or in Combination with Commercial Inoculum on Tomato Native Rhizosphere Microbiota and Production: An Open-Field Trial. BIOLOGY 2024; 13:400. [PMID: 38927280 PMCID: PMC11200462 DOI: 10.3390/biology13060400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024]
Abstract
The agricultural sector is currently encountering significant challenges due to the effects of climate change, leading to negative consequences for crop productivity and global food security. In this context, traditional agricultural practices have been inadequate in addressing the fast-evolving challenges while maintaining environmental sustainability. A possible alternative to traditional agricultural management is represented by using beneficial micro-organisms that, once applied as bioinoculants, may enhance crop resilience and adaptability, thereby mitigating the adverse effects of environmental stressors and boosting productivity. Tomato is one of the most important crops worldwide, playing a central role in the human diet. The aim of this study was to evaluate the impact of a nitrogen-fixing bacterial-based biostimulant (Azospirillum sp., Azotobacter sp., and Rhizobium sp.) in combination or not with a commercial inoculum Micomix (Rhizoglomus irregulare, Funnelliformis mosseae, Funnelliformis caledonium, Bacillus licheniformis, and Bacillus mucilaginosus) (MYC) on the native rhizosphere communities and tomato production. Bacterial populations in the different samples were characterized using an environmental metabarcoding approach. The bioinocula effect on the native rhizosphere microbiota resulted in significant variation both in alpha and beta diversity and in a specific signature associated with the presence of biostimulants.
Collapse
Affiliation(s)
- Giorgia Novello
- Dipartimento di Scienze e Innovazione Tecnologica (DISIT), Università del Piemonte Orientale, 15121 Alessandria, Italy; (G.N.); (N.M.); (D.C.C.); (E.G.)
| | - Elisa Bona
- Dipartimento per lo Sviluppo Sostenibile e la Transizione Ecologica (DISSTE), Università del Piemonte Orientale, 13100 Vercelli, Italy;
- Center on Autoimmune and Allergic Diseases (CAAD), Università del Piemonte Orientale, 28100 Novara, Italy
| | - Martina Nasuelli
- Dipartimento per lo Sviluppo Sostenibile e la Transizione Ecologica (DISSTE), Università del Piemonte Orientale, 13100 Vercelli, Italy;
| | - Nadia Massa
- Dipartimento di Scienze e Innovazione Tecnologica (DISIT), Università del Piemonte Orientale, 15121 Alessandria, Italy; (G.N.); (N.M.); (D.C.C.); (E.G.)
| | - Cristina Sudiro
- Landlab S.r.l., 36050 Quinto Vicentino, Italy; (C.S.); (M.L.H.); (A.A.)
| | - Daniela Cristina Campana
- Dipartimento di Scienze e Innovazione Tecnologica (DISIT), Università del Piemonte Orientale, 15121 Alessandria, Italy; (G.N.); (N.M.); (D.C.C.); (E.G.)
| | - Susanna Gorrasi
- Dipartimento di Scienze Ecologiche e Biologiche, Università degli Studi della Tuscia, 01100 Viterbo, Italy;
| | | | - Adriano Altissimo
- Landlab S.r.l., 36050 Quinto Vicentino, Italy; (C.S.); (M.L.H.); (A.A.)
| | | | - Elisa Gamalero
- Dipartimento di Scienze e Innovazione Tecnologica (DISIT), Università del Piemonte Orientale, 15121 Alessandria, Italy; (G.N.); (N.M.); (D.C.C.); (E.G.)
| |
Collapse
|
3
|
Khan RAA, Najeeb S, Chen J, Wang R, Zhang J, Hou J, Liu T. Insights into the molecular mechanism of Trichoderma stimulating plant growth and immunity against phytopathogens. PHYSIOLOGIA PLANTARUM 2023; 175:e14133. [PMID: 38148197 DOI: 10.1111/ppl.14133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/30/2023] [Accepted: 12/04/2023] [Indexed: 12/28/2023]
Abstract
Trichoderma species have received significant interest as beneficial fungi for boosting plant growth and immunity against phytopathogens. By establishing a mutualistic relationship with plants, Trichoderma causes a series of intricate signaling events that eventually promote plant growth and improve disease resistance. The mechanisms contain the indirect or direct involvement of Trichoderma in enhancing plant growth by modulating phytohormones signaling pathways, improving uptake and accumulation of nutrients, and increasing soil bioavailability of nutrients. They contribute to plant resistance by stimulating systemic acquired resistance through salicylic acid, jasmonic acid, and ethylene signaling. A cascade of signal transduction processes initiated by the interaction of Trichoderma and plants regulate the expression of defense-related genes, resulting in the synthesis of defense hormones and pathogenesis-related proteins (PRPs), which collectively improve plant resistance. Additionally, advancements in omics technologies has led to the identification of key pathways, their regulating genes, and molecular interactions in the plant defense and growth promotion responses induced by Trichoderma. Deciphering the molecular mechanism behind Trichoderma's induction of plant defense and immunity is essential for harnessing the full plant beneficial potential of Trichoderma. This review article sheds light on the molecular mechanisms that underlie the positive effects of Trichoderma-induced plant immunity and growth and opens new opportunities for developing environmentally friendly and innovative approaches to improve plant immunity and growth.
Collapse
Affiliation(s)
- Raja Asad Ali Khan
- Sanya Nanfan Research Institute, Hainan University, Sanya, PR China
- School of Tropical Agriculture and Forestry, Engineering Center of Agricultural Microbial Preparation Research and Development of Hainan, Hainan University, Haikou, PR China
| | - Saba Najeeb
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jie Chen
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, PR, China
| | - Rui Wang
- Sanya Nanfan Research Institute, Hainan University, Sanya, PR China
- School of Tropical Agriculture and Forestry, Engineering Center of Agricultural Microbial Preparation Research and Development of Hainan, Hainan University, Haikou, PR China
| | - Jing Zhang
- Sanya Nanfan Research Institute, Hainan University, Sanya, PR China
- School of Tropical Agriculture and Forestry, Engineering Center of Agricultural Microbial Preparation Research and Development of Hainan, Hainan University, Haikou, PR China
| | - Jumei Hou
- Sanya Nanfan Research Institute, Hainan University, Sanya, PR China
- School of Tropical Agriculture and Forestry, Engineering Center of Agricultural Microbial Preparation Research and Development of Hainan, Hainan University, Haikou, PR China
| | - Tong Liu
- Sanya Nanfan Research Institute, Hainan University, Sanya, PR China
- School of Tropical Agriculture and Forestry, Engineering Center of Agricultural Microbial Preparation Research and Development of Hainan, Hainan University, Haikou, PR China
| |
Collapse
|
4
|
Melini F, Melini V, Luziatelli F, Abou Jaoudé R, Ficca AG, Ruzzi M. Effect of microbial plant biostimulants on fruit and vegetable quality: current research lines and future perspectives. FRONTIERS IN PLANT SCIENCE 2023; 14:1251544. [PMID: 37900743 PMCID: PMC10602749 DOI: 10.3389/fpls.2023.1251544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 09/25/2023] [Indexed: 10/31/2023]
Abstract
Fruit and vegetables hold a prominent place in dietary guidance worldwide and, following the increasing awareness of the importance of their consumption for health, their demand has been on the rise. Fruit and vegetable production needs to be reconsidered so that it can be productive and, meantime, sustainable, resilient, and can deliver healthy and nutritious diets. Microbial plant biostimulants (PBs) are a possible approach to pursuing global food security and agricultural sustainability, and their application emerged as a promising alternative or substitute to the use of agrochemicals (e.g., more efficient use of mineral and organic fertilizers or less demand and more efficient use of pesticides in integrated production systems) and as a new frontier of investigation. To the best of our knowledge, no comprehensive reviews are currently available on the effects that microbial plant biostimulants' application can have specifically on each horticultural crop. This study thus aimed to provide a state-of-the-art overview of the effects that PBs can have on the morpho-anatomical, biochemical, physiological, and functional traits of the most studied crops. It emerged that most experiments occurred under greenhouse conditions; only a few field trials were carried out. Tomato, lettuce, and basil crops have been primarily treated with Arbuscular Mycorrhizal Fungi (AMF), while plant grow-promoting rhizobacteria (PGPR) metabolites were used for crops, such as strawberries and cucumbers. The literature review also pointed out that crop response to PBs is never univocal. Complex mechanisms related to the PB type, the strain, and the crop botanical family, occur.
Collapse
Affiliation(s)
- Francesca Melini
- CREA Research Centre for Food and Nutrition, Council for Agricultural Research and Economics, Rome, Italy
| | - Valentina Melini
- CREA Research Centre for Food and Nutrition, Council for Agricultural Research and Economics, Rome, Italy
| | - Francesca Luziatelli
- Department for Innovation in Biological, Agrofood and Forest Systems (DIBAF), University of Tuscia, Viterbo, Italy
| | - Renée Abou Jaoudé
- Department for Innovation in Biological, Agrofood and Forest Systems (DIBAF), University of Tuscia, Viterbo, Italy
| | - Anna Grazia Ficca
- Department for Innovation in Biological, Agrofood and Forest Systems (DIBAF), University of Tuscia, Viterbo, Italy
| | - Maurizio Ruzzi
- Department for Innovation in Biological, Agrofood and Forest Systems (DIBAF), University of Tuscia, Viterbo, Italy
| |
Collapse
|
5
|
Solangi F, Zhu X, Khan S, Rais N, Majeed A, Sabir MA, Iqbal R, Ali S, Hafeez A, Ali B, Ercisli S, Kayabasi ET. The Global Dilemma of Soil Legacy Phosphorus and Its Improvement Strategies under Recent Changes in Agro-Ecosystem Sustainability. ACS OMEGA 2023; 8:23271-23282. [PMID: 37426212 PMCID: PMC10324088 DOI: 10.1021/acsomega.3c00823] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 05/23/2023] [Indexed: 07/11/2023]
Abstract
Phosphorus (P) is one of the six key elements in plant nutrition and effectively plays a vital role in all major metabolic activities. It is an essential nutrient for plants linked to human food production. Although abundantly present in both organic and inorganic forms in soil, more than 40% of cultivated soils are commonly deficient in P concentration. Then, the P inadequacy is a challenge to a sustainable farming system to improve the food production for an increasing population. It is expected that the whole world population will rise to 9 billion by 2050 and, therefore, it is necessary at the same time for agricultural strategies broadly to expand food production up to 80% to 90% by handling the global dilemma which has affected the environment by climatic changes. Furthermore, the phosphate rock annually produced about 5 million metric tons of phosphate fertilizers per year. About 9.5 Mt of phosphorus enters human food through crops and animals such as milk, egg, meat, and fish and is then utilized, and 3.5 Mt P is physically consumed by the human population. Various new techniques and current agricultural practices are said to be improving P-deficient environments, which might help meet the food requirements of an increasing population. However, 4.4% and 3.4% of the dry biomass of wheat and chickpea, respectively, were increased under intercropping practices, which was higher than that in the monocropping system. A wide range of studies showed that green manure crops, especially legumes, improve the soil-available P content of the soil. It is noted that inoculation of arbuscular mycorrhizal fungi could decrease the recommended phosphate fertilizer rate nearly 80%. Agricultural management techniques to improve soil legacy P use by crops include maintaining soil pH by liming, crop rotation, intercropping, planting cover crops, and the consumption of modern fertilizers, in addition to the use of more efficient crop varieties and inoculation with P-solubilizing microorganisms. Therefore, exploring the residual phosphorus in the soil is imperative to reduce the demand for industrial fertilizers while promoting long-term sustainability on a global scale.
Collapse
Affiliation(s)
- Farheen Solangi
- Research
Centre of Fluid Machinery Engineering and Technology, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xingye Zhu
- Research
Centre of Fluid Machinery Engineering and Technology, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Shumaila Khan
- Khwaja
Fareed University of Engineering & Information Technology, Rahim Yar Khan, Punjab 64200, Pakistan
| | - Nazia Rais
- Department
of Soil Science, Sindh Agriculture University, Tandojam, Sindh 70060, Pakistan
| | - Asma Majeed
- Institute
of Agro-Industry and Environment, The Islamia
University of Bahawalpur Pakistan, Bahawalpur, Punjab 63100, Pakistan
| | - Muhammad Azeem Sabir
- Institute
of Forest Sciences, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Punjab 63100, Pakistan
| | - Rashid Iqbal
- Department
of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur Pakistan, Bahawalpur, Punjab 63100, Pakistan
| | - Shehzad Ali
- Department
of Environmental Sciences, Quaid-i-Azam
University, Islamabad 45320, Pakistan
| | - Aqsa Hafeez
- Department
of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Baber Ali
- Department
of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Sezai Ercisli
- Department
of Horticulture, Faculty of Agriculture, Ataturk University, 25240 Erzurum, Türkiye
- HGF Agro,
Ata Teknokent, TR-25240 Erzurum, Türkiye
| | - Ehlinaz Torun Kayabasi
- Department
of Agricultural Economy, Faculty of Agriculture, Kocaeli University, 41285 Kartepe, Türkiye
| |
Collapse
|
6
|
Yakkou L, Houida S, Bilen S, Kaya LO, Raouane M, Amghar S, Harti AE. Earthworm Aporrectodea molleri (oligochaeta)'s coelomic fluid-associated bacteria modify soil biochemical properties and improve maize (Zea mays L.) plant growth under abiotic stress conditions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:11719-11739. [PMID: 36098926 DOI: 10.1007/s11356-022-22999-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 09/08/2022] [Indexed: 06/15/2023]
Abstract
This study evaluated the impact of Aporrectodea molleri's coelomic fluid-associated bacteria (CFB) on Zea mays L. growth and soil biochemical characteristics under abiotic stress conditions, including alkaline soil (pH = 8) and nitrogen (N), phosphate (P), and potassium (K) deficit. Compared to maize cultivated in uninoculated soil, the effect of CFB on boosting plant growth under abiotic stress was notably exceptional. Different CFB treatments increased significantly root and shoot length by 50% and 21%, respectively. Furthermore, the presence of isolates in soil resulted in a significant increase in plant fresh and dry weights (of up to 113% and 91% for roots, and up to 173% and 44% for shoots), leaf surface (78%), and steam diameter (107%). Overall, soil inoculation with CFB significantly (P < 0.05) enhanced chlorophyll and water content in the plant compared to the untreated soil. Despite the soil's alkaline condition, CFB drastically boosted soil quality by increasing nutrient availability (up to 30 ppm for N, 2 ppm for P, and 60 ppm for K) and enzyme activity (up to 1.14 μg p-NP h-1 g-1 for acide phosphatase, 9 μg p-NP h-1 g-1 for alkaline phosphatase and 40 μg NH4-N 2 h-1 g-1 for urease), throughout the early stages of the growth period. Interestingly, alkaline phosphatase concentrations were substantially greater in treatments with different isolates than acid phosphatase. Furthermore, the principal component analysis showed that the inoculation with bacteria strains CFB1 Buttiauxella gaviniae and CFB3 Aeromonas hydrophila had a significantly better stimulatory stimulatory and direct influence on maize growth than the other isolates had a substantial effect on soil's biochemical features. Thus, we assumed that the beneficial contribution of earthworms in the rhizosphere might be attributed in large part to associated microorganisms.
Collapse
Affiliation(s)
- Lamia Yakkou
- Reseach Team "Lombricidae, Improving Soil Productivity and Environment" (LAPSE), Centre "Eau, Ressources Naturelles, Environnement et Développement Durable" (CERNE2D), Ecole Normale Supérieure (ENS), Mohammed V University in Rabat, Avenue Med Belhassan El Ouazani, BP5118, Takaddoum-Rabat, Morocco.
- Soil Science and Plant Nutrition Department, Faculty of Agriculture, Ataturk University, 25000, Erzurum, Turkey.
| | - Sofia Houida
- Reseach Team "Lombricidae, Improving Soil Productivity and Environment" (LAPSE), Centre "Eau, Ressources Naturelles, Environnement et Développement Durable" (CERNE2D), Ecole Normale Supérieure (ENS), Mohammed V University in Rabat, Avenue Med Belhassan El Ouazani, BP5118, Takaddoum-Rabat, Morocco
- Soil Science and Plant Nutrition Department, Faculty of Agriculture, Ataturk University, 25000, Erzurum, Turkey
| | - Serdar Bilen
- Soil Science and Plant Nutrition Department, Faculty of Agriculture, Ataturk University, 25000, Erzurum, Turkey
| | - Leyla Okyay Kaya
- Soil Science and Plant Nutrition Department, Faculty of Agriculture, Ataturk University, 25000, Erzurum, Turkey
| | - Mohammed Raouane
- Reseach Team "Lombricidae, Improving Soil Productivity and Environment" (LAPSE), Centre "Eau, Ressources Naturelles, Environnement et Développement Durable" (CERNE2D), Ecole Normale Supérieure (ENS), Mohammed V University in Rabat, Avenue Med Belhassan El Ouazani, BP5118, Takaddoum-Rabat, Morocco
| | - Souad Amghar
- Reseach Team "Lombricidae, Improving Soil Productivity and Environment" (LAPSE), Centre "Eau, Ressources Naturelles, Environnement et Développement Durable" (CERNE2D), Ecole Normale Supérieure (ENS), Mohammed V University in Rabat, Avenue Med Belhassan El Ouazani, BP5118, Takaddoum-Rabat, Morocco
| | - Abdellatif El Harti
- Reseach Team "Lombricidae, Improving Soil Productivity and Environment" (LAPSE), Centre "Eau, Ressources Naturelles, Environnement et Développement Durable" (CERNE2D), Ecole Normale Supérieure (ENS), Mohammed V University in Rabat, Avenue Med Belhassan El Ouazani, BP5118, Takaddoum-Rabat, Morocco
| |
Collapse
|
7
|
Melini F, Luziatelli F, Bonini P, Ficca AG, Melini V, Ruzzi M. Optimization of the growth conditions through response surface methodology and metabolomics for maximizing the auxin production by Pantoea agglomerans C1. Front Microbiol 2023; 14:1022248. [PMID: 36970660 PMCID: PMC10030972 DOI: 10.3389/fmicb.2023.1022248] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 02/17/2023] [Indexed: 03/29/2023] Open
Abstract
Introduction The fermentative production of auxin/indole 3-acetate (IAA) using selected Pantoea agglomerans strains can be a promising approach to developing novel plant biostimulants for agriculture use. Methods By integrating metabolomics and fermentation technologies, this study aimed to define the optimal culture conditions to obtain auxin/IAA-enriched plant postbiotics using P. agglomerans strain C1. Metabolomics analysis allowed us to demonstrate that the production of a selected. Results and discussion Array of compounds with plant growth-promoting- (IAA and hypoxanthine) and biocontrol activity (NS-5, cyclohexanone, homo-L-arginine, methyl hexadecenoic acid, and indole-3-carbinol) can be stimulated by cultivating this strain on minimal saline medium amended with sucrose as a carbon source. We applied a three-level-two-factor central composite design (CCD) based response surface methodology (RSM) to explore the impact of the independent variables (rotation speed and medium liquid-to-flask volume ratio) on the production of IAA and IAA precursors. The ANOVA component of the CCD indicated that all the process-independent variables investigated significantly impacted the auxin/IAA production by P. agglomerans strain C1. The optimum values of variables were a rotation speed of 180 rpm and a medium liquid-to-flask volume ratio of 1:10. Using the CCD-RSM method, we obtained a maximum indole auxin production of 208.3 ± 0.4 mg IAAequ/L, which was a 40% increase compared to the growth conditions used in previous studies. Targeted metabolomics allowed us to demonstrate that the IAA product selectivity and the accumulation of the IAA precursor indole-3-pyruvic acid were significantly affected by the increase in the rotation speed and the aeration efficiency.
Collapse
Affiliation(s)
- Francesca Melini
- Department for Innovation in Biological, Agrofood and Forest Systems, University of Tuscia, Viterbo, Italy
- CREA Research Centre for Food and Nutrition, Rome, Italy
| | - Francesca Luziatelli
- Department for Innovation in Biological, Agrofood and Forest Systems, University of Tuscia, Viterbo, Italy
- *Correspondence: Francesca Luziatelli, ; Maurizio Ruzzi,
| | | | - Anna Grazia Ficca
- Department for Innovation in Biological, Agrofood and Forest Systems, University of Tuscia, Viterbo, Italy
| | | | - Maurizio Ruzzi
- Department for Innovation in Biological, Agrofood and Forest Systems, University of Tuscia, Viterbo, Italy
- *Correspondence: Francesca Luziatelli, ; Maurizio Ruzzi,
| |
Collapse
|
8
|
Salmeron-Santiago IA, Martínez-Trujillo M, Valdez-Alarcón JJ, Pedraza-Santos ME, Santoyo G, López PA, Larsen J, Pozo MJ, Chávez-Bárcenas AT. Carbohydrate and lipid balances in the positive plant phenotypic response to arbuscular mycorrhiza: increase in sink strength. PHYSIOLOGIA PLANTARUM 2023; 175:e13857. [PMID: 36648218 DOI: 10.1111/ppl.13857] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 01/04/2023] [Accepted: 01/11/2023] [Indexed: 06/17/2023]
Abstract
The exchange of phosphorus (P) and carbon (C) between plants and arbuscular mycorrhizal fungi (AMF) is a major determinant of their mutualistic symbiosis. We explored the C dynamics in tomato (Solanum lycorpersicum) inoculated or not with Rhizophagus irregularis to study their growth response under different NaH2 PO4 concentrations (Null P, 0 mM; Low P, 0.065 mM; High P, 1.3 mM). The percentage of AMF colonization was similar in plants under Null and Low P, but severely reduced under High P. However, the AMF mass biomarker 16:1ω5 revealed higher fungal accumulation in inoculated roots under Low P, while more AMF spores were produced in the Null P. Under High P, AMF biomass and spores were strongly reduced. Plant growth response to mycorrhiza was negative under Null P, showing reduction in height, biovolume index, and source leaf (SL) area. Under Low P, inoculated plants showed a positive response (e.g., increased SL area), while inoculated plants under High P were similar to non-inoculated plants. AMF promoted the accumulation of soluble sugars in the SL under all fertilization levels, whereas the soluble sugar level decreased in roots under Low P in inoculated plants. Transcriptional upregulation of SlLIN6 and SlSUS1, genes related to carbohydrate metabolism, was observed in inoculated roots under Null P and Low P, respectively. We conclude that P-limiting conditions that increase AMF colonization stimulate plant growth due to an increase in the source and sink strength. Our results suggest that C partitioning and allocation to different catabolic pathways in the host are influenced by AMF performance.
Collapse
Affiliation(s)
| | | | - Juan J Valdez-Alarcón
- Centro Multidisciplinario de Estudios en Biotecnología, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico
| | - Martha E Pedraza-Santos
- Facultad de Agrobiología "Presidente Juárez", Universidad Michoacana de San Nicolás de Hidalgo, Uruapan, Mexico
| | - Gustavo Santoyo
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico
| | - Pedro A López
- Colegio de Postgraduados-Campus Puebla, San Pedro Cholula, Mexico
| | - John Larsen
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, Morelia, Mexico
| | - María J Pozo
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, Granada, Spain
| | - Ana T Chávez-Bárcenas
- Facultad de Agrobiología "Presidente Juárez", Universidad Michoacana de San Nicolás de Hidalgo, Uruapan, Mexico
| |
Collapse
|
9
|
Fusco GM, Burato A, Pentangelo A, Cardarelli M, Nicastro R, Carillo P, Parisi M. Can Microbial Consortium Applications Affect Yield and Quality of Conventionally Managed Processing Tomato? PLANTS (BASEL, SWITZERLAND) 2022; 12:14. [PMID: 36616143 PMCID: PMC9824734 DOI: 10.3390/plants12010014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/03/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
Three commercial microbial-based biostimulants containing fungi (arbuscular mycorrhizae and Trichoderma spp.) and other microrganisms (plant growth-promoting bacteria and yeasts) were applied on a processing tomato crop in a two-year field experiment in southern Italy. The effects of the growing season and the microorganism-based treatments on the yield, technological traits and functional quality of the tomato fruits were assessed. The year of cultivation affected yield (with a lower fruit weight, higher marketable to total yield ratio and higher percentage of total defective fruits in 2020) and technological components (higher dry matter, titratable acidity, total soluble solids content in 2020). During the first year of the trial, the consortia-based treatments enhanced the soluble solids content (+10.02%) compared to the untreated tomato plants. The sucrose and lycopene content were affected both by the microbial treatments and the growing season (greater values found in 2021 with respect to 2020). The year factor also significantly affected the metabolite content, except for tyrosine, essential (EAA) and branched-chain amino acids (BCAAs). Over the two years of the field trial, FID-consortium enhanced the content of proteins (+53.71%), alanine (+16.55%), aspartic acid (+31.13%), γ-aminobutyric acid (GABA) (+76.51%), glutamine (+55.17%), glycine (+28.13%), monoethanolamine (MEA) (+19.57%), total amino acids (TAA) (+33.55), EAA (+32.56%) and BCAAs (+45.10%) compared to the control. Our findings highlighted the valuable effect of the FID microbial inoculant in boosting several primary metabolites (proteins and amino acids) in the fruits of the processing tomato crop grown under southern Italian environmental conditions, although no effect on the yield and its components was appreciated.
Collapse
Affiliation(s)
- Giovanna Marta Fusco
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy
| | - Andrea Burato
- CREA Research Centre for Vegetable and Ornamental Crops, Via Cavalleggeri 25, 84098 Pontecagnano Faiano, Italy
| | - Alfonso Pentangelo
- CREA Research Centre for Vegetable and Ornamental Crops, Via Cavalleggeri 25, 84098 Pontecagnano Faiano, Italy
| | - Mariateresa Cardarelli
- Department of Agriculture and Forest Sciences, University of Tuscia, Via San Camillo de Lellis snc, 01100 Viterbo, Italy
| | - Rosalinda Nicastro
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy
| | - Petronia Carillo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy
| | - Mario Parisi
- CREA Research Centre for Vegetable and Ornamental Crops, Via Cavalleggeri 25, 84098 Pontecagnano Faiano, Italy
| |
Collapse
|
10
|
Mycorrhizal Effects on Growth and Expressions of Stress-Responsive Genes ( aquaporins and SOSs) of Tomato under Salt Stress. J Fungi (Basel) 2022; 8:jof8121305. [PMID: 36547638 PMCID: PMC9786897 DOI: 10.3390/jof8121305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Environmentally friendly arbuscular mycorrhizal fungi (AMF) in the soil can alleviate host damage from abiotic stresses, but the underlying mechanisms are unclear. The objective of this study was to analyze the effects of an arbuscular mycorrhizal fungus, Paraglomus occultum, on plant growth, nitrogen balance index, and expressions of salt overly sensitive genes (SOSs), plasma membrane intrinsic protein genes (PIPs), and tonoplast intrinsic protein genes (TIPs) in leaves of tomato (Solanum lycopersicum L. var. Huapiqiu) seedlings grown in 0 and 150 mM NaCl stress. NaCl stress severely inhibited plant growth, but P. occultum inoculation significantly improved plant growth. NaCl stress also suppressed the chlorophyll index, accompanied by an increase in the flavonoid index, whereas inoculation with AMF significantly promoted the chlorophyll index as well as reduced the flavonoid index under NaCl conditions, thus leading to an increase in the nitrogen balance index in inoculated plants. NaCl stress regulated the expression of SlPIP1 and SlPIP2 genes in leaves, and five SlPIPs genes were up-regulated after P. occultum colonization under NaCl stress, along with the down-regulation of only SlPIP1;2. Both NaCl stress and P. occultum inoculation induced diverse expression patterns in SlTIPs, coupled with a greater number of up-regulated TIPs in inoculated versus uninoculated plants under NaCl stress. NaCl stress up-regulated SlSOS2 expressions of mycorrhizal and non-mycorrhizal plants, while P. occultum significantly up-regulated SlSOS1 expressions by 1.13- and 0.45-fold under non-NaCl and NaCl conditions, respectively. It was concluded that P. occultum inoculation enhanced the salt tolerance of the tomato, associated with the nutrient status and stress-responsive gene (aquaporins and SOS1) expressions.
Collapse
|
11
|
Li J, Liu R, Zhang C, Yang J, Lyu L, Shi Z, Man YB, Wu F. Selenium uptake and accumulation in winter wheat as affected by level of phosphate application and arbuscular mycorrhizal fungi. JOURNAL OF HAZARDOUS MATERIALS 2022; 433:128762. [PMID: 35358814 DOI: 10.1016/j.jhazmat.2022.128762] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/06/2022] [Accepted: 03/20/2022] [Indexed: 05/12/2023]
Abstract
Selenium (Se) is an advantageous element to crops. However, the influence of arbuscular mycorrhizal fungi (AMF), phosphate (P) and selenite in soil on Se uptake by winter wheat remain elusive. Pot trials were carried out including seven levels of P (0, 12.5, 25, 50, 100, 200 or 400 mg kg-1) and non-mycorrhizal inoculation (NM), inoculation of Funneliformis mosseae (F.m) or Glomus versiforme (G.v). The present results found that grain phosphorus concentration increased with increase of P level from 0 to 100 mg kg-1 and then tended to plateau, while grain Se concentration decreased with the level of P from 0 to 400 mg kg-1. Based on mathematical modeling, inoculation of F.m or G.v dramatically improved grain Se concentration by 16.90% or 12.53% under the lower level of P (48.76 mg kg-1). Furthermore, partial least squares path modeling (PLS-PM) identified that both up-regulated of the expression of AMF-inducible phosphate transporter and improved Se bioavailability in rhizosphere soil contributed to enhancing plant Se concentration under P levels ≤ 100 mg kg-1. The present study demonstrated that AMF combined with 48.76 mg kg-1 P applied in soil can not only achieve high grain yield, but also fully exploit the biological potential of Se uptake in wheat.
Collapse
Affiliation(s)
- Jiao Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling 712100, Shaanxi, PR China
| | - Ruifang Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling 712100, Shaanxi, PR China
| | - Chuangye Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling 712100, Shaanxi, PR China
| | - Jing Yang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling 712100, Shaanxi, PR China
| | - Lihui Lyu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling 712100, Shaanxi, PR China
| | - Zhaoyong Shi
- College of Agriculture, Henan University of Science and Technology, Luoyang 471023, Henan, PR China
| | - Yu Bon Man
- Consortium on Health, Environment, Education and Research (CHEER), Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, Hong Kong, PR China
| | - Fuyong Wu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling 712100, Shaanxi, PR China.
| |
Collapse
|
12
|
Shah C, Mali H, Mesara S, Dhameliya H, Subramanian RB. Combined inoculation of phosphate solubilizing bacteria with mycorrhizae to alleviate the phosphate deficiency in Banana. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-022-01105-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
13
|
Rhizophagus irregularis and Nitrogen Fixing Azotobacter with a Reduced Rate of Chemical Fertilizer Application Enhances Pepper Growth along with Fruits Biochemical and Mineral Composition. SUSTAINABILITY 2022. [DOI: 10.3390/su14095653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Bell pepper is an important vegetable crop containing lots of bioactive compounds. The present study was designed to improve the productivity and quality of bell pepper with the application of arbuscular mycorrhizal fungi (Rhizophagus irregularis) and plant growth-promoting bacteria (Azotobacter chroococcum) in a combination of chemical fertilizer. Five treatments consisted of 75% chemical fertilizer (T1), 100% chemical fertilizer (T2), 75% chemical fertilizer + R. irregularis (T3), 75% chemical fertilizer + A. chroococcum (T4) and 75% chemical fertilizer + R. irregularis + A. chroococcum (T5). Out of 18 morphological parameters, 11 morphometric fruit parameters were recorded in detail by a tomato analyzer. The morphological and biochemical (TSS, ascorbic acid and capsaicin content) attributes of bell pepper were recorded higher in the case of a mixed consortium of chemical fertilizers having R. irregularis and A. chroococcum. Similarly, the amount of mineral content recorded was highest after 75% chemical fertilizer + R. irregularis + A. chroococcum, followed by the treatment with only 100% chemical fertilizer. The root mycorrhization (%) and the number of spores were observed highest in 75% chemical fertilizer + R. irregularis + A. chroococcum, and there was no mycorrhization and spore formation in 75% CF, 100% CF and 75% CF+AC. The treatment involving 75% chemical fertilizer + R. irregularis + A. chroococcum proved better for pepper’s growth, yield and yield-related traits.
Collapse
|
14
|
The Effects of Plant Health Status on the Community Structure and Metabolic Pathways of Rhizosphere Microbial Communities Associated with Solanum lycopersicum. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8050404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Powdery mildew disease caused by Oidium neolycopersici is one of the major diseases affecting tomato production in South Africa. Interestingly, limited studies exist on how this disease affects the community structure microbial communities associated with tomato plants employing shotgun metagenomics. In this study, we assess how the health status of a tomato plant affects the diversity of the rhizosphere microbial community. We collected soil samples from the rhizosphere of healthy (HR) and diseased (DR; powdery mildew infected) tomatoes, alongside bulk soil (BR), extracted DNA, and did sequencing using shotgun metagenomics. Our results demonstrated that the rhizosphere microbiome alongside some specific functions were abundant in HR followed by DR and bulk soil (BR) in the order HR > DR > BR. We found eighteen (18) bacterial phyla abundant in HR, including Actinobacteria, Acidobacteria, Aquificae, Bacteroidetes, etc. The dominant fungal phyla include; Ascomycota and Basidiomycota, while the prominent archaeal phyla are Thaumarchaeota, Crenarchaeota, and Euryarchaeota. Three (3) bacteria phyla dominated the DR samples; Bacteroidetes, Gemmatimonadetes, and Thermotoga. Our result also employed the SEED subsystem and revealed that the metabolic pathways involved were abundant in HR. The α-diversity demonstrates that there is no significant difference among the rhizosphere microbiomes across the sites, while β-diversity demonstrated a significant difference.
Collapse
|
15
|
Berrios L, Rentsch JD. Linking Reactive Oxygen Species (ROS) to Abiotic and Biotic Feedbacks in Plant Microbiomes: The Dose Makes the Poison. Int J Mol Sci 2022; 23:ijms23084402. [PMID: 35457220 PMCID: PMC9030523 DOI: 10.3390/ijms23084402] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/13/2022] [Accepted: 04/13/2022] [Indexed: 12/13/2022] Open
Abstract
In nature, plants develop in complex, adaptive environments. Plants must therefore respond efficiently to environmental stressors to maintain homeostasis and enhance their fitness. Although many coordinated processes remain integral for achieving homeostasis and driving plant development, reactive oxygen species (ROS) function as critical, fast-acting orchestrators that link abiotic and biotic responses to plant homeostasis and development. In addition to the suite of enzymatic and non-enzymatic ROS processing pathways that plants possess, they also rely on their microbiota to buffer and maintain the oxidative window needed to balance anabolic and catabolic processes. Strong evidence has been communicated recently that links ROS regulation to the aggregated function(s) of commensal microbiota and plant-growth-promoting microbes. To date, many reports have put forth insightful syntheses that either detail ROS regulation across plant development (independent of plant microbiota) or examine abiotic–biotic feedbacks in plant microbiomes (independent of clear emphases on ROS regulation). Here we provide a novel synthesis that incorporates recent findings regarding ROS and plant development in the context of both microbiota regulation and plant-associated microbes. Specifically, we discuss various roles of ROS across plant development to strengthen the links between plant microbiome functioning and ROS regulation for both basic and applied research aims.
Collapse
Affiliation(s)
- Louis Berrios
- Department of Biology, Stanford University, Stanford, CA 94305, USA
- Correspondence:
| | - Jeremy D. Rentsch
- Department of Biology, Francis Marion University, Florence, SC 29502, USA;
| |
Collapse
|
16
|
Ganugi P, Fiorini A, Ardenti F, Caffi T, Bonini P, Taskin E, Puglisi E, Tabaglio V, Trevisan M, Lucini L. Nitrogen use efficiency, rhizosphere bacterial community, and root metabolome reprogramming due to maize seed treatment with microbial biostimulants. PHYSIOLOGIA PLANTARUM 2022; 174:e13679. [PMID: 35362106 PMCID: PMC9324912 DOI: 10.1111/ppl.13679] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/26/2022] [Accepted: 03/25/2022] [Indexed: 06/14/2023]
Abstract
Seed inoculation with beneficial microorganisms has gained importance as it has been proven to show biostimulant activity in plants, especially in terms of abiotic/biotic stress tolerance and plant growth promotion, representing a sustainable way to ensure yield stability under low input sustainable agriculture. Nevertheless, limited knowledge is available concerning the molecular and physiological processes underlying the root-inoculant symbiosis or plant response at the root system level. Our work aimed to integrate the interrelationship between agronomic traits, rhizosphere microbial population and metabolic processes in roots, following seed treatment with either arbuscular mycorrhizal fungi (AMF) or Plant Growth-Promoting Rhizobacteria (PGPR). To this aim, maize was grown under open field conditions with either optimal or reduced nitrogen availability. Both seed treatments increased nitrogen uptake efficiency under reduced nitrogen supply revealed some microbial community changes among treatments at root microbiome level and limited yield increases, while significant changes could be observed at metabolome level. Amino acid, lipid, flavone, lignan, and phenylpropanoid concentrations were mostly modulated. Integrative analysis of multi-omics datasets (Multiple Co-Inertia Analysis) highlighted a strong correlation between the metagenomics and the untargeted metabolomics datasets, suggesting a coordinate modulation of root physiological traits.
Collapse
Affiliation(s)
- Paola Ganugi
- Department for Sustainable Food ProcessUniversità Cattolica del Sacro CuorePiacenzaItaly
| | - Andrea Fiorini
- Department of Sustainable Crop ProductionUniversità Cattolica del Sacro CuorePiacenzaItaly
| | - Federico Ardenti
- Department of Sustainable Crop ProductionUniversità Cattolica del Sacro CuorePiacenzaItaly
| | - Tito Caffi
- Department of Sustainable Crop ProductionUniversità Cattolica del Sacro CuorePiacenzaItaly
| | | | - Eren Taskin
- Department for Sustainable Food ProcessUniversità Cattolica del Sacro CuorePiacenzaItaly
| | - Edoardo Puglisi
- Department for Sustainable Food ProcessUniversità Cattolica del Sacro CuorePiacenzaItaly
| | - Vincenzo Tabaglio
- Department of Sustainable Crop ProductionUniversità Cattolica del Sacro CuorePiacenzaItaly
| | - Marco Trevisan
- Department for Sustainable Food ProcessUniversità Cattolica del Sacro CuorePiacenzaItaly
| | - Luigi Lucini
- Department for Sustainable Food ProcessUniversità Cattolica del Sacro CuorePiacenzaItaly
| |
Collapse
|
17
|
Suardi A, Saia S, Alfano V, Rezaei N, Cetera P, Bergonzoli S, Pari L. Pruning harvesting with modular towed chipper: Little effect of the machine setting and configuration on performance despite strong impact on wood chip quality. PLoS One 2021; 16:e0261810. [PMID: 34972130 PMCID: PMC8719771 DOI: 10.1371/journal.pone.0261810] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 12/12/2021] [Indexed: 11/18/2022] Open
Abstract
Pruning residues can have a high quality as feedstock for energy purposes and are largely available in Europe. However, it is still an untapped resource. Such scarce use is due to the need to optimize their supply chain in term of collection machines and the associate cost of collection. A modular chipper (prototype PC50) for pruning harvest was developed. Such prototype is adaptable to various harvesting logistics and may produce a higher quality woodchip compared with the one produced by shredders available in the market. In this work, we tested the performance and quality of the product delivered by the prototype PC50 in various conditions and plant species, after a modulation of the machine settings (counter-rotating toothed rollers [CRR] speed), loading systems ([LS], either big bag or container), and knife types ([KT], either discontinuous hoe shaped knives or continuous helicoidal knives). To take into account of the covariates in the experiment (Cropping season and plant species), LSmeans were computed to have an unbiased estimate of the treatments means. The modulation of LS and KT scarcely affected the performance of the machine. In particular, the choice of the KT affected the field efficiency when the LS was a Tilting box but not a Big Bag. Whereas the continuous knife resulted in a 97% higher material capacity compared to hoe shape knives, the last of which the amount of short sized (<16 mm) fractions compared to helicoidal knives. No role of the CCR was found on the machine performance, but increasing CRR speed reduced the chip apparent bulk density and the fraction chips with a size <8 mm.
Collapse
Affiliation(s)
- Alessandro Suardi
- Council for Agricultural Research and Economics -Research Centre for Engineering and Agro-Food Processing (CREA-IT), Monterotondo, Roma, Italy
| | - Sergio Saia
- Department of Veterinary Sciences, University of Pisa, Pisa, Italy
| | - Vincenzo Alfano
- Council for Agricultural Research and Economics -Research Centre for Engineering and Agro-Food Processing (CREA-IT), Monterotondo, Roma, Italy
| | - Negar Rezaei
- National Research Council (CNR) Research Institute on Terrestrial Ecosystems (IRET), Porano, TR, Italy
| | - Paola Cetera
- Dipartimento di Agraria, Università degli Studi di Sassari, Sassari, Italy
| | - Simone Bergonzoli
- Council for Agricultural Research and Economics -Research Centre for Engineering and Agro-Food Processing (CREA-IT), Monterotondo, Roma, Italy
| | - Luigi Pari
- Council for Agricultural Research and Economics -Research Centre for Engineering and Agro-Food Processing (CREA-IT), Monterotondo, Roma, Italy
| |
Collapse
|
18
|
Yadav R, Ror P, Beniwal R, Kumar S, Ramakrishna W. Bacillus sp. and arbuscular mycorrhizal fungi consortia enhance wheat nutrient and yield in the second-year field trial: Superior performance in comparison with chemical fertilizers. J Appl Microbiol 2021; 132:2203-2219. [PMID: 34800074 DOI: 10.1111/jam.15371] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 11/07/2021] [Accepted: 11/15/2021] [Indexed: 01/14/2023]
Abstract
AIMS The aim of the study is to analyse the effect of microbial consortia for wheat biofortification, growth, yield and soil fertility as part of a 2-year field study and compare it with the use of chemical fertilizers. METHODS AND RESULTS A field trial (second year) was conducted with various combinations of plant growth-promoting bacteria (PGPB) and arbuscular mycorrhizal fungi (AMF) treatments, ranging from a single inoculant to multiple combinations. The microbial consortia used were Bacillus sp. and AMF based on first-year field trial results. The consortia based on native (CP4) and non-native (AHP3) PGPB (Bacillus sp.) and AMF performed better in terms of nutrients content in wheat grain tissue and yield-related traits compared with chemical fertilizer treated and untreated control. Dual treatment of PGPB (CP4+AHP3) combined with AMF resulted in a significant increase in antioxidants. The spatial colonization of AMF in roots indicated that both the isolates CP4 and AHP3 were able to enhance the AMF colonization in root tissue. Furthermore, soil enzymes' activities were higher with the PGPB and AMF combination giving the best results. A positive correlation was recorded between plant growth, grain yield and soil physicochemical parameters. CONCLUSIONS Our findings confirm that the combined treatment of CP4 and AHP3 and AMF functions as an effective microbial consortium with excellent application prospects for wheat biofortification, grain yield and soil fertility compared with chemical fertilizers. SIGNIFICANCE AND IMPACT OF STUDY The extensive application of chemical fertilizers on low-yielding field sites is a severe concern for cereal crops, especially wheat in the Asian continent. This study serves as a primer for implementing site-specific sustainable agricultural-management practices using a green technology leading to significant gains in agriculture.
Collapse
Affiliation(s)
- Radheshyam Yadav
- Department of Biochemistry, School of Basic Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Pankaj Ror
- Department of Biochemistry, School of Basic Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Rahul Beniwal
- Department of Biochemistry, School of Basic Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Sanjeev Kumar
- Department of Botany, Central University of Punjab, Bathinda, Punjab, India
| | - Wusirika Ramakrishna
- Department of Biochemistry, School of Basic Sciences, Central University of Punjab, Bathinda, Punjab, India
| |
Collapse
|
19
|
Pokluda R, Ragasová L, Jurica M, Kalisz A, Komorowska M, Niemiec M, Sekara A. Effects of growth promoting microorganisms on tomato seedlings growing in different media conditions. PLoS One 2021; 16:e0259380. [PMID: 34731216 PMCID: PMC8565787 DOI: 10.1371/journal.pone.0259380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/18/2021] [Indexed: 11/30/2022] Open
Abstract
Plant growth-promoting microbes (PGPM) play vital roles in maintaining crop fitness and soil health in stressed environments. Research have included analysis-based cultivation of soil-microbial-plant relationships to clarify microbiota potential. The goal of the research was to (i) evaluate the symbiotic microorganism effects on tomato seedling fitness under stressed conditions simulating a fragile soil susceptible to degradation; (ii) compare the plant-microbial interactions after inoculation with microbial isolates and fungi-bacteria consortia; (iii) develop an effective crop-microbial network, which improves soil and plant status. The experimental design included non-inoculated treatments with peat and sand at ratios of 50:50, 70:30, 100:0 (v:v), inoculated treatments with arbuscular mycorrhizal fungi (AMF) and Azospirillum brasilense (AZ) using the aforementioned peat:sand ratios; and treatment with peat co-inoculated with AMF and Saccharothrix tamanrassetensis (S). AMF + AZ increased root fresh weight in peat substrate compared to the control (4.4 to 3.3 g plant–1). An increase in shoot fresh weight was detected in the AMF + AZ treatment with a 50:50 peat:sand ratio (10.1 to 8.5 g plant-1). AMF + AZ reduced antioxidant activity (DPPH) (18–34%) in leaves, whereas AMF + S had the highest DPPH in leaves and roots (45%). Total leaf phenolic content was higher in control with a decreased proportion of peat. Peroxidase activity was enhanced in AMF + AZ and AMF + S treatments, except for AMF + AZ in peat. Microscopic root assays revealed the ability of AMF to establish strong fungal-tomato symbiosis; the colonization rate was 78–89%. AMF + AZ accelerated K and Mg accumulation in tomato leaves in treatments reflecting soil stress. To date, there has been no relevant information regarding the successful AMF and Saccharothrix co-inoculation relationship. This study confirmed that AMF + S could increase the P, S, and Fe status of seedlings under high organic C content conditions. The improved tomato growth and nutrient acquisition demonstrated the potential of PGPM colonization under degraded soil conditions.
Collapse
Affiliation(s)
- Robert Pokluda
- Faculty of Horticulture, Department of Vegetable Sciences and Floriculture, Mendel University in Brno, Brno, Czech Republic
- * E-mail:
| | - Lucia Ragasová
- Faculty of Horticulture, Department of Vegetable Sciences and Floriculture, Mendel University in Brno, Brno, Czech Republic
| | - Miloš Jurica
- Faculty of Horticulture, Department of Vegetable Sciences and Floriculture, Mendel University in Brno, Brno, Czech Republic
| | - Andrzej Kalisz
- Faculty of Biotechnology and Horticulture, Department of Horticulture, University of Agriculture in Krakow, Krakow, Poland
| | - Monika Komorowska
- Faculty of Biotechnology and Horticulture, Department of Horticulture, University of Agriculture in Krakow, Krakow, Poland
| | - Marcin Niemiec
- Faculty of Agriculture and Economics, Department of Agricultural and Environmental Chemistry, University of Agriculture in Krakow, Krakow, Poland
| | - Agnieszka Sekara
- Faculty of Biotechnology and Horticulture, Department of Horticulture, University of Agriculture in Krakow, Krakow, Poland
| |
Collapse
|
20
|
Bechtaoui N, Rabiu MK, Raklami A, Oufdou K, Hafidi M, Jemo M. Phosphate-Dependent Regulation of Growth and Stresses Management in Plants. FRONTIERS IN PLANT SCIENCE 2021; 12:679916. [PMID: 34777404 PMCID: PMC8581177 DOI: 10.3389/fpls.2021.679916] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 09/28/2021] [Indexed: 05/22/2023]
Abstract
The importance of phosphorus in the regulation of plant growth function is well studied. However, the role of the inorganic phosphate (Pi) molecule in the mitigation of abiotic stresses such as drought, salinity, heavy metal, heat, and acid stresses are poorly understood. We revisited peer-reviewed articles on plant growth characteristics that are phosphorus (P)-dependently regulated under the sufficient-P and low/no-P starvation alone or either combined with one of the mentioned stress. We found that the photosynthesis rate and stomatal conductance decreased under Pi-starved conditions. The total chlorophyll contents were increased in the P-deficient plants, owing to the lack of Pi molecules to sustain the photosynthesis functioning, particularly, the Rubisco and fructose-1,6-bisphosphatase function. The dry biomass of shoots, roots, and P concentrations were significantly reduced under Pi starvation with marketable effects in the cereal than in the legumes. To mitigate P stress, plants activate alternative regulatory pathways, the Pi-dependent glycolysis, and mitochondrial respiration in the cytoplasm. Plants grown under well-Pi supplementation of drought stress exhibited higher dry biomass of shoots than the no-P treated ones. The Pi supply to plants grown under heavy metals stress reduced the metal concentrations in the leaves for the cadmium (Cd) and lead (Pb), but could not prevent them from absorbing heavy metals from soils. To detoxify from heavy metal stress, plants enhance the catalase and ascorbate peroxidase activity that prevents lipid peroxidation in the leaves. The HvPIP and PHO1 genes were over-expressed under both Pi starvation alone and Pi plus drought, or Pi plus salinity stress combination, implying their key roles to mediate the stress mitigations. Agronomy Pi-based interventions to increase Pi at the on-farm levels were discussed. Revisiting the roles of P in growth and its better management in agricultural lands or where P is supplemented as fertilizer could help the plants to survive under abiotic stresses.
Collapse
Affiliation(s)
- Noura Bechtaoui
- AgroBiosciences Program, University Mohammed VI Polytechnic (UM6P), Benguerir, Morocco
| | - Muhammad Kabir Rabiu
- AgroBiosciences Program, University Mohammed VI Polytechnic (UM6P), Benguerir, Morocco
- Centre for Dryland Agriculture, Bayero University, Kano, Nigeria
| | - Anas Raklami
- Laboratory of Microbial Biotechnology, Agrosciences, and Environment (BioMAgE), Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakech, Morocco
| | - Khalid Oufdou
- AgroBiosciences Program, University Mohammed VI Polytechnic (UM6P), Benguerir, Morocco
- Laboratory of Microbial Biotechnology, Agrosciences, and Environment (BioMAgE), Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakech, Morocco
| | - Mohamed Hafidi
- AgroBiosciences Program, University Mohammed VI Polytechnic (UM6P), Benguerir, Morocco
- Laboratory of Microbial Biotechnology, Agrosciences, and Environment (BioMAgE), Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakech, Morocco
| | - Martin Jemo
- AgroBiosciences Program, University Mohammed VI Polytechnic (UM6P), Benguerir, Morocco
| |
Collapse
|
21
|
Saia S, Corrado G, Vitaglione P, Colla G, Bonini P, Giordano M, Stasio ED, Raimondi G, Sacchi R, Rouphael Y. An Endophytic Fungi-Based Biostimulant Modulates Volatile and Non-Volatile Secondary Metabolites and Yield of Greenhouse Basil ( Ocimum basilicum L.) through Variable Mechanisms Dependent on Salinity Stress Level. Pathogens 2021; 10:797. [PMID: 34201640 PMCID: PMC8308794 DOI: 10.3390/pathogens10070797] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/11/2021] [Accepted: 06/22/2021] [Indexed: 01/12/2023] Open
Abstract
Salinity in water and soil is one of the major environmental factors limiting the productivity of agronomic and horticultural crops. In basil (Ocimum basilicum L., Lamiaceae) and other Ocimum species, information on the plant response to mild salinity levels, often induced by the irrigation or fertigation systems, is scarce. In the present work, we tested the effectiveness of a microbial-based biostimulant containing two strains of arbuscular mycorrhiza fungi (AMF) and Trichoderma koningii in sustaining greenhouse basil yield traits, subjected to two mild salinity stresses (25 mM [low] and 50 mM [high] modulated by augmenting the fertigation osmotic potential with NaCl) compared to a non-stressed control. The impact of salinity stress was further appraised in terms of plant physiology, morphological ontogenesis and composition in polyphenols and volatile organic compounds (VOC). As expected, increasing the salinity of the solution strongly depressed the plant yield, nutrient uptake and concentration, reduced photosynthetic activity and leaf water potential, increased the Na and Cl and induced the accumulation of polyphenols. In addition, it decreased the concentration of Eucalyptol and β-Linalool, two of its main essential oil constituents. Irrespective of the salinity stress level, the multispecies inoculum strongly benefited plant growth, leaf number and area, and the accumulation of Ca, Mg, B, p-coumaric and chicoric acids, while it reduced nitrate and Cl concentrations in the shoots and affected the concentration of some minor VOC constituents. The benefits derived from the inoculum in term of yield and quality harnessed different mechanisms depending on the degree of stress. under low-stress conditions, the inoculum directly stimulated the photosynthetic activity after an increase of the Fe and Mn availability for the plants and induced the accumulation of caffeic and rosmarinic acids. under high stress conditions, the inoculum mostly acted directly on the sequestration of Na and the increase of P availability for the plant, moreover it stimulated the accumulation of polyphenols, especially of ferulic and chicoric acids and quercetin-rutinoside in the shoots. Notably, the inoculum did not affect the VOC composition, thus suggesting that its activity did not interact with the essential oil biosynthesis. These results clearly indicate that beneficial inocula constitute a valuable tool for sustaining yield and improving or sustaining quality under suboptimal water quality conditions imposing low salinity stress on horticultural crops.
Collapse
Affiliation(s)
- Sergio Saia
- Department Veterinary Sciences, University of Pisa, via delle Piagge 2, 56129 Pisa, Italy
| | - Giandomenico Corrado
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Naples, Italy
| | - Paola Vitaglione
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Naples, Italy
| | - Giuseppe Colla
- Department of Agriculture and Forest Sciences, University of Tuscia, 01100 Viterbo, Italy
| | - Paolo Bonini
- NGAlab, La Riera de Gaia, 43762 Tarragona, Spain
| | - Maria Giordano
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Naples, Italy
| | - Emilio Di Stasio
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Naples, Italy
| | - Giampaolo Raimondi
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Naples, Italy
| | - Raffaele Sacchi
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Naples, Italy
| | - Youssef Rouphael
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Naples, Italy
| |
Collapse
|
22
|
He Y, Li B, Yan K, Yang R, Lei G, Li M, Li Y, Zhan F. Arbuscular mycorrhizal fungus-induced decrease in nitrogen concentration in pore water and nitrogen leaching loss from red soil under simulated heavy rainfall. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:17457-17467. [PMID: 33394446 DOI: 10.1007/s11356-020-12131-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 12/16/2020] [Indexed: 06/12/2023]
Abstract
Arbuscular mycorrhizal fungus (AMF) is generally colonized in plant roots and influences the migration of mineral elements such as nitrogen (N) in soils. However, its effect on N leaching loss in red soils is limited. In the present study, red soils were collected from wasteland, farmland, and slopeland in the Yunnan Plateau. Maize, as a host plant, was cultured in a dual-compartment cultivation system. There were mycorrhizal and hyphal compartments for the AMF inoculation treatment and root and soil compartments for the non-inoculation treatment. The N concentration and uptake in maize, N concentration in pore water within two depth (0-20 and 20-40 cm), and N leaching losses from soil under simulated heavy rainfall (40 and 80 mm/h) were analyzed. Results showed that AMF inoculation significantly enhanced the biomass and N uptake in maize. Compared with the root and soil compartments, the N concentrations in pore water and their leaching losses from the mycorrhizal and hyphal compartments were decreased by 48-77% and 51-74%, respectively. Moreover, significant or extremely significantly positive correlations were observed between the N concentrations in pore water with the N leaching losses from soil. The three-way ANOVA showed that AMF highly significantly decreased N concentrations in pore water and their leaching losses from wasteland, farmland, and slopeland; rainfall intensity had strong influences on the N concentration in pore water from farmland and N leaching losses from wasteland and farmland, whereas the maize root's effect was insignificant. The study indicated that the AMF-induced decreases in the N leaching loss from red soils were caused by increased N uptake by maize and decreased N concentrations in pore water. These results have implications for reducing nutrient leaching loss through the management of beneficial microorganisms in soils.
Collapse
Affiliation(s)
- Yongmei He
- College of Resources and Environment, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Bo Li
- College of Resources and Environment, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Kai Yan
- College of Resources and Environment, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Rui Yang
- College of Water Conservancy, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Gang Lei
- College of Resources and Environment, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Mingrui Li
- College of Resources and Environment, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Yuan Li
- College of Resources and Environment, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Fangdong Zhan
- College of Resources and Environment, Yunnan Agricultural University, Kunming, 650201, Yunnan, China.
| |
Collapse
|
23
|
Sharma S, Chandra D, Sharma AK. Rhizosphere Plant–Microbe Interactions Under Abiotic Stress. RHIZOSPHERE BIOLOGY: INTERACTIONS BETWEEN MICROBES AND PLANTS 2021. [DOI: 10.1007/978-981-15-6125-2_10] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
24
|
Diagne N, Ndour M, Djighaly PI, Ngom D, Ngom MCN, Ndong G, Svistoonoff S, Cherif-Silini H. Effect of Plant Growth Promoting Rhizobacteria (PGPR) and Arbuscular Mycorrhizal Fungi (AMF) on Salt Stress Tolerance of Casuarina obesa (Miq.). FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2020. [DOI: 10.3389/fsufs.2020.601004] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Salinity is one of the main abiotic stresses limiting plant growth and development. However, the use of salt-tolerant plants combined with beneficial soil microorganisms could improve the effectiveness of biological methods for saline soil recovery. The aim of this study is to identify the Casuarina obesa/ Arbuscular Mycorrhizal fungi (AMF)/Plant Growth Promoting Rhizobacteria (PGPR) association that could be used in salt-land rehabilitation programs. Thus, the plants were grown under greenhouse on sandy soil, inoculated either with PGPR (Pantoea agglomerans and Bacillus sp.), or with AMF (Rhizophagus fasciculatus and Rhizophagus aggregatum) or co inoculated with PGPR and AMF and watered with a saline solution (0, 150, and 300 mM). After 4 months of cultivation, the plants were harvested and the results obtained showed that inoculation improves the survival rate, height and biomass of the plants compared to the control plants. The results also showed that inoculation increases the total amount of chlorophyll and the accumulation of plant proline at all levels of salt concentration. However, P. agglomerans and Bacillus sp. strains alone or in combination with R. fasciculatus increased plant growth. This study showed that these strains of PGPR, whether or not associated with AMF, could be biological tools to improve C. obesa performance under saline stress conditions.
Collapse
|
25
|
|
26
|
Luziatelli F, Gatti L, Ficca AG, Medori G, Silvestri C, Melini F, Muleo R, Ruzzi M. Metabolites Secreted by a Plant-Growth-Promoting Pantoea agglomerans Strain Improved Rooting of Pyrus communis L. cv Dar Gazi Cuttings. Front Microbiol 2020; 11:539359. [PMID: 33162945 PMCID: PMC7591501 DOI: 10.3389/fmicb.2020.539359] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 09/09/2020] [Indexed: 11/13/2022] Open
Abstract
Strains belonging to Pantoea agglomerans species are known for their ability to produce metabolites that can act in synergy with auxins to induce the adventitious root (AR) formation. The latter is critically important in the agamic propagation of several woody species, including pear (Pyrus communis L.), playing a considerable role in the commercial nursery farms including those using micropropagation techniques. When grown on a medium amended with tryptophan, the plant-growth-promoting (PGP) strain P. agglomerans C1 produces a cocktail of auxin and auxin-like molecules that can be utilized as biostimulants to improve the rooting of vegetable (Solanum lycopersicum L.) and woody crop species (Prunus rootstock GF/677 and hazelnut). In this study, we evaluated the morphological and molecular responses induced by strain C1 exometabolites in microcuttings of P. communis L. cv Dar Gazi and the potential benefits arising from their application. Results showed that exometabolites by P. agglomerans C1 induced a direct and earlier emergence of roots from stem tissues and determined modifications of root morphological parameters and root architecture compared to plants treated with the synthetic hormone indole-3-butyric acid (IBA). Transcription analysis revealed differences in the temporal expression pattern of ARF17 gene when IBA and C1 exometabolites were used alone, while together they also determined changes in the expression pattern of other key auxin-regulated plant genes. These results suggest that the phenotypic and molecular changes triggered by P. agglomerans C1 are dependent on different stimulatory and inhibitory effects that auxin-like molecules and other metabolites secreted by this strain have on the gene regulatory network of the plant. This evidence supports the hypothesis that the strategies used to harness the metabolic potential of PGP bacteria are key factors in obtaining novel biostimulants for sustainable agriculture. Our results demonstrate that metabolites secreted by strain C1 can be successfully used to increase the efficiency of micropropagation of pear through tissue culture techniques.
Collapse
Affiliation(s)
- Francesca Luziatelli
- Department for Innovation in Biological, Agrofood and Forest Systems (DIBAF), University of Tuscia, Viterbo, Italy
| | - Lorenzo Gatti
- Department of Agricultural and Forest Sciences (DAFNE), University of Tuscia, Viterbo, Italy
| | - Anna Grazia Ficca
- Department for Innovation in Biological, Agrofood and Forest Systems (DIBAF), University of Tuscia, Viterbo, Italy
| | - Gabriele Medori
- Department of Agricultural and Forest Sciences (DAFNE), University of Tuscia, Viterbo, Italy
| | - Cristian Silvestri
- Department of Agricultural and Forest Sciences (DAFNE), University of Tuscia, Viterbo, Italy
| | - Francesca Melini
- Department for Innovation in Biological, Agrofood and Forest Systems (DIBAF), University of Tuscia, Viterbo, Italy
- CREA Research Centre for Food and Nutrition, Rome, Italy
| | - Rosario Muleo
- Department of Agricultural and Forest Sciences (DAFNE), University of Tuscia, Viterbo, Italy
| | - Maurizio Ruzzi
- Department for Innovation in Biological, Agrofood and Forest Systems (DIBAF), University of Tuscia, Viterbo, Italy
| |
Collapse
|
27
|
Luziatelli F, Ficca AG, Bonini P, Muleo R, Gatti L, Meneghini M, Tronati M, Melini F, Ruzzi M. A Genetic and Metabolomic Perspective on the Production of Indole-3-Acetic Acid by Pantoea agglomerans and Use of Their Metabolites as Biostimulants in Plant Nurseries. Front Microbiol 2020; 11:1475. [PMID: 32765438 PMCID: PMC7381177 DOI: 10.3389/fmicb.2020.01475] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/05/2020] [Indexed: 12/11/2022] Open
Abstract
The species Pantoea agglomerans includes strains that are agronomically relevant for their growth-promoting or biocontrol traits. Molecular analysis demonstrated that the IPDC pathway involved in the conversion of tryptophan (Trp) to indole-3-acetic acid (IAA) is highly conserved among P. agglomerans strains at both gene and protein levels. Results also indicated that the promoter region controlling the inducible expression of ipdC gene differs from the model system Enterobacter cloacae, which is in accordance with the observation that P. agglomerans accumulates higher levels of IAA when cells are collected in the exponential phase of growth. To assess the potential applications of these microorganisms for IAA production, P. agglomerans C1, an efficient auxin-producer strain, was cultivated in 5 L fermenter so as to evaluate the effect of the medium formulation, the physiological state of the cells, and the induction timing on the volumetric productivity. Results demonstrated that higher IAA levels were obtained by using a saline medium amended with yeast extract and saccharose and by providing Trp, which acts both as a precursor and an inducer, to a culture in the exponential phase of growth. Untargeted metabolomic analysis revealed a significant effect of the carbon source on the exometabolome profile relative to IAA-related compounds and other plant bioactive signaling molecules. The IAA-enriched metabolites secreted in the culture medium by P. agglomerans C1 were used as plant biostimulants to run a series of trials at a large-scale nursery farm. Tests were carried out with in vitro and ex vitro systems following the regular protocols used for large-scale plant tree agamic propagation. Results obtained with 4,540 microcuttings of Prunus rootstock GF/677 and 1,080 plantlets of Corylus avellana L. showed that metabolites from strain C1 improved percentage of rooted-explant, number of adventitious root formation, plant survival, and quality of plant as vigor, with an increase in the leaf area between 17.5 and 42.7% compared to IBA-K (indole-3-butyric acid potassium salt)-treated plants.
Collapse
Affiliation(s)
- Francesca Luziatelli
- Department for Innovation in Biological, Agro-food and Forest systems (DIBAF), University of Tuscia, Viterbo, Italy
| | - Anna Grazia Ficca
- Department for Innovation in Biological, Agro-food and Forest systems (DIBAF), University of Tuscia, Viterbo, Italy
| | - Paolo Bonini
- Next-Generation Agronomics (NGA) Laboratory, Tarragona, Spain
| | - Rosario Muleo
- Department of Agricultural and Forestry Sciences (DAFNE), University of Tuscia, Viterbo, Italy
| | - Lorenzo Gatti
- Department of Agricultural and Forestry Sciences (DAFNE), University of Tuscia, Viterbo, Italy
| | | | - Michele Tronati
- Department for Innovation in Biological, Agro-food and Forest systems (DIBAF), University of Tuscia, Viterbo, Italy
| | - Francesca Melini
- Department for Innovation in Biological, Agro-food and Forest systems (DIBAF), University of Tuscia, Viterbo, Italy
- Council for Agricultural Research and Economics (CREA), Research Centre for Food and Nutrition, Rome, Italy
| | - Maurizio Ruzzi
- Department for Innovation in Biological, Agro-food and Forest systems (DIBAF), University of Tuscia, Viterbo, Italy
| |
Collapse
|
28
|
Rouphael Y, Lucini L, Miras-Moreno B, Colla G, Bonini P, Cardarelli M. Metabolomic Responses of Maize Shoots and Roots Elicited by Combinatorial Seed Treatments With Microbial and Non-microbial Biostimulants. Front Microbiol 2020; 11:664. [PMID: 32435233 PMCID: PMC7218175 DOI: 10.3389/fmicb.2020.00664] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 03/23/2020] [Indexed: 01/30/2023] Open
Abstract
Microbial and non-microbial plant biostimulants have been successfully used to improve agriculture productivity in a more sustainable manner. Since the mode of action of biostimulants is still largely unknown, the present work aimed at elucidating the morpho-physiological and metabolomic changes occurring in maize (Zea mays L.) leaves and roots following seed treatment with (i) a consortium of two beneficial fungi [arbuscular mycorrhizal fungi (AMF) and Trichoderma koningii TK7] and rhizobacteria, (ii) a protein hydrolyzate-based biostimulant (PH) alone, or (iii) in combination with a consortium of T. koningii TK7 and rhizobacteria. The application of PH alone or in combination with Trichoderma elicited significant increases (+16.6%) in the shoot biomass compared to untreated maize plants, whereas inoculation with AMF + Trichoderma elicited significant increases in root dry biomass (+48.0%) compared to untreated plants. Distinctive metabolomic signatures were achieved from the different treatments, hence suggesting that different molecular processes were involved in the plants response to the biostimulants. The metabolic reprogramming triggered by the treatments including the protein hydrolyzate was hierarchically more pronounced than the application of microorganisms alone. Most of the differential metabolites could be ascribed to the secondary metabolism, with phenylpropanoids and terpenes being the most represented compounds. The application of PH triggered an accumulation of secondary metabolites, whereas the opposite trend of accumulation was seen in the case of microorganisms alone. The increase in biomass could be related to two processes, namely the modulation of the multilayer phytohormone interaction network and a possible increase in nitrogen use efficiency via the GS-GOGAT system.
Collapse
Affiliation(s)
- Youssef Rouphael
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Luigi Lucini
- Department for Sustainable Food Process, Research Centre for Nutrigenomics and Proteomics, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Begoña Miras-Moreno
- Council for Agricultural Research and Economics-Research Centre for Genomics and Bioinformatics, Fiorenzuola d'Arda, Italy
| | - Giuseppe Colla
- Department of Agriculture and Forest Sciences, University of Tuscia, Viterbo, Italy
| | | | - Mariateresa Cardarelli
- Consiglio per la Ricerca in Agricoltura el' Analisi dell'Economia Agraria, Centro di Ricerca Orticoltura e Florovivaismo, Pontecagnano Faiano, Italy
| |
Collapse
|
29
|
Admixing Chaff with Straw Increased the Residues Collected without Compromising Machinery Efficiencies. ENERGIES 2020. [DOI: 10.3390/en13071766] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The collection of residues from staple crop may contribute to meet EU regulations in renewable energy production without harming soil quality. At a global scale, chaff may have great potential to be used as a bioenergy source. However, chaff is not usually collected, and its loss can consist of up to one-fifth of the residual biomass harvestable. In the present work, a spreader able to manage the chaff (either spreading [SPR] on the soil aside to the straw swath or admixed [ADM] with the straw) at varying threshing conditions (with either 1 or 2 threshing rotors [1R and 2R, respectively] in the combine, which affects the mean length of the straw pieces). The fractions of the biomass available in field (grain, chaff, straw, and stubble) were measured, along with the performances of both grain harvesting and baling operations. Admixing chaff allowed for a slightly higher amount of straw fresh weight baled compared to SPR (+336 kg straw ha−1), but such result was not evident on a dry weight basis. At the one time, admixing chaff reduced the material capacity of the combine by 12.9%. Using 2R compared to 1R strongly reduced the length of the straw pieces, and increased the bale unit weight; however, it reduced the field efficiency of the grain harvesting operations by 11.9%. On average, the straw loss did not vary by the treatments applied and was 44% of the total residues available (computed excluding the stubble). In conclusion, admixing of chaff with straw is an option to increase the residues collected without compromising grain harvesting and straw baling efficiencies; in addition, it can reduce the energy needs for the bale logistics. According to the present data, improving the chaff collection can allow halving the loss of residues. However, further studies are needed to optimise both the chaff and the straw recoveries.
Collapse
|
30
|
Bonini P, Rouphael Y, Miras-Moreno B, Lee B, Cardarelli M, Erice G, Cirino V, Lucini L, Colla G. A Microbial-Based Biostimulant Enhances Sweet Pepper Performance by Metabolic Reprogramming of Phytohormone Profile and Secondary Metabolism. FRONTIERS IN PLANT SCIENCE 2020; 11:567388. [PMID: 33224160 PMCID: PMC7674627 DOI: 10.3389/fpls.2020.567388] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 10/15/2020] [Indexed: 05/05/2023]
Abstract
Microbial-based biostimulants can improve crop productivity by modulating cell metabolic pathways including hormonal balance. However, little is known about the microbial-mediated molecular changes causing yield increase. The present study elucidates the metabolomic modulation occurring in pepper (Capsicum annuum L.) leaves at the vegetative and reproductive phenological stages, in response to microbial-based biostimulants. The arbuscular mycorrhizal fungi Rhizoglomus irregularis and Funneliformis mosseae, as well as Trichoderma koningii, were used in this work. The application of endophytic fungi significantly increased total fruit yield by 23.7% compared to that of untreated plants. Multivariate statistics indicated that the biostimulant treatment substantially altered the shape of the metabolic profile of pepper. Compared to the untreated control, the plants treated with microbial biostimulants presented with modified gibberellin, auxin, and cytokinin patterns. The biostimulant treatment also induced secondary metabolism and caused carotenoids, saponins, and phenolic compounds to accumulate in the plants. Differential metabolomic signatures indicated diverse and concerted biochemical responses in the plants following the colonization of their roots by beneficial microorganisms. The above findings demonstrated a clear link between microbial-mediated yield increase and a strong up-regulation of hormonal and secondary metabolic pathways associated with growth stimulation and crop defense to environmental stresses.
Collapse
Affiliation(s)
- Paolo Bonini
- Next Generation Agronomics Laboratory (NGAlab), La Riera de Gaia, Tarragona, Spain
- *Correspondence: Paolo Bonini,
| | - Youssef Rouphael
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Begoña Miras-Moreno
- Department for Sustainable Food Process, Research Centre for Nutrigenomics and Proteomics, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Byungha Lee
- Next Generation Agronomics Laboratory (NGAlab), La Riera de Gaia, Tarragona, Spain
| | - Mariateresa Cardarelli
- Consiglio per la ricerca in agricoltura e l’analisi dell’economia agraria, Centro di ricerca Orticoltura e Florovivaismo, Pontecagnano Faiano, Italy
| | | | | | - Luigi Lucini
- Department for Sustainable Food Process, Research Centre for Nutrigenomics and Proteomics, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Giuseppe Colla
- Department of Agriculture and Forest Sciences, Università degli Studi della Tuscia, Viterbo, Italy
| |
Collapse
|