1
|
Bochenek MA, Walters B, Zhang J, Fenton OS, Facklam A, Kroneková Z, Pelach M, Engquist EN, Leite NC, Morgart A, Lacík I, Langer R, Anderson DG. Enhancing the Functionality of Immunoisolated Human SC-βeta Cell Clusters through Prior Resizing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307464. [PMID: 38212275 DOI: 10.1002/smll.202307464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 12/10/2023] [Indexed: 01/13/2024]
Abstract
The transplantation of immunoisolated stem cell derived beta cell clusters (SC-β) has the potential to restore physiological glycemic control in patients with type I diabetes. This strategy is attractive as it uses a renewable β-cell source without the need for systemic immune suppression. SC-β cells have been shown to reverse diabetes in immune compromised mice when transplanted as ≈300 µm diameter clusters into sites where they can become revascularized. However, immunoisolated SC-β clusters are not directly revascularized and rely on slower diffusion of nutrients through a membrane. It is hypothesized that smaller SC-β cell clusters (≈150 µm diameter), more similar to islets, will perform better within immunoisolation devices due to enhanced mass transport. To test this, SC-β cells are resized into small clusters, encapsulated in alginate spheres, and coated with a biocompatible A10 polycation coating that resists fibrosis. After transplantation into diabetic immune competent C57BL/6 mice, the "resized" SC-β cells plus the A10 biocompatible polycation coating induced long-term euglycemia in the mice (6 months). After retrieval, the resized A10 SC-β cells exhibited the least amount of fibrosis and enhanced markers of β-cell maturation. The utilization of small SC-β cell clusters within immunoprotection devices may improve clinical translation in the future.
Collapse
Affiliation(s)
- Matthew A Bochenek
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA, 02139, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
- Department of Anesthesiology, Boston Children's Hospital, 300 Longwood Ave, Boston, MA, 02115, USA
| | - Ben Walters
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA, 02139, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
- Department of Anesthesiology, Boston Children's Hospital, 300 Longwood Ave, Boston, MA, 02115, USA
| | - Jingping Zhang
- Harvard University, 7 Divinity Avenue, Cambridge, MA, 02138, USA
| | - Owen S Fenton
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA, 02139, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Amanda Facklam
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA, 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Zuzana Kroneková
- Department for Biomaterials Research, Polymer Institute of the Slovak Academy of Sciences, Dubravska cesta 9, Bratislava, 845 41, Slovakia
| | - Michal Pelach
- Department for Biomaterials Research, Polymer Institute of the Slovak Academy of Sciences, Dubravska cesta 9, Bratislava, 845 41, Slovakia
| | - Elise N Engquist
- Harvard University, 7 Divinity Avenue, Cambridge, MA, 02138, USA
| | - Nayara C Leite
- Harvard University, 7 Divinity Avenue, Cambridge, MA, 02138, USA
| | - Alex Morgart
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA, 02139, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
- Department of Anesthesiology, Boston Children's Hospital, 300 Longwood Ave, Boston, MA, 02115, USA
| | - Igor Lacík
- Department for Biomaterials Research, Polymer Institute of the Slovak Academy of Sciences, Dubravska cesta 9, Bratislava, 845 41, Slovakia
| | - Robert Langer
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA, 02139, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
- Department of Anesthesiology, Boston Children's Hospital, 300 Longwood Ave, Boston, MA, 02115, USA
- Division of Health Science Technology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Daniel G Anderson
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA, 02139, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
- Department of Anesthesiology, Boston Children's Hospital, 300 Longwood Ave, Boston, MA, 02115, USA
- Division of Health Science Technology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| |
Collapse
|
2
|
Kayki-Mutlu G, Aksoyalp ZS, Wojnowski L, Michel MC. A year in pharmacology: new drugs approved by the US Food and Drug Administration in 2023. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:2949-2970. [PMID: 38530400 PMCID: PMC11074039 DOI: 10.1007/s00210-024-03063-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 03/19/2024] [Indexed: 03/28/2024]
Abstract
With 54 new drugs and seven cellular and gene therapy products, the approvals by the US Food and Drug Administration (FDA) recovered 2023 from the 2022 dent back to the levels of 2020-2021. As in previous years of this annual review, we assign these new drugs to one of three levels of innovation: first drug against a condition ("first-in-indication"), first drug using a novel molecular mechanism ("first-in-class"), and "next-in-class," i.e., a drug using an already exploited molecular mechanism. We identify four (7%) "first-in-indication," 22 (36%) "first-in-class," and 35 (57%) "next-in-class" drugs. By treatment area, rare diseases (54%) and cancer drugs (23%) were once again the most prevalent (and partly overlapping) therapeutic areas. Other continuing trends were the use of accelerated regulatory approval pathways and the reliance on biopharmaceuticals (biologics). 2023 marks the approval of a first therapy based on CRISPR/Cas9 gene editing.
Collapse
Affiliation(s)
- Gizem Kayki-Mutlu
- Department of Pharmacology, Faculty of Pharmacy, Ankara University, Ankara, Türkiye
| | - Zinnet Sevval Aksoyalp
- Department of Pharmacology, Faculty of Pharmacy, Izmir Katip Celebi University, Izmir, Türkiye
| | - Leszek Wojnowski
- Department of Pharmacology, University Medical Center, Johannes Gutenberg University, Langenbeckstr. 1, 55118, Mainz, Germany
| | - Martin C Michel
- Department of Pharmacology, University Medical Center, Johannes Gutenberg University, Langenbeckstr. 1, 55118, Mainz, Germany.
| |
Collapse
|
3
|
Omori K, Qi M, Salgado M, Gonzalez N, Hui LT, Chen KT, Rawson J, Miao L, Komatsu H, Isenberg JS, Al-Abdullah IH, Mullen Y, Kandeel F. A scalable human islet 3D-culture platform maintains cell mass and function long-term for transplantation. Am J Transplant 2024; 24:177-189. [PMID: 37813189 DOI: 10.1016/j.ajt.2023.10.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 09/19/2023] [Accepted: 10/03/2023] [Indexed: 10/11/2023]
Abstract
Present-day islet culture methods provide short-term maintenance of cell viability and function, limiting access to islet transplantation. Attempts to lengthen culture intervals remain unsuccessful. A new method was developed to permit the long-term culture of islets. Human islets were embedded in polysaccharide 3D-hydrogel in cell culture inserts or gas-permeable chambers with serum-free CMRL 1066 supplemented media for up to 8 weeks. The long-term cultured islets maintained better morphology, cell mass, and viability at 4 weeks than islets in conventional suspension culture. In fact, islets cultured in the 3D-hydrogel retained β cell mass and function on par with freshly isolated islets in vitro and, when transplanted into diabetic mice, restored glucose balance similar to fresh islets. Using gas-permeable chambers, the 3D-hydrogel culture method was scaled up over 10-fold and maintained islet viability and function, although the cell mass recovery rate was 50%. Additional optimization of scale-up methods continues. If successful, this technology could afford flexibility and expand access to islet transplantation, especially single-donor islet-after-kidney transplantation.
Collapse
Affiliation(s)
- Keiko Omori
- Department of Translational Research and Cellular Therapeutics, Arthur Riggs Diabetes & Metabolism Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA.
| | - Meirigeng Qi
- Department of Translational Research and Cellular Therapeutics, Arthur Riggs Diabetes & Metabolism Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Mayra Salgado
- Department of Translational Research and Cellular Therapeutics, Arthur Riggs Diabetes & Metabolism Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Nelson Gonzalez
- Department of Translational Research and Cellular Therapeutics, Arthur Riggs Diabetes & Metabolism Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Lauren T Hui
- Department of Translational Research and Cellular Therapeutics, Arthur Riggs Diabetes & Metabolism Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Kuan-Tsen Chen
- Department of Translational Research and Cellular Therapeutics, Arthur Riggs Diabetes & Metabolism Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Jeffrey Rawson
- Department of Translational Research and Cellular Therapeutics, Arthur Riggs Diabetes & Metabolism Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Lynn Miao
- Department of Translational Research and Cellular Therapeutics, Arthur Riggs Diabetes & Metabolism Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Hirotake Komatsu
- Department of Translational Research and Cellular Therapeutics, Arthur Riggs Diabetes & Metabolism Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Jeffrey S Isenberg
- Department of Diabetes Complications & Metabolism, Arthur Riggs Diabetes & Metabolism Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Ismail H Al-Abdullah
- Department of Translational Research and Cellular Therapeutics, Arthur Riggs Diabetes & Metabolism Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Yoko Mullen
- Department of Translational Research and Cellular Therapeutics, Arthur Riggs Diabetes & Metabolism Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Fouad Kandeel
- Department of Translational Research and Cellular Therapeutics, Arthur Riggs Diabetes & Metabolism Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| |
Collapse
|
4
|
Krishnan SR, Liu C, Bochenek MA, Bose S, Khatib N, Walters B, O’Keeffe L, Facklam A, Langer R, Anderson DG. A wireless, battery-free device enables oxygen generation and immune protection of therapeutic xenotransplants in vivo. Proc Natl Acad Sci U S A 2023; 120:e2311707120. [PMID: 37738292 PMCID: PMC10556620 DOI: 10.1073/pnas.2311707120] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 08/10/2023] [Indexed: 09/24/2023] Open
Abstract
The immune isolation of cells within devices has the potential to enable long-term protein replacement and functional cures for a range of diseases, without requiring immune suppressive therapy. However, a lack of vasculature and the formation of fibrotic capsules around cell immune-isolating devices limits oxygen availability, leading to hypoxia and cell death in vivo. This is particularly problematic for pancreatic islet cells that have high O2 requirements. Here, we combine bioelectronics with encapsulated cell therapies to develop the first wireless, battery-free oxygen-generating immune-isolating device (O2-Macrodevice) for the oxygenation and immune isolation of cells in vivo. The system relies on electrochemical water splitting based on a water-vapor reactant feed, sustained by wireless power harvesting based on a flexible resonant inductive coupling circuit. As such, the device does not require pumping, refilling, or ports for recharging and does not generate potentially toxic side products. Through systematic in vitro studies with primary cell lines and cell lines engineered to secrete protein, we demonstrate device performance in preventing hypoxia in ambient oxygen concentrations as low as 0.5%. Importantly, this device has shown the potential to enable subcutaneous (SC) survival of encapsulated islet cells, in vivo in awake, freely moving, immune-competent animals. Islet transplantation in Type I Diabetes represents an important application space, and 1-mo studies in immune-competent animals with SC implants show that the O2-Macrodevice allows for survival and function of islets at high densities (~1,000 islets/cm2) in vivo without immune suppression and induces normoglycemia in diabetic animals.
Collapse
Affiliation(s)
- Siddharth R. Krishnan
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Anesthesiology, Boston Children’s Hospital, Boston, MA02115
| | - Claudia Liu
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Anesthesiology, Boston Children’s Hospital, Boston, MA02115
| | - Matthew A. Bochenek
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Anesthesiology, Boston Children’s Hospital, Boston, MA02115
| | - Suman Bose
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Anesthesiology, Boston Children’s Hospital, Boston, MA02115
| | - Nima Khatib
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Anesthesiology, Boston Children’s Hospital, Boston, MA02115
| | - Ben Walters
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Anesthesiology, Boston Children’s Hospital, Boston, MA02115
| | - Laura O’Keeffe
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Anesthesiology, Boston Children’s Hospital, Boston, MA02115
| | - Amanda Facklam
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Bioengineering, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Robert Langer
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Anesthesiology, Boston Children’s Hospital, Boston, MA02115
- Department of Bioengineering, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA02139
- Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Daniel G. Anderson
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Anesthesiology, Boston Children’s Hospital, Boston, MA02115
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA02139
- Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA02139
| |
Collapse
|
5
|
Alam S, Khan SJ, Lee CYF, Zaidi SAT, Murtaza SF. Type 1 Diabetes Mellitus Management and Islet Cell Therapy: A New Chapter in Patient Care. Cureus 2023; 15:e46912. [PMID: 37954726 PMCID: PMC10639080 DOI: 10.7759/cureus.46912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/12/2023] [Indexed: 11/14/2023] Open
Abstract
Diabetes mellitus (DM) is a complex endocrine disorder characterized by abnormally high levels of glucose, also called hyperglycemia. DM usually occurs when the body does not produce enough insulin or cannot respond to the insulin in the body. Type 1 diabetes mellitus (T1DM) or insulin-dependent diabetes is an autoimmune disease that affects around 8 million people in the world. Patients with T1DM experience an array of symptoms such as polyuria, polydipsia, and weight loss. These patients are prone to immediate life-threatening complications, including hypoglycemia and diabetic ketoacidosis. These patients are also at increased risk of ischemic heart disease, stroke, chronic kidney disease, vision loss, and even damage to nerve endings resulting in neuropathy. In this article, we will discuss type 1 diabetes mellitus and the different treatment options, focusing primarily on the Food and Drug Administration (FDA)-approved first cellular therapy for T1DM, donislecel.
Collapse
Affiliation(s)
- Sadaf Alam
- Internal Medicine, Meritus Health General Hospital, Hagerstown, USA
| | - Salman J Khan
- Public Health, University of Massachusetts, Amherst, USA
- Hematology & Oncology, Mayo Clinic, Jacksonville, USA
| | | | - Syed Asjad Tauheed Zaidi
- Hematology & Oncology, Mayo Clinic, Jacksonville, USA
- Medicine, Shalamar Medical and Dental College, Lahore, PAK
| | - Syeda Fatima Murtaza
- Medicine, Mayo Clinic, Jacksonville, USA
- Medicine, Allama Iqbal Medical College, Lahore, PAK
| |
Collapse
|
6
|
Kabakchieva P, Assyov Y, Gerasoudis S, Vasilev G, Peshevska-Sekulovska M, Sekulovski M, Lazova S, Miteva DG, Gulinac M, Tomov L, Velikova T. Islet transplantation-immunological challenges and current perspectives. World J Transplant 2023; 13:107-121. [PMID: 37388389 PMCID: PMC10303418 DOI: 10.5500/wjt.v13.i4.107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/16/2023] [Accepted: 06/06/2023] [Indexed: 06/16/2023] Open
Abstract
Pancreatic islet transplantation is a minimally invasive procedure aiming to reverse the effects of insulin deficiency in patients with type 1 diabetes (T1D) by transplanting pancreatic beta cells. Overall, pancreatic islet transplantation has improved to a great extent, and cellular replacement will likely become the mainstay treatment. We review pancreatic islet transplantation as a treatment for T1D and the immunological challenges faced. Published data demonstrated that the time for islet cell transfusion varied between 2 and 10 h. Approximately 54% of the patients gained insulin independence at the end of the first year, while only 20% remained insulin-free at the end of the second year. Eventually, most transplanted patients return to using some form of exogenous insulin within a few years after the transplantation, which imposed the need to improve immunological factors before transplantation. We also discuss the immunosuppressive regimens, apoptotic donor lymphocytes, anti-TIM-1 antibodies, mixed chimerism-based tolerance induction, induction of antigen-specific tolerance utilizing ethylene carbodiimide-fixed splenocytes, pretransplant infusions of donor apoptotic cells, B cell depletion, preconditioning of isolated islets, inducing local immunotolerance, cell encapsulation and immunoisolation, using of biomaterials, immunomodulatory cells, etc.
Collapse
Affiliation(s)
- Plamena Kabakchieva
- Clinic of Internal Diseases, Naval Hospital-Varna, Military Medical Academy, Varna 9010, Bulgaria
| | - Yavor Assyov
- Clinic of Endocrinology, Department of Internal Diseases, University Hospital "Alexandrovska", Medical University-Sofia, Sofia 1434, Bulgaria
| | | | - Georgi Vasilev
- Department of Neurology, Faculty of Medicine, Medical University of Plovdiv, Plovdiv 4000, Bulgaria
| | - Monika Peshevska-Sekulovska
- Department of Gastroenterology, University Hospital Lozenetz, Sofia 1407, Bulgaria
- Medical Faculty, Sofia University St. Kliment Ohridski, Sofia 1407, Bulgaria
| | - Metodija Sekulovski
- Medical Faculty, Sofia University St. Kliment Ohridski, Sofia 1407, Bulgaria
- Department of Anesthesiology and Intensive Care, University hospital Lozenetz, Sofia 1407, Bulgaria
| | - Snezhina Lazova
- Department of Pediatric, University Hospital "N. I. Pirogov", Sofia 1606, Bulgaria
- Department of Healthcare, Faculty of Public Health "Prof. Tsekomir Vodenicharov, MD, DSc", Medical University of Sofia, Sofia 1527, Bulgaria
| | | | - Milena Gulinac
- Department of General and Clinical Pathology, Medical University of Plovdiv, Plovdiv 4000, Bulgaria
| | - Latchezar Tomov
- Department of Informatics, New Bulgarian University, Sofia 1618, Bulgaria
| | - Tsvetelina Velikova
- Medical Faculty, Sofia University St. Kliment Ohridski, Sofia 1407, Bulgaria
| |
Collapse
|
7
|
Barachini S, Biso L, Kolachalam S, Petrini I, Maggio R, Scarselli M, Longoni B. Mesenchymal Stem Cell in Pancreatic Islet Transplantation. Biomedicines 2023; 11:biomedicines11051426. [PMID: 37239097 DOI: 10.3390/biomedicines11051426] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/02/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Pancreatic islet transplantation is a therapeutic option for achieving physiologic regulation of plasma glucose in Type 1 diabetic patients. At the same time, mesenchymal stem cells (MSCs) have demonstrated their potential in controlling graft rejection, the most fearsome complication in organ/tissue transplantation. MSCs can interact with innate and adaptive immune system cells either through direct cell-cell contact or through their secretome including exosomes. In this review, we discuss current findings regarding the graft microenvironment of pancreatic islet recipient patients and the crucial role of MSCs operation as cell managers able to control the immune system to prevent rejection and promote endogenous repair. We also discuss how challenging stressors, such as oxidative stress and impaired vasculogenesis, may jeopardize graft outcomes. In order to face these adverse conditions, we consider either hypoxia-exposure preconditioning of MSCs or human stem cells with angiogenic potential in organoids to overcome islets' lack of vasculature. Along with the shepherding of carbon nanotubes-loaded MSCs to the transplantation site by a magnetic field, these studies look forward to exploiting MSCs stemness and their immunomodulatory properties in pancreatic islet transplantation.
Collapse
Affiliation(s)
- Serena Barachini
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Letizia Biso
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
| | - Shivakumar Kolachalam
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
- Aseptic Pharmacy, Charing Cross Hospital, Imperial College Healthcare NHS Trust, London W6 8RF, UK
| | - Iacopo Petrini
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
| | - Roberto Maggio
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Marco Scarselli
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
| | - Biancamaria Longoni
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
| |
Collapse
|
8
|
Medina JD, Barber GF, Coronel MM, Hunckler MD, Linderman SW, Quizon MJ, Ulker V, Yolcu ES, Shirwan H, García AJ. A hydrogel platform for co-delivery of immunomodulatory proteins for pancreatic islet allografts. J Biomed Mater Res A 2022; 110:1728-1737. [PMID: 35841329 DOI: 10.1002/jbm.a.37429] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 07/07/2022] [Accepted: 07/09/2022] [Indexed: 11/06/2022]
Abstract
Type 1 diabetes (T1D), an autoimmune disorder in which the insulin-producing β-cells in the islets of Langerhans in the pancreas are destroyed, afflicts over 1.6 million Americans. Although pancreatic islet transplantation has shown promise in treating T1D, continuous use of required immunosuppression regimens limits clinical islet transplantation as it poses significant adverse effects on graft recipients and does not achieve consistent long-term graft survival with 50%-70% of recipients maintaining insulin independence at 5 years. T cells play a key role in graft rejection, and rebalancing pathogenic T effector and protective T regulatory cells can regulate autoimmune disorders and transplant rejection. The synergy of the interleukin-2 (IL-2) and Fas immunomodulatory pathways presents an avenue for eliminating the need for systemic immune suppression by exploiting IL-2's role in expanding regulatory T cells and leveraging Fas ligand (FasL) activity on antigen-induced cell death of effector T cells. Herein, we developed a hydrogel platform for co-delivering an analog of IL-2, IL-2D, and FasL-presenting microgels to achieve localized immunotolerance to pancreatic islets by targeting the upregulation of regulatory T cells and effector T cells simultaneously. Although this hydrogel provided for sustained, local delivery of active immunomodulatory proteins, indefinite allograft survival was not achieved. Immune profiling analysis revealed upregulation of target regulatory T cells but also increases in Granzyme B-expressing CD8+ T cells at the graft site. We attribute the failed establishment of allograft survival to these Granzyme B-expressing T cells. This study underscores the delicate balance of immunomodulatory components important for allograft survival - whose outcome can be dependent on timing, duration, modality of delivery, and disease model.
Collapse
Affiliation(s)
- Juan D Medina
- Biomedical Engineering, Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Graham F Barber
- Mechanical Engineering, Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Maria M Coronel
- Mechanical Engineering, Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Michael D Hunckler
- Mechanical Engineering, Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Stephen W Linderman
- Department of Medicine, Division of Cardiology, Emory University, Atlanta, Georgia, USA
| | - Michelle J Quizon
- Mechanical Engineering, Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Vahap Ulker
- Department of Child Health and Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, Missouri, USA
| | - Esma S Yolcu
- Department of Child Health and Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, Missouri, USA
| | - Haval Shirwan
- Department of Child Health and Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, Missouri, USA
| | - Andrés J García
- Mechanical Engineering, Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
9
|
Jang SB, Jin SM, Kim HS, Jeong YY, Lee SJ, Hahn S, Lee H, Lee HS, Kim JH, Lee DY. DAMP-modulating nanoparticle for successful pancreatic islet and stem cell transplantation. Biomaterials 2022; 287:121679. [PMID: 35849998 DOI: 10.1016/j.biomaterials.2022.121679] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 06/29/2022] [Accepted: 07/09/2022] [Indexed: 11/02/2022]
Abstract
Cell therapy is targeted at many organs, but locally or systemically delivered cells are shortly able to survive resulting from the immune/inflammation reactions and irregular cell targeting. Here we explore the multimodal nanoparticle having anti-inflammation and magnetic guidance for successful cell transplantation. We design magnetic resonance (MR)-active glycyrrhizin-chitosan coated superparamagnetic iron oxide nanoparticle (SPIO@Chitosan-GL) to inhibit release of inflammatory damage-associated molecular pattern (DAMP) protein and to offer noninvasive monitoring after intrahepatic transplantation of pancreatic islets and mesenchymal stem cell (MSC) spheroids. Intracellular delivered SPIO@Chitosan-GL is not cytotoxic to pancreatic islets and MSC spheroids and attenuate DAMP release from them. Also, therapeutic cells labeled with SPIO@Chitosan-GL are magnetically localized to the intended lobe of liver during transplantation procedure. If necessary, partial hepatectomy can be performed to remove the localized therapeutic cells for protection of the remaining liver lobes from systemic inflammation. Therapeutically, the cells selectively localized in the liver can treat blood glucose in diabetic mice to normal levels with DAMP modulation, and are visualized using in vivo MR imaging for over 4 weeks. Collectively, DAMP-modulating SPIO@Chitosan-GL can be used in multimodal nanomedince for attenuating the inflammation reaction by transplanted cells and for noninvasively long-term monitoring of transplanted cells.
Collapse
Affiliation(s)
- Soo Bin Jang
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Sang-Man Jin
- Division of Endocrinology and Metabolism, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Republic of Korea
| | - Hyung Shik Kim
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Yong Yeon Jeong
- Department of Radiology, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, Hwasun, 58128, Republic of Korea
| | - Sang Jun Lee
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Soojung Hahn
- Division of Endocrinology and Metabolism, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Republic of Korea; Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, 06355, Republic of Korea
| | - Hyemin Lee
- Division of Endocrinology and Metabolism, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Republic of Korea; Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, 06355, Republic of Korea
| | - Han Sin Lee
- Division of Endocrinology and Metabolism, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Republic of Korea
| | - Jae Hyeon Kim
- Division of Endocrinology and Metabolism, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Republic of Korea; Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, 06355, Republic of Korea.
| | - Dong Yun Lee
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul, 04763, Republic of Korea; Institute of Nano Science & Technology (INST) & Institute for Bioengineering and Biopharmaceutical Research (IBBR), Hanyang University, Seoul, 04763, Republic of Korea; Elixir Pharmatech Inc., Seoul, 04763, Republic of Korea.
| |
Collapse
|
10
|
Holt RIG, DeVries JH, Hess-Fischl A, Hirsch IB, Kirkman MS, Klupa T, Ludwig B, Nørgaard K, Pettus J, Renard E, Skyler JS, Snoek FJ, Weinstock RS, Peters AL. The management of type 1 diabetes in adults. A consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetologia 2021; 64:2609-2652. [PMID: 34590174 PMCID: PMC8481000 DOI: 10.1007/s00125-021-05568-3] [Citation(s) in RCA: 134] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD) convened a writing group to develop a consensus statement on the management of type 1 diabetes in adults. The writing group has considered the rapid development of new treatments and technologies and addressed the following topics: diagnosis, aims of management, schedule of care, diabetes self-management education and support, glucose monitoring, insulin therapy, hypoglycaemia, behavioural considerations, psychosocial care, diabetic ketoacidosis, pancreas and islet transplantation, adjunctive therapies, special populations, inpatient management and future perspectives. Although we discuss the schedule for follow-up examinations and testing, we have not included the evaluation and treatment of the chronic microvascular and macrovascular complications of diabetes as these are well-reviewed and discussed elsewhere. The writing group was aware of both national and international guidance on type 1 diabetes and did not seek to replicate this but rather aimed to highlight the major areas that healthcare professionals should consider when managing adults with type 1 diabetes. Though evidence-based where possible, the recommendations in the report represent the consensus opinion of the authors. Graphical abstract.
Collapse
Affiliation(s)
- Richard I G Holt
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK.
- Southampton National Institute for Health Research Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK.
| | - J Hans DeVries
- Amsterdam UMC, Internal Medicine, University of Amsterdam, Amsterdam, the Netherlands
- Profil Institute for Metabolic Research, Neuss, Germany
| | - Amy Hess-Fischl
- Kovler Diabetes Center, University of Chicago, Chicago, IL, USA
| | - Irl B Hirsch
- UW Medicine Diabetes Institute, Seattle, WA, USA
| | - M Sue Kirkman
- University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Tomasz Klupa
- Department of Metabolic Diseases, Center for Advanced Technologies in Diabetes, Jagiellonian University Medical College, Kraków, Poland
| | - Barbara Ludwig
- University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Kirsten Nørgaard
- Steno Diabetes Center Copenhagen, Gentofte, Denmark
- University of Copenhagen, Copenhagen, Denmark
| | | | - Eric Renard
- Montpellier University Hospital, Montpellier, France
- Institute of Functional Genomics, University of Montpellier, CNRS, Inserm, Montpellier, France
| | - Jay S Skyler
- University of Miami Miller School of Medicine, Miami, FL, USA
| | - Frank J Snoek
- Amsterdam UMC, Medical Psychology, Vrije Universiteit, Amsterdam, the Netherlands
| | | | - Anne L Peters
- Keck School of Medicine of USC, Los Angeles, CA, USA
| |
Collapse
|
11
|
Holt RIG, DeVries JH, Hess-Fischl A, Hirsch IB, Kirkman MS, Klupa T, Ludwig B, Nørgaard K, Pettus J, Renard E, Skyler JS, Snoek FJ, Weinstock RS, Peters AL. The Management of Type 1 Diabetes in Adults. A Consensus Report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care 2021; 44:2589-2625. [PMID: 34593612 DOI: 10.2337/dci21-0043] [Citation(s) in RCA: 228] [Impact Index Per Article: 76.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 08/25/2021] [Indexed: 02/03/2023]
Abstract
The American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD) convened a writing group to develop a consensus statement on the management of type 1 diabetes in adults. The writing group has considered the rapid development of new treatments and technologies and addressed the following topics: diagnosis, aims of management, schedule of care, diabetes self-management education and support, glucose monitoring, insulin therapy, hypoglycemia, behavioral considerations, psychosocial care, diabetic ketoacidosis, pancreas and islet transplantation, adjunctive therapies, special populations, inpatient management, and future perspectives. Although we discuss the schedule for follow-up examinations and testing, we have not included the evaluation and treatment of the chronic microvascular and macrovascular complications of diabetes as these are well-reviewed and discussed elsewhere. The writing group was aware of both national and international guidance on type 1 diabetes and did not seek to replicate this but rather aimed to highlight the major areas that health care professionals should consider when managing adults with type 1 diabetes. Though evidence-based where possible, the recommendations in the report represent the consensus opinion of the authors.
Collapse
Affiliation(s)
- Richard I G Holt
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, U.K. .,Southampton National Institute for Health Research Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, U.K
| | - J Hans DeVries
- Amsterdam UMC, Internal Medicine, University of Amsterdam, Amsterdam, the Netherlands.,Profil Institute for Metabolic Research, Neuss, Germany
| | | | | | - M Sue Kirkman
- University of North Carolina School of Medicine, Chapel Hill, NC
| | - Tomasz Klupa
- Department of Metabolic Diseases, Center for Advanced Technologies in Diabetes, Jagiellonian University Medical College, Kraków, Poland
| | - Barbara Ludwig
- University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Kirsten Nørgaard
- Steno Diabetes Center Copenhagen, Gentofte, Denmark.,University of Copenhagen, Copenhagen, Denmark
| | | | - Eric Renard
- Montpellier University Hospital, Montpellier, France.,Institute of Functional Genomics, University of Montpellier, CNRS, Inserm, Montpellier, France
| | - Jay S Skyler
- University of Miami Miller School of Medicine, Miami, FL
| | - Frank J Snoek
- Amsterdam UMC, Medical Psychology, Vrije Universiteit, Amsterdam, the Netherlands
| | | | | |
Collapse
|
12
|
Alwahsh SM, Qutachi O, Starkey Lewis PJ, Bond A, Noble J, Burgoyne P, Morton N, Carter R, Mann J, Ferreira‐Gonzalez S, Alvarez‐Paino M, Forbes SJ, Shakesheff KM, Forbes S. Fibroblast growth factor 7 releasing particles enhance islet engraftment and improve metabolic control following islet transplantation in mice with diabetes. Am J Transplant 2021; 21:2950-2963. [PMID: 33428803 PMCID: PMC8603932 DOI: 10.1111/ajt.16488] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 12/20/2020] [Accepted: 01/05/2021] [Indexed: 01/25/2023]
Abstract
Transplantation of islets in type 1 diabetes (T1D) is limited by poor islet engraftment into the liver, with two to three donor pancreases required per recipient. We aimed to condition the liver to enhance islet engraftment to improve long-term graft function. Diabetic mice received a non-curative islet transplant (n = 400 islets) via the hepatic portal vein (HPV) with fibroblast growth factor 7-loaded galactosylated poly(DL-lactide-co-glycolic acid) (FGF7-GAL-PLGA) particles; 26-µm diameter particles specifically targeted the liver, promoting hepatocyte proliferation in short-term experiments: in mice receiving 0.1-mg FGF7-GAL-PLGA particles (60-ng FGF7) vs vehicle, cell proliferation was induced specifically in the liver with greater efficacy and specificity than subcutaneous FGF7 (1.25 mg/kg ×2 doses; ~75-µg FGF7). Numbers of engrafted islets and vascularization were greater in liver sections of mice receiving islets and FGF7-GAL-PLGA particles vs mice receiving islets alone, 72 h posttransplant. More mice (six of eight) that received islets and FGF7-GAL-PLGA particles normalized blood glucose concentrations by 30-days posttransplant, versus zero of eight mice receiving islets alone with no evidence of increased proliferation of cells within the liver at this stage and normal liver function tests. This work shows that liver-targeted FGF7-GAL-PLGA particles achieve selective FGF7 delivery to the liver-promoting islet engraftment to help normalize blood glucose levels with a good safety profile.
Collapse
Affiliation(s)
- Salamah M. Alwahsh
- Centre for Regenerative MedicineUniversity of EdinburghEdinburghUK,Joint MD ProgramCollege of Medicine and Health SciencesPalestine Polytechnic UniversityHebronPalestine
| | - Omar Qutachi
- School of PharmacyUniversity of NottinghamUniversity ParkNottinghamUK
| | | | - Andrew Bond
- BHF Centre for Cardiovascular ScienceUniversity of EdinburghQueen’s Medical Research InstituteEdinburghUK
| | - June Noble
- BHF Centre for Cardiovascular ScienceUniversity of EdinburghQueen’s Medical Research InstituteEdinburghUK
| | - Paul Burgoyne
- BHF Centre for Cardiovascular ScienceUniversity of EdinburghQueen’s Medical Research InstituteEdinburghUK
| | - Nik Morton
- BHF Centre for Cardiovascular ScienceUniversity of EdinburghQueen’s Medical Research InstituteEdinburghUK
| | - Rod Carter
- BHF Centre for Cardiovascular ScienceUniversity of EdinburghQueen’s Medical Research InstituteEdinburghUK
| | - Janet Mann
- Centre for Regenerative MedicineUniversity of EdinburghEdinburghUK
| | | | | | - Stuart J. Forbes
- Centre for Regenerative MedicineUniversity of EdinburghEdinburghUK
| | | | - Shareen Forbes
- BHF Centre for Cardiovascular ScienceUniversity of EdinburghQueen’s Medical Research InstituteEdinburghUK
| |
Collapse
|
13
|
Yu X, Zhang P, He Y, Lin E, Ai H, Ramasubramanian MK, Wang Y, Xing Y, Oberholzer J. A Smartphone-Fluidic Digital Imaging Analysis System for Pancreatic Islet Mass Quantification. Front Bioeng Biotechnol 2021; 9:692686. [PMID: 34350161 PMCID: PMC8326521 DOI: 10.3389/fbioe.2021.692686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 07/06/2021] [Indexed: 11/20/2022] Open
Abstract
Islet beta-cell viability, function, and mass are three decisive attributes that determine the efficacy of human islet transplantation for type 1 diabetes mellitus (T1DM) patients. Islet mass is commonly assessed manually, which often leads to error and bias. Digital imaging analysis (DIA) system has shown its potential as an alternative, but it has some associated limitations. In this study, a Smartphone-Fluidic Digital Imaging Analysis (SFDIA) System, which incorporates microfluidic techniques and Python-based video processing software, was developed for islet mass assessment. We quantified islets by tracking multiple moving islets in a microfluidic channel using the SFDIA system, and we achieved a relatively consistent result. The counts from the SFDIA and manual counting showed an average difference of 2.91 ± 1.50%. Furthermore, our software can analyze and extract key human islet mass parameters, including quantity, size, volume, IEq, morphology, and purity, which are not fully obtainable from traditional manual counting methods. Using SFDIA on a representative islet sample, we measured an average diameter of 99.88 ± 53.91 µm, an average circularity of 0.591 ± 0.133, and an average solidity of 0.853 ± 0.107. Via analysis of dithizone-stained islets using SFDIA, we found that a higher islet tissue percentage is associated with top-layer islets as opposed to middle-layer islets (0.735 ± 0.213 and 0.576 ± 0.223, respectively). Our results indicate that the SFDIA system can potentially be used as a multi-parameter islet mass assay that is superior in accuracy and consistency, when compared to conventional manual techniques.
Collapse
Affiliation(s)
- Xiaoyu Yu
- Department of Surgery, University of Virginia, Charlottesville, VA, United States
| | - Pu Zhang
- Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, VA, United States
| | - Yi He
- Department of Surgery, University of Virginia, Charlottesville, VA, United States
| | - Emily Lin
- Department of Surgery, University of Virginia, Charlottesville, VA, United States
| | - Huiwang Ai
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, United States
| | - Melur K Ramasubramanian
- Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, VA, United States
| | - Yong Wang
- Department of Surgery, University of Virginia, Charlottesville, VA, United States
| | - Yuan Xing
- Department of Surgery, University of Virginia, Charlottesville, VA, United States
| | - José Oberholzer
- Department of Surgery, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
14
|
Kim G, Lee HS, Oh BJ, Kwon Y, Kim H, Ha S, Jin SM, Kim JH. Protective effect of a novel clinical-grade small molecule necrosis inhibitor against oxidative stress and inflammation during islet transplantation. Am J Transplant 2021; 21:1440-1452. [PMID: 32978875 DOI: 10.1111/ajt.16323] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 08/24/2020] [Accepted: 09/14/2020] [Indexed: 01/25/2023]
Abstract
Inhibition of mitochondrial reactive oxygen species (ROS) and subsequent damage-associated molecular patterns (DAMPs)-induced inflammatory responses could be a novel target in clinical islet transplantation. We investigated the protective effects of NecroX-7, a novel clinical-grade necrosis inhibitor that specifically targets mitochondrial ROS, against primary islet graft failure. Islets from heterozygote human islet amyloid polypeptide transgenic (hIAPP+/- ) mice and nonhuman primates (NHPs) were isolated or cultured with or without NecroX-7 in serum-deprived medium. Supplementation with NecroX-7 during hIAPP+/- mouse islet isolation markedly increased islet viability and adenosine triphosphate content, and attenuated ROS, transcription of c-Jun N-terminal kinases, high mobility group box 1, interleukin-1beta (IL-1 β ), IL-6, and tumor necrosis factor-alpha. Supplementation of NecroX-7 during serum-deprived culture also protected hIAPP+/- mouse and NHP islets against impaired viability, serum deprivation-induced ROS, proinflammatory response, and accumulation of toxic IAPP oligomer. Supplementation with NecroX-7 during isolation or serum-deprived culture of hIAPP+/- mouse and NHP islets also improved posttransplant glycemia in the recipient streptozotocin-induced diabetic hIAPP-/- mice and BALB/c-nu/nu mice, respectively. In conclusion, pretransplant administration of NecroX-7 during islet isolation and serum-deprived culture suppressed mitochondrial ROS injury, generation of DAMPs-induced proinflammatory responses, and accumulation of toxic IAPP oligomers ex vivo, and improved posttransplant glycemia in vivo.
Collapse
Affiliation(s)
- Gyuri Kim
- Division of Endocrinology and Metabolism, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Han Sin Lee
- Division of Endocrinology and Metabolism, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.,Samsung Biomedical Research Institute, Samsung Medical Center, Seoul, Korea
| | - Bae Jun Oh
- Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, Korea
| | - Youngsang Kwon
- Division of Endocrinology and Metabolism, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.,Samsung Biomedical Research Institute, Samsung Medical Center, Seoul, Korea.,Department of Health Sciences and Technology, SAIHST (Samsung Advanced Institute for Health Sciences & Technology, Seoul, Korea
| | - Hyunjin Kim
- Division of Endocrinology and Metabolism, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.,Samsung Biomedical Research Institute, Samsung Medical Center, Seoul, Korea
| | - Seungyeon Ha
- Division of Endocrinology and Metabolism, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.,Samsung Biomedical Research Institute, Samsung Medical Center, Seoul, Korea.,Department of Health Sciences and Technology, SAIHST (Samsung Advanced Institute for Health Sciences & Technology, Seoul, Korea
| | - Sang-Man Jin
- Division of Endocrinology and Metabolism, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.,Samsung Biomedical Research Institute, Samsung Medical Center, Seoul, Korea
| | - Jae Hyeon Kim
- Division of Endocrinology and Metabolism, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.,Samsung Biomedical Research Institute, Samsung Medical Center, Seoul, Korea.,Department of Health Sciences and Technology, SAIHST (Samsung Advanced Institute for Health Sciences & Technology, Seoul, Korea
| |
Collapse
|
15
|
Sabbah S, Liew A, Brooks AM, Kundu R, Reading JL, Flatt A, Counter C, Choudhary P, Forbes S, Rosenthal MJ, Rutter MK, Cairns S, Johnson P, Casey J, Peakman M, Shaw JA, Tree TIM. Autoreactive T cell profiles are altered following allogeneic islet transplantation with alemtuzumab induction and re-emerging phenotype is associated with graft function. Am J Transplant 2021; 21:1027-1038. [PMID: 32865886 DOI: 10.1111/ajt.16285] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 07/15/2020] [Accepted: 08/10/2020] [Indexed: 01/25/2023]
Abstract
Islet transplantation is an effective therapy for life-threatening hypoglycemia, but graft function gradually declines over time in many recipients. We characterized islet-specific T cells in recipients within an islet transplant program favoring alemtuzumab (ATZ) lymphodepleting induction and examined associations with graft function. Fifty-eight recipients were studied: 23 pretransplant and 40 posttransplant (including 5 with pretransplant phenotyping). The proportion with islet-specific T cell responses was not significantly different over time (pre-Tx: 59%; 1-6 m posttransplant: 38%; 7-12 m: 44%; 13-24 m: 47%; and >24 m: 45%). However, phenotype shifted significantly, with IFN-γ-dominated response in the pretransplant group replaced by IL-10-dominated response in the 1-6 m posttransplant group, reverting to predominantly IFN-γ-oriented response in the >24 m group. Clustering analysis of posttransplant responses revealed two main agglomerations, characterized by IFN-γ and IL-10 phenotypes, respectively. IL-10-oriented posttransplant response was associated with relatively low graft function. Recipients within the IL-10+ cluster had a significant decline in C-peptide levels in the period preceding the IL-10 response, but stable graft function following the response. In contrast, an IFN-γ response was associated with subsequently decreased C-peptide. Islet transplantation favoring ATZ induction is associated with an initial altered islet-specific T cell phenotype but reversion toward pretransplant profiles over time. Posttransplant autoreactive T cell phenotype may be a predictor of subsequent graft function.
Collapse
Affiliation(s)
- Shereen Sabbah
- Department of Immunobiology, Faculty of Life Sciences & Medicine, King's College London, London, UK.,NIHR Biomedical Research Centre, Guy's and St Thomas' NHS Foundation Trust and King's College London, London, UK
| | - Aaron Liew
- Newcastle University Translational and Clinical Research Institute, Newcastle, UK
| | - Augustin M Brooks
- Newcastle University Translational and Clinical Research Institute, Newcastle, UK
| | - Rhiannon Kundu
- Department of Immunobiology, Faculty of Life Sciences & Medicine, King's College London, London, UK.,NIHR Biomedical Research Centre, Guy's and St Thomas' NHS Foundation Trust and King's College London, London, UK
| | - James L Reading
- Department of Immunobiology, Faculty of Life Sciences & Medicine, King's College London, London, UK.,NIHR Biomedical Research Centre, Guy's and St Thomas' NHS Foundation Trust and King's College London, London, UK
| | - Anneliese Flatt
- Newcastle University Translational and Clinical Research Institute, Newcastle, UK
| | - Claire Counter
- Organ Donation and Transplantation, NHS Blood and Transplant, Bristol, UK
| | - Pratik Choudhary
- Diabetes Research Group, Guy's, King's and St. Thomas' School of Medicine, King's College London, London, UK
| | - Shareen Forbes
- Edinburgh Transplant Centre and Endocrinology Unit, University of Edinburgh, Edinburgh, UK
| | | | - Martin K Rutter
- Division of Diabetes, Endocrinology and Gastroenterology, Faculty of Biology, Medicine and Health, School of Medical Sciences, University of Manchester, Manchester, UK.,Diabetes, Endocrinology and Metabolism Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Stephanie Cairns
- Clinical Immunology Department, Scottish National Blood Transfusion Service, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - Paul Johnson
- Oxford Centre for Diabetes Endocrinology and Metabolism, University of Oxford, Oxford, UK
| | - John Casey
- Edinburgh Transplant Centre and Endocrinology Unit, University of Edinburgh, Edinburgh, UK
| | - Mark Peakman
- Department of Immunobiology, Faculty of Life Sciences & Medicine, King's College London, London, UK.,NIHR Biomedical Research Centre, Guy's and St Thomas' NHS Foundation Trust and King's College London, London, UK
| | - James A Shaw
- Newcastle University Translational and Clinical Research Institute, Newcastle, UK.,Institute of Transplantation, Freeman Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Timothy I M Tree
- Department of Immunobiology, Faculty of Life Sciences & Medicine, King's College London, London, UK.,NIHR Biomedical Research Centre, Guy's and St Thomas' NHS Foundation Trust and King's College London, London, UK
| |
Collapse
|
16
|
Brandhorst D, Brandhorst H, Acreman S, Abraham A, Johnson PRV. High Concentrations of Etanercept Reduce Human Islet Function and Integrity. J Inflamm Res 2021; 14:599-610. [PMID: 33679137 PMCID: PMC7926188 DOI: 10.2147/jir.s294663] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 01/09/2021] [Indexed: 12/25/2022] Open
Abstract
Background Most islet transplant groups worldwide routinely use the TNFα inhibitor Etanercept in their peri-transplant protocols. Surprisingly, there have been no published dose-response studies on the effects of Etanercept on human islets. Our study aimed to address this by treating cultured human islets with increasing concentrations of Etanercept. Materials and Methods Isolated human islets were cultured for 3–4 days in normoxic (21% oxygen) or in hypoxic (2% oxygen) atmosphere using Etanercept dissolved in a range of 2.5–40 µg/mL prior to islet characterisation. Results In normoxic atmosphere, it was found that 5 µg/mL is the most efficient dose to preserve islet morphological and functional integrity during culture. Increasing the dose to 10 µg/mL or more resulted in detrimental effects with respect to viability and glucose-stimulated insulin release. When human islets were cultured for 3 to 4 days in clinically relevant hypoxia and treated with 5 µg/mL Etanercept, post-culture islet survival (P < 0.001) and in vitro function (P < 0.01) were significantly improved. This correlated with a substantially reduced cytokine production (P < 0.05), improved mitochondrial function (P < 0.01), and reduced production of reactive oxygen species (P < 0.001) in hypoxia-exposed islets. Conclusion These findings suggest that the therapeutic window of Etanercept is very narrow and that this should be considered when optimising the dosage and route of Etanercept administration in islet-transplant recipients or when designing novel drug-delivering islet scaffolds.
Collapse
Affiliation(s)
- Daniel Brandhorst
- Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, UK.,Oxford Consortium for Islet Transplantation, Oxford Centre for Diabetes, Endocrinology, and Metabolism (OCDEM), Churchill Hospital, University of Oxford, Oxford, OX3 7LE, UK
| | - Heide Brandhorst
- Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, UK.,Oxford Consortium for Islet Transplantation, Oxford Centre for Diabetes, Endocrinology, and Metabolism (OCDEM), Churchill Hospital, University of Oxford, Oxford, OX3 7LE, UK
| | - Samuel Acreman
- Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, UK.,Oxford Consortium for Islet Transplantation, Oxford Centre for Diabetes, Endocrinology, and Metabolism (OCDEM), Churchill Hospital, University of Oxford, Oxford, OX3 7LE, UK
| | - Anju Abraham
- Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, UK.,Oxford Consortium for Islet Transplantation, Oxford Centre for Diabetes, Endocrinology, and Metabolism (OCDEM), Churchill Hospital, University of Oxford, Oxford, OX3 7LE, UK
| | - Paul R V Johnson
- Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, UK.,Oxford Consortium for Islet Transplantation, Oxford Centre for Diabetes, Endocrinology, and Metabolism (OCDEM), Churchill Hospital, University of Oxford, Oxford, OX3 7LE, UK
| |
Collapse
|
17
|
Triolo TM, Bellin MD. Lessons from Human Islet Transplantation Inform Stem Cell-Based Approaches in the Treatment of Diabetes. Front Endocrinol (Lausanne) 2021; 12:636824. [PMID: 33776933 PMCID: PMC7992005 DOI: 10.3389/fendo.2021.636824] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 02/01/2021] [Indexed: 12/15/2022] Open
Abstract
Diabetes mellitus is characterized by the body's inability to control blood glucose levels within a physiological range due to loss and/or dysfunction of insulin producing beta cells. Progressive beta cell loss leads to hyperglycemia and if untreated can lead to severe complications and/or death. Treatments at this time are limited to pharmacologic therapies, including exogenous insulin or oral/injectable agents that improve insulin sensitivity or augment endogenous insulin secretion. Cell transplantation can restore physiologic endogenous insulin production and minimize hyper- and hypoglycemic excursions. Islet isolation procedures and management of transplant recipients have advanced over the last several decades; both tight glycemic control and insulin independence are achievable. Research has been conducted in isolating islets, monitoring islet function, and mitigating the immune response. However, this procedure is still only performed in a small minority of patients. One major barrier is the scarcity of human pancreatic islet donors, variation in donor pancreas quality, and variability in islet isolation success. Advances have been made in generation of glucose responsive human stem cell derived beta cells (sBCs) and islets from human pluripotent stem cells using directed differentiation. This is an emerging promising treatment for patients with diabetes because they could potentially serve as an unlimited source of functional, glucose-responsive beta cells. Challenges exist in their generation including long term survival of grafts, safety of transplantation, and protection from the immune response. This review focuses on the progress made in islet allo- and auto transplantation and how these advances may be extrapolated to the sBC context.
Collapse
Affiliation(s)
- Taylor M. Triolo
- The Barbara Davis Center for Diabetes, School of Medicine, University of Colorado Denver, Aurora, CO, United States
- *Correspondence: Taylor M. Triolo,
| | - Melena D. Bellin
- Department of Pediatrics, School of Medicine, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
18
|
Maffi P, Lundgren T, Tufveson G, Rafael E, Shaw JAM, Liew A, Saudek F, Witkowski P, Golab K, Bertuzzi F, Gustafsson B, Daffonchio L, Ruffini PA, Piemonti L. Targeting CXCR1/2 Does Not Improve Insulin Secretion After Pancreatic Islet Transplantation: A Phase 3, Double-Blind, Randomized, Placebo-Controlled Trial in Type 1 Diabetes. Diabetes Care 2020; 43:710-718. [PMID: 32019854 PMCID: PMC7876579 DOI: 10.2337/dc19-1480] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 12/11/2019] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Reparixin is an inhibitor of CXCR1/2 chemokine receptor shown to be an effective anti-inflammatory adjuvant in a pilot clinical trial in allotransplant recipients. RESEARCH DESIGN AND METHODS A phase 3, multicenter, randomized, double-blind, parallel-assignment study (NCT01817959) was conducted in recipients of islet allotransplants randomized (2:1) to reparixin or placebo in addition to immunosuppression. Primary outcome was the area under the curve (AUC) for C-peptide during the mixed-meal tolerance test at day 75 ± 5 after the first and day 365 ± 14 after the last transplant. Secondary end points included insulin independence and standard measures of glycemic control. RESULTS The intention-to-treat analysis did not show a significant difference in C-peptide AUC at both day 75 (27 on reparixin vs. 18 on placebo, P = 0.99) and day 365 (24 on reparixin vs. 15 on placebo, P = 0.71). There was no statistically significant difference between treatment groups at any time point for any secondary variable. Analysis of patient subsets showed a trend for a higher percentage of subjects retaining insulin independence for 1 year after a single islet infusion in patients receiving reparixin as compared with patients receiving placebo (26.7% vs. 0%, P = 0.09) when antithymocyte globulin was used as induction immunosuppression. CONCLUSIONS In this first double-blind randomized trial, islet transplantation data obtained with reparixin do not support a role of CXCR1/2 inhibition in preventing islet inflammation-mediated damage.
Collapse
Affiliation(s)
- Paola Maffi
- San Raffaele Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Torbjörn Lundgren
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Karolinska, Sweden
| | | | | | - James A M Shaw
- Institute of Cellular Medicine, Newcastle University, and Freeman Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, U.K
| | - Aaron Liew
- Institute of Cellular Medicine, Newcastle University, and Freeman Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, U.K
| | - Frantisek Saudek
- Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Piotr Witkowski
- Transplantation Institute, University of Chicago Medicine, Chicago, IL
| | - Karolina Golab
- Transplantation Institute, University of Chicago Medicine, Chicago, IL
| | | | | | - Luisa Daffonchio
- Research and Development Department, Dompé farmaceutici S.p.A., Milan, Italy
| | | | - Lorenzo Piemonti
- San Raffaele Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
| | | |
Collapse
|
19
|
Espes D, Liljebäck H, Franzén P, Quach M, Lau J, Carlsson PO. Function and Gene Expression of Islets Experimentally Transplanted to Muscle and Omentum. Cell Transplant 2020. [PMCID: PMC8544762 DOI: 10.1177/0963689720960184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Islet transplantation to the liver is a potential curative treatment for patients with type 1 diabetes. Muscle and the greater omentum are two alternative implantation sites, which can provide excellent engraftment and hold potential as future sites for stem-cell-derived beta-cell replacement. We evaluated the functional outcome after islet transplantation to muscle and omentum and found that alloxan-diabetic animals were cured with a low number of islets (200) at both sites. The cured animals had a normal area under the curve blood glucose response to intravenous glucose, albeit animals with intramuscular islet grafts had increased 120-min blood glucose levels. They also demonstrated an exaggerated counter regulatory response to hypoglycemia. The expression of genes important for beta-cell function was, at both implantation sites, comparable to that in native pancreatic islets. The gene expression of insulin (INS1 and INS2) and glucose transporter-2 was even increased, and the expression of lactate dehydrogenase decreased, at both sites when compared to native islets. We conclude that muscle and omentum provide excellent conditions for engraftment of transplanted islets. When compared to control, 200 islets implanted to the omentum displayed a restored glucose tolerance, whereas animals with intramuscular islet grafts of similar size displayed mild glucose intolerance.
Collapse
Affiliation(s)
- Daniel Espes
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Hanna Liljebäck
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Petra Franzén
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - My Quach
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Joey Lau
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Per-Ola Carlsson
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
20
|
Vantyghem MC, Chetboun M, Gmyr V, Jannin A, Espiard S, Le Mapihan K, Raverdy V, Delalleau N, Machuron F, Hubert T, Frimat M, Van Belle E, Hazzan M, Pigny P, Noel C, Caiazzo R, Kerr-Conte J, Pattou F. Ten-Year Outcome of Islet Alone or Islet After Kidney Transplantation in Type 1 Diabetes: A Prospective Parallel-Arm Cohort Study. Diabetes Care 2019; 42:2042-2049. [PMID: 31615852 DOI: 10.2337/dc19-0401] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 08/03/2019] [Indexed: 02/03/2023]
Abstract
OBJECTIVE The long-term outcome of allogenic islet transplantation is unknown. The aim of this study was to evaluate the 10-year outcome of islet transplantation in patients with type 1 diabetes and hypoglycemia unawareness and/or a functioning kidney graft. RESEARCH DESIGN AND METHODS We enrolled in this prospective parallel-arm cohort study 28 subjects with type 1 diabetes who received islet transplantation either alone (ITA) or after a kidney graft (IAK). Islet transplantation consisted of two or three intraportal infusions of allogenic islets administered within (median [interquartile range]) 68 days (43-92). Immunosuppression was induced with interleukin-2 receptor antibodies and maintained with sirolimus and tacrolimus. The primary outcome was insulin independence with A1C ≤6.5% (48 mmol/mol). Secondary outcomes were patient and graft survival, severe hypoglycemic events (SHEs), metabolic control, and renal function. RESULTS The primary outcome was met by (Kaplan-Meier estimates [95% CI]) 39% (22-57) and 28% (13-45) of patients 5 and 10 years after islet transplantation, respectively. Graft function persisted in 82% (62-92) and 78% (57-89) of case subjects after 5 and 10 years, respectively, and was associated with improved glucose control, reduced need for exogenous insulin, and a marked decrease of SHEs. ITA and IAK had similar outcomes. Primary graft function, evaluated 1 month after the last islet infusion, was significantly associated with the duration of graft function and insulin independence. CONCLUSIONS Islet transplantation with the Edmonton protocol can provide 10-year markedly improved metabolic control without SHEs in three-quarters of patients with type 1 diabetes, kidney transplanted or not.
Collapse
Affiliation(s)
- Marie-Christine Vantyghem
- University of Lille, U1190-EGID, Lille, France .,Department of Endocrinology, Diabetology, and Metabolism, Centre Hospitalier Universitaire de Lille, Lille, France.,Inserm, U1190, Lille, France
| | - Mikael Chetboun
- University of Lille, U1190-EGID, Lille, France.,Inserm, U1190, Lille, France.,Department of General and Endocrine Surgery, Centre Hospitalier Universitaire de Lille, Lille, France
| | - Valéry Gmyr
- University of Lille, U1190-EGID, Lille, France.,Inserm, U1190, Lille, France
| | - Arnaud Jannin
- Department of Endocrinology, Diabetology, and Metabolism, Centre Hospitalier Universitaire de Lille, Lille, France
| | - Stéphanie Espiard
- Department of Endocrinology, Diabetology, and Metabolism, Centre Hospitalier Universitaire de Lille, Lille, France
| | - Kristell Le Mapihan
- Department of Endocrinology, Diabetology, and Metabolism, Centre Hospitalier Universitaire de Lille, Lille, France
| | - Violeta Raverdy
- University of Lille, U1190-EGID, Lille, France.,Inserm, U1190, Lille, France
| | - Nathalie Delalleau
- University of Lille, U1190-EGID, Lille, France.,Inserm, U1190, Lille, France
| | - François Machuron
- Department of Methodology, Biostatistics, and Data Management, Centre Hospitalier Universitaire de Lille, Lille, France
| | - Thomas Hubert
- University of Lille, U1190-EGID, Lille, France.,Inserm, U1190, Lille, France
| | - Marie Frimat
- Department of Nephrology, Centre Hospitalier Universitaire de Lille, Lille, France
| | - Eric Van Belle
- Department of Cardiology, Centre Hospitalier Universitaire de Lille, Lille, France
| | - Marc Hazzan
- Department of Nephrology, Centre Hospitalier Universitaire de Lille, Lille, France
| | - Pascal Pigny
- Department of Biochemistry and Hormonology, Centre Hospitalier Universitaire de Lille, Lille, France
| | - Christian Noel
- Department of Nephrology, Centre Hospitalier Universitaire de Lille, Lille, France
| | - Robert Caiazzo
- University of Lille, U1190-EGID, Lille, France.,Inserm, U1190, Lille, France.,Department of General and Endocrine Surgery, Centre Hospitalier Universitaire de Lille, Lille, France
| | - Julie Kerr-Conte
- University of Lille, U1190-EGID, Lille, France.,Inserm, U1190, Lille, France
| | - François Pattou
- University of Lille, U1190-EGID, Lille, France .,Inserm, U1190, Lille, France.,Department of General and Endocrine Surgery, Centre Hospitalier Universitaire de Lille, Lille, France
| | | |
Collapse
|
21
|
Vantyghem MC, de Koning EJP, Pattou F, Rickels MR. Advances in β-cell replacement therapy for the treatment of type 1 diabetes. Lancet 2019; 394:1274-1285. [PMID: 31533905 PMCID: PMC6951435 DOI: 10.1016/s0140-6736(19)31334-0] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/28/2019] [Accepted: 05/31/2019] [Indexed: 12/17/2022]
Abstract
The main goal of treatment for type 1 diabetes is to control glycaemia with insulin therapy to reduce disease complications. For some patients, technological approaches to insulin delivery are inadequate, and allogeneic islet transplantation is a safe alternative for those patients who have had severe hypoglycaemia complicated by impaired hypoglycaemia awareness or glycaemic lability, or who already receive immunosuppressive drugs for a kidney transplant. Since 2000, intrahepatic islet transplantation has proven efficacious in alleviating the burden of labile diabetes and preventing complications related to diabetes, whether or not a previous kidney transplant is present. Age, body-mass index, renal status, and cardiopulmonary status affect the choice between pancreas or islet transplantation. Access to transplantation is limited by the number of deceased donors and the necessity of immunosuppression. Future approaches might include alternative sources of islets (eg, xenogeneic tissue or human stem cells), extrahepatic sites of implantation (eg, omental, subcutaneous, or intramuscular), and induction of immune tolerance or encapsulation of islets.
Collapse
Affiliation(s)
- Marie-Christine Vantyghem
- University of Lille, European Genomic Institute for Diabetes, Lille, France; Department of Endocrinology, Diabetology and Metabolism, Centre Hospitalier Universitaire de Lille, Lille, France; Inserm, Translational Research for Diabetes, Lille, France.
| | - Eelco J P de Koning
- Department of Medicine, Leiden University Medical Center, Leiden, Netherlands; Hubrecht Institute of the Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Utrecht, Netherlands
| | - François Pattou
- University of Lille, European Genomic Institute for Diabetes, Lille, France; Department of General and Endocrine Surgery Centre, Centre Hospitalier Universitaire de Lille, Lille, France; Inserm, Translational Research for Diabetes, Lille, France
| | - Michael R Rickels
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, USA; Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
22
|
Johnson MA, Kleinberger R, Abu Helal A, Latchminarine N, Ayyash A, Shi S, Burke NAD, Holloway AC, Stöver HDH. Quantifying cellular protrusion in alginate capsules with covalently crosslinked shells. J Microencapsul 2019; 36:421-431. [DOI: 10.1080/02652048.2019.1618404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Mitchell A. Johnson
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, ON, Canada
| | - Rachelle Kleinberger
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, ON, Canada
| | - Ali Abu Helal
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, ON, Canada
| | - Nicole Latchminarine
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, ON, Canada
| | - Ahmed Ayyash
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, ON, Canada
| | - Shanna Shi
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, ON, Canada
| | - Nicholas A. D. Burke
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, ON, Canada
| | - Alison C. Holloway
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, ON, Canada
| | - Harald D. H. Stöver
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
23
|
Indications for islet or pancreatic transplantation: Statement of the TREPID working group on behalf of the Société francophone du diabète (SFD), Société francaise d’endocrinologie (SFE), Société francophone de transplantation (SFT) and Société française de néphrologie – dialyse – transplantation (SFNDT). DIABETES & METABOLISM 2019; 45:224-237. [DOI: 10.1016/j.diabet.2018.07.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 05/30/2018] [Accepted: 07/24/2018] [Indexed: 12/28/2022]
|
24
|
Rickels MR, Robertson RP. Pancreatic Islet Transplantation in Humans: Recent Progress and Future Directions. Endocr Rev 2019; 40:631-668. [PMID: 30541144 PMCID: PMC6424003 DOI: 10.1210/er.2018-00154] [Citation(s) in RCA: 169] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 10/26/2018] [Indexed: 12/11/2022]
Abstract
Pancreatic islet transplantation has become an established approach to β-cell replacement therapy for the treatment of insulin-deficient diabetes. Recent progress in techniques for islet isolation, islet culture, and peritransplant management of the islet transplant recipient has resulted in substantial improvements in metabolic and safety outcomes for patients. For patients requiring total or subtotal pancreatectomy for benign disease of the pancreas, isolation of islets from the diseased pancreas with intrahepatic transplantation of autologous islets can prevent or ameliorate postsurgical diabetes, and for patients previously experiencing painful recurrent acute or chronic pancreatitis, quality of life is substantially improved. For patients with type 1 diabetes or insulin-deficient forms of pancreatogenic (type 3c) diabetes, isolation of islets from a deceased donor pancreas with intrahepatic transplantation of allogeneic islets can ameliorate problematic hypoglycemia, stabilize glycemic lability, and maintain on-target glycemic control, consequently with improved quality of life, and often without the requirement for insulin therapy. Because the metabolic benefits are dependent on the numbers of islets transplanted that survive engraftment, recipients of autoislets are limited to receive the number of islets isolated from their own pancreas, whereas recipients of alloislets may receive islets isolated from more than one donor pancreas. The development of alternative sources of islet cells for transplantation, whether from autologous, allogeneic, or xenogeneic tissues, is an active area of investigation that promises to expand access and indications for islet transplantation in the future treatment of diabetes.
Collapse
Affiliation(s)
- Michael R Rickels
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - R Paul Robertson
- Division of Metabolism, Endocrinology, and Nutrition, Department of Medicine, University of Washington School of Medicine, Seattle, Washington
- Division of Endocrinology, Department of Medicine, University of Minnesota, Minneapolis, Minnesota
- Pacific Northwest Diabetes Research Institute, Seattle, Washington
| |
Collapse
|
25
|
Li X, Meng Q, Zhang L. Overcoming Immunobiological Barriers Against Porcine Islet Xenografts: What Should Be Done? Pancreas 2019; 48:299-308. [PMID: 30855426 DOI: 10.1097/mpa.0000000000001259] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Porcine islets might represent an ideal solution to the severe shortage of living donor islets available for transplantation and thus have great potential for the treatment of diabetes. Although tremendous progress has been achieved through recent experiments, the immune response remains a major obstacle. This review first describes the 3 major pathways of rejection: hyperacute rejection mediated by preformed natural antibodies and complement, instant blood-mediated inflammatory reactions, and acute cell-mediated rejection. Furthermore, this review examines immune-related strategies, including major advances, which have been shown to extend the life and/or function of porcine islets in vitro and in vivo: (1) genetic modification to make porcine islets more compatible with the recipient, (2) optimization of the newly defined biological agents that have been shown to promote long-term survival of xenografts in nonhuman primates, and (3) development of novel immunoisolation technologies that maintain the long-term survival of islet xenografts without the use of systemic immunosuppressive drugs. Finally, the clinical application of porcine islet transplantation is presented. Even though less clinical information is available, experimental data indicate that porcine islet xenografts are likely to become a standard treatment for patients with type 1 diabetes in the future.
Collapse
Affiliation(s)
- Xinyu Li
- From the Department of General Surgery, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, China
| | | | | |
Collapse
|
26
|
Szempruch KR, Banerjee O, McCall RC, Desai CS. Use of anti-inflammatory agents in clinical islet cell transplants: A qualitative systematic analysis. Islets 2019; 11:65-75. [PMID: 31149871 PMCID: PMC6548473 DOI: 10.1080/19382014.2019.1601543] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Immunologic and non-immunologic loss of islet cells upon their transplantation into the liver leads to suboptimal outcomes. Anti-inflammatory agents are used during autologous and allogeneic transplantation. The aim of this qualitative systematic literature review is to evaluate their clinical use and safety. Electronic databases Embase, PubMed, Cumulative Index for Nursing and Allied Health Literature, ClinicalTrials.gov, and EU Clinical Trials Register were searched. Of the 216 unique citations, 10 with tumor necrosis factor (TNF) blockers [etanercept (ETA) or infliximab] and 3 with both TNF blockers and an interluekin-1 receptor antagonist [anakinra (ANA)]) were included. Of these, 12 were in allogeneic and one in autologous transplant. Insulin independence with decreased islet cells and number of transfusions were reported with their use. One infection was reported in a group receiving ETA. Analysis suggested that the use of ETA ± ANA have the potential to improve outcomes in islet cell transplant.
Collapse
Affiliation(s)
| | - Oyshik Banerjee
- Department of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - Rebecca C. McCall
- Health Sciences Library University of North Carolina, Chapel Hill, USA
| | - Chirag S. Desai
- Department of Surgery, Abdominal Transplant, University of North Carolina, Chapel Hill, NC, USA
- CONTACT Chirag S. Desai Department of Surgery, Abdominal Transplant, University of North Carolina Medical Center, 4021 Burnett-Womack CB 7211, Chapel Hill, NC 27599
| |
Collapse
|
27
|
Bochenek MA, Veiseh O, Vegas AJ, McGarrigle JJ, Qi M, Marchese E, Omami M, Doloff JC, Mendoza-Elias J, Nourmohammadzadeh M, Khan A, Yeh CC, Xing Y, Isa D, Ghani S, Li J, Landry C, Bader AR, Olejnik K, Chen M, Hollister-Lock J, Wang Y, Greiner DL, Weir GC, Strand BL, Rokstad AMA, Lacik I, Langer R, Anderson DG, Oberholzer J. Alginate encapsulation as long-term immune protection of allogeneic pancreatic islet cells transplanted into the omental bursa of macaques. Nat Biomed Eng 2018; 2:810-821. [PMID: 30873298 PMCID: PMC6413527 DOI: 10.1038/s41551-018-0275-1] [Citation(s) in RCA: 206] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 07/12/2018] [Indexed: 12/29/2022]
Abstract
The transplantation of pancreatic islet cells could restore glycaemic control in patients with type-I diabetes. Microspheres for islet encapsulation have enabled long-term glycaemic control in diabetic rodent models; yet human patients transplanted with equivalent microsphere formulations have experienced only transient islet-graft function, owing to a vigorous foreign-body reaction (FBR), to pericapsular fibrotic overgrowth (PFO) and, in upright bipedal species, to the sedimentation of the microspheres within the peritoneal cavity. Here, we report the results of the testing, in non-human primate (NHP) models, of seven alginate formulations that were efficacious in rodents, including three that led to transient islet-graft function in clinical trials. Although one month post-implantation all formulations elicited significant FBR and PFO, three chemically modified, immune-modulating alginate formulations elicited reduced FBR. In conjunction with a minimally invasive transplantation technique into the bursa omentalis of NHPs, the most promising chemically modified alginate derivative (Z1-Y15) protected viable and glucose-responsive allogeneic islets for 4 months without the need for immunosuppression. Chemically modified alginate formulations may enable the long-term transplantation of islets for the correction of insulin deficiency.
Collapse
Affiliation(s)
- Matthew A Bochenek
- Division of Transplantation, Department of Surgery, University of Illinois at Chicago, Chicago, IL, USA
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Anesthesiology, Boston Children's Hospital, Boston, MA, USA
| | - Omid Veiseh
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Anesthesiology, Boston Children's Hospital, Boston, MA, USA
- Sigilon Therapeutics, Inc., Cambridge, MA, USA
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Arturo J Vegas
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Anesthesiology, Boston Children's Hospital, Boston, MA, USA
- Chemistry Department, Boston University, Boston, MA, USA
| | - James J McGarrigle
- Division of Transplantation, Department of Surgery, University of Illinois at Chicago, Chicago, IL, USA
- CellTrans Inc., Chicago, IL, USA
| | - Meirigeng Qi
- Division of Transplantation, Department of Surgery, University of Illinois at Chicago, Chicago, IL, USA
| | - Enza Marchese
- Division of Transplantation, Department of Surgery, University of Illinois at Chicago, Chicago, IL, USA
| | - Mustafa Omami
- Division of Transplantation, Department of Surgery, University of Illinois at Chicago, Chicago, IL, USA
| | - Joshua C Doloff
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Anesthesiology, Boston Children's Hospital, Boston, MA, USA
| | - Joshua Mendoza-Elias
- Division of Transplantation, Department of Surgery, University of Illinois at Chicago, Chicago, IL, USA
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Mohammad Nourmohammadzadeh
- Division of Transplantation, Department of Surgery, University of Illinois at Chicago, Chicago, IL, USA
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA
| | - Arshad Khan
- Division of Transplantation, Department of Surgery, University of Illinois at Chicago, Chicago, IL, USA
| | - Chun-Chieh Yeh
- Division of Transplantation, Department of Surgery, University of Illinois at Chicago, Chicago, IL, USA
| | - Yuan Xing
- Division of Transplantation, Department of Surgery, University of Illinois at Chicago, Chicago, IL, USA
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
- Department of Surgery and Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Douglas Isa
- Division of Transplantation, Department of Surgery, University of Illinois at Chicago, Chicago, IL, USA
- CellTrans Inc., Chicago, IL, USA
| | - Sofia Ghani
- Division of Transplantation, Department of Surgery, University of Illinois at Chicago, Chicago, IL, USA
- CellTrans Inc., Chicago, IL, USA
| | - Jie Li
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Anesthesiology, Boston Children's Hospital, Boston, MA, USA
- Sigilon Therapeutics, Inc., Cambridge, MA, USA
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Casey Landry
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Anesthesiology, Boston Children's Hospital, Boston, MA, USA
| | - Andrew R Bader
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Anesthesiology, Boston Children's Hospital, Boston, MA, USA
| | - Karsten Olejnik
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Anesthesiology, Boston Children's Hospital, Boston, MA, USA
- Sigilon Therapeutics, Inc., Cambridge, MA, USA
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Michael Chen
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Anesthesiology, Boston Children's Hospital, Boston, MA, USA
| | - Jennifer Hollister-Lock
- Section on Islet Cell and Regenerative Biology, Research Division, Joslin Diabetes Center, Boston, MA, USA
| | - Yong Wang
- Division of Transplantation, Department of Surgery, University of Illinois at Chicago, Chicago, IL, USA
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
- Department of Surgery and Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Dale L Greiner
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Gordon C Weir
- Section on Islet Cell and Regenerative Biology, Research Division, Joslin Diabetes Center, Boston, MA, USA
| | - Berit Løkensgard Strand
- Department of Biotechnology and Food Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Anne Mari A Rokstad
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Centre of Obesity, Clinic of Surgery, St. Olavs University Hospital, Trondheim, Norway
| | - Igor Lacik
- Polymer Institute, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Robert Langer
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Anesthesiology, Boston Children's Hospital, Boston, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
- Division of Health Science Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Daniel G Anderson
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Anesthesiology, Boston Children's Hospital, Boston, MA, USA.
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA.
- Division of Health Science Technology, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Jose Oberholzer
- Division of Transplantation, Department of Surgery, University of Illinois at Chicago, Chicago, IL, USA.
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA.
- Department of Surgery and Biomedical Engineering, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
28
|
Li X, Meng Q, Zhang L. The Fate of Allogeneic Pancreatic Islets following Intraportal Transplantation: Challenges and Solutions. J Immunol Res 2018; 2018:2424586. [PMID: 30345316 PMCID: PMC6174795 DOI: 10.1155/2018/2424586] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 08/27/2018] [Indexed: 12/26/2022] Open
Abstract
Pancreatic islet transplantation as a therapeutic option for type 1 diabetes mellitus is gaining widespread attention because this approach can restore physiological insulin secretion, minimize the risk of hypoglycemic unawareness, and reduce the risk of death due to severe hypoglycemia. However, there are many obstacles contributing to the early mass loss of the islets and progressive islet loss in the late stages of clinical islet transplantation, including hypoxia injury, instant blood-mediated inflammatory reactions, inflammatory cytokines, immune rejection, metabolic exhaustion, and immunosuppression-related toxicity that is detrimental to the islet allograft. Here, we discuss the fate of intrahepatic islets infused through the portal vein and propose potential interventions to promote islet allograft survival and improve long-term graft function.
Collapse
Affiliation(s)
- Xinyu Li
- Department of General Surgery, The 2nd Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Harbin, 150086 Heilongjiang Province, China
| | - Qiang Meng
- Department of General Surgery, The 2nd Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Harbin, 150086 Heilongjiang Province, China
| | - Lei Zhang
- Department of General Surgery, The 2nd Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Harbin, 150086 Heilongjiang Province, China
| |
Collapse
|
29
|
Abstract
β cell replacement with either pancreas or islet transplantation has progressed immensely over the last decades with current 1- and 5-year insulin independence rates of approximately 85% and 50%, respectively. Recent advances are largely attributed to improvements in immunosuppressive regimen, donor selection, and surgical technique. However, both strategies are compromised by a scarce donor source. Xenotransplantation offers a potential solution by providing a theoretically unlimited supply of islets, but clinical application has been limited by concerns for a potent immune response against xenogeneic tissue. β cell clusters derived from embryonic or induced pluripotent stem cells represent another promising unlimited source of insulin producing cells, but clinical application is pending further advances in the function of the β cell like clusters. Exciting developments and rapid progress in all areas of β cell replacement prompted a lively debate by members of the young investigator committee of the International Pancreas and Islet Transplant Association at the 15th International Pancreas and Islet Transplant Association Congress in Melbourne and at the 26th international congress of The Transplant Society in Hong Kong. This international group of young investigators debated which modality of β cell replacement would predominate the landscape in 10 years, and their arguments are summarized here.
Collapse
|
30
|
Luu QF, Villareal CJ, Fritschi C, Monson RS, Oberholzer J, Danielson KK. Concerns and hopes of patients with type 1 diabetes prior to islet cell transplantation: A content analysis. J Diabetes Complications 2018; 32:677-681. [PMID: 29779835 PMCID: PMC6015784 DOI: 10.1016/j.jdiacomp.2018.04.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 03/26/2018] [Accepted: 04/04/2018] [Indexed: 10/17/2022]
Abstract
AIMS Islet cell transplantation can functionally cure type 1 diabetes complicated by hypoglycemia unawareness (HU), but requires immunosuppression. This study identified the lived experiences and risk/benefit considerations of patients pre-transplant. METHODS Content analysis identified themes from four open-ended questions pre-transplant in an islet transplant clinical trial. The sample included 23 (19 female) patients, with a mean age = 48.3 and diabetes duration = 29.3 years. RESULTS Lack of control due to diabetes and HU was the overarching theme pre-transplant. Four sub-themes were also identified: fear of hypoglycemia, diabetes-related complications, hopes/expectations after transplant, and transplant outcomes. Patients expressed fear of HU and long-term complications pre-transplant, and hoped islet transplant would improve diabetes management. Patients further emphasized anxiety over burdening others, and hopes of advancing research. In addition, other patients emphasized frustrations regarding the impact of HU on themselves, such as the inability to perform activities of daily living. Many patients were primarily worried about immunosuppressive side effects rather than islet transplant success. CONCLUSIONS Patients viewed islet transplantation as a means to gain autonomy and control over their lives. They desired reduced anxiety associated with HU, despite concerns over immunosuppressive side-effects. These findings need confirmation, but may help to further improve patient education and patient-provider communication.
Collapse
Affiliation(s)
- Queena F Luu
- School of Public Health, University of Illinois at Chicago, 1603 W. Taylor St., Chicago, IL 60612, USA
| | - Celine J Villareal
- Department of Biobehavioral Health Science, College of Nursing, University of Illinois at Chicago, 845 S. Damen Ave., Chicago, IL 60612, USA
| | - Cynthia Fritschi
- Department of Biobehavioral Health Science, College of Nursing, University of Illinois at Chicago, 845 S. Damen Ave., Chicago, IL 60612, USA.
| | - Rebecca S Monson
- Department of Surgery, College of Medicine, University of Illinois at Chicago, 840 S. Wood St., Chicago, IL 60612, USA.
| | - Jose Oberholzer
- Department of Surgery, College of Medicine, University of Illinois at Chicago, 840 S. Wood St., Chicago, IL 60612, USA.
| | - Kirstie K Danielson
- School of Public Health, University of Illinois at Chicago, 1603 W. Taylor St., Chicago, IL 60612, USA; Department of Surgery, College of Medicine, University of Illinois at Chicago, 840 S. Wood St., Chicago, IL 60612, USA.
| |
Collapse
|
31
|
He Y, Zhang D, Zeng Y, Ma J, Wang J, Guo H, Zhang J, Wang M, Zhang W, Gong N. Bone Marrow-Derived Mesenchymal Stem Cells Protect Islet Grafts Against Endoplasmic Reticulum Stress-Induced Apoptosis During the Early Stage After Transplantation. Stem Cells 2018; 36:1045-1061. [PMID: 29569832 DOI: 10.1002/stem.2823] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 02/13/2018] [Accepted: 02/18/2018] [Indexed: 12/16/2022]
Abstract
Early loss of grafted islets is the main obstacle to achieve favorable outcomes of islet transplantation. Mesenchymal stem cells are known to have a protective effect; however, its mechanism remains unclear. We hypothesized that bone marrow-derived mesenchymal stem cells (BMSCs) can protect grafted islets against endoplasmic reticulum stress (ERS)-induced apoptosis. In syngeneic streptozocin-induced diabetic BALB/c mice, islet grafts decreased blood glucose levels; however, the effect was not fully functional from the immediate post-transplant phase. β-Cell apoptosis was proven on days 1 and 3 after transplantation. Ultra-structural evidence of ERS was observed along with increased expressions of marker protein BIP and apoptosis-related protein CHOP. In contrast, BMSC co-transplantation maintained glucose hemostasis, inhibited apoptosis and alleviated ERS. In ex vivo culture, BMSCs improved viability of islets and decreased apoptosis. Increased ERS were observed in cultured islets exposed to hypoxia, but not in the islets cocultured with BMSCs. Furthermore, cocultured BMSCs protected islets against ERS-induced apoptosis as well as improved their insulin secretion, and BMSCs alleviated ERS by improving Myc expression through both stromal cell-derived factor 1 signal and contact effect. In conclusion, BMSCs protected the grafted islets against ERS-induced apoptosis during the early stage after transplantation. This study opens a new arena for ERS-targeted therapy to improve outcomes of islet transplantation. Stem Cells 2018;36:1045-1061.
Collapse
Affiliation(s)
- Ying He
- Institute of Organ Transplantation, Key Laboratory of the Ministry of Health and the Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dongmei Zhang
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yi Zeng
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Junlei Ma
- Institute of Organ Transplantation, Key Laboratory of the Ministry of Health and the Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Wang
- Institute of Organ Transplantation, Key Laboratory of the Ministry of Health and the Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Guo
- Institute of Organ Transplantation, Key Laboratory of the Ministry of Health and the Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ji Zhang
- Institute of Organ Transplantation, Key Laboratory of the Ministry of Health and the Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mengqin Wang
- Institute of Organ Transplantation, Key Laboratory of the Ministry of Health and the Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weijie Zhang
- Institute of Organ Transplantation, Key Laboratory of the Ministry of Health and the Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Nianqiao Gong
- Institute of Organ Transplantation, Key Laboratory of the Ministry of Health and the Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
32
|
|
33
|
Oh BJ, Jin SM, Hwang Y, Choi JM, Lee HS, Kim G, Kim G, Park HJ, Kim P, Kim SJ, Kim JH. Highly Angiogenic, Nonthrombogenic Bone Marrow Mononuclear Cell-Derived Spheroids in Intraportal Islet Transplantation. Diabetes 2018; 67:473-485. [PMID: 29298810 DOI: 10.2337/db17-0705] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Accepted: 12/24/2017] [Indexed: 11/13/2022]
Abstract
Highly angiogenic bone marrow mononuclear cell-derived spheroids (BM-spheroids), formed by selective proliferation of the CD31+CD14+CD34+ monocyte subset via three-dimensional (3D) culture, have had robust angiogenetic capacity in rodent syngeneic renal subcapsular islet transplantation. We wondered whether the efficacy of BM-spheroids could be demonstrated in clinically relevant intraportal islet transplantation models without increasing the risk of portal thrombosis. The thrombogenic potential of intraportally infused BM-spheroids was compared with that of mesenchymal stem cells (MSCs) and MSC-derived spheroids (MSC-spheroids). The angiogenic efficacy and persistence in portal sinusoids of BM-spheroids were examined in rodent syngeneic and primate allogeneic intraportal islet transplantation models. In contrast to MSCs and MSC-spheroids, intraportal infusion of BM-spheroids did not evoke portal thrombosis. BM-spheroids had robust angiogenetic capacity in both the rodent and primate intraportal islet transplantation models and improved posttransplant glycemic outcomes. MRI and intravital microscopy findings revealed the persistence of intraportally infused BM-spheroids in portal sinusoids. Intraportal cotransplantation of allogeneic islets with autologous BM-spheroids in nonhuman primates further confirmed the clinical feasibility of this approach. In conclusion, cotransplantation of BM-spheroids enhances intraportal islet transplantation outcome without portal thrombosis in mice and nonhuman primates. Generating BM-spheroids by 3D culture prevented the rapid migration and disappearance of intraportally infused therapeutic cells.
Collapse
MESH Headings
- Animals
- Biomarkers/blood
- Biomarkers/metabolism
- Bone Marrow Transplantation/adverse effects
- Cell Tracking
- Cells, Cultured
- Diabetes Mellitus, Experimental/immunology
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/pathology
- Diabetes Mellitus, Experimental/therapy
- Green Fluorescent Proteins/genetics
- Green Fluorescent Proteins/metabolism
- Islets of Langerhans Transplantation/adverse effects
- Islets of Langerhans Transplantation/immunology
- Leukocytes, Mononuclear/cytology
- Leukocytes, Mononuclear/immunology
- Leukocytes, Mononuclear/transplantation
- Liver/immunology
- Liver/metabolism
- Liver/pathology
- Macaca fascicularis
- Male
- Mesenchymal Stem Cell Transplantation/adverse effects
- Mice, Inbred C57BL
- Mice, Transgenic
- Neovascularization, Pathologic/etiology
- Neovascularization, Pathologic/immunology
- Neovascularization, Pathologic/pathology
- Neovascularization, Pathologic/prevention & control
- Portal Vein
- Spheroids, Cellular/cytology
- Spheroids, Cellular/immunology
- Spheroids, Cellular/transplantation
- Streptozocin
- Thrombosis/etiology
- Thrombosis/immunology
- Thrombosis/pathology
- Thrombosis/prevention & control
- Transplantation, Heterotopic/adverse effects
- Transplantation, Isogeneic/adverse effects
Collapse
Affiliation(s)
- Bae Jun Oh
- Division of Endocrinology and Metabolism, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Stem Cell and Regenerative Medicine Institute, Samsung Medical Center, Seoul, Republic of Korea
| | - Sang-Man Jin
- Division of Endocrinology and Metabolism, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Stem Cell and Regenerative Medicine Institute, Samsung Medical Center, Seoul, Republic of Korea
| | - Yoonha Hwang
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Jin Myung Choi
- Division of Endocrinology and Metabolism, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Stem Cell and Regenerative Medicine Institute, Samsung Medical Center, Seoul, Republic of Korea
| | - Han-Sin Lee
- Division of Endocrinology and Metabolism, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Stem Cell and Regenerative Medicine Institute, Samsung Medical Center, Seoul, Republic of Korea
| | - Gyuri Kim
- Division of Endocrinology and Metabolism, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Stem Cell and Regenerative Medicine Institute, Samsung Medical Center, Seoul, Republic of Korea
| | - Geunsoo Kim
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Hyo Jun Park
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Pilhan Kim
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Sung Joo Kim
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jae Hyeon Kim
- Division of Endocrinology and Metabolism, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Stem Cell and Regenerative Medicine Institute, Samsung Medical Center, Seoul, Republic of Korea
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Seoul, Republic of Korea
| |
Collapse
|
34
|
Williams J, Jacus N, Kavalackal K, Danielson KK, Monson RS, Wang Y, Oberholzer J. Over ten-year insulin independence following single allogeneic islet transplant without T-cell depleting antibody induction. Islets 2018; 10:168-174. [PMID: 30024826 PMCID: PMC6281363 DOI: 10.1080/19382014.2018.1451281] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Islet cell transplantation is a promising functional cure for type 1 diabetes; however, maintaining long-term islet graft function and insulin independence is difficult to achieve. In this short report we present a patient with situs inversus, who at the time of islet transplantation had a 26-year history of type 1 diabetes, complicated by hypoglycemic unawareness and severe hypoglycemic events. After a single allogeneic islet transplant of a low islet mass, and despite developing de novo anti-insulin and anti-GAD65 autoantibodies, the patient has remarkably maintained insulin independence with tight glycemic control and normal metabolic profiles for 10 years, after receiving prolonged non-T-cell depleting immunosuppression.
Collapse
Affiliation(s)
- Jack Williams
- Division of Transplant, Department of Surgery, University of Illinois at Chicago, Chicago, Illinois
| | - Nicholas Jacus
- Division of Transplant, Department of Surgery, University of Illinois at Chicago, Chicago, Illinois
| | - Kevin Kavalackal
- Division of Transplant, Department of Surgery, University of Illinois at Chicago, Chicago, Illinois
| | - Kirstie K. Danielson
- Division of Transplant, Department of Surgery, University of Illinois at Chicago, Chicago, Illinois
- Division of Epidemiology & Biostatistics, School of Public Health, University of Illinois at Chicago, Chicago, Illinois
| | - Rebecca S. Monson
- Division of Transplant, Department of Surgery, University of Illinois at Chicago, Chicago, Illinois
| | - Yong Wang
- Division of Transplant, Department of Surgery, University of Illinois at Chicago, Chicago, Illinois
| | - Jose Oberholzer
- Division of Transplant, Department of Surgery, University of Illinois at Chicago, Chicago, Illinois
- CONTACT José Oberholzer Division of Transplant, Department of Surgery, University of Illinois at Chicago, 840 S. Wood Street, Rm 428, Chicago, IL 60612
| |
Collapse
|
35
|
Current outcomes in islet versus solid organ pancreas transplant for β-cell replacement in type 1 diabetes. Curr Opin Organ Transplant 2017; 21:399-404. [PMID: 27258578 DOI: 10.1097/mot.0000000000000332] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW With continued optimization of islet isolation and immunosuppression protocols, the medium-term rates of insulin independence following islet transplantation have improved significantly. This review evaluates the most up-to-date outcomes data for both solid organ pancreas and islet transplantation to develop an algorithm for selection of β-cell replacement in type 1 diabetes patients. RECENT FINDINGS Solid organ pancreas and islet transplantation have both displayed improved rates of 5-year insulin independence, largely attributable to improvements in immunosuppressive regimens. The medium-term rates of insulin independence following islet transplantation in highly selected type 1 nonuremic diabetic recipients is beginning to approach the success rates observed following solitary pancreas transplantation. SUMMARY Although pancreas transplantation has historically been favored for β-cell replacement, current outcomes following islet transplantation justify the use of this minimally invasive therapy in carefully selected patients. Pancreas transplant remains the procedure of choice for β-cell replacement in uremic patients. Islet transplantation should be considered in nonuremic patients with low BMI and low insulin requirements, patients lacking the cardiovascular reserve to undergo open abdominal surgery, or patients who elect to forego the risks of a major operation in exchange for an increased risk of islet graft failure.
Collapse
|
36
|
Murai N, Ohtaki H, Watanabe J, Xu Z, Sasaki S, Yagura K, Shioda S, Nagasaka S, Honda K, Izumizaki M. Intrapancreatic injection of human bone marrow-derived mesenchymal stem/stromal cells alleviates hyperglycemia and modulates the macrophage state in streptozotocin-induced type 1 diabetic mice. PLoS One 2017; 12:e0186637. [PMID: 29073149 PMCID: PMC5657972 DOI: 10.1371/journal.pone.0186637] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 10/04/2017] [Indexed: 12/11/2022] Open
Abstract
Type 1 diabetes mellitus is a progressive disease caused by the destruction of pancreatic β-cells, resulting in insulin dependency and hyperglycemia. While transplanted bone marrow-derived mesenchymal stem/stromal cells (BMMSCs) have been explored as an alternative therapeutic approach for diseases, the choice of delivery route may be a critical factor determining their sustainability. This study evaluated the effects of intrapancreatic and intravenous injection of human BMMSCs (hBMMSCs) in streptozotocin (STZ)-induced type 1 diabetic mouse model. C57/BL6 mice were intraperitoneally injected with 115 mg/kg STZ on day 0. hBMMSCs (1 × 106 cells) or vehicle were injected into the pancreas or jugular vein on day 7. Intrapancreatic, but not intravenous, hBMMSC injection significantly reduced blood glucose levels on day 28 compared with vehicle injection by the same route. This glucose-lowering effect was not induced by intrapancreatic injection of human fibroblasts as the xenograft control. Intrapancreatically injected fluorescence-labeled hBMMSCs were observed in the intra- and extra-lobular spaces of the pancreas, and intravenously injected cells were in the lung region, although the number of cells mostly decreased within 2 weeks of injection. For hBMMSCs injected twice into the pancreatic region on days 7 and 28, the injected mice had further reduced blood glucose to borderline diabetic levels on day 56. Animals injected with hBMMSCs twice exhibited increases in the plasma insulin level, number and size of islets, insulin-positive proportion of the total pancreas area, and intensity of insulin staining compared with vehicle-injected animals. We found a decrease of Iba1-positive cells in islets and an increase of CD206-positive cells in both the endocrine and exocrine pancreas. The hBMMSC injection also reduced the number of CD40-positive cells merged with glucagon immunoreactions in the islets. These results suggest that intrapancreatic injection may be a better delivery route of hBMMSCs for the treatment of type 1 diabetes mellitus.
Collapse
Affiliation(s)
- Norimitsu Murai
- Department of Physiology, Showa University School of Medicine, Tokyo, Japan
- Department of Anatomy, Showa University School of Medicine, Tokyo, Japan
- Division of Diabetes, Metabolism and Endocrinology, Showa University Fujigaoka Hospital, Yokohama, Japan
| | - Hirokazu Ohtaki
- Department of Anatomy, Showa University School of Medicine, Tokyo, Japan
| | - Jun Watanabe
- Department of Anatomy, Showa University School of Medicine, Tokyo, Japan
- Center for Biotechnology, Showa University, Tokyo, Japan
| | - Zhifang Xu
- Department of Anatomy, Showa University School of Medicine, Tokyo, Japan
| | - Shun Sasaki
- Department of Anatomy, Showa University School of Medicine, Tokyo, Japan
| | - Kazumichi Yagura
- Department of Anatomy, Showa University School of Medicine, Tokyo, Japan
| | - Seiji Shioda
- Peptide Drug Innovation, Global Research Center for Innovative Life Science, Hoshi University School of Pharmacy and Pharmaceutical Sciences, Tokyo, Japan
| | - Shoichiro Nagasaka
- Division of Diabetes, Metabolism and Endocrinology, Showa University Fujigaoka Hospital, Yokohama, Japan
| | - Kazuho Honda
- Department of Anatomy, Showa University School of Medicine, Tokyo, Japan
| | - Masahiko Izumizaki
- Department of Physiology, Showa University School of Medicine, Tokyo, Japan
- * E-mail:
| |
Collapse
|
37
|
Espes D, Lau J, Carlsson PO. MECHANISMS IN ENDOCRINOLOGY: Towards the clinical translation of stem cell therapy for type 1 diabetes. Eur J Endocrinol 2017; 177:R159-R168. [PMID: 28487297 DOI: 10.1530/eje-17-0080] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 04/24/2017] [Accepted: 05/08/2017] [Indexed: 01/21/2023]
Abstract
Insulin-producing cells derived from human embryonic stem cells (hESCs) or induced pluripotent stem cells (iPSCs) have for long been a promising, but elusive treatment far from clinical translation into type 1 diabetes therapy. However, the field is now on the verge of moving such insulin-producing cells into clinical trials. Although stem cell therapies provide great opportunities, there are also potential risks such as teratoma formation associated with the treatment. Many considerations are needed on how to proceed with clinical translation, including whether to use hESCs or iPSCs, and whether encapsulation of tissue will be needed. This review aims to give an overview of the current knowledge of stem cell therapy outcomes in animal models of type 1 diabetes and a proposed road map towards the clinical setting with special focus on the potential risks and hurdles which needs to be considered. From a clinical point of view, transplantation of insulin-producing cells derived from stem cells must be performed without immune suppression in order to be an attractive treatment option. Although costly and highly labour intensive, patient-derived iPSCs would be the only solution, if not clinically successful encapsulation or tolerance induction protocols are introduced.
Collapse
Affiliation(s)
- Daniel Espes
- Departments of Medical Cell Biology
- Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Joey Lau
- Departments of Medical Cell Biology
| | - Per-Ola Carlsson
- Departments of Medical Cell Biology
- Medical Sciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
38
|
Wisel SA, Gardner JM, Roll GR, Harbell J, Freise CE, Feng S, Kang SM, Hirose R, Kaufman DB, Posselt A, Stock PG. Pancreas-After-Islet Transplantation in Nonuremic Type 1 Diabetes: A Strategy for Restoring Durable Insulin Independence. Am J Transplant 2017; 17:2444-2450. [PMID: 28489277 PMCID: PMC5573612 DOI: 10.1111/ajt.14344] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Revised: 04/21/2017] [Accepted: 04/22/2017] [Indexed: 01/25/2023]
Abstract
Islet transplantation offers a minimally invasive approach for β cell replacement in diabetic patients with hypoglycemic unawareness. Attempts at insulin independence may require multiple islet reinfusions from distinct donors, increasing the risk of allogeneic sensitization. Currently, solid organ pancreas transplant is the only remaining surgical option following failed islet transplantation in the United States; however, the immunologic impact of repeated exposure to donor antigens on subsequent pancreas transplantation is unclear. We describe a case series of seven patients undergoing solid organ pancreas transplant following islet graft failure with long-term follow-up of pancreatic graft survival and renal function. Despite highly variable panel reactive antibody levels prior to pancreas transplant (mean 27 ± 35%), all seven patients achieved stable and durable insulin independence with a mean follow-up of 6.7 years. Mean hemoglobin A1c values improved significantly from postislet, prepancreas levels (mean 8.1 ± 1.5%) to postpancreas levels (mean 5.3 ± 0.1%; p = 0.0022). Three patients experienced acute rejection episodes that were successfully managed with thymoglobulin and methylprednisolone, and none of these preuremic type 1 diabetic recipients developed stage 4 or 5 chronic kidney disease postoperatively. These results support pancreas-after-islet transplantation with aggressive immunosuppression and protocol biopsies as a viable strategy to restore insulin independence after islet graft failure.
Collapse
Affiliation(s)
- SA Wisel
- Department of Surgery, University of California, San Francisco; San Francisco, CA, United States
| | - JM Gardner
- Department of Surgery, University of California, San Francisco; San Francisco, CA, United States
| | - GR Roll
- Department of Surgery, University of California, San Francisco; San Francisco, CA, United States
| | - J Harbell
- Department of Surgery, University of California, San Francisco; San Francisco, CA, United States
| | - CE Freise
- Department of Surgery, University of California, San Francisco; San Francisco, CA, United States
| | - S Feng
- Department of Surgery, University of California, San Francisco; San Francisco, CA, United States
| | - SM Kang
- Department of Surgery, University of California, San Francisco; San Francisco, CA, United States
| | - R Hirose
- Department of Surgery, University of California, San Francisco; San Francisco, CA, United States
| | - DB Kaufman
- Department of Surgery, University of Wisconsin; Madison, WI, United States
| | - A Posselt
- Department of Surgery, University of California, San Francisco; San Francisco, CA, United States
| | - PG Stock
- Department of Surgery, University of California, San Francisco; San Francisco, CA, United States
| |
Collapse
|
39
|
Age and Early Graft Function Relate With Risk-Benefit Ratio of Allogenic Islet Transplantation Under Antithymocyte Globulin-Mycophenolate Mofetil-Tacrolimus Immune Suppression. Transplantation 2017; 101:2218-2227. [DOI: 10.1097/tp.0000000000001543] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
40
|
Madrigal JM, Monson RS, Hatipoglu B, Oberholzer J, Kondos GT, Varady KA, Danielson KK. Coronary artery calcium may stabilize following islet cell transplantation in patients with type 1 diabetes. Clin Transplant 2017; 31. [PMID: 28748581 DOI: 10.1111/ctr.13059] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2017] [Indexed: 12/22/2022]
Abstract
Islet cell transplantation can functionally cure type 1 diabetes and also improve carotid intima-media thickness. This study provides a preliminary description of changes in coronary artery calcium following islet transplantation, and associated factors. Coronary artery calcium was measured in 14 patients with type 1 diabetes (11 had measures both pre- and post-transplant [mean 2.3 years]) in the University of Illinois at Chicago's clinical trial. Multivariable mixed-effects linear regression of repeated measures was used to quantify calcium change and determine if this change was longitudinally associated with risk/protective factors. Thirteen of the patients were female, with mean baseline age, diabetes duration, and BMI of 47.6 and 28.7 years, and 23.1, respectively. Over half (57%) had detectable coronary artery calcium pre-transplant. Minimal change (0.39 mm3 /y, P = .02) occurred in coronary artery calcium levels pre- to post-transplant. No patient met criteria for calcium progression. Coronary artery calcium was positively associated with total and small VLDL particles (P ≤ .02), statin dose (P = .02), and urine albumin-to-creatinine ratio (P = .04) and negatively associated with free fatty acids (P = .03), total HDL (P = .03), large HDL particles (P = .005), and tacrolimus dose (P = .02). Islet transplant may stabilize coronary artery calcium, with optimal management of lipids and kidney function remaining key therapeutic targets. [NCT00679041].
Collapse
Affiliation(s)
- Jessica M Madrigal
- Division of Transplant Surgery, University of Illinois at Chicago, Chicago, IL, USA.,Division of Epidemiology & Biostatistics, University of Illinois at Chicago, Chicago, IL, USA
| | - Rebecca S Monson
- Division of Transplant Surgery, University of Illinois at Chicago, Chicago, IL, USA
| | - Betul Hatipoglu
- Department of Endocrinology, Diabetes and Metabolism, Cleveland Clinic, Cleveland, OH, USA
| | - José Oberholzer
- Division of Transplant Surgery, University of Illinois at Chicago, Chicago, IL, USA
| | - George T Kondos
- Division of Cardiology, University of Illinois at Chicago, Chicago, IL, USA
| | - Krista A Varady
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL, USA
| | - Kirstie K Danielson
- Division of Transplant Surgery, University of Illinois at Chicago, Chicago, IL, USA.,Division of Epidemiology & Biostatistics, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
41
|
Transplant Site Influences the Immune Response After Islet Transplantation: Bone Marrow Versus Liver. Transplantation 2017; 101:1046-1055. [PMID: 27575689 DOI: 10.1097/tp.0000000000001462] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND The aim of this study was to characterize the immune response against intrabone marrow (BM-Tx) or intraliver (liver-Tx) transplanted islets in the presence or in the absence of immunosuppression. METHODS Less (C57BL/6 in Balb/c) and highly (Balb/c in C57BL/6) stringent major histocompatibility complex fully mismatched mouse models were used to evaluate the alloimmune response. Single antigen-mismatched mouse model (C57BL/6 RIP-GP in C57BL/6) was used to evaluate the antigen-specific immune response. Mice received tacrolimus (FK-506, 0.1 mg/kg per day)/mycophenolate mofetil (MMF, 60 mg/kg per day), and anti-CD3 (50 μg/day) either alone or in combination. RESULTS Transplant site did not impact the timing nor the kinetics of the alloimmune and single antigen-specific memory T cell responses in the absence of immunosuppression or in the presence of MMF/FK-506 combination. On the other hand, the median time to graft rejection was 28 ± 5.2 days and 16 ± 2.6 days (P = 0.14) in the presence of anti-CD3 treatment, 50 ± 12.5 days and 10 ± 1.3 days (P = 0.003) in the presence of anti-CD3/MMF/FK-506 treatment for liver-Tx and BM-Tx, respectively. Anti-CD3 did not differentially reach BM and liver tissues but was more effective in reducing graft associated T cell responses in liver-Tx than in BM-Tx. CONCLUSIONS Islets infused in the BM appear less protected from the adaptive immune response in the presence of the anti-CD3 treatment. This result raises some concerns over the potential of the BM as a site for islet allotransplantation.
Collapse
|
42
|
MRI tracking of autologous pancreatic progenitor-derived insulin-producing cells in monkeys. Sci Rep 2017; 7:2505. [PMID: 28566744 PMCID: PMC5451407 DOI: 10.1038/s41598-017-02775-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 04/19/2017] [Indexed: 12/04/2022] Open
Abstract
Insulin-producing cells (IPCs) derived from a patient’s own stem cells offer great potential for autologous transplantation in diabetic patients. However, the limited survival of engrafted cells remains a bottleneck in the application of this strategy. The present study aimed to investigate whether nanoparticle-based magnetic resonance (MR) tracking can be used to detect the loss of grafted stem cell-derived IPCs in a sensitive and timely manner in a diabetic monkey model. Pancreatic progenitor cells (PPCs) were isolated from diabetic monkeys and labeled with superparamagnetic iron oxide nanoparticles (SPIONs). The SPION-labeled cells presented as hypointense signals on MR imaging (MRI). The labeling procedure did not affect the viability or IPC differentiation of PPCs. Importantly, the total area of the hypointense signal caused by SPION-labeled IPCs on liver MRI decreased before the decline in C-peptide levels after autotransplantation. Histological analysis revealed no detectable immune response to the grafts and many surviving insulin- and Prussian blue-positive cell clusters on liver sections at one year post-transplantation. Collectively, this study demonstrates that SPIO nanoparticles can be used to label stem cells for noninvasive, sensitive, longitudinal monitoring of stem cell-derived IPCs in large animal models using a conventional MR imager.
Collapse
|
43
|
Al-Abdullah IH, Bagramyan K, Bilbao S, Qi M, Kalkum M. Fluorogenic Peptide Substrate for Quantification of Bacterial Enzyme Activities. Sci Rep 2017; 7:44321. [PMID: 28287171 PMCID: PMC5347087 DOI: 10.1038/srep44321] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 02/06/2017] [Indexed: 12/18/2022] Open
Abstract
A novel peptide substrate (A G G P L G P P G P G G) was developed for quantifying the activities of bacterial enzymes using a highly sensitive Fluorescence Resonance Energy Transfer (FRET) based assay. The peptide substrate was cleaved by collagenase class I, II, Liberase MTF C/T, collagenase NB1, and thermolysin/neutral protease, which was significantly enhanced in the presence of CaCl2. However, the activities of these enzymes were significantly decreased in the presence of ZnSO4 or ZnCl2. Collagenase I, II, Liberase MTF C/T, thermolysin/neutral protease share similar cleavage sites, L↓G and P↓G. However, collagenase NB1 cleaves the peptide substrate at G↓P and P↓L, in addition to P↓G. The enzyme activity is pH dependent, within a range of 6.8 to 7.5, but was significantly diminished at pH 8.0. Interestingly, the peptide substrate was not cleaved by endogenous pancreatic protease such as trypsin, chymotrypsin, and elastase. In conclusion, the novel peptide substrate is collagenase, thermolysin/neutral protease specific and can be applied to quantify enzyme activities from different microbes. Furthermore, the assay can be used for fine-tuning reaction mixtures of various agents to enhance the overall activity of a cocktail of multiple enzymes and achieve optimal organ/tissue digestion, while protecting the integrity of the target cells.
Collapse
Affiliation(s)
- Ismail H. Al-Abdullah
- Department of Translational Research and Cellular Therapeutics, Diabetes and Metabolism Research Institute, Beckman Research Institute of the City of Hope, USA
| | - Karine Bagramyan
- Department of Molecular Immunology, Beckman Research Institute of the City of Hope, USA
| | - Shiela Bilbao
- Department of Translational Research and Cellular Therapeutics, Diabetes and Metabolism Research Institute, Beckman Research Institute of the City of Hope, USA
| | - Meirigeng Qi
- Department of Translational Research and Cellular Therapeutics, Diabetes and Metabolism Research Institute, Beckman Research Institute of the City of Hope, USA
| | - Markus Kalkum
- Department of Molecular Immunology, Beckman Research Institute of the City of Hope, USA
| |
Collapse
|
44
|
van der Torren CR, Zaldumbide A, Duinkerken G, Brand-Schaaf SH, Peakman M, Stangé G, Martinson L, Kroon E, Brandon EP, Pipeleers D, Roep BO. Immunogenicity of human embryonic stem cell-derived beta cells. Diabetologia 2017; 60:126-133. [PMID: 27787618 PMCID: PMC6518073 DOI: 10.1007/s00125-016-4125-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 09/14/2016] [Indexed: 01/16/2023]
Abstract
AIMS/HYPOTHESIS To overcome the donor shortage in the treatment of advanced type 1 diabetes by islet transplantation, human embryonic stem cells (hESCs) show great potential as an unlimited alternative source of beta cells. hESCs may have immune privileged properties and it is important to determine whether these properties are preserved in hESC-derived cells. METHODS We comprehensively investigated interactions of both innate and adaptive auto- and allo-immunity with hESC-derived pancreatic progenitor cells and hESC-derived endocrine cells, retrieved after in-vivo differentiation in capsules in the subcutis of mice. RESULTS We found that hESC-derived pancreatic endodermal cells expressed relatively low levels of HLA endorsing protection from specific immune responses. HLA was upregulated when exposed to IFNγ, making these endocrine progenitor cells vulnerable to cytotoxic T cells and alloreactive antibodies. In vivo-differentiated endocrine cells were protected from complement, but expressed more HLA and were targets for alloreactive antibody-dependent cellular cytotoxicity and alloreactive cytotoxic T cells. After HLA compatibility was provided by transduction with HLA-A2, preproinsulin-specific T cells killed insulin-producing cells. CONCLUSIONS/INTERPRETATION hESC-derived pancreatic progenitors are hypoimmunogenic, while in vivo-differentiated endocrine cells represent mature targets for adaptive immune responses. Our data support the need for immune intervention in transplantation of hESC-derived pancreatic progenitors. Cell-impermeable macro-encapsulation may suffice.
Collapse
Affiliation(s)
- Cornelis R van der Torren
- Department of Immunohaematology and Blood Transfusion, E3-Q, Leiden University Medical Center, P.O. Box 9600, NL-2300 RC, Leiden, the Netherlands
- JDRF Center for Beta Cell Therapy in Diabetes
| | - Arnaud Zaldumbide
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Gaby Duinkerken
- Department of Immunohaematology and Blood Transfusion, E3-Q, Leiden University Medical Center, P.O. Box 9600, NL-2300 RC, Leiden, the Netherlands
- JDRF Center for Beta Cell Therapy in Diabetes
| | - Simone H Brand-Schaaf
- Department of Immunohaematology and Blood Transfusion, E3-Q, Leiden University Medical Center, P.O. Box 9600, NL-2300 RC, Leiden, the Netherlands
| | - Mark Peakman
- Department of Immunobiology, King's College London School of Medicine, London, UK
| | - Geert Stangé
- JDRF Center for Beta Cell Therapy in Diabetes
- Diabetes Research Center, Brussels Free University-VUB, Brussels, Belgium
| | | | | | | | - Daniel Pipeleers
- JDRF Center for Beta Cell Therapy in Diabetes
- Diabetes Research Center, Brussels Free University-VUB, Brussels, Belgium
| | - Bart O Roep
- Department of Immunohaematology and Blood Transfusion, E3-Q, Leiden University Medical Center, P.O. Box 9600, NL-2300 RC, Leiden, the Netherlands.
- JDRF Center for Beta Cell Therapy in Diabetes, .
- Department of Diabetes Immunology, Diabetes and Metabolism Research Institute at the Beckman Research Institute, City of Hope, Duarte, CA, USA.
| |
Collapse
|
45
|
Song J, Millman JR. Economic 3D-printing approach for transplantation of human stem cell-derived β-like cells. Biofabrication 2016; 9:015002. [PMID: 27906687 DOI: 10.1088/1758-5090/9/1/015002] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Transplantation of human pluripotent stem cells (hPSC) differentiated into insulin-producing β cells is a regenerative medicine approach being investigated for diabetes cell replacement therapy. This report presents a multifaceted transplantation strategy that combines differentiation into stem cell-derived β (SC-β) cells with 3D printing. By modulating the parameters of a low-cost 3D printer, we created a macroporous device composed of polylactic acid (PLA) that houses SC-β cell clusters within a degradable fibrin gel. Using finite element modeling of cellular oxygen diffusion-consumption and an in vitro culture system that allows for culture of devices at physiological oxygen levels, we identified cluster sizes that avoid severe hypoxia within 3D-printed devices and developed a microwell-based technique for resizing clusters within this range. Upon transplantation into mice, SC-β cell-embedded 3D-printed devices function for 12 weeks, are retrievable, and maintain structural integrity. Here, we demonstrate a novel 3D-printing approach that advances the use of differentiated hPSC for regenerative medicine applications and serves as a platform for future transplantation strategies.
Collapse
Affiliation(s)
- Jiwon Song
- Division of Endocrinology, Metabolism and Lipid Research, Department of Medicine, Department of Biomedical Engineering, Washington University School of Medicine, Campus Box 8127, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | | |
Collapse
|
46
|
Pellegrini S, Cantarelli E, Sordi V, Nano R, Piemonti L. The state of the art of islet transplantation and cell therapy in type 1 diabetes. Acta Diabetol 2016; 53:683-91. [PMID: 26923700 DOI: 10.1007/s00592-016-0847-z] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 02/06/2016] [Indexed: 12/17/2022]
Abstract
In patients with type 1 diabetes (T1D), pancreatic β cells are destroyed by a selective autoimmune attack and their replacement with functional insulin-producing cells is the only possible cure for this disease. The field of islet transplantation has evolved significantly from the breakthrough of the Edmonton Protocol in 2000, since significant advances in islet isolation and engraftment, together with improved immunosuppressive strategies, have been reported. The main limitations, however, remain the insufficient supply of human tissue and the need for lifelong immunosuppression therapy. Great effort is then invested in finding innovative sources of insulin-producing β cells. One old alternative with new recent perspectives is the use of non-human donor cells, in particular porcine β cells. Also the field of preexisting β cell expansion has advanced, with the development of new human β cell lines. Yet, large-scale production of human insulin-producing cells from stem cells is the most recent and promising alternative. In particular, the optimization of in vitro strategies to differentiate human embryonic stem cells into mature insulin-secreting β cells has made considerable progress and recently led to the first clinical trial of stem cell treatment for T1D. Finally, the discovery that it is possible to derive human induced pluripotent stem cells from somatic cells has raised the possibility that a sufficient amount of patient-specific β cells can be derived from patients through cell reprogramming and differentiation, suggesting that in the future there might be a cell therapy without immunosuppression.
Collapse
Affiliation(s)
- Silvia Pellegrini
- Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Elisa Cantarelli
- Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Valeria Sordi
- Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Rita Nano
- Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Lorenzo Piemonti
- Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
47
|
Bukys MA, Bakos B, Afelik S, Zimmerman B, Barbaro B, Lin DL, Vaca P, Goldman T, Rotem A, Damaser M, Oberholzer J, Barkai U, Jensen J. Xeno-Transplantation of macro-encapsulated islets and Pluripotent Stem Cell-Derived Pancreatic Progenitors without Immunosuppression. ACTA ACUST UNITED AC 2016; 2. [PMID: 31660541 DOI: 10.19104/jorm.2017.109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Islet transplantation effectively treats diabetes but relies on immune suppression and is practically limited by the number of cadaveric islets available. An alternative cellular source is insulin-producing cells derived from pluripotent cell sources. Three animal cohorts were used in the current study to evaluate whether an oxygen-providing macro-encapsulation device, 'βAIR', could function in conjunction with human embryonic stem cells (hESCs) and their derivatives. The first cohort received macro-encapsulated undifferentiated hESCs, a second cohort received hESCs differentiated to a pancreatic progenitor state with limited endocrine differentiation. A reference cohort received human islets. Macro-encapsulation devices were implanted subcutaneously and monitored for up to 4 months. Undifferentiated pluripotent stem cells did not form teratoma but underwent cell death following implantation. Human C-peptide (hC- peptide) was detectable in host serum one week after implantation for both other cohorts. hC-peptide levels decreasing over time but remained detectable up to the end of the study. Key factors associated with mature endocrine cells were observed in grafts recovered from cohorts containing islets and hESC-derivatives including C-peptide, insulin, glucagon and urocortin 3. We conclude that the 'βAIR' macroencapsulation device is compatible with both human islets and pluripotent derivatives, but has a limited capability of sustaining undifferentiated pluripotent cells.
Collapse
Affiliation(s)
- Michael A Bukys
- Department of Stem Cell Biology and Regenerative Medicine, LRI, Cleveland Clinic Foundation
| | - Brandon Bakos
- Department of Stem Cell Biology and Regenerative Medicine, LRI, Cleveland Clinic Foundation
| | - Solomon Afelik
- Department of Stem Cell Biology and Regenerative Medicine, LRI, Cleveland Clinic Foundation
| | | | - Barbara Barbaro
- Division of Transplantation, Department of Surgery, University of Illinois at Chicago
| | - Dan Li Lin
- Advanced Platform Technology Center, Louis Stokes Cleveland VA Medical Center, Cleveland, OH
| | - Pilar Vaca
- Division of Transplantation, Department of Surgery, University of Illinois at Chicago
| | | | - Avi Rotem
- Beta-O2 Technologies, Rosh-HaAyin, Israel
| | - Margot Damaser
- Department of Stem Cell Biology and Regenerative Medicine, LRI, Cleveland Clinic Foundation.,Advanced Platform Technology Center, Louis Stokes Cleveland VA Medical Center, Cleveland, OH.,Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic
| | - Jose Oberholzer
- Division of Transplantation, Department of Surgery, University of Illinois at Chicago
| | | | - Jan Jensen
- Department of Stem Cell Biology and Regenerative Medicine, LRI, Cleveland Clinic Foundation
| |
Collapse
|
48
|
Outcomes of Pancreatic Islet Allotransplantation Using the Edmonton Protocol at the University of Chicago. Transplant Direct 2016; 2:e105. [PMID: 27795987 PMCID: PMC5068201 DOI: 10.1097/txd.0000000000000609] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 05/02/2016] [Indexed: 12/22/2022] Open
Abstract
Objective The aim of this study was to assess short-term and long-term results of the pancreatic islet transplantation using the Edmonton protocol at the University of Chicago. Materials and Methods Nine patients underwent pancreatic islet cell transplantation using the Edmonton Protocol; they were followed up for 10 years after initial islet transplant with up to 3 separate islet infusions. They were given induction treatment using an IL-2R antibody and their maintenance immunosuppression regimen consisted of sirolimus and tacrolimus. Results Nine patients received a total of 18 islet infusions. Five patients dropped out in the early phase of the study. Greater than 50% drop-out and noncompliance rate resulted from both poor islet function and recurrent side effects of immunosuppression. The remaining 4 (44%) patients stayed insulin free with intervals for at least over 5 years (cumulative time) after the first transplant. Each of them received 3 infusions, on average 445 000 islet equivalent per transplant. Immunosuppression regimen required multiple adjustments in all patients due to recurrent side effects. In the long-term follow up, kidney function remained stable, and diabetic retinopathy and polyneuropathy did not progress in any of the patients. Patients' panel reactive antibodies remained zero and anti-glutamic acid decarboxylase 65 antibody did not rise after the transplant. Results of metabolic tests including hemoglobin A1c, arginine stimulation, and mixed meal tolerance test were correlated with clinical islet function. Conclusions Pancreatic islet transplantation initiated according to Edmonton protocol offered durable long-term insulin-free glycemic control in only highly selected brittle diabetics providing stable control of diabetic neuropathy and retinopathy and without increased sensitization or impaired renal function. Immunosuppression adjustments and close follow-up were critical for patient retention and ultimate success.
Collapse
|
49
|
Okere B, Lucaccioni L, Dominici M, Iughetti L. Cell therapies for pancreatic beta-cell replenishment. Ital J Pediatr 2016; 42:62. [PMID: 27400873 PMCID: PMC4940879 DOI: 10.1186/s13052-016-0273-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 06/21/2016] [Indexed: 12/19/2022] Open
Abstract
The current treatment approach for type 1 diabetes is based on daily insulin injections, combined with blood glucose monitoring. However, administration of exogenous insulin fails to mimic the physiological activity of the islet, therefore diabetes often progresses with the development of serious complications such as kidney failure, retinopathy and vascular disease. Whole pancreas transplantation is associated with risks of major invasive surgery along with side effects of immunosuppressive therapy to avoid organ rejection. Replacement of pancreatic beta-cells would represent an ideal treatment that could overcome the above mentioned therapeutic hurdles. In this context, transplantation of islets of Langerhans is considered a less invasive procedure although long-term outcomes showed that only 10 % of the patients remained insulin independent five years after the transplant. Moreover, due to shortage of organs and the inability of islet to be expanded ex vivo, this therapy can be offered to a very limited number of patients. Over the past decade, cellular therapies have emerged as the new frontier of treatment of several diseases. Furthermore the advent of stem cells as renewable source of cell-substitutes to replenish the beta cell population, has blurred the hype on islet transplantation. Breakthrough cellular approaches aim to generate stem-cell-derived insulin producing cells, which could make diabetes cellular therapy available to millions. However, to date, stem cell therapy for diabetes is still in its early experimental stages. This review describes the most reliable sources of stem cells that have been developed to produce insulin and their most relevant experimental applications for the cure of diabetes.
Collapse
Affiliation(s)
- Bernard Okere
- Division of Pediatric Oncology, Hematology and Marrow Transplantation, Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, Modena Policlinic, Modena, 41100, Italy
| | - Laura Lucaccioni
- Division of Pediatric Oncology, Hematology and Marrow Transplantation, Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, Modena Policlinic, Modena, 41100, Italy.,Child Health, School of Medicine, Dentistry & Nursing, University of Glasgow, Glasgow, UK
| | - Massimo Dominici
- Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, Modena Policlinic, Modena, 41100, Italy
| | - Lorenzo Iughetti
- Division of Pediatric Oncology, Hematology and Marrow Transplantation, Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, Modena Policlinic, Modena, 41100, Italy.
| |
Collapse
|
50
|
Madoff DC, Gaba RC, Weber CN, Clark TWI, Saad WE. Portal Venous Interventions: State of the Art. Radiology 2016; 278:333-53. [PMID: 26789601 DOI: 10.1148/radiol.2015141858] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In recent decades, there have been numerous advances in the management of liver cancer, cirrhosis, and diabetes mellitus. Although these diseases are wide ranging in their clinical manifestations, each can potentially be treated by exploiting the blood flow dynamics within the portal venous system, and in some cases, adding cellular therapies. To aid in the management of these disease states, minimally invasive transcatheter portal venous interventions have been developed to improve the safety of major hepatic resection, to reduce the untoward effects of sequelae from end-stage liver disease, and to minimize the requirement of exogenously administered insulin for patients with diabetes mellitus. This state of the art review therefore provides an overview of the most recent data and strategies for utilization of preoperative portal vein embolization, transjugular intrahepatic portosystemic shunt placement, balloon retrograde transvenous obliteration, and islet cell transplantation.
Collapse
Affiliation(s)
- David C Madoff
- From the Department of Radiology, Division of Interventional Radiology, New York-Presbyterian Hospital/Weill Cornell Medical Center, 525 E 68th St, P-518, New York, NY 10065 (D.C.M.); Department of Radiology, Interventional Radiology Section, University of Illinois Hospital, Chicago, Ill (R.C.G.); Department of Radiology, University of Pennsylvania School of Medicine, Penn Presbyterian Medical Center, Philadelphia, Pa (C.N.W., T.W.I.C.); and Department of Radiology, Division of Vascular and Interventional Radiology, University of Michigan Medical Center, Ann Arbor, Mich (W.E.S.)
| | - Ron C Gaba
- From the Department of Radiology, Division of Interventional Radiology, New York-Presbyterian Hospital/Weill Cornell Medical Center, 525 E 68th St, P-518, New York, NY 10065 (D.C.M.); Department of Radiology, Interventional Radiology Section, University of Illinois Hospital, Chicago, Ill (R.C.G.); Department of Radiology, University of Pennsylvania School of Medicine, Penn Presbyterian Medical Center, Philadelphia, Pa (C.N.W., T.W.I.C.); and Department of Radiology, Division of Vascular and Interventional Radiology, University of Michigan Medical Center, Ann Arbor, Mich (W.E.S.)
| | - Charles N Weber
- From the Department of Radiology, Division of Interventional Radiology, New York-Presbyterian Hospital/Weill Cornell Medical Center, 525 E 68th St, P-518, New York, NY 10065 (D.C.M.); Department of Radiology, Interventional Radiology Section, University of Illinois Hospital, Chicago, Ill (R.C.G.); Department of Radiology, University of Pennsylvania School of Medicine, Penn Presbyterian Medical Center, Philadelphia, Pa (C.N.W., T.W.I.C.); and Department of Radiology, Division of Vascular and Interventional Radiology, University of Michigan Medical Center, Ann Arbor, Mich (W.E.S.)
| | - Timothy W I Clark
- From the Department of Radiology, Division of Interventional Radiology, New York-Presbyterian Hospital/Weill Cornell Medical Center, 525 E 68th St, P-518, New York, NY 10065 (D.C.M.); Department of Radiology, Interventional Radiology Section, University of Illinois Hospital, Chicago, Ill (R.C.G.); Department of Radiology, University of Pennsylvania School of Medicine, Penn Presbyterian Medical Center, Philadelphia, Pa (C.N.W., T.W.I.C.); and Department of Radiology, Division of Vascular and Interventional Radiology, University of Michigan Medical Center, Ann Arbor, Mich (W.E.S.)
| | - Wael E Saad
- From the Department of Radiology, Division of Interventional Radiology, New York-Presbyterian Hospital/Weill Cornell Medical Center, 525 E 68th St, P-518, New York, NY 10065 (D.C.M.); Department of Radiology, Interventional Radiology Section, University of Illinois Hospital, Chicago, Ill (R.C.G.); Department of Radiology, University of Pennsylvania School of Medicine, Penn Presbyterian Medical Center, Philadelphia, Pa (C.N.W., T.W.I.C.); and Department of Radiology, Division of Vascular and Interventional Radiology, University of Michigan Medical Center, Ann Arbor, Mich (W.E.S.)
| |
Collapse
|