1
|
Nørholm A, Kjær IG, Søndergaard E, Nellemann B, Nielsen S, Lebeck J. Glycerol Handling in Paired Visceral and Subcutaneous Adipose Tissues in Women with Normal Weight and Upper-Body Obesity. Int J Mol Sci 2024; 25:9008. [PMID: 39201693 PMCID: PMC11354935 DOI: 10.3390/ijms25169008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 09/03/2024] Open
Abstract
In adipose tissue, reduced expression of the glycerol channel aquaporin 7 (AQP7) has been associated with increased accumulation of triglyceride. The present study determines the relative protein abundances of lipolytic enzymes, AQP7, and cytosolic phosphoenolpyruvate carboxykinase (PEPCK-C) in paired mesenteric and omental visceral adipose tissue (VAT) and abdominal and femoral subcutaneous adipose tissue (SAT) in women with either normal weight or upper-body obesity. No differences in the expression of hormone-sensitive lipase (HSL) or AQP7 were found between the two groups in the four depots. The expression of adipocyte triglyceride lipase (ATGL) and HSL were higher in omental VAT and femoral SAT than in mesenteric VAT in both groups of women. Similarly, AQP7 expression was higher in omental VAT than in mesenteric VAT. The expression of PEPCK-C was lower in omental VAT than in femoral SAT. No correlation between the expression of AQP7 and the mean adipocyte size was observed; however, the expression of PEPCK-C positively correlated with the mean adipocyte size. In conclusion, a depot-specific protein expression pattern was found for ATGL, HSL, AQP7, and PEPCK-C. The expression pattern supports that the regulation of AQP7 protein expression is at least in part linked to the lipolytic rate. Furthermore, the results support that the synthesis of glycerol-3-phosphate via glyceroneogenesis contributes to regulating triglyceride accumulation in white adipose tissue in women.
Collapse
Affiliation(s)
- Anne Nørholm
- Department of Biomedicine, Aarhus University, 8200 Aarhus, Denmark; (A.N.)
| | | | - Esben Søndergaard
- Steno Diabetes Center Aarhus, Aarhus University Hospital, 8200 Aarhus, Denmark; (E.S.); (S.N.)
| | - Birgitte Nellemann
- Center for Treatment of Rheumatic and Musculoskeletal Diseases (REMEDY), Diakonhjemmet Hospital, 0370 Oslo, Norway
| | - Søren Nielsen
- Steno Diabetes Center Aarhus, Aarhus University Hospital, 8200 Aarhus, Denmark; (E.S.); (S.N.)
- Department of Clinical Medicine, Aarhus University, 8000 Aarhus, Denmark
| | - Janne Lebeck
- Department of Biomedicine, Aarhus University, 8200 Aarhus, Denmark; (A.N.)
| |
Collapse
|
2
|
Noh KW, Seo EK, Park S. Effects of Exercise Type on Muscle Strength and Body Composition in Men and Women: A Systematic Review and Meta-Analysis. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1186. [PMID: 39064615 PMCID: PMC11278773 DOI: 10.3390/medicina60071186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024]
Abstract
Background and Objectives: There are typical differences in body composition and distribution of muscle fiber types between women and men. However, research investigating the effects of exercise based on sex differences is limited, and studies examining sex differences in physiological adaptations according to exercise type are scarce. We aimed to compare the effects of exercise types on muscle strength and body composition in men and women through a meta-analysis. Materials and Methods: A systematic literature search was conducted using the PubMed/Medline, Web of Science, CINAHL, and EBSCO databases. Keywords included "endurance training", "resistance training", "concurrent training", "muscle strength", "body composition", "sex characteristics", and "men and women". The standardized mean difference (SMD) was presented separately for men and women based on the pre- and post-intervention values for each exercise type. Results: Concurrent training showed the greatest effect on the increase in leg press muscle strength in men, and resistance training showed the greatest effect in women. Concurrent training showed the greatest effect size in both men and women in increasing bench press muscle strength. Resistance training and concurrent training showed a small effect size on lean mass reduction in both men and women. Endurance training and concurrent training significantly reduced fat mass in men. However, no significant changes in fat mass were observed in any exercise type among women. Conclusions: Concurrent training is the most efficient type of exercise for men, as it is effective in increasing upper- and lower-body muscle strength, increasing lean mass, and reducing fat mass. Resistance training is most effective in increasing muscle strength in females, whereas endurance training is most effective in reducing fat mass. However, it is difficult to corroborate these results because of the lack of study samples included in the analysis and the differences in exercise methods, participant age, and exercise duration.
Collapse
Affiliation(s)
- Ki-Woong Noh
- Institute of Sports Medicine & Science, Kwangwoon University, Seoul 01897, Republic of Korea;
| | - Eui-Kyoung Seo
- Division of Law, Kwangwoon University, Seoul 01897, Republic of Korea;
| | - Sok Park
- Institute of Sports Medicine & Science, Kwangwoon University, Seoul 01897, Republic of Korea;
| |
Collapse
|
3
|
Sanchis P, Ezequiel-Rodriguez A, Sánchez-Oliver AJ, Suarez-Carmona W, Lopez-Martín S, García-Muriana FJ, González-Jurado JA. Changes in the Expression of Inflammatory Genes Induced by Chronic Exercise in the Adipose Tissue: Differences by Sex. Sports (Basel) 2024; 12:184. [PMID: 39058075 PMCID: PMC11281071 DOI: 10.3390/sports12070184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/26/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024] Open
Abstract
The impact of obesity on adipose tissue function is well acknowledged, but the role of physical exercise in regulating inflammatory markers and gene expression in obese individuals remains uncertain. This study aims to investigate the effects of chronic exercise on inflammatory gene expression in adipose tissue and to explore sex differences in response to exercise. The study involved 29 obese participants (13 men, 16 women) aged 38 to 54 years with a mean BMI of 36.05 ± 4.99 kg/m2. Participants underwent an 8-week concurrent training program comprising three weekly sessions of ~60 min each. The sessions included joint mobility exercises, cardiovascular activation, and cardiorespiratory resistance exercises at medium to low intensity. A fine-needle aspiration biopsy of abdominal subcutaneous adipose tissue was performed for gene expression analysis using quantitative polymerase chain reaction (qPCR). The study demonstrated that chronic exercise modulates the expression of pro-inflammatory genes in subcutaneous adipose tissue, particularly ADIPOR2 (p = 0.028), leptin (p = 0.041), and IFNg (p = 0.040) (downregulated). Interestingly, regardless of sex, the exercise programs had an independent effect on pro-inflammatory genes. Overall, this study provides insight into the role of chronic exercise in modulating adipose tissue gene expression in obese individuals. Further research involving both sexes is recommended to tailor exercise interventions for better outcomes.
Collapse
Affiliation(s)
- Paula Sanchis
- Centre for Physical Activity Research, 2100 Copenhagen, Denmark
| | | | | | | | - Sergio Lopez-Martín
- Department of Cell Biology, Faculty of Biology, University of Seville, 41012 Seville, Spain
| | | | - José Antonio González-Jurado
- Faculty of Sport Science, Universidad Pablo de Olavide, 41013 Seville, Spain
- Research Center on Physical and Sports Performance, Universidad Pablo de Olavide, 41013 Seville, Spain
| |
Collapse
|
4
|
Kirkegaard T, Riishede A, Tramm T, Nejsum LN. Aquaglyceroporins in Human Breast Cancer. Cells 2023; 12:2185. [PMID: 37681917 PMCID: PMC10486483 DOI: 10.3390/cells12172185] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/24/2023] [Accepted: 08/28/2023] [Indexed: 09/09/2023] Open
Abstract
Aquaporins are water channels that facilitate passive water transport across cellular membranes following an osmotic gradient and are essential in the regulation of body water homeostasis. Several aquaporins are overexpressed in breast cancer, and AQP1, AQP3 and AQP5 have been linked to spread to lymph nodes and poor prognosis. The subgroup aquaglyceroporins also facilitate the transport of glycerol and are thus involved in cellular metabolism. Transcriptomic analysis revealed that the three aquaglyceroporins, AQP3, AQP7 and AQP9, but not AQP10, are overexpressed in human breast cancer. It is, however, unknown if they are all expressed in the same cells or have a heterogeneous expression pattern. To investigate this, we employed immunohistochemical analysis of serial sections from human invasive ductal and lobular breast cancers. We found that AQP3, AQP7 and AQP9 are homogeneously expressed in almost all cells in both premalignant in situ lesions and invasive lesions. Thus, potential intervention strategies targeting cellular metabolism via the aquaglyceroporins should consider all three expressed aquaglyceroporins, namely AQP3, AQP7 and AQP9.
Collapse
Affiliation(s)
- Teresa Kirkegaard
- Department of Clinical Medicine, Aarhus University, 8200 Aarhus N, Denmark; (T.K.); (A.R.); (T.T.)
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| | - Andreas Riishede
- Department of Clinical Medicine, Aarhus University, 8200 Aarhus N, Denmark; (T.K.); (A.R.); (T.T.)
| | - Trine Tramm
- Department of Clinical Medicine, Aarhus University, 8200 Aarhus N, Denmark; (T.K.); (A.R.); (T.T.)
- Department of Pathology, Aarhus University Hospital, 8200 Aarhus N, Denmark
| | - Lene N. Nejsum
- Department of Clinical Medicine, Aarhus University, 8200 Aarhus N, Denmark; (T.K.); (A.R.); (T.T.)
| |
Collapse
|
5
|
Increased Aquaporin-7 Expression Is Associated with Changes in Rat Brown Adipose Tissue Whitening in Obesity: Impact of Cold Exposure and Bariatric Surgery. Int J Mol Sci 2023; 24:ijms24043412. [PMID: 36834823 PMCID: PMC9963055 DOI: 10.3390/ijms24043412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/24/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Glycerol is a key metabolite for lipid accumulation in insulin-sensitive tissues. We examined the role of aquaporin-7 (AQP7), the main glycerol channel in adipocytes, in the improvement of brown adipose tissue (BAT) whitening, a process whereby brown adipocytes differentiate into white-like unilocular cells, after cold exposure or bariatric surgery in male Wistar rats with diet-induced obesity (DIO) (n = 229). DIO promoted BAT whitening, evidenced by increased BAT hypertrophy, steatosis and upregulation of the lipogenic factors Pparg2, Mogat2 and Dgat1. AQP7 was detected in BAT capillary endothelial cells and brown adipocytes, and its expression was upregulated by DIO. Interestingly, AQP7 gene and protein expressions were downregulated after cold exposure (4 °C) for 1 week or one month after sleeve gastrectomy in parallel to the improvement of BAT whitening. Moreover, Aqp7 mRNA expression was positively associated with transcripts of the lipogenic factors Pparg2, Mogat2 and Dgat1 and regulated by lipogenic (ghrelin) and lipolytic (isoproterenol and leptin) signals. Together, the upregulation of AQP7 in DIO might contribute to glycerol influx used for triacylglycerol synthesis in brown adipocytes, and hence, BAT whitening. This process is reversible by cold exposure and bariatric surgery, thereby suggesting the potential of targeting BAT AQP7 as an anti-obesity therapy.
Collapse
|
6
|
Male Sex Hormones, Metabolic Syndrome, and Aquaporins: A Triad of Players in Male (in)Fertility. Int J Mol Sci 2023; 24:ijms24031960. [PMID: 36768282 PMCID: PMC9915845 DOI: 10.3390/ijms24031960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/12/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023] Open
Abstract
Infertility is becoming a chronic and emerging problem in the world. There is a resistant stigma that this health condition is mostly due to the female, although the literature supports that the responsibility for the onset of infertility is equally shared between both sexes in more or less equal proportions. Nevertheless, male sex hormones, particularly testosterone (T), are key players in male-related infertility. Indeed, hypogonadism, which is also characterized by changes in T levels, is one of the most common causes of male infertility and its incidence has been interconnected to the increased prevalence of metabolic diseases. Recent data also highlight the role of aquaporin (AQP)-mediated water and solute diffusion and the metabolic homeostasis in testicular cells suggesting a strong correlation between AQPs function, metabolism of testicular cells, and infertility. Indeed, recent studies showed that both metabolic and sexual hormone concentrations can change the expression pattern and function of AQPs. Herein, we review up-to-date information on the involvement of AQP-mediated function and permeability in men with metabolic syndrome and testosterone deficit, highlighting the putative mechanisms that show an interaction between sex hormones, AQPs, and metabolic syndrome that may contribute to male infertility.
Collapse
|
7
|
da Silva IV, Soveral G. Aquaporins in Obesity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1398:289-302. [PMID: 36717502 DOI: 10.1007/978-981-19-7415-1_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Obesity is one of the most important metabolic disorders of this century and is associated with a cluster of the most dangerous cardiovascular disease risk factors, such as insulin resistance and diabetes, dyslipidemia, and hypertension, collectively named Metabolic Syndrome. The role of aquaporins (AQP) in glycerol metabolism facilitating glycerol release from the adipose tissue and distribution to various tissues and organs unveils these membrane channels as important players in lipid balance and energy homeostasis and points to their involvement in a variety of pathophysiological mechanisms including insulin resistance, obesity, and diabetes. This review summarizes the physiologic role of aquaglyceroporins in glycerol metabolism and lipid homeostasis, describing their specific tissue distribution, involvement in glycerol balance, and implication in obesity and fat-related metabolic complications. The development of specify pharmacologic modulators able to regulate aquaglyceroporins expression and function, in particular AQP7 in adipose tissue, might constitute a novel approach for controlling obesity and other metabolic disorders.
Collapse
Affiliation(s)
- Inês V da Silva
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
- Department Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Graça Soveral
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal.
- Department Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal.
| |
Collapse
|
8
|
Li Q, Spalding KL. The regulation of adipocyte growth in white adipose tissue. Front Cell Dev Biol 2022; 10:1003219. [PMID: 36483678 PMCID: PMC9723158 DOI: 10.3389/fcell.2022.1003219] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 11/03/2022] [Indexed: 10/25/2023] Open
Abstract
Adipocytes can increase in volume up to a thousand-fold, storing excess calories as triacylglycerol in large lipid droplets. The dramatic morphological changes required of adipocytes demands extensive cytoskeletal remodeling, including lipid droplet and plasma membrane expansion. Cell growth-related signalling pathways are activated, stimulating the production of sufficient amino acids, functional lipids and nucleotides to meet the increasing cellular needs of lipid storage, metabolic activity and adipokine secretion. Continued expansion gives rise to enlarged (hypertrophic) adipocytes. This can result in a failure to maintain growth-related homeostasis and an inability to cope with excess nutrition or respond to stimuli efficiently, ultimately leading to metabolic dysfunction. We summarize recent studies which investigate the functional and cellular structure remodeling of hypertrophic adipocytes. How adipocytes adapt to an enlarged cell size and how this relates to cellular dysfunction are discussed. Understanding the healthy and pathological processes involved in adipocyte hypertrophy may shed light on new strategies for promoting healthy adipose tissue expansion.
Collapse
Affiliation(s)
- Qian Li
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Kirsty L. Spalding
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
9
|
Affiliation(s)
- Douglas J Taatjes
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, VT, 05405, USA.
| | - Jürgen Roth
- University of Zurich, 8091, Zurich, Switzerland
| |
Collapse
|
10
|
Localization of aquaglyceroporins in human and murine white adipose tissue. Histochem Cell Biol 2022; 157:623-639. [PMID: 35235046 DOI: 10.1007/s00418-022-02090-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2022] [Indexed: 11/04/2022]
Abstract
The glycerol channel AQP7 facilitates glycerol efflux from adipose tissue (AT), and AQP7 deficiency has been suggested to promote obesity. However, the release of glycerol from AT is not fully blocked in AQP7-deficient mice, which suggests that either alternative glycerol channels are present in AT or significant simple diffusion of glycerol occurs. Previous investigations of the expression of other aquaglyceroporins (AQP3, AQP9, AQP10) than AQP7 in AT are contradictory. Therefore, we here aim at determining the cellular localization of AQP3 and AQP9 in addition to AQP7 in human and mouse AT using well-characterized antibodies for immunohistochemistry (IHC) and immunoblotting as well as available single-cell transcriptomic data from human and mouse AT. We confirm that AQP7 is expressed in endothelial cells and adipocytes in human AT and find ex vivo evidence for interaction between AQP7 and perilipin-1 in adipocytes. In addition, labeling for AQP7 in human AT also includes CD68-positive cells. No labeling for AQP3 or AQP9 was identified in endothelial cells or adipocytes in human or mouse AT using IHC. Instead, in human AT, AQP3 was predominantly found in erythrocytes, whereas AQP9 expression was observed in a small number of CD15-positive cells. The transcriptomic data revealed that AQP3 mRNA was found in a low number of cells in most of the identified cell clusters, whereas AQP9 mRNA was found in myeloid cell clusters as well as in clusters likely representing mesothelial progenitor cells. No AQP10 mRNA was identified in human AT. In conclusion, the presented results do not suggest a functional overlap between AQP3/AQP9/AQP10 and AQP7 in human or mouse white AT.
Collapse
|
11
|
Pimpão C, Wragg D, da Silva IV, Casini A, Soveral G. Aquaglyceroporin Modulators as Emergent Pharmacological Molecules for Human Diseases. Front Mol Biosci 2022; 9:845237. [PMID: 35187089 PMCID: PMC8850838 DOI: 10.3389/fmolb.2022.845237] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 01/13/2022] [Indexed: 12/26/2022] Open
Abstract
Aquaglyceroporins, a sub-class of aquaporins that facilitate the diffusion of water, glycerol and other small uncharged solutes across cell membranes, have been recognized for their important role in human physiology and their involvement in multiple disorders, mostly related to disturbed energy homeostasis. Aquaglyceroporins dysfunction in a variety of pathological conditions highlighted their targeting as novel therapeutic strategies, boosting the search for potent and selective modulators with pharmacological properties. The identification of selective inhibitors with potential clinical applications has been challenging, relying on accurate assays to measure membrane glycerol permeability and validate effective functional blockers. Additionally, biologicals such as hormones and natural compounds have been revealed as alternative strategies to modulate aquaglyceroporins via their gene and protein expression. This review summarizes the current knowledge of aquaglyceroporins’ involvement in several pathologies and the experimental approaches used to evaluate glycerol permeability and aquaglyceroporin modulation. In addition, we provide an update on aquaglyceroporins modulators reported to impact disease, unveiling aquaglyceroporin pharmacological targeting as a promising approach for innovative therapeutics.
Collapse
Affiliation(s)
- Catarina Pimpão
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - Darren Wragg
- Department of Chemistry, Technical University of Munich, Munich, Germany
| | - Inês V. da Silva
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - Angela Casini
- Department of Chemistry, Technical University of Munich, Munich, Germany
- *Correspondence: Angela Casini, ; Graça Soveral,
| | - Graça Soveral
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
- *Correspondence: Angela Casini, ; Graça Soveral,
| |
Collapse
|
12
|
Dutta A, Das M. Deciphering the Role of Aquaporins in Metabolic Diseases: A Mini Review. Am J Med Sci 2022; 364:148-162. [DOI: 10.1016/j.amjms.2021.10.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 06/16/2021] [Accepted: 10/21/2021] [Indexed: 12/23/2022]
|
13
|
Wawrzkiewicz-Jałowiecka A, Lalik A, Soveral G. Recent Update on the Molecular Mechanisms of Gonadal Steroids Action in Adipose Tissue. Int J Mol Sci 2021; 22:5226. [PMID: 34069293 PMCID: PMC8157194 DOI: 10.3390/ijms22105226] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/04/2021] [Accepted: 05/11/2021] [Indexed: 02/07/2023] Open
Abstract
The gonadal steroids, including androgens, estrogens and progestogens, are involved in the control of body fat distribution in humans. Nevertheless, not only the size and localization of the fat depots depend on the sex steroids levels, but they can also highly affect the functioning of adipose tissue. Namely, the gonadocorticoids can directly influence insulin signaling, lipid metabolism, fatty acid uptake and adipokine production. They may also alter energy balance and glucose homeostasis in adipocytes in an indirect way, e.g., by changing the expression level of aquaglyceroporins. This work presents the recent advances in understanding the molecular mechanism of how the gonadal steroids influence the functioning of adipose tissue leading to a set of detrimental metabolic consequences. Special attention is given here to highlighting the sexual dimorphism of adipocyte functioning in terms of health and disease. Particularly, we discuss the molecular background of metabolic disturbances occurring in consequence of hormonal imbalance which is characteristic of some common endocrinopathies such as the polycystic ovary syndrome. From this perspective, we highlight the potential drug targets and the active substances which can be used in personalized sex-specific management of metabolic diseases, in accord with the patient's hormonal status.
Collapse
Affiliation(s)
- Agata Wawrzkiewicz-Jałowiecka
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, 44-100 Gliwice, Poland
| | - Anna Lalik
- Department of Systems Biology and Engineering, Silesian University of Technology, Akademicka 16, 44-100 Gliwice, Poland;
- Biotechnology Center, Silesian University of Technology, B. Krzywoustego 8, 44-100 Gliwice, Poland
| | - Graça Soveral
- Faculty of Pharmacy, Research Institute for Medicines (iMed.ULisboa), Universidade de Lisboa, 1649-003 Lisboa, Portugal;
| |
Collapse
|
14
|
Calamita G, Delporte C. Involvement of aquaglyceroporins in energy metabolism in health and disease. Biochimie 2021; 188:20-34. [PMID: 33689852 DOI: 10.1016/j.biochi.2021.03.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/23/2021] [Accepted: 03/01/2021] [Indexed: 11/27/2022]
Abstract
Aquaglyceroporins are a group of the aquaporin (AQP) family of transmembrane water channels. While AQPs facilitate the passage of water, small solutes, and gases across biological membranes, aquaglyceroporins allow passage of water, glycerol, urea and some other solutes. Thanks to their glycerol permeability, aquaglyceroporins are involved in energy homeostasis. This review provides an overview of what is currently known concerning the functional implication and control of aquaglyceroporins in tissues involved in energy metabolism, i.e. liver, adipose tissue and endocrine pancreas. The expression, role and (dys)regulation of aquaglyceroporins in disorders affecting energy metabolism, and the potential relevance of aquaglyceroporins as drug targets to treat the alterations of the energy balance is also addressed.
Collapse
Affiliation(s)
- Giuseppe Calamita
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari "Aldo Moro", Bari, Italy
| | - Christine Delporte
- Laboratory of Pathophysiological and Nutritional Biochemistry, Université Libre de Bruxelles, Brussels, Belgium.
| |
Collapse
|
15
|
Iena FM, Jul JB, Vegger JB, Lodberg A, Thomsen JS, Brüel A, Lebeck J. Sex-Specific Effect of High-Fat Diet on Glycerol Metabolism in Murine Adipose Tissue and Liver. Front Endocrinol (Lausanne) 2020; 11:577650. [PMID: 33193093 PMCID: PMC7609944 DOI: 10.3389/fendo.2020.577650] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 09/30/2020] [Indexed: 12/25/2022] Open
Abstract
Obesity is associated with increased plasma glycerol levels. The coordinated regulation of glycerol channels in adipose tissue (AQP7) and the liver (AQP9) has been suggested as an important contributor to the pathophysiology of type-2-diabetes mellitus, as it would provide glycerol for hepatic synthesis of glucose and triglycerides. The regulation of AQP7 and AQP9 is influenced by sex. This study investigates the effect of a high-fat diet (HFD) on glycerol metabolism in mice and the influence of sex and GLP-1-receptor agonist treatment. Female and male C57BL/6JRj mice were fed either a control diet or a HFD for 12 or 24 weeks. Liraglutide was administered (1 mg/kg/day) to a subset of female mice. After 12 weeks of HFD, females had gained less weight than males. In adipose tissue, only females demonstrated an increased abundance of AQP7, whereas only males demonstrated a significant increase in glycerol kinase abundance and adipocyte size. 24 weeks of HFD resulted in a more comparable effect on weight gain and adipose tissue in females and males. HFD resulted in marked hepatic steatosis in males only and had no significant effect on the hepatic abundance of AQP9. Liraglutide treatment generally attenuated the effects of HFD on glycerol metabolism. In conclusion, no coordinated upregulation of glycerol channels in adipose tissue and liver was observed in response to HFD. The effect of HFD on glycerol metabolism is sex-specific in mice, and we propose that the increased AQP7 abundance in female adipose tissue could contribute to their less severe response to HFD.
Collapse
|
16
|
Mourelatou R, Kostopoulou E, Rojas-Gil AP, Kehagias I, Linos D, Kalfarentzos FE, Spiliotis BE. Decreased adipocyte glucose transporter 4 (GLUT4) and aquaglyceroporin-7 (AQP7) in adults with morbid obesity: possible early markers of metabolic dysfunction. Hormones (Athens) 2019; 18:297-306. [PMID: 31588962 DOI: 10.1007/s42000-019-00130-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 08/06/2019] [Indexed: 12/13/2022]
Abstract
PURPOSE Morbid obesity (BMI > 40) is often accompanied by metabolic disorders. In adipose tissue, serine/threonine kinase PKBβ/AktΙΙ plays a role in glucose uptake, mediated by glucose transporter 4 (GLUT4). The insulin pathway also affects aquaglyceroporin-7 (AQP7), which mediates lipolysis-derived glycerol efflux into the bloodstream. The aim of our study was to investigate the molecular mechanisms in adipocytes of adults with morbid obesity that may lead to insulin resistance (IR) and diabetes mellitus type 2 (DM2) in morbid obesity. METHODS Primary in vitro adipocyte cultures were developed from surgical biopsies from visceral (Visc), abdominal (Sub), and gluteal subcutaneous (Glut) fat depots, from 20 lean adults and 36 adults with morbid obesity (OB), divided into two groups: 20 without (MOW) and 16 with DM2 (MODM). mRNA and protein expression (PE) of AktΙΙ, AQP7, and GLUT4 were studied with RT-PCR and Western immunoblotting (WI), respectively. RESULTS The PE of (1) AktII and basal phosphorylated AktII (pAktII) showed no difference within the groups, (2) the 37 kDa and 34 kDa isoforms of AQP7 were decreased in Visc/Sub from OB/MOW/MODM, (3) GLUT4 was decreased in Visc/Sub from OB/MOW/MODM, and (4) the 34 kDa isoform of AQP7 was decreased in Sub of MODM compared with MOW. CONCLUSIONS Decreased 37 kDa (presented in this study as a novel isoform) and 34 kDa isoforms of AQP7 in MOW and MODM may cause reduced lipolysis, enhancement of adipocyte hypertrophy, and impairment of insulin, signaling possibly reflected by low GLUT4 expression. This may potentially cause systemic IR, since decreased adipose GLUT4 expression may affect whole-body insulin sensitivity, increasing the risk for DM2. Furthermore, decreased subcutaneous AQP7 34 kDa could represent an early marker of IR.
Collapse
Affiliation(s)
- Roza Mourelatou
- Department of Pediatrics, Research Laboratory of the Division of Pediatric Endocrinology and Diabetes, University of Patras School of Medicine, Patras, Greece
| | - Eirini Kostopoulou
- Department of Pediatrics, Research Laboratory of the Division of Pediatric Endocrinology and Diabetes, University of Patras School of Medicine, Patras, Greece
| | - Andrea Paola Rojas-Gil
- Department of Nursing, Faculty of Human Movement and Quality of Life Sciences, Laboratory of Biochemistry, University of Peloponnese, Sparta, Lakonias, Greece
| | - Ioannis Kehagias
- Department of Surgery, Morbid Obesity Unit, University Hospital of Patras, University of Patras School of Medicine, Patras, Greece
| | - Dimitris Linos
- Fifth Surgical Clinic, Eugenideio Hospital, University of Athens School of Medicine, Athens, Greece
| | - Fotis E Kalfarentzos
- Department of Surgery, Morbid Obesity Unit, University Hospital of Patras, University of Patras School of Medicine, Patras, Greece
| | - Bessie E Spiliotis
- Department of Pediatrics, Research Laboratory of the Division of Pediatric Endocrinology and Diabetes, University of Patras School of Medicine, Patras, Greece.
| |
Collapse
|
17
|
Associations between Aquaglyceroporin Gene Polymorphisms and Risk of Type 2 Diabetes Mellitus. BIOMED RESEARCH INTERNATIONAL 2018; 2018:8167538. [PMID: 30598999 PMCID: PMC6288565 DOI: 10.1155/2018/8167538] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 09/24/2018] [Indexed: 12/11/2022]
Abstract
Objectives AQP7 and AQP9 represent glycerol channel in adipose tissue and liver and have been associated with metabolic diseases. We aimed to investigate the associations between genetic variants in AQP7 and AQP9 genes and the risk of type 2 diabetes (T2DM) in Chinese population. Methods Blood samples were drawn from 400 T2DM patients and 400 age- and gender-matched controls. Genomic DNA was extracted by proteinase K digestion and phenol–chloroform extraction. Genotyping of 5 single nucleotide polymorphisms (SNPs) in AQP7 (rs2989924, rs3758269, and rs62542743) and AQP9 (rs57139208, rs16939881) was performed by the polymerase chain reaction assay with TaqMan probes. Results The subjects with rs2989924 GA+AA genotypes had 1.47-fold increased risk of T2DM (odds ratio [OR] 1.47, 95% confidence interval [CI] 1.06-2.04), compared to those with GG genotype, and this association remained significant after adjustment for covariates (OR 1.66, 95% CI 1.07-2.57). When compared with rs3758269 CC genotype, the subjects with CT+TT genotypes had 45% decreased T2DM risk after multivariate adjustment (OR 0.55, 95% CI 0.35-0.85). The associations were evident in elder and overweight subjects and those with central obesity. No association was observed between AQP9 SNPs and T2DM risk. Conclusions AQP7 SNP rs2989924 and rs3758269 were associated with T2DM risk in Chinese Han population.
Collapse
|
18
|
Oikonomou E, Kostopoulou E, Rojas-Gil AP, Georgiou G, Spiliotis BE. Adipocyte aquaporin 7 (AQP7) expression in lean children and children with obesity. Possible involvement in molecular mechanisms of childhood obesity. J Pediatr Endocrinol Metab 2018; 31:1081-1089. [PMID: 30226208 DOI: 10.1515/jpem-2018-0281] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 08/13/2018] [Indexed: 12/13/2022]
Abstract
Background Aquaporin 7 (AQP7), a water/glycerol transporting protein, regulates adipocyte glycerol efflux and influences lipid and glucose homeostasis. Altered AQP7 expression in adults leads to impaired glycerol dynamics, adipocyte hypertrophy and it predisposes them to obesity and diabetes. To assess its possible involvement in childhood obesity, this study investigated the expression of adipocyte AQP7 in cultured adipocytes of children. Methods Primary in vitro differentiated adipocyte cultures were developed from surgical biopsies of subcutaneous abdominal adipose tissue from 61 (46 prepubertal, 15 pubertal) lean children (body mass index [BMI] <85%) and 41 (22 prepubertal, 19 pubertal) children with obesity (BMI >95%). AQP7 expression was studied by reverse transcription polymerase chain reaction and Western immunoblotting and insulin by enzyme-linked immunosorbent assay. Results AQP7 messenger RNA (mRNA) was increased in the younger obese prepubertal (YOP) children but decreased in the obese adolescents (OA) (p=0.014) who also had increased insulin and homeostatic model assessment - insulin resistance (HOMA-IR). Lean pubertal (LP) children and YOP had increased 41 kDa AQP7 protein expression (p=0.001 and p=0.005, respectively). The OA who expressed 34 kDa AQP7 had lower triglyceride (TG) levels than those who did not express it (p=0.013). In the lean children, TG were negatively correlated with 34 kDa AQP7 (p=0.033). Conclusions The lower AQP7 mRNA expression in the OA may reflect a predisposition to adipocyte hypertrophy and metabolic dysfunction, as in the adults, whereas the YOP may be protected from this. The increased 41 kDa AQP7 protein expression in the LP may reflect the increased energy requirements of puberty for glycerol while in the YOP it may also be protective against the development of adipocyte hypertrophy.
Collapse
Affiliation(s)
- Eleni Oikonomou
- Research Laboratory of the Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics, University of Patras School of Medicine, Patras, Greece
| | - Eirini Kostopoulou
- Research Laboratory of the Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics, University of Patras School of Medicine, Patras, Greece
| | - Andrea Paola Rojas-Gil
- Research Laboratory of the Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics, University of Patras School of Medicine, Patras, Greece.,Faculty of Human Movement and Quality of Life Sciences, Department of Nursing, University of Peloponnese, Sparta, Lakonias, Greece
| | - George Georgiou
- Department of Paediatric Surgery, Karamandaneio Children's Hospital, Patras, Greece
| | - Bessie E Spiliotis
- Research Laboratory of the Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics, University of Patras School of Medicine, Patras, Greece
| |
Collapse
|
19
|
Lebeck J, Søndergaard E, Nielsen S. Increased AQP7 abundance in skeletal muscle from obese men with type 2 diabetes. Am J Physiol Endocrinol Metab 2018; 315:E367-E373. [PMID: 29783856 DOI: 10.1152/ajpendo.00468.2017] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Aquaglyceroporin 7 (AQP7) facilitates the transport of glycerol across cell membranes. In mice, fasting and refeeding regulate adipose tissue AQP7 abundance, and a role in controlling triglyceride accumulation in adipose tissue has been proposed. AQP7 is also expressed in skeletal muscle, where its function remains to be determined. Here, the abundance of AQP7 in abdominal subcutaneous adipose tissue (SAT) and skeletal muscle was evaluated in the overnight fasted and postprandial state in eight lean and eight obese men with type 2 diabetes (T2D). A biopsy from SAT and muscle was collected after an overnight fast and 2 h after ingestion of a low-fat test meal. Palmitate turnover was evaluated using a [9,10-3H] palmitate dilution technique. Tissue samples were analyzed by immunoblotting. Meal intake did not affect AQP7 expression in SAT or skeletal muscle. No association between the SAT AQP7 abundance and palmitate turnover was found. SAT AQP7 abundance was similar in lean and obese T2D men, whereas muscle AQP7 abundance was more than fourfold higher in obese T2D men. In conclusion, meal intake did not affect AQP7 protein abundance in SAT or skeletal muscle. In addition, SAT AQP7 expression does not appear to be involved in the regulation of adipose tissue lipolysis. However, in contrast to SAT AQP7, skeletal muscle AQP7 protein abundance is markedly increased in obese T2D men, potentially contributing to the excess lipid accumulation in skeletal muscle in type 2 diabetes.
Collapse
Affiliation(s)
- Janne Lebeck
- The Danish Diabetes Academy, Odense University Hospital , Odense , Denmark
- Department of Biomedicine, Aarhus University, Wilhelm Meyers Allé 3, Aarhus , Denmark
| | - Esben Søndergaard
- The Danish Diabetes Academy, Odense University Hospital , Odense , Denmark
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital , Aarhus , Denmark
| | - Søren Nielsen
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital , Aarhus , Denmark
| |
Collapse
|
20
|
Calamita G, Perret J, Delporte C. Aquaglyceroporins: Drug Targets for Metabolic Diseases? Front Physiol 2018; 9:851. [PMID: 30042691 PMCID: PMC6048697 DOI: 10.3389/fphys.2018.00851] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 06/15/2018] [Indexed: 12/29/2022] Open
Abstract
Aquaporins (AQPs) are a family of transmembrane channel proteins facilitating the transport of water, small solutes, and gasses across biological membranes. AQPs are expressed in all tissues and ensure multiple roles under normal and pathophysiological conditions. Aquaglyceroporins are a subfamily of AQPs permeable to glycerol in addition to water and participate thereby to energy metabolism. This review focalizes on the present knowledge of the expression, regulation and physiological roles of AQPs in adipose tissue, liver and endocrine pancreas, that are involved in energy metabolism. In addition, the review aims at summarizing the involvement of AQPs in metabolic disorders, such as obesity, diabetes and liver diseases. Finally, challenges and recent advances related to pharmacological modulation of AQPs expression and function to control and treat metabolic diseases are discussed.
Collapse
Affiliation(s)
- Giuseppe Calamita
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Bari, Italy
| | - Jason Perret
- Laboratory of Pathophysiological and Nutritional Biochemistry, Université Libre de Bruxelles, Brussels, Belgium
| | - Christine Delporte
- Laboratory of Pathophysiological and Nutritional Biochemistry, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
21
|
da Silva IV, Rodrigues JS, Rebelo I, Miranda JPG, Soveral G. Revisiting the metabolic syndrome: the emerging role of aquaglyceroporins. Cell Mol Life Sci 2018; 75:1973-1988. [PMID: 29464285 PMCID: PMC11105723 DOI: 10.1007/s00018-018-2781-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 02/05/2018] [Accepted: 02/15/2018] [Indexed: 02/07/2023]
Abstract
The metabolic syndrome (MetS) includes a group of medical conditions such as insulin resistance (IR), dyslipidemia and hypertension, all associated with an increased risk for cardiovascular disease. Increased visceral and ectopic fat deposition are also key features in the development of IR and MetS, with pathophysiological sequels on adipose tissue, liver and muscle. The recent recognition of aquaporins (AQPs) involvement in adipose tissue homeostasis has opened new perspectives for research in this field. The members of the aquaglyceroporin subfamily are specific glycerol channels implicated in energy metabolism by facilitating glycerol outflow from adipose tissue and its systemic distribution and uptake by liver and muscle, unveiling these membrane channels as key players in lipid balance and energy homeostasis. Being involved in a variety of pathophysiological mechanisms including IR and obesity, AQPs are considered promising drug targets that may prompt novel therapeutic approaches for metabolic disorders such as MetS. This review addresses the interplay between adipose tissue, liver and muscle, which is the basis of the metabolic syndrome, and highlights the involvement of aquaglyceroporins in obesity and related pathologies and how their regulation in different organs contributes to the features of the metabolic syndrome.
Collapse
Affiliation(s)
- Inês Vieira da Silva
- Faculty of Pharmacy, Research Institute for Medicines (iMed.ULisboa), Universidade de Lisboa, 1649-003, Lisbon, Portugal
- Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de Lisboa, 1649-003, Lisbon, Portugal
| | - Joana S Rodrigues
- Faculty of Pharmacy, Research Institute for Medicines (iMed.ULisboa), Universidade de Lisboa, 1649-003, Lisbon, Portugal
- Department of Toxicological and Bromatological Sciences, Faculty of Pharmacy, Universidade de Lisboa, 1649-003, Lisbon, Portugal
| | - Irene Rebelo
- UCIBIO, REQUIMTE, Department of Biological Sciences, Faculty of Pharmacy, Universidade do Porto, Porto, Portugal
| | - Joana P G Miranda
- Faculty of Pharmacy, Research Institute for Medicines (iMed.ULisboa), Universidade de Lisboa, 1649-003, Lisbon, Portugal
- Department of Toxicological and Bromatological Sciences, Faculty of Pharmacy, Universidade de Lisboa, 1649-003, Lisbon, Portugal
| | - Graça Soveral
- Faculty of Pharmacy, Research Institute for Medicines (iMed.ULisboa), Universidade de Lisboa, 1649-003, Lisbon, Portugal.
- Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de Lisboa, 1649-003, Lisbon, Portugal.
| |
Collapse
|
22
|
Iena FM, Lebeck J. Implications of Aquaglyceroporin 7 in Energy Metabolism. Int J Mol Sci 2018; 19:ijms19010154. [PMID: 29300344 PMCID: PMC5796103 DOI: 10.3390/ijms19010154] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 12/29/2017] [Accepted: 12/31/2017] [Indexed: 12/14/2022] Open
Abstract
The aquaglyceroporin AQP7 is a pore-forming transmembrane protein that facilitates the transport of glycerol across cell membranes. Glycerol is utilized both in carbohydrate and lipid metabolism. It is primarily stored in white adipose tissue as part of the triglyceride molecules. During states with increased lipolysis, such as fasting and diabetes, glycerol is released from adipose tissue and metabolized in other tissues. AQP7 is expressed in adipose tissue where it facilitates the efflux of glycerol, and AQP7 deficiency has been linked to increased glycerol kinase activity and triglyceride accumulation in adipose tissue, leading to obesity and secondary development of insulin resistance. However, AQP7 is also expressed in a wide range of other tissues, including kidney, muscle, pancreatic β-cells and liver, where AQP7 also holds the potential to influence whole body energy metabolism. The aim of the review is to summarize the current knowledge on AQP7 in adipose tissue, as well as AQP7 expressed in other tissues where AQP7 might play a significant role in modulating whole body energy metabolism.
Collapse
Affiliation(s)
- Francesco Maria Iena
- Department of Biomedicine, Aarhus University, Wilhelm Meyers Allé 3, 8000 Aarhus, Denmark.
| | - Janne Lebeck
- Department of Biomedicine, Aarhus University, Wilhelm Meyers Allé 3, 8000 Aarhus, Denmark.
| |
Collapse
|
23
|
Endothelial Aquaporins and Hypomethylation: Potential Implications for Atherosclerosis and Cardiovascular Disease. Int J Mol Sci 2018; 19:ijms19010130. [PMID: 29301341 PMCID: PMC5796079 DOI: 10.3390/ijms19010130] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Revised: 12/21/2017] [Accepted: 01/02/2018] [Indexed: 12/11/2022] Open
Abstract
Aquaporins (AQPs) are transmembrane channels that facilitate water and glycerol permeation through cell membranes. Recently, the water channel AQP1 was suggested to contribute to endothelial homeostasis and cardiovascular health. Less is known about endothelial aquaglyceroporins expression and its implication in cardiovascular disease (CVD). We have previously used cultured human endothelial cells under a hypomethylating environment to study endothelial dysfunction and activation, a phenotype implicated in the establishment of atherosclerosis and CVD. Here, we used the same cell model to investigate aquaporin’s expression and function in healthy or pro-atherogenic phenotype. We first confirmed key features of endothelium dysfunction and activation in our cell model, including an augmented endothelial transmigration under hypomethylation. Subsequently, we found AQP1 and AQP3 to be the most predominant AQPs accounting for water and glycerol fluxes, respectively, in the healthy endothelium. Moreover, endothelial hypomethylation led to decreased levels of AQP1 and impaired water permeability without affecting AQP3 and glycerol permeability. Furthermore, TNF-α treatment-induced AQP1 downregulation suggesting that the inflammatory NF-κB signaling pathway mediates AQP1 transcriptional repression in a pro-atherogenic endothelium, a possibility that warrants further investigation. In conclusion, our results add further support to AQP1 as a candidate player in the setting of endothelial dysfunction and CVD.
Collapse
|
24
|
Rocha-Rodrigues S, Rodríguez A, Becerril S, Ramírez B, Gonçalves IO, Beleza J, Frühbeck G, Ascensão A, Magalhães J. Physical exercise remodels visceral adipose tissue and mitochondrial lipid metabolism in rats fed a high-fat diet. Clin Exp Pharmacol Physiol 2017; 44:386-394. [PMID: 27873387 DOI: 10.1111/1440-1681.12706] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 11/02/2016] [Accepted: 11/10/2016] [Indexed: 01/17/2023]
Abstract
We aimed to investigate the effects of two physical exercise models, voluntary physical activity (VPA) and endurance training (ET) as preventive and therapeutic strategies, respectively, on lipid accumulation regulators and mitochondrial content in VAT of rats fed a high-fat diet (HFD). Sprague-Dawley rats (6 weeks old, n=60) were assigned into sedentary and VPA groups fed isoenergetic diets: standard (S, 35 kcal% fat) or HFD (71 kcal% fat). The VPA groups had free access to wheel running during the entire protocol. After 9 weeks, half of the sedentary animals were exercised on a treadmill while maintaining the dietary treatments. The HFD induced no changes in plasma non-esterified fatty acids (NEFA) and glycerol levels and decreased oxidative phosphorylation (OXPHOS) subunit IV and increased truncated/full-length sterol regulatory element-binding transcription factor 1c (SREBP1c) ratio in epididymal white adipose tissue (eWAT). VPA decreased plasma glycerol levels, aquaglyceroporin 7 (AQP7) and increased subunit I of cytochrome c oxidase (COX) protein, in standard diet fed animals. Eight weeks of ET decreased body weight, visceral adiposity and adipocyte size and plasma NEFA and glycerol levels, as well as AQP7 protein expression in eWAT. ET increased fatty acid translocase (FAT/CD36), mitochondrial content of complexes IV and V subunits, mitochondrial biogenesis and dynamic (mitofusins and optic atrophy 1)-related proteins. Moreover, lipogenesis-related markers (SREBP1c and acetyl CoA carboxylase) were reduced after 8 weeks of ET. In conclusion, ET-induced alterations reflect a positive effect on mitochondrial function and the overall VAT metabolism of HFD-induced obese rats.
Collapse
Affiliation(s)
- Sílvia Rocha-Rodrigues
- CIAFEL - Research Centre in Physical Activity, Health and Leisure, Faculty of Sport, University of Porto, Porto, Portugal
| | - Amaia Rodríguez
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain.,Obesity & Adipobiology Group, Instituto de Investigación Sanitario de Navarra (IdiSNA), Pamplona, Spain.,CIBEROBN, Instituto de Salud Carlos III, Pamplona, Spain
| | - Sara Becerril
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain.,Obesity & Adipobiology Group, Instituto de Investigación Sanitario de Navarra (IdiSNA), Pamplona, Spain.,CIBEROBN, Instituto de Salud Carlos III, Pamplona, Spain
| | - Beatriz Ramírez
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain.,Obesity & Adipobiology Group, Instituto de Investigación Sanitario de Navarra (IdiSNA), Pamplona, Spain.,CIBEROBN, Instituto de Salud Carlos III, Pamplona, Spain
| | - Inês O Gonçalves
- CIAFEL - Research Centre in Physical Activity, Health and Leisure, Faculty of Sport, University of Porto, Porto, Portugal
| | - Jorge Beleza
- CIAFEL - Research Centre in Physical Activity, Health and Leisure, Faculty of Sport, University of Porto, Porto, Portugal
| | - Gema Frühbeck
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain.,Obesity & Adipobiology Group, Instituto de Investigación Sanitario de Navarra (IdiSNA), Pamplona, Spain.,CIBEROBN, Instituto de Salud Carlos III, Pamplona, Spain.,Department of Endocrinology & Nutrition, Clínica Universidad de Navarra, Pamplona, Spain
| | - António Ascensão
- CIAFEL - Research Centre in Physical Activity, Health and Leisure, Faculty of Sport, University of Porto, Porto, Portugal
| | - José Magalhães
- CIAFEL - Research Centre in Physical Activity, Health and Leisure, Faculty of Sport, University of Porto, Porto, Portugal
| |
Collapse
|
25
|
Jin B, Chen X, Xing L, Xu W, Fu X, Zhu J, Mou X, Wang Z, Shu J. Tissue-specific effects of estrogen on glycerol channel aquaporin 7 expression in an ovariectomized mouse model of menopause. Climacteric 2017; 20:385-390. [PMID: 28489425 DOI: 10.1080/13697137.2017.1319920] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Elevated fat mass and redistribution of body fat are commonly observed in postmenopausal women. Aquaporin 7 (AQP7), a unique glycerol permeable integral membrane protein, has been associated with the onset of obesity. We hypothesized that estrogen supplementation could counteract this fat accumulation and redistribution through tissue-specific modulation of AQP7. METHODS We measured fat depot weight, adipocyte size, and the expression of AQP7 and glycerol kinase (GK) in visceral and subcutaneous fat tissues of ovariectomized mice supplemented with or without 17β-estradiol. RESULTS Removal of the ovaries resulted in a significant decrease in AQP7 expression and an increase in GK expression in visceral adipocyte tissue; expression of AQP7 and GK in subcutaneous adipose tissue remained unaltered. Supplementation with estrogen significantly restored the visceral, but not subcutaneous, fat depot mass and adipocyte size to those of sham-operated mice. A marked increase in the expression of AQP7 and a reduction of GK were observed selectively in the visceral fat depots in estrogen-treated mice. CONCLUSIONS Our results suggest that estrogen has tissue-specific effects on AQP7 expression, and modulation of AQP7 by estrogen alters the balance of adipocyte metabolism between adipose tissue depots.
Collapse
Affiliation(s)
- B Jin
- a Department of Reproductive Endocrinology , Zhejiang Provincial People's Hospital , Hangzhou , Zhejiang , PR China
| | - X Chen
- a Department of Reproductive Endocrinology , Zhejiang Provincial People's Hospital , Hangzhou , Zhejiang , PR China
| | - L Xing
- a Department of Reproductive Endocrinology , Zhejiang Provincial People's Hospital , Hangzhou , Zhejiang , PR China
| | - W Xu
- a Department of Reproductive Endocrinology , Zhejiang Provincial People's Hospital , Hangzhou , Zhejiang , PR China
| | - X Fu
- a Department of Reproductive Endocrinology , Zhejiang Provincial People's Hospital , Hangzhou , Zhejiang , PR China
| | - J Zhu
- a Department of Reproductive Endocrinology , Zhejiang Provincial People's Hospital , Hangzhou , Zhejiang , PR China
| | - X Mou
- b Clinical Research Institute , Zhejiang Provincial People's Hospital , Hangzhou , Zhejiang , PR China
| | - Z Wang
- b Clinical Research Institute , Zhejiang Provincial People's Hospital , Hangzhou , Zhejiang , PR China
| | - J Shu
- a Department of Reproductive Endocrinology , Zhejiang Provincial People's Hospital , Hangzhou , Zhejiang , PR China
| |
Collapse
|
26
|
Pedersen MH, Svart MV, Lebeck J, Bidlingmaier M, Stødkilde-Jørgensen H, Pedersen SB, Møller N, Jessen N, Jørgensen JOL. Substrate Metabolism and Insulin Sensitivity During Fasting in Obese Human Subjects: Impact of GH Blockade. J Clin Endocrinol Metab 2017; 102:1340-1349. [PMID: 28324055 DOI: 10.1210/jc.2016-3835] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 01/13/2017] [Indexed: 12/23/2022]
Abstract
CONTEXT Insulin resistance and metabolic inflexibility are features of obesity and are amplified by fasting. Growth hormone (GH) secretion increases during fasting and GH causes insulin resistance. OBJECTIVE To study the metabolic effects of GH blockade during fasting in obese subjects. SUBJECTS AND METHODS Nine obese males were studied thrice in a randomized design: (1) after an overnight fast (control), (2) after 72 hour fasting (fasting), and (3) after 72 hour fasting with GH blockade (pegvisomant) [fasting plus GH antagonist (GHA)]. Each study day consisted of a 4-hour basal period followed by a 2-hour hyperinsulinemic, euglycemic clamp combined with indirect calorimetry, assessment of glucose and palmitate turnover, and muscle and fat biopsies. RESULTS GH levels increased with fasting (P < 0.01), and the fasting-induced reduction of serum insulin-like growth factor I was enhanced by GHA (P < 0.05). Fasting increased lipolysis and lipid oxidation independent of GHA, but fasting plus GHA caused a more pronounced suppression of lipid intermediates in response to hyperinsulinemic, euglycemic clamp. Fasting-induced insulin resistance was abrogated by GHA (P < 0.01) primarily due to reduced endogenous glucose production (P = 0.003). Fasting plus GHA also caused elevated glycerol levels and reduced levels of counterregulatory hormones. Fasting significantly reduced the expression of antilipolytic signals in adipose tissue independent of GHA. CONCLUSIONS Suppression of GH activity during fasting in obese subjects reverses insulin resistance and amplifies insulin-stimulated suppression of lipid intermediates, indicating that GH is an important regulator of substrate metabolism, insulin sensitivity, and metabolic flexibility also in obese subjects.
Collapse
Affiliation(s)
- Morten Høgild Pedersen
- Medical Research Laboratory, Department of Endocrinology and Internal Medicine
- Department of Clinical Medicine, Aarhus University, 8000 Aarhus, Denmark
| | - Mads Vandsted Svart
- Medical Research Laboratory, Department of Endocrinology and Internal Medicine
- Department of Clinical Medicine, Aarhus University, 8000 Aarhus, Denmark
| | | | - Martin Bidlingmaier
- Endocrine Research Unit, Medizinische Klinik und Poliklinik IV, Klinikum der Ludwig-Maximilians-Universität, 80336 Munich, Germany
| | - Hans Stødkilde-Jørgensen
- The MR Research Center, and
- Department of Clinical Medicine, Aarhus University, 8000 Aarhus, Denmark
| | - Steen Bønløkke Pedersen
- Medical Research Laboratory, Department of Endocrinology and Internal Medicine
- Department of Clinical Medicine, Aarhus University, 8000 Aarhus, Denmark
| | - Niels Møller
- Medical Research Laboratory, Department of Endocrinology and Internal Medicine
- Department of Clinical Medicine, Aarhus University, 8000 Aarhus, Denmark
| | - Niels Jessen
- Department of Clinical Pharmacology, Aarhus University Hospital 8000 Aarhus, Denmark
| | - Jens O L Jørgensen
- Medical Research Laboratory, Department of Endocrinology and Internal Medicine
- Department of Clinical Medicine, Aarhus University, 8000 Aarhus, Denmark
| |
Collapse
|
27
|
Abstract
Obesity is one of the most important metabolic disorders of this century and is associated with a cluster of the most dangerous cardiovascular disease risk factors, such as insulin resistance and diabetes , dyslipidemia and hypertension , collectively named Metabolic Syndrome. The role of aquaporins in glycerol metabolism facilitating glycerol release from the adipose tissue and distribution to various tissues and organs, unveils these membrane channels as important players in lipid balance and energy homeostasis and points to their involvement in a variety of pathophysiological mechanisms including insulin resistance, obesity and diabetes.This review summarizes the physiologic role of aquaglyceroporins in glycerol metabolism and lipid homeostasis, describing their specific tissue distribution, their involvement in glycerol balance and their implication in obesity and fat-related metabolic complications. The development of specify pharmacologic modulators able to regulate aquaglyceroporins expression and function , in particular AQP7 in adipose tissue, might constitute a novel approach for controlling obesity and other metabolic disorders.
Collapse
Affiliation(s)
- Inês Vieira da Silva
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, 1649-003, Portugal
- Department of Bioquimica e Biologia Humana, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Graça Soveral
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, 1649-003, Portugal.
- Department of Bioquimica e Biologia Humana, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal.
| |
Collapse
|
28
|
Palabiyik O, Karaca A, Taştekin E, Yamasan BE, Tokuç B, Sipahi T, Vardar SA. The Effect of a High-Protein Diet and Exercise on Cardiac AQP7 and GLUT4 Gene Expression. Biochem Genet 2016; 54:731-45. [PMID: 27294385 DOI: 10.1007/s10528-016-9753-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 06/08/2016] [Indexed: 12/18/2022]
Abstract
High-protein (HP) diets are commonly consumed by athletes despite their potential health hazard, which is postulated to enforce a negative effect on bone and renal health. However, its effects on heart have not been known yet. Aquaporin-7 (AQP7) is an aquaglyceroporin that facilitates glycerol and water transport. Glycerol is an important cardiac energy production substrate, especially during exercise, in conjunction with fatty acids and glucose. Glucose transporter 4 (GLUT4) is an insulin-sensitive glucose transporter in heart. We aimed to investigate the effect of HPD on AQP7 and GLUT4 levels in the rat heart subjected to exercise. Male Sprague-Dawley rats were divided into control (n = 12), exercise (E) training (n = 10), HPD (n = 12), and HPD-E training (n = 9) groups. The HPD groups were fed a 45 % protein-containing diet 5 weeks. The HPD-E and E groups were performed the treadmill exercise during the 5-week study period. Real-time polymerase chain reaction and immunohistochemistry techniques were used to determine the gene expression and localization of AQP7 and GLUT4 in heart tissue. Results of relative gene expression were calculated by the 'Pfaffl' mathematical method using the REST program. Differences in AQP7 and GLUT4 gene expression were expressed as fold change compared to the control group. Heart weight/tibia ratio and ventricular wall thickness were evaluated as markers of cardiac hypertrophy. Further, serum glucose, glycerol, and insulin levels were also measured. AQP7 gene expression was found to be increased in the E (3.47-fold, p < 0.001), HPD (5.59-fold, p < 0.001), and HPD-E (3.87-fold, p < 0.001) groups compared to the control group. AQP7 protein expression was also increased in the HPD and HPD-E groups (p < 0.001). Additionally, cardiac mRNA expression levels of GLUT4 showed a significant increase in the E (2.16-fold, p < 0.003), HPD (7.14-fold, p < 0.001), and HPD-E (3.43-fold, p < 0.001) groups compared to the control group. GLUT4 protein expression was significantly increased in the E, HPD, and HPD-E groups compared to the control group (p = 0.024, p < 0.001, and p < 0.001, respectively). Furthermore, Serum glucose levels were significantly different between groups (p < 0.005). This difference was observed between the HPD groups and normal-protein diet groups (C and E). Serum insulin levels were higher for HPD groups compared with the normal-protein diet groups (p < 0.001), whereas no differences were observed between the exercise and sedentary groups (p = 0.111). Serum glycerol levels were significantly increased in the HPD groups compared with control and E groups (p < 0.05 and p < 0.05, respectively). Consumption of HPD supplementation caused the increased effects on AQP7 and GLUT4 expression in rat heart.
Collapse
Affiliation(s)
- Orkide Palabiyik
- Department of Biophysics, Faculty of Medicine, Trakya University, Edirne, Turkey.
| | - Aziz Karaca
- Department of Physiology, Faculty of Medicine, Trakya University, Edirne, Turkey
| | - Ebru Taştekin
- Department of Pathology, Faculty of Medicine, Trakya University, Edirne, Turkey
| | - Bilge Eren Yamasan
- Department of Biophysics, Faculty of Medicine, Trakya University, Edirne, Turkey
| | - Burcu Tokuç
- Department of Public Health, Faculty of Medicine, Trakya University, Edirne, Turkey
| | - Tammam Sipahi
- Department of Biophysics, Faculty of Medicine, Trakya University, Edirne, Turkey
| | - Selma Arzu Vardar
- Department of Physiology, Faculty of Medicine, Trakya University, Edirne, Turkey
| |
Collapse
|
29
|
Skrypnik D, Ratajczak M, Karolkiewicz J, Mądry E, Pupek-Musialik D, Hansdorfer-Korzon R, Walkowiak J, Jakubowski H, Bogdański P. Effects of endurance and endurance-strength exercise on biochemical parameters of liver function in women with abdominal obesity. Biomed Pharmacother 2016; 80:1-7. [PMID: 27133033 DOI: 10.1016/j.biopha.2016.02.017] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 02/29/2016] [Accepted: 02/29/2016] [Indexed: 12/21/2022] Open
Abstract
INTRODUCTION Obesity is a risk factor of nonalcoholic fatty liver disease. Although the standard therapy for obesity involves physical exercise, well-planned studies of the changes in liver function in response to different exercise intensities in obese subjects are scarce. The aim of the present study was to examine a question of how does exercise mode affect the liver function. MATERIAL AND METHODS 44 women with abdominal obesity were randomized into two exercise groups: endurance (group A) and endurance-strength (group B). Women in each group exercised for 60min 3 times/week for a 3-month period. Markers of liver function: serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), γ-glutamyltranspeptidase (GGT), alkaline phosphatase (ALP) activities, and bilirubin levels were quantified. RESULTS We found significant differences in ALT (p<0.01) and AST (p<0.05) activities between group A and B after training exercise. Blood ALT and AST tended to decrease in group B, increase in group A. Significant reduction in serum GGT level after exercise in both groups was observed (p<0.001, group A; p<0.01, group B). Neither endurance nor endurance-strength exercise led to changes in serum ALP activity and total or direct bilirubin level. However, endurance-strength training resulted in significant decreases in serum indirect bilirubin (p<0.05). Strong positive correlations between serum indirect bilirubin and body mass (r=0.615; p=0.0085) and BMI (r=0.576; p=0.0154) were found after endurance-strength exercise (group B). CONCLUSION The mode of exercise does matter: endurance-strength exercise led to a greater improvement, compared to endurance exercise, in the liver function in women with abdominal obesity.
Collapse
Affiliation(s)
- Damian Skrypnik
- Department of Internal Medicine, Metabolic Disorders and Hypertension, University of Medical Sciences, Szamarzewskiego Str. 82/84, 60-569 Poznań, Poland
| | - Marzena Ratajczak
- Department of Physiology, Biochemistry and Hygiene, University School of Physical Education, Królowej Jadwigi Str. 27/39, 61-871 Poznań, Poland
| | - Joanna Karolkiewicz
- Department of Physiology, Biochemistry and Hygiene, University School of Physical Education, Królowej Jadwigi Str. 27/39, 61-871 Poznań, Poland
| | - Edyta Mądry
- Department of Physiology, University of Medical Sciences, Święcickiego Str. 6, 60-781 Poznań, Poland
| | - Danuta Pupek-Musialik
- Department of Internal Medicine, Metabolic Disorders and Hypertension, University of Medical Sciences, Szamarzewskiego Str. 82/84, 60-569 Poznań, Poland
| | - Rita Hansdorfer-Korzon
- Department of Physiotherapy, University of Medical Sciences, Dębinki Str. 7, 80-211 Gdańsk, Poland
| | - Jarosław Walkowiak
- Department of Pediatric Gastroenterology and Metabolic Diseases, University of Medical Sciences, Szpitalna Str. 27/33, 60-572 Poznań, Poland
| | - Hieronim Jakubowski
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers University, New Jersey Medical School, International Center for Public Health, 225 Warren Street, Room E450D, Newark, NJ 07103-3535, USA; Department of Biochemistry and Biotechnology, University of Life Sciences, Dojazd Str. 11, 60-632 Poznan, Poland; Institute of Bioorganic Chemistry, Noskowskiego Str. 12/14, 61-704 Poznan, Poland.
| | - Paweł Bogdański
- Department of Education and Obesity Treatment and Metabolic Disorders, University of Medical Sciences, Szamarzewskiego Str. 82/84, 60-569 Poznań, Poland
| |
Collapse
|
30
|
Laforenza U, Bottino C, Gastaldi G. Mammalian aquaglyceroporin function in metabolism. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1858:1-11. [PMID: 26456554 DOI: 10.1016/j.bbamem.2015.10.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 10/05/2015] [Accepted: 10/07/2015] [Indexed: 11/26/2022]
Abstract
Aquaglyceroporins are integral membrane proteins that are permeable to glycerol as well as water. The movement of glycerol from a tissue/organ to the plasma and vice versa requires the presence of different aquaglyceroporins that can regulate the entrance or the exit of glycerol across the plasma membrane. Actually, different aquaglyceroporins have been discovered in the adipose tissue, small intestine, liver, kidney, heart, skeletal muscle, endocrine pancreas and capillary endothelium, and their differential expression could be related to obesity and the type 2 diabetes. Here we describe the expression and function of different aquaglyceroporins in physiological condition and in obesity and type 2 diabetes, suggesting they are potential therapeutic targets for metabolic disorders.
Collapse
Affiliation(s)
| | - Cinzia Bottino
- Department of Molecular Medicine, University of Pavia, Italy
| | - Giulia Gastaldi
- Department of Molecular Medicine, University of Pavia, Italy
| |
Collapse
|
31
|
Wang B, Gao L, Zhang Q, Li A, Deng Y, Guo X. Diversified Control Paths: A Significant Way Disease Genes Perturb the Human Regulatory Network. PLoS One 2015; 10:e0135491. [PMID: 26284649 PMCID: PMC4540569 DOI: 10.1371/journal.pone.0135491] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 07/23/2015] [Indexed: 11/18/2022] Open
Abstract
Background The complexity of biological systems motivates us to use the underlying networks to provide deep understanding of disease etiology and the human diseases are viewed as perturbations of dynamic properties of networks. Control theory that deals with dynamic systems has been successfully used to capture systems-level knowledge in large amount of quantitative biological interactions. But from the perspective of system control, the ways by which multiple genetic factors jointly perturb a disease phenotype still remain. Results In this work, we combine tools from control theory and network science to address the diversified control paths in complex networks. Then the ways by which the disease genes perturb biological systems are identified and quantified by the control paths in a human regulatory network. Furthermore, as an application, prioritization of candidate genes is presented by use of control path analysis and gene ontology annotation for definition of similarities. We use leave-one-out cross-validation to evaluate the ability of finding the gene-disease relationship. Results have shown compatible performance with previous sophisticated works, especially in directed systems. Conclusions Our results inspire a deeper understanding of molecular mechanisms that drive pathological processes. Diversified control paths offer a basis for integrated intervention techniques which will ultimately lead to the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Bingbo Wang
- School of Computer Science and Technology, Xidian University, Xi'an, People’s Republic of China
- * E-mail: (BBW); (LG)
| | - Lin Gao
- School of Computer Science and Technology, Xidian University, Xi'an, People’s Republic of China
- * E-mail: (BBW); (LG)
| | - Qingfang Zhang
- School of Computer Science and Technology, Xidian University, Xi'an, People’s Republic of China
| | - Aimin Li
- School of Computer Science and Technology, Xi’an University of Technology, Xi'an, People’s Republic of China
| | - Yue Deng
- School of Computer Science and Technology, Xidian University, Xi'an, People’s Republic of China
- Institute of Software Engineering, Xidian University, Xi'an, People’s Republic of China
| | - Xingli Guo
- School of Computer Science and Technology, Xidian University, Xi'an, People’s Republic of China
| |
Collapse
|
32
|
Gregoire F, Lucidi V, Zerrad-Saadi A, Virreira M, Bolaky N, Delforge V, Lemmers A, Donckier V, Devière J, Demetter P, Perret J, Delporte C. Analysis of aquaporin expression in liver with a focus on hepatocytes. Histochem Cell Biol 2015; 144:347-63. [PMID: 26126651 DOI: 10.1007/s00418-015-1341-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/16/2015] [Indexed: 12/30/2022]
Abstract
A deeper understanding of aquaporins (AQPs) expression and transcriptional regulation will provide useful information for liver pathophysiology. We established a complete AQPs mRNA expression profile in human and mouse liver, as well as protein localization of expressed AQPs. Additionally, the modulation of AQPs mRNA levels in response to various agents was determined in human HuH7 cells and in primary culture of mouse hepatocytes. AQP1, AQP3, AQP7, AQP8, and AQP9 mRNA and protein expressions were detected in human liver, while only AQP6 and AQP11 mRNAs were detected. We reported for the first time the localization of AQP3 in Kupffer cells, AQP7 in hepatocytes and endothelial cells, and AQP9 in cholangiocytes. In addition, we confirmed the localization of AQP1 in endothelial cells, and of AQP8 and AQP9 in hepatocytes. On HuH7 cells, we reported the presence of AQP4 mRNA, confirmed the presence of AQP3, AQP7, and AQP11 mRNAs, but not of AQP8 mRNA. On primary culture of murine hepatocytes, AQP1 and AQP7 mRNAs were identified, while the presence of AQP3, AQP8, AQP9, and AQP11 mRNAs was confirmed. At the protein level, murine endothelial liver cells expressed AQP1 and AQP9, while hepatocytes expressed AQP3, AQP7, AQP8, and AQP9, and macrophages expressed AQP3. Dexamethasone, forskolin, AICAR, rosiglitazone, octanoylated, and non-octanoylated ghrelin regulated some AQP expression in primary culture of murine hepatocytes and human HuH7 cells. Additional studies will be required to further assess the role of AQPs expression in human and murine liver and understand the transcriptional regulation of AQPs in hepatocytes under pathophysiological conditions.
Collapse
Affiliation(s)
- Françoise Gregoire
- Laboratory of Pathophysiological and Nutritional Biochemistry, Université Libre de Bruxelles, Brussels, Belgium
| | - Valério Lucidi
- Digestive Oncology Department, Erasme Hospital, Brussels, Belgium
| | - Amal Zerrad-Saadi
- Laboratory of Pathophysiological and Nutritional Biochemistry, Université Libre de Bruxelles, Brussels, Belgium
| | - Myrna Virreira
- Laboratory of Pathophysiological and Nutritional Biochemistry, Université Libre de Bruxelles, Brussels, Belgium
| | - Nargis Bolaky
- Laboratory of Pathophysiological and Nutritional Biochemistry, Université Libre de Bruxelles, Brussels, Belgium
| | - Valérie Delforge
- Laboratory of Pathophysiological and Nutritional Biochemistry, Université Libre de Bruxelles, Brussels, Belgium
| | - Arnaud Lemmers
- Gastroenterology Department, Erasme Hospital, Brussels, Belgium
| | - Vincent Donckier
- Digestive Oncology Department, Erasme Hospital, Brussels, Belgium
| | - Jacques Devière
- Gastroenterology Department, Erasme Hospital, Brussels, Belgium
| | - Pieter Demetter
- Anatomopathology Department, Erasme Hospital, Brussels, Belgium
| | - Jason Perret
- Laboratory of Pathophysiological and Nutritional Biochemistry, Université Libre de Bruxelles, Brussels, Belgium
| | - Christine Delporte
- Laboratory of Pathophysiological and Nutritional Biochemistry, Université Libre de Bruxelles, Brussels, Belgium.
| |
Collapse
|
33
|
Skrypnik D, Bogdański P, Mądry E, Karolkiewicz J, Ratajczak M, Kryściak J, Pupek-Musialik D, Walkowiak J. Effects of Endurance and Endurance Strength Training on Body Composition and Physical Capacity in Women with Abdominal Obesity. Obes Facts 2015; 8:175-87. [PMID: 25968470 PMCID: PMC5652894 DOI: 10.1159/000431002] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 01/08/2015] [Indexed: 01/02/2023] Open
Abstract
AIMS To compare the effects of endurance training with endurance strength training on the anthropometric, body composition, physical capacity, and circulatory parameters in obese women. METHODS 44 women with abdominal obesity were randomized into groups A and B, and asked to perform endurance (A) and endurance strength training (B) for 3 months, 3 times/week, for 60 min. Dual-energy X-ray absorptiometry and Graded Exercise Test were performed before and after training. RESULTS Significant decreases in body mass, BMI, total body fat, total body fat mass, and waist and hip circumference were observed after both types of intervention. Marked increases in total body lean and total body fat-free mass were documented in group B. In both groups, significant increases in peak oxygen uptake, time to exhaustion, maximal work rate, and work rate at ventilatory threshold were accompanied by noticeably decreased resting heart rate, resting systolic blood pressure, and resting and exercise diastolic blood pressure. No significant differences were noticed between groups for the investigated parameters. CONCLUSION Our findings demonstrate evidence for a favorable and comparable effect of 3-month endurance and endurance strength training on anthropometric parameters, body composition, physical capacity, and circulatory system function in women with abdominal obesity.
Collapse
Affiliation(s)
- Damian Skrypnik
- Department of Internal Medicine, Metabolic Disorders and Hypertension, University of Medical Sciences, Poznań, Poland
| | - Paweł Bogdański
- Department of Education and Obesity Treatment and Metabolic Disorders, University of Medical Sciences, Poznań, Poland
| | - Edyta Mądry
- Department of Physiology, University of Medical Sciences, Poznań, Poland
| | - Joanna Karolkiewicz
- Department of Physiology, Biochemistry and Hygiene, University School of Physical Education, Poznań, Poland
| | - Marzena Ratajczak
- Department of Physiology, Biochemistry and Hygiene, University School of Physical Education, Poznań, Poland
| | - Jakub Kryściak
- Department of Physiology, Biochemistry and Hygiene, University School of Physical Education, Poznań, Poland
| | - Danuta Pupek-Musialik
- Department of Internal Medicine, Metabolic Disorders and Hypertension, University of Medical Sciences, Poznań, Poland
| | - Jarosław Walkowiak
- Department of Pediatric Gastroenterology and Metabolic Diseases, University of Medical Sciences, Poznań, Poland
| |
Collapse
|
34
|
Madeira A, Moura TF, Soveral G. Aquaglyceroporins: implications in adipose biology and obesity. Cell Mol Life Sci 2015; 72:759-71. [PMID: 25359234 PMCID: PMC11113391 DOI: 10.1007/s00018-014-1773-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 10/07/2014] [Accepted: 10/27/2014] [Indexed: 01/19/2023]
Abstract
Aquaporins (AQPs) are membrane water/glycerol channels that are involved in many physiological processes. Their primary function is to facilitate the bidirectional transfer of water and small solutes across biological membranes in response to osmotic gradients. Aquaglyceroporins, a subset of the AQP family, are the only mammalian proteins with the ability to permeate glycerol. For a long time, AQP7 has been the only aquaglyceroporin associated with the adipose tissue, which is the major source of circulating glycerol in response to the energy demand. AQP7 dysregulation was positively correlated with obesity onset and adipocyte glycerol permeation through AQP7 was appointed as a novel regulator of adipocyte metabolism and whole-body fat mass. Recently, AQP3, AQP9, AQP10 and AQP11 were additionally identified in human adipocytes and proposed as additional glycerol pathways in these cells. This review contextualizes the importance of aquaglyceroporins in adipose tissue biology and highlights aquaglyceroporins' unique structural features which are relevant for the design of effective therapeutic compounds. We also refer to the latest advances in the identification and characterization of novel aquaporin isoforms in adipose tissue. Finally, considerations on the actual progress of aquaporin research and its implications on obesity therapy are suggested.
Collapse
Affiliation(s)
- Ana Madeira
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, Lisbon, 1649-003 Portugal
- Department of Bioquimica e Biologia Humana, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Teresa F. Moura
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, Lisbon, 1649-003 Portugal
- FCT-UNL, 2829-516 Caparica, Portugal
| | - Graça Soveral
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, Lisbon, 1649-003 Portugal
- Department of Bioquimica e Biologia Humana, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
35
|
Lebeck J, Cheema MU, Skowronski MT, Nielsen S, Praetorius J. Hepatic AQP9 expression in male rats is reduced in response to PPARα agonist treatment. Am J Physiol Gastrointest Liver Physiol 2015; 308:G198-205. [PMID: 25477377 DOI: 10.1152/ajpgi.00407.2013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The peroxisome proliferator receptor α (PPARα) is a key regulator of the hepatic response to fasting with effects on both lipid and carbohydrate metabolism. A role in hepatic glycerol metabolism has also been found; however, the results are somewhat contradictive. Aquaporin 9 (AQP9) is a pore-forming transmembrane protein that facilitates hepatic uptake of glycerol. Its expression is inversely regulated by insulin in male rodents, with increased expression during fasting. Previous results indicate that PPARα plays a crucial role in the induction of AQP9 mRNA during fasting. In the present study, we use PPARα agonists to explore the effect of PPARα activation on hepatic AQP9 expression and on the abundance of enzymes involved in glycerol metabolism using both in vivo and in vitro systems. In male rats with free access to food, treatment with the PPARα agonist WY 14643 (3 mg·kg(-1)·day(-1)) caused a 50% reduction in hepatic AQP9 abundance with the effect being restricted to AQP9 expressed in periportal hepatocytes. The pharmacological activation of PPARα had no effect on the abundance of GlyK, whereas it caused an increased expression of hepatic GPD1, GPAT1, and L-FABP protein. In WIF-B9 and HepG2 hepatocytes, both WY 14643 and another PPARα agonist GW 7647 reduced the abundance of AQP9 protein. In conclusion, pharmacological PPARα activation results in a marked reduction in the abundance of AQP9 in periportal hepatocytes. Together with the effect on the enzymatic apparatus for glycerol metabolism, our results suggest that PPARα activation in the fed state directs glycerol into glycerolipid synthesis rather than into de novo synthesis of glucose.
Collapse
Affiliation(s)
- Janne Lebeck
- The Danish Diabetes Academy, Aarhus University, Aarhus, Denmark; Department of Biomedicine, Health, Aarhus University, Aarhus, Denmark; and
| | | | - Mariusz T Skowronski
- Department of Animal Physiology, University of Warmia and Mazury, Olsztyn, Poland
| | - Søren Nielsen
- Department of Biomedicine, Health, Aarhus University, Aarhus, Denmark; and
| | - Jeppe Praetorius
- Department of Biomedicine, Health, Aarhus University, Aarhus, Denmark; and
| |
Collapse
|
36
|
Miyauchi T, Yamamoto H, Abe Y, Yoshida GJ, Rojek A, Sohara E, Uchida S, Nielsen S, Yasui M. Dynamic subcellular localization of aquaporin-7 in white adipocytes. FEBS Lett 2015; 589:608-14. [PMID: 25643985 DOI: 10.1016/j.febslet.2015.01.025] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 12/15/2014] [Accepted: 01/15/2015] [Indexed: 01/14/2023]
Abstract
Aquaporin-7 (AQP7) is expressed in adipose tissue, permeated by water and glycerol, and is involved in lipid metabolism. AQP7-null mice develop obesity, insulin resistance, and adipocyte hypertrophy. Here, we show that AQP7 is expressed in adipocyte plasma membranes, and is re-localized to intracellular membranes in response to catecholamine in mouse white adipose tissue. We found that internalization of AQP7 was induced by PKA activation and comparative gene identification 58 (CGI-58). This relocation was confirmed by functional studies in 3T3-L1 adipocytes. Collectively, these results suggest that AQP7 makes several contributions to adipocyte metabolism, in both cortical and intracellular membranes.
Collapse
Affiliation(s)
- Takayuki Miyauchi
- Department of Pharmacology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan.
| | - Hiroyuki Yamamoto
- Department of Pharmacology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| | - Yoichiro Abe
- Department of Pharmacology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| | - Go J Yoshida
- Department of Pharmacology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| | - Aleksandra Rojek
- Department of Health Science and Technology, Aalborg University, Fredrik Bajersvej 7, 9220 Aalborg, Denmark
| | - Eisei Sohara
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Yushima, Bunkyo, Tokyo 113-8519, Japan
| | - Shinichi Uchida
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Yushima, Bunkyo, Tokyo 113-8519, Japan
| | - Søren Nielsen
- Department of Health Science and Technology, Aalborg University, Fredrik Bajersvej 7, 9220 Aalborg, Denmark
| | - Masato Yasui
- Department of Pharmacology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan.
| |
Collapse
|
37
|
Rodríguez A, Marinelli RA, Tesse A, Frühbeck G, Calamita G. Sexual Dimorphism of Adipose and Hepatic Aquaglyceroporins in Health and Metabolic Disorders. Front Endocrinol (Lausanne) 2015; 6:171. [PMID: 26594198 PMCID: PMC4633488 DOI: 10.3389/fendo.2015.00171] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 10/26/2015] [Indexed: 12/13/2022] Open
Abstract
Gender differences in the relative risk of developing metabolic complications, such as insulin resistance or non-alcoholic fatty liver disease (NAFLD), have been reported. The deregulation of glycerol metabolism partly contributes to the onset of these metabolic diseases, since glycerol constitutes a key substrate for the synthesis of triacylglycerols (TAGs) as well as for hepatic gluconeogenesis. The present mini-review covers the sex--related differences in glycerol metabolism and aquaglyceroporins (AQPs) and its impact in the control of adipose and hepatic fat accumulation as well as in whole-body glucose homeostasis. Plasma glycerol concentrations are increased in women compared to men probably due to the higher lipolytic rate and larger AQP7 amounts in visceral fat as well as the well-known sexual dimorphism in fat mass with women showing higher adiposity. AQP9 represents the primary route for glycerol uptake in hepatocytes, where glycerol is converted by the glycerol-kinase enzyme into glycerol-3-phosphate, a key substrate for de novo synthesis of glucose and TAG. In spite of showing similar hepatic AQP9 protein, women exhibit lower hepatocyte glycerol permeability than men, which might contribute to their lower prevalence of insulin resistance and NAFLD.
Collapse
Affiliation(s)
- Amaia Rodríguez
- Metabolic Research Laboratory, CIBEROBN, IdiSNA, Clínica Universidad de Navarra, Pamplona, Spain
| | - Raul A. Marinelli
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Instituto de Fisiología Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Rosario, Rosario, Argentina
| | - Angela Tesse
- INSERM UMR 1087/CNRS UMR 629, L’Institut du Thorax, IRS-UN, Nantes, France
| | - Gema Frühbeck
- Metabolic Research Laboratory, CIBEROBN, IdiSNA, Clínica Universidad de Navarra, Pamplona, Spain
| | - Giuseppe Calamita
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari “Aldo Moro”, Bari, Italy
- *Correspondence: Giuseppe Calamita,
| |
Collapse
|
38
|
Sauerwein H, Saremi B, Pappritz J, von Soosten D, Meyer U, Dänicke S, Mielenz M. Short communication: Aquaporin-7 mRNA in adipose depots of primiparous and pluriparous dairy cows: Long-term physiological and conjugated linoleic acid-induced changes. J Dairy Sci 2013; 96:4508-13. [DOI: 10.3168/jds.2012-6363] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Accepted: 04/01/2013] [Indexed: 11/19/2022]
|