1
|
Yang B, Picchetti P, Wang Y, Wang W, Seeger C, Bozov K, Malik S, Mallach D, Schäfer AH, Ibrahim M, Hirtz M, Powell AK. Patterned immobilization of polyoxometalate-loaded mesoporous silica particles via amine-ene Michael additions on alkene functionalized surfaces. Sci Rep 2024; 14:1249. [PMID: 38218940 PMCID: PMC10787769 DOI: 10.1038/s41598-023-50846-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/27/2023] [Indexed: 01/15/2024] Open
Abstract
Polyoxometalates (POM) are anionic oxoclusters of early transition metals that are of great interest for a variety of applications, including the development of sensors and catalysts. A crucial step in the use of POM in functional materials is the production of composites that can be further processed into complex materials, e.g. by printing on different substrates. In this work, we present an immobilization approach for POMs that involves two key processes: first, the stable encapsulation of POMs in the pores of mesoporous silica nanoparticles (MSPs) and, second, the formation of microstructured arrays with these POM-loaded nanoparticles. Specifically, we have developed a strategy that leads to water-stable, POM-loaded mesoporous silica that can be covalently linked to alkene-bearing surfaces by amine-Michael addition and patterned into microarrays by scanning probe lithography (SPL). The immobilization strategy presented facilitates the printing of hybrid POM-loaded nanomaterials onto different surfaces and provides a versatile method for the fabrication of POM-based composites. Importantly, POM-loaded MSPs are useful in applications such as microfluidic systems and sensors that require frequent washing. Overall, this method is a promising way to produce surface-printed POM arrays that can be used for a wide range of applications.
Collapse
Affiliation(s)
- Bingquan Yang
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), 76344, Eggenstein-Leopoldshafen, Germany
- Karlsruhe Nano Micro Facility (KNMFi), Karlsruhe Institute of Technology (KIT), 76344, Eggenstein-Leopoldshafen, Germany
| | - Pierre Picchetti
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), 76344, Eggenstein-Leopoldshafen, Germany
| | - Yangxin Wang
- Institute of Biological and Chemical Systems - Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), 76344, Eggenstein-Leopoldshafen, Germany
- College of Materials Science and Engineering, Nanjing Tech University, Puzhu Road(S) 30, 211816, Nanjing, People's Republic of China
| | - Wenjing Wang
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), 76344, Eggenstein-Leopoldshafen, Germany
- Karlsruhe Nano Micro Facility (KNMFi), Karlsruhe Institute of Technology (KIT), 76344, Eggenstein-Leopoldshafen, Germany
| | - Christoph Seeger
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), 76344, Eggenstein-Leopoldshafen, Germany
| | - Kliment Bozov
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), 76344, Eggenstein-Leopoldshafen, Germany
| | - Sharali Malik
- Institute for Quantum Materials and Technologies (IQMT), Karlsruhe Institute of Technology (KIT), 76344, Eggenstein-Leopoldshafen, Germany
| | - Dennis Mallach
- nanoAnalytics GmbH, Heisenbergstraße 11, 48149, Münster, Germany
| | | | - Masooma Ibrahim
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), 76344, Eggenstein-Leopoldshafen, Germany
| | - Michael Hirtz
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), 76344, Eggenstein-Leopoldshafen, Germany.
- Karlsruhe Nano Micro Facility (KNMFi), Karlsruhe Institute of Technology (KIT), 76344, Eggenstein-Leopoldshafen, Germany.
| | - Annie K Powell
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), 76344, Eggenstein-Leopoldshafen, Germany
- Institute of Inorganic Chemistry (AOC), Karlsruhe Institute of Technology (KIT), Engesserstraße 15, 76131, Karlsruhe, Germany
- Institute for Quantum Materials and Technologies (IQMT), Karlsruhe Institute of Technology (KIT), 76344, Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
2
|
Shikha S, Pattanayek SK. SPECIFIC INTERACTION THROUGH FUNCTIONAL GROUP AND MOLECULARLY IMPRINT-BASED QCM-D SENSOR FOR DETECTION OF PHORATE AND MALATHION. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
3
|
Tamandani M, Hashemi SH. Spectrophotometric determination of chlorpyrifos in foodstuff after pipette-tip micro solid extraction by modified carbon nanotube. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
4
|
Kumar V, Kim KH. Use of molecular imprinted polymers as sensitive/selective luminescent sensing probes for pesticides/herbicides in water and food samples. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 299:118824. [PMID: 35016982 DOI: 10.1016/j.envpol.2022.118824] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/21/2021] [Accepted: 01/07/2022] [Indexed: 06/14/2023]
Abstract
As non-biological molecules, molecular imprinted polymers (MIPs) can be made as antibody mimics for the development of luminescence sensors for various targets. The combination of MIPs with nanomaterials is further recognized as a useful option to improve the sensitivity of luminescence sensors. In this work, the recent progresses made in the fabrication of fluorescence, phosphorescence, chemiluminescence, and electrochemiluminescence sensors based on such combination have been reviewed with emphasis on the detection of pesticides/herbicides. Accordingly, the materials that are most feasible for the detection of such targets are recommended based on the MIP technologies.
Collapse
Affiliation(s)
- Vanish Kumar
- National Agri-Food Biotechnology Institute (NABI), S.A.S. Nagar, Punjab, 140306, India
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-ro, Seoul, 04763, South Korea.
| |
Collapse
|
5
|
Tamandani M, Hashemi H. Central Composite Design (CCD) and Box-Behnken Design (BBD) for the Optimization of a Molecularly Imprinted Polymer (MIP) Based Pipette Tip Micro-Solid Phase Extraction (SPE) for the Spectrophotometric Determination of Chlorpyrifos in Food and Juice. ANAL LETT 2022. [DOI: 10.1080/00032719.2022.2056192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Mahsa Tamandani
- Department of Marine Chemistry, Faculty of Marine Science, Chabahar Maritime University, Chabahar, Iran
| | - Hossain Hashemi
- Department of Marine Chemistry, Faculty of Marine Science, Chabahar Maritime University, Chabahar, Iran
| |
Collapse
|
6
|
Peng S, Yang S, Zhang X, Jia J, Chen Q, Lian Y, Wang A, Zeng B, Yang H, Li J, Dan J, Liao J, Zhou S. Analysis of imidacloprid residues in mango, cowpea and water samples based on portable molecular imprinting sensors. PLoS One 2021; 16:e0257042. [PMID: 34473806 PMCID: PMC8412333 DOI: 10.1371/journal.pone.0257042] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 08/21/2021] [Indexed: 01/18/2023] Open
Abstract
Imidacloprid is a neonicotinoid insecticide widely used in the production and cultivation of crops. In recent years, the extensive use of imidacloprid in agricultural production has resulted in large amounts of pesticide residues in agricultural products and the environment. Therefore, it is necessary to establish a rapid, accurate, sensitive and convenient method for detecting imidacloprid pesticide residues to ensure the safety of agricultural products and the environment. To clarify how to use the molecular imprinting method for the electrochemical rapid residue detection of imidacloprid. This paper selected reduced graphene oxide and gold nanoparticles as modifiers modified on screen-printed carbon electrodes (SPCE) chitosan as a functional monomer, and imidacloprid as template molecule to prepare molecularly imprinted polymer, and applied this sensor to the residue detection of imidacloprid. The results showed that the concentration of imidacloprid showed a good linear relationship with the peak response current, and the detection limit of imidacloprid was 0.5 μM, while the sensor had good repeatability and interference resistance. The recoveries of imidacloprid spiked on three samples, mango, cowpea and water, were in the range of 90-110% (relative standard deviation, RSD<5%), which proved the practicality and feasibility of the assay established in this paper. The results of this paper can be used as a basis for the research on the detection of imidacloprid pesticide residues in food or environment.
Collapse
Affiliation(s)
- Sihua Peng
- College of Plant Protection, Hainan University, Hainan, Haikou, China
| | - Shuyan Yang
- Key Laboratory of Germplasm Resources Biology of Tropical Special Ornamental Plants of Hainan Province, College of Forestry, Hainan University, Haikou, China
| | - Xi Zhang
- Key Laboratory of Germplasm Resources Biology of Tropical Special Ornamental Plants of Hainan Province, College of Forestry, Hainan University, Haikou, China
| | - Jingjing Jia
- Institute of Plant Protection, Hainan Academy of Agricultural Sciences, Hainan, Haikou, China
| | - Qiulin Chen
- Key Laboratory of Germplasm Resources Biology of Tropical Special Ornamental Plants of Hainan Province, College of Forestry, Hainan University, Haikou, China
| | - Yuyang Lian
- Key Laboratory of Germplasm Resources Biology of Tropical Special Ornamental Plants of Hainan Province, College of Forestry, Hainan University, Haikou, China
| | - Aqiang Wang
- Key Laboratory of Germplasm Resources Biology of Tropical Special Ornamental Plants of Hainan Province, College of Forestry, Hainan University, Haikou, China
| | - Bei Zeng
- College of Plant Protection, Hainan University, Hainan, Haikou, China
| | - Heming Yang
- Key Laboratory of Germplasm Resources Biology of Tropical Special Ornamental Plants of Hainan Province, College of Forestry, Hainan University, Haikou, China
| | - Jinlei Li
- Key Laboratory of Germplasm Resources Biology of Tropical Special Ornamental Plants of Hainan Province, College of Forestry, Hainan University, Haikou, China
| | - Jianguo Dan
- College of Plant Protection, Hainan University, Hainan, Haikou, China
| | - Jianjun Liao
- College of Ecology and Environment, Hainan University, Hainan, Haikou, China
| | - Shihao Zhou
- Key Laboratory of Germplasm Resources Biology of Tropical Special Ornamental Plants of Hainan Province, College of Forestry, Hainan University, Haikou, China
| |
Collapse
|
7
|
Dhiman S, Yadav A, Debnath N, Das S. Application of Core/Shell Nanoparticles in Smart Farming: A Paradigm Shift for Making the Agriculture Sector More Sustainable. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:3267-3283. [PMID: 33719438 DOI: 10.1021/acs.jafc.0c05403] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Modern agriculture has entered an era of technological plateau where intervention of smarter technology like nanotechnology is imminently required for making this sector economically and environmentally sustainable. Throughout the world, researchers are trying to exploit the novel properties of several nanomaterials to make agricultural practices more efficient. Core/shell nanoparticles (CSNs) have attracted much attention because of their multiple attractive novel features like high catalytic, optical, and electronic properties for which they are being widely used in sensing, imaging, and medical applications. Though it also has the promise to solve a number of issues related to agriculture, its full potential still remains mostly unexplored. This review provides a panoramic view on application of CSNs in solving several problems related to crop production and precision farming practices where the wastage of resources can be minimized. This review also summarizes different classes of CSNs and their synthesis techniques. It emphasizes and analyzes the probable potential applications of CSNs in the field of crop improvement and crop protection, detection of plant diseases and agrochemical residues, and augmentation of chloroplast mediated photosynthesis. In a nutshell, there is enormous scope to formulate and design CSN-based smart tools for applications in agriculture, making this sector more sustainable.
Collapse
Affiliation(s)
- Shikha Dhiman
- Amity Institute of Biotechnology, Amity University Haryana, Gurugram 122413, India
| | - Annu Yadav
- Amity Institute of Biotechnology, Amity University Haryana, Gurugram 122413, India
| | - Nitai Debnath
- Amity Institute of Biotechnology, Amity University Haryana, Gurugram 122413, India
| | - Sumistha Das
- Amity Institute of Biotechnology, Amity University Haryana, Gurugram 122413, India
| |
Collapse
|
8
|
|
9
|
Tsagkaris AS, Pulkrabova J, Hajslova J, Filippini D. A Hybrid Lab-on-a-Chip Injector System for Autonomous Carbofuran Screening. SENSORS (BASEL, SWITZERLAND) 2019; 19:E5579. [PMID: 31861204 PMCID: PMC6960838 DOI: 10.3390/s19245579] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/10/2019] [Accepted: 12/13/2019] [Indexed: 11/19/2022]
Abstract
Securing food safety standards is crucial to protect the population from health-threatening food contaminants. In the case of pesticide residues, reference procedures typically find less than 1% of tested samples being contaminated, thus indicating the necessity for new tools able to support smart and affordable prescreening. Here, we introduce a hybrid paper-lab-on-a-chip platform, which integrates on-demand injectors to perform multiple step protocols in a single disposable device. Simultaneous detection of enzymatic color response in sample and reference cells, using a regular smartphone, enabled semiquantitative detection of carbofuran, a neurotoxic and EU-banned carbamate pesticide, in a wide concentration range. The resulting evaluation procedure is generic and allows the rejection of spurious measurements based on their dynamic responses, and was effectively applied for the binary detection of carbofuran in apple extracts.
Collapse
Affiliation(s)
- Aristeidis S Tsagkaris
- Department of Food Analysis and Nutrition, Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, Technická 5, 6-Dejvice, 166 28 Prague, Czech Republic
| | - Jana Pulkrabova
- Department of Food Analysis and Nutrition, Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, Technická 5, 6-Dejvice, 166 28 Prague, Czech Republic
| | - Jana Hajslova
- Department of Food Analysis and Nutrition, Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, Technická 5, 6-Dejvice, 166 28 Prague, Czech Republic
| | - Daniel Filippini
- Optical Devices Laboratory, Department of Physics, Chemistry and Biology-IFM, Linköping University, S-58183 Linköping, Sweden
| |
Collapse
|
10
|
An electrochemical sensor and sorbent based on mutiwalled carbon nanotube supported ion imprinting technique for Ni(II) ion from electroplating and steel industries. SN APPLIED SCIENCES 2019. [DOI: 10.1007/s42452-018-0018-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
11
|
Debittering of lemon juice using surface molecularly imprinted polymers and the utilization of limonin. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1104:205-211. [PMID: 30529494 DOI: 10.1016/j.jchromb.2018.11.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 10/15/2018] [Accepted: 11/20/2018] [Indexed: 11/20/2022]
Abstract
In this work, surface molecularly imprinted polymers (SMIPs) were prepared as a specific sorbent to remove the limonin from the lemon juice for the first time, and then the MIPs containing limonin were directly made into a water-soluble gel to treat inflammation of mice. The resulting polymers were characterized by scanning electron microscopy, transmission electron microscopy and Fourier transform infrared spectrometer spectra. And the polymerization conditions and adsorption performances of the resultant nanomaterials were further investigated in detail. Results showed that the MIPs have higher adsorption capacity (27.72 mg/g) compared with surface molecularly non-imprinted polymers (NIPs) (8.12 mg/g). The selectivity experiment indicated that the polymers had excellent selective recognition for limonin and the selectivity factors were calculated as 2.75 and 1.83 for nomilin and obakunone, respectively. The MIPs were successfully used as adsorbent for selectively removing limonin from lemon juice and the MIPs extracted almost all the limonin from lemon juice according to the HPLC results. Furthermore, the MIPs with limonin were processed into water-soluble gel, which can be used to reduce the inflammation and enhance wound healing of model mice.
Collapse
|
12
|
An electrochemical chlorpyrifos aptasensor based on the use of a glassy carbon electrode modified with an electropolymerized aptamer-imprinted polymer and gold nanorods. Mikrochim Acta 2018; 185:551. [PMID: 30443812 DOI: 10.1007/s00604-018-3083-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 11/05/2018] [Indexed: 12/12/2022]
Abstract
A highly selective and sensitive aptasensor is described for voltammetric determination of the pesticide chlorpyrifos (CPS). The sensor was constructed by modifying a glassy carbon electrode (GCE) with gold nanorods and a polymer that was molecularly imprinted with an aptamer against CPS. This results in double specific recognition. Under optimal conditions and a working potential as low as 0.22 V (vs. Ag/AgCl), the nanotools has a dynamic range that covers the 1.0 fM - 0.4 pM CPS concentration range, and the detection limit is 0.35 fM. This is lower than any of the previously reported methods. This MIP-aptasensor is selective over structural analogs, stable, and adequately reproducible. It was successfully applied to the determination of CPS in spiked food samples. Graphical abstract Impedimetric detection of Chlorpyrifos by using a Fe(CN)63-/4- probe based on double recognition of aptamer-molecular imprinted polymer onto a glassy carbon electrode modified with gold nanorod nanocomposite. The incubation with Chlorpyrifos lead to an increase of electron transfer resistance.
Collapse
|
13
|
Uniyal S, Sharma RK. Technological advancement in electrochemical biosensor based detection of Organophosphate pesticide chlorpyrifos in the environment: A review of status and prospects. Biosens Bioelectron 2018; 116:37-50. [DOI: 10.1016/j.bios.2018.05.039] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Revised: 05/23/2018] [Accepted: 05/23/2018] [Indexed: 02/07/2023]
|
14
|
Adsorption of 1-naphthyl methyl carbamate in water by utilizing a surface molecularly imprinted polymer. Chem Phys Lett 2018. [DOI: 10.1016/j.cplett.2018.03.059] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Kumar S, Sarita, Nehra M, Dilbaghi N, Tankeshwar K, Kim KH. Recent advances and remaining challenges for polymeric nanocomposites in healthcare applications. Prog Polym Sci 2018. [DOI: 10.1016/j.progpolymsci.2018.03.001] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
16
|
Ren X, Cheshari EC, Qi J, Li X. Silver microspheres coated with a molecularly imprinted polymer as a SERS substrate for sensitive detection of bisphenol A. Mikrochim Acta 2018; 185:242. [DOI: 10.1007/s00604-018-2772-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 03/14/2018] [Indexed: 01/19/2023]
|
17
|
Molecularly imprinted polymers for the determination of organophosphorus pesticides in complex samples. Talanta 2018; 176:465-478. [DOI: 10.1016/j.talanta.2017.08.067] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 08/16/2017] [Accepted: 08/20/2017] [Indexed: 11/20/2022]
|
18
|
Xu W, Wang Q, Huang W, Yang W. Construction of a novel electrochemical sensor based on molecularly imprinted polymers for the selective determination of chlorpyrifos in real samples. J Sep Sci 2017; 40:4839-4846. [DOI: 10.1002/jssc.201701004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 10/11/2017] [Accepted: 10/15/2017] [Indexed: 01/15/2023]
Affiliation(s)
- Wanzhen Xu
- School of the Environment and Safety Engineering; Jiangsu University; Zhenjiang China
| | - Qingqing Wang
- School of the Environment and Safety Engineering; Jiangsu University; Zhenjiang China
| | - Weihong Huang
- School of the Environment and Safety Engineering; Jiangsu University; Zhenjiang China
| | - Wenming Yang
- School of Materials Science and Engineering; Jiangsu University; Zhenjiang China
| |
Collapse
|
19
|
Li H, Xie T, Ye L, Wang Y, Xie C. Core-shell magnetic molecularly imprinted polymer nanoparticles for the extraction of triazophos residues from vegetables. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2096-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
20
|
Bapat G, Labade C, Chaudhari A, Zinjarde S. Silica nanoparticle based techniques for extraction, detection, and degradation of pesticides. Adv Colloid Interface Sci 2016; 237:1-14. [PMID: 27780560 DOI: 10.1016/j.cis.2016.06.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 05/31/2016] [Accepted: 06/01/2016] [Indexed: 12/07/2022]
Abstract
Silica nanoparticles (SiNPs) find applications in the fields of drug delivery, catalysis, immobilization and sensing. Their synthesis can be mediated in a facile manner and they display broad range compatibility and stability. Their existence in the form of spheres, wires and sheets renders them suitable for varied purposes. This review summarizes the use of silica nanostructures in developing techniques for extraction, detection and degradation of pesticides. Silica nanostructures on account of their sorbent properties, porous nature and increased surface area allow effective extraction of pesticides. They can be modified (with ionic liquids, silanes or amines), coated with molecularly imprinted polymers or magnetized to improve the extraction of pesticides. Moreover, they can be altered to increase their sensitivity and stability. In addition to the analysis of pesticides by sophisticated techniques such as High Performance Liquid Chromatography or Gas chromatography, silica nanoparticles related simple detection methods are also proving to be effective. Electrochemical and optical detection based on enzymes (acetylcholinesterase and organophosphate hydrolase) or antibodies have been developed. Pesticide sensors dependent on fluorescence, chemiluminescence or Surface Enhanced Raman Spectroscopic responses are also SiNP based. Moreover, degradative enzymes (organophosphate hydrolases, carboxyesterases and laccases) and bacterial cells that produce recombinant enzymes have been immobilized on SiNPs for mediating pesticide degradation. After immobilization, these systems show increased stability and improved degradation. SiNP are significant in developing systems for effective extraction, detection and degradation of pesticides. SiNPs on account of their chemically inert nature and amenability to surface modifications makes them popular tools for fabricating devices for 'on-site' applications.
Collapse
|
21
|
Wu N, Luo Z, Ge Y, Guo P, Du K, Tang W, Du W, Zeng A, Chang C, Fu Q. A novel surface molecularly imprinted polymer as the solid-phase extraction adsorbent for the selective determination of ampicillin sodium in milk and blood samples. J Pharm Anal 2016; 6:157-164. [PMID: 29403976 PMCID: PMC5762489 DOI: 10.1016/j.jpha.2016.01.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 01/19/2016] [Accepted: 01/25/2016] [Indexed: 11/04/2022] Open
Abstract
Surface molecularly imprinted polymers (SMIPs) for selective adsorption of ampicillin sodium were synthesized using surface molecular imprinting technique with silica gel as a support. The physical and morphological characteristics of the polymers were investigated by scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), elemental analysis and nitrogen adsorption–desorption test. The obtained results showed that the SMIPs displayed great adsorption capacity (13.5 μg/mg), high recognition ability (the imprinted factor is 3.2) and good binding kinetics for ampicillin sodium. Finally, as solid phase extraction adsorbents, the SMIPs coupled with HPLC method were validated and applied for the enrichment, purification and determination of ampicillin sodium in real milk and blood samples. The averages of spiked accuracy ranged from 92.1% to 107.6%. The relative standard deviations of intra- and inter-day precisions were less than 4.6%. This study provides a new and promising method for enriching, extracting and determining ampicillin sodium in complex biological samples.
Collapse
Affiliation(s)
- Ningli Wu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China.,Department of Pharmacy, Xi'an First Hospital, Xi'an 710002, China
| | - Zhimin Luo
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China
| | - Yanhui Ge
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China
| | - Pengqi Guo
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China
| | - Kangli Du
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China.,Department of Pharmacy, Tianjin Huanhu Hospital, Tianjin 300060, China
| | - Weili Tang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China.,Department of Pharmacy, Hospital of Stomatology, Xi'an Jiaotong University, Xi'an 710004, China
| | - Wei Du
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China
| | - Aiguo Zeng
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China
| | - Chun Chang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China
| | - Qiang Fu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China
| |
Collapse
|
22
|
Chen L, Wang X, Lu W, Wu X, Li J. Molecular imprinting: perspectives and applications. Chem Soc Rev 2016; 45:2137-211. [DOI: 10.1039/c6cs00061d] [Citation(s) in RCA: 1438] [Impact Index Per Article: 179.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
This critical review presents a survey of recent developments in technologies and strategies for the preparation of MIPs, followed by the application of MIPs in sample pretreatment, chromatographic separation and chemical sensing.
Collapse
Affiliation(s)
- Lingxin Chen
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation
- Yantai Institute of Coastal Zone Research
- Chinese Academy of Sciences
- Yantai 264003
- China
| | - Xiaoyan Wang
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation
- Yantai Institute of Coastal Zone Research
- Chinese Academy of Sciences
- Yantai 264003
- China
| | - Wenhui Lu
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation
- Yantai Institute of Coastal Zone Research
- Chinese Academy of Sciences
- Yantai 264003
- China
| | - Xiaqing Wu
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation
- Yantai Institute of Coastal Zone Research
- Chinese Academy of Sciences
- Yantai 264003
- China
| | - Jinhua Li
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation
- Yantai Institute of Coastal Zone Research
- Chinese Academy of Sciences
- Yantai 264003
- China
| |
Collapse
|
23
|
He Y, Xu B, Li W, Yu H. Silver nanoparticle-based chemiluminescent sensor array for pesticide discrimination. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:2930-2934. [PMID: 25751408 DOI: 10.1021/acs.jafc.5b00671] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
In this work, we developed a simple, facile, and highly sensitive nanoparticle-based chemiluminescent (CL) sensor array for the discrimination of organophosphate and carbamate pesticides. This CL sensor array is based on simultaneous utilization of the triple-channel properties of the luminol-functionalized silver nanoparticle (Lum-AgNP) and H2O2 CL system containing CL intensity, the time for CL emissions to appear, and the time to reach the CL peak value, which are able to be measured via a single experiment. The triple-channel properties can be simultaneously altered after interaction with pesticides, producing distinct CL response patterns as "fingerprints" related to each specific pesticide, which was subjected to principal component analysis (PCA) to generate a clustering map. Using this sensor array, five organophosphate and carbamate pesticides, including dimethoate, dipterex, carbaryl, chlorpyrifos, and carbofuran, have been well-distinguished at a concentration of 24 μg/mL. A total of 20 unknown pesticide samples have been successfully identified with an accuracy of 95%. The simple strategy of this study is expected to promote the development of functionalized nanomaterial-based sensor arrays.
Collapse
Affiliation(s)
- Yi He
- School of National Defence Science and Technology, Southwest University of Science and Technology, Mianyang, Sichuan 621010, People's Republic of China
| | - Bo Xu
- School of National Defence Science and Technology, Southwest University of Science and Technology, Mianyang, Sichuan 621010, People's Republic of China
| | - Wenhao Li
- School of National Defence Science and Technology, Southwest University of Science and Technology, Mianyang, Sichuan 621010, People's Republic of China
| | - Haili Yu
- School of National Defence Science and Technology, Southwest University of Science and Technology, Mianyang, Sichuan 621010, People's Republic of China
| |
Collapse
|
24
|
Three-dimensional mono-6-thio-β-cyclodextrin covalently functionalized gold nanoparticle/single-wall carbon nanotube hybrids for highly sensitive and selective electrochemical determination of methyl parathion. Electrochim Acta 2015. [DOI: 10.1016/j.electacta.2014.11.144] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
25
|
Whitcombe MJ, Kirsch N, Nicholls IA. Molecular imprinting science and technology: a survey of the literature for the years 2004-2011. J Mol Recognit 2014; 27:297-401. [PMID: 24700625 DOI: 10.1002/jmr.2347] [Citation(s) in RCA: 275] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 10/28/2013] [Accepted: 12/01/2013] [Indexed: 12/11/2022]
Abstract
Herein, we present a survey of the literature covering the development of molecular imprinting science and technology over the years 2004-2011. In total, 3779 references to the original papers, reviews, edited volumes and monographs from this period are included, along with recently identified uncited materials from prior to 2004, which were omitted in the first instalment of this series covering the years 1930-2003. In the presentation of the assembled references, a section presenting reviews and monographs covering the area is followed by sections describing fundamental aspects of molecular imprinting including the development of novel polymer formats. Thereafter, literature describing efforts to apply these polymeric materials to a range of application areas is presented. Current trends and areas of rapid development are discussed.
Collapse
|
26
|
Determination of hydroquinone by flow injection chemiluminescence and using magnetic surface molecularly imprinted particles. Mikrochim Acta 2014. [DOI: 10.1007/s00604-014-1415-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
27
|
Joshi S, Rao A, Lehmler HJ, Knutson BL, Rankin SE. Interfacial molecular imprinting of Stöber particle surfaces: a simple approach to targeted saccharide adsorption. J Colloid Interface Sci 2014; 428:101-10. [PMID: 24910041 DOI: 10.1016/j.jcis.2014.04.041] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 04/19/2014] [Accepted: 04/20/2014] [Indexed: 10/25/2022]
Abstract
The use of surfactant headgroups for interfacial imprinting is established as a simple and tunable approach to create molecularly imprinted silica nanoparticles based on a modification of the Stöber method. Adsorption of D-glucose and D-xylose (initial concentrations ranging from 0.139 to 1.67 mol/l) is measured on silica nanoparticles created by the addition of a glucose-based surfactant (n-octyl-β-D-glucopyranoside (C8G1)) or surfactant mixtures (C8G1 and cetyltrimethylammonium bromide (CTAB)) to Stöber particles shortly after their precipitation. Silica particles synthesized in the presence of C8G1 as an imprinting surfactant have a significantly higher affinity for glucose over xylose (as much as 3.25 times greater at 0.25 M saccharide), and an enhanced affinity for glucose relative to non-imprinted silica particles (as much as 4 times greater at 0.25 M), which adsorb glucose and xylose similarly. Glucose imprinting is significantly enhanced using a surfactant mixture of 1:1 C8G1/CTAB. The interfacial activity of the nonionic imprinting surfactant at the silica surface is suggested to be improved by the presence of interfacial cationic CTAB, which is driven to the silica surface through electrostatic interactions. The concept of imprinting through the interaction of surfactant headgroups with the soft surface of silica particles is supported by the importance of the time of addition of the surfactants. The greatest enhancement in glucose adsorption is observed when the surfactants are added 1 min after precursor addition (at the onset of aggregated particle formation, as indicated by solution turbidity) and the silica affinity for glucose decreases with the time of surfactant addition. The versatility of the surfactant imprinting of Stöber particles is demonstrated by the enhanced adsorption of xylose relative to glucose on particles imprinted using a 1:1 mixture of n-octyl-β-D-xylopyranoside and CTAB, suggesting that the process can be customized to selectively adsorb target molecules of interest.
Collapse
Affiliation(s)
- Suvid Joshi
- Department of Chemical and Materials Engineering, University of Kentucky, 177 F.P. Anderson Hall, Lexington, KY 40506-0046, USA
| | - Alexander Rao
- Department of Chemical Engineering, University of Massachusetts Amherst, 686 North Pleasant Street, 159 Goessmann Lab, Amherst, MA 01003, USA
| | - Hans-Joachim Lehmler
- Department of Occupational and Environmental Health, University of Iowa, UI Research Park, 124 IREH, Iowa City, IA 52242, USA
| | - Barbara L Knutson
- Department of Chemical and Materials Engineering, University of Kentucky, 177 F.P. Anderson Hall, Lexington, KY 40506-0046, USA
| | - Stephen E Rankin
- Department of Chemical and Materials Engineering, University of Kentucky, 177 F.P. Anderson Hall, Lexington, KY 40506-0046, USA.
| |
Collapse
|
28
|
Fluorescent detection of chlorpyrifos using Mn(II)-doped ZnS quantum dots coated with a molecularly imprinted polymer. Mikrochim Acta 2014. [DOI: 10.1007/s00604-014-1317-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
29
|
Yao GH, Liang RP, Huang CF, Wang Y, Qiu JD. Surface plasmon resonance sensor based on magnetic molecularly imprinted polymers amplification for pesticide recognition. Anal Chem 2013; 85:11944-51. [PMID: 24261416 DOI: 10.1021/ac402848x] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We reported here a method to enhance detection sensitivity in surface plasmon resonance (SPR) spectroscopy integrated with a surface molecular imprinting recognition system and employing magnetic molecular imprinting polymer nanoparticles for amplifying SPR response. The proposed magnetic molecular imprinting polymer was designed by self-polymerization of dopamine on the Fe3O4 NPs surface in weak base aqueous solution in the presence of template chlorpyrifos (CPF). The imprinted Fe3O4@polydopamine nanoparticles (Fe3O4@PDA NPs) were characterized by Fourier transform infrared spectroscopy, UV-vis absorption spectroscopy, and transmission electron microscopy. The biosensor showed a good linear relationship between the SPR angle shift and the chlorpyrifos concentration over a range from 0.001 to 10 μM with a detection limit of 0.76 nM. A significant increase in sensitivity was therefore afforded through the use of imprinted Fe3O4@PDA NPs as an amplifier, and meanwhile, the imprinted Fe3O4@PDA NPs had an excellent recognition capacity to chlorpyrifos over other pesticides. The excellent sensitivity and selectivity and high stability of the designed biosensor make this magnetic imprinted Fe3O4@PDA NP an attractive recognition element for various SPR sensors for detecting pesticide residuals and other environmentally deleterious chemicals.
Collapse
Affiliation(s)
- Gui-Hong Yao
- Department of Chemistry, Nanchang University , Nanchang, Jiangxi 330031, P. R. China
| | | | | | | | | |
Collapse
|
30
|
Li H, Wang L. Highly selective detection of polycyclic aromatic hydrocarbons using multifunctional magnetic-luminescent molecularly imprinted polymers. ACS APPLIED MATERIALS & INTERFACES 2013; 5:10502-10509. [PMID: 24083479 DOI: 10.1021/am4020605] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
A facile method is presented for the selective luminescence detection of trace polycyclic aromatic hydrocarbons (PAHs) based on a combination of the specific recognition of molecularly imprinted polymers (MIPs) and magnetic separation (MS). Multifunctional magnetic-luminescent MIP nanocomposites were fabricated via a one-pot emulsion strategy using polystyrene-co-methacrylic acid copolymer, hydrophobic Fe3O4 nanoparticles and luminescent LaVO4:Eu(3+) nanoparticles as building blocks with a phenanthrene template. The resulting nanocomposites can be employed in a simple method for the luminescence detection of phenanthrene. Furthermore, magnetic separation of the nanocomposites from the target mixture prior to luminescence detection of phenanthrene affords significantly enhanced selectivity and sensitivity, with a 3σ limit of detection (LOD) as low as 3.64 ng/mL. Milk samples spiked with phenanthrene (5.0 μg/mL) were assayed via this method and recoveries ranging from 97.11 to 101.9% were obtained, showing that our strategy is potentially applicable for the preconcentration, recovering, and monitoring of trace PAHs in complex mixtures.
Collapse
Affiliation(s)
- Hao Li
- State Key Laboratory of Chemical Resource Engineering, School of Science, Beijing University of Chemical Technology , Beijing 100029, China
| | | |
Collapse
|
31
|
Tian J, Xu J, Zhu F, Lu T, Su C, Ouyang G. Application of nanomaterials in sample preparation. J Chromatogr A 2013; 1300:2-16. [DOI: 10.1016/j.chroma.2013.04.010] [Citation(s) in RCA: 161] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Revised: 03/23/2013] [Accepted: 04/04/2013] [Indexed: 12/07/2022]
|
32
|
Que X, Liu B, Fu L, Zhuang J, Chen G, Tang D. Molecular Imprint for Electrochemical Detection of Streptomycin Residues Using Enzyme Signal Amplification. ELECTROANAL 2013. [DOI: 10.1002/elan.201200468] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
33
|
Liu S, Zheng Z, Li X. Advances in pesticide biosensors: current status, challenges, and future perspectives. Anal Bioanal Chem 2012; 405:63-90. [DOI: 10.1007/s00216-012-6299-6] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 07/12/2012] [Accepted: 07/24/2012] [Indexed: 01/17/2023]
|
34
|
Gauczinski J, Liu Z, Zhang X, Schönhoff M. Surface molecular imprinting in layer-by-layer films on silica particles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:4267-4273. [PMID: 22324368 DOI: 10.1021/la205027j] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
An improvement to molecular imprinting in polymers, where bulk systems often suffer from slow dynamics of release and uptake, is the formation of thin films with imprinting sites that are more rapid to access by guest molecules. Based on our previous development of surface molecular imprinting layer-by-layer (LbL) films (SMILbL), the present paper presents selective imprinted sites in a surface film on dispersed silica particles, thus designing a SMILbL system with maximized active area and in addition allowing studies with bulk techniques. The multilayer is designed to include the template during the LbL buildup and to form a cross-linked network upon UV-irradiation for enhanced stability. A theophylline moiety is grafted to poly(acrylic acid) as the template, while a UV-sensitive diazo polycation cross-links the polymers after irradiation. Electrophoretic measurements prove the successful buildup of the multilayers by an alternating sign of the zeta potential. Template release is achieved by cleavage of the grafted template. The released amount of template is quantified in solution by (1)H NMR spectra and is in good agreement with the prediction from surface coverage calculations. Rebinding studies of template to the now empty imprinted binding sites show a high affinity for a theophylline derivative with a rebound amount on the order of the original template content. In contrast to theophylline, caffeine with a very similar chemical structure-only differing in one functional group-shows very different binding properties due to a thiol moiety in the binding site. Thus, a particle system with very selective molecular imprinting sites is demonstrated.
Collapse
Affiliation(s)
- Jan Gauczinski
- Institute of Physical Chemistry, University of Muenster, Münster, Germany
| | | | | | | |
Collapse
|
35
|
Lu F, Li H, Sun M, Fan L, Qiu H, Li X, Luo C. Flow injection chemiluminescence sensor based on core–shell magnetic molecularly imprinted nanoparticles for determination of sulfadiazine. Anal Chim Acta 2012; 718:84-91. [DOI: 10.1016/j.aca.2011.12.054] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Revised: 12/16/2011] [Accepted: 12/19/2011] [Indexed: 11/24/2022]
|
36
|
|