1
|
Steinmüller L, Csáki A, Mertens F, Fritzsche W. A Real-Time LSPR-Based Study of Metal-Organic Framework (MOF) Growth. Chemistry 2024; 30:e202401188. [PMID: 38752410 DOI: 10.1002/chem.202401188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Indexed: 06/01/2024]
Abstract
MOFs are known for their absorption properties and widely used for accumulation, filtering, sensorics, photothermal, catalytical and other applications. Their combination with plasmonic metal nanoparticles leads to hybrid structures that profit from the stabilizing effect and high porosity of the MOF as well as the optical and electronic properties of the nanoparticles. The growth of MOFs on plasmonic nanoparticles can be monitored in-situ using LSPR spectroscopy, simultaneously applying microfluidic reaction conditions for the fabrication of NP@MOF structures. Here, a systematic study is conducted using LSPR spectroscopy for the monitoring of the Layer-by-Layer deposition of twelve different MOFs, determining the suitability of LSPR spectroscopy for this purpose. In addition to some well-investigated materials like HKUST-1, other MOFs such as MIL-53, MIL-88 A and Cu-BDC are deposited successfully. For some MOFs such as Zn-Fum, the LSPR experiment indicates that no deposition had taken place. The results are confirmed with AFM, SEM and XPS measurements. This work shows that LSPR spectroscopy is suitable for the in-situ monitoring of LbL MOF growth and the microfluidic setup is a very promising method for the controlled manufacturing of NP@MOF hybrid structures. Further studies may include the optimization of the synthesis process or the transfer to other materials.
Collapse
Affiliation(s)
- Lucie Steinmüller
- Department Nanobiophotonics, Leibniz Institute of Photonic Technologies, Albert-Einstein-Straße 9, 07745, Jena, Germany
| | - Andrea Csáki
- Department Nanobiophotonics, Leibniz Institute of Photonic Technologies, Albert-Einstein-Straße 9, 07745, Jena, Germany
| | - Florian Mertens
- Department of Physical Chemistry, TU Bergakademie Freiberg, Leipziger Straße 29, 09599, Freiberg, Germany
| | - Wolfgang Fritzsche
- Department Nanobiophotonics, Leibniz Institute of Photonic Technologies, Albert-Einstein-Straße 9, 07745, Jena, Germany
| |
Collapse
|
2
|
Ghorbanian A, Rowshanzamir S, Mehri F. Enhanced brackish water desalination in capacitive deionization with composite Zn-BTC MOF-incorporated electrodes. Sci Rep 2024; 14:14999. [PMID: 38951566 PMCID: PMC11217474 DOI: 10.1038/s41598-024-66023-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 06/26/2024] [Indexed: 07/03/2024] Open
Abstract
In this study, composite electrodes with metal-organic framework (MOF) for brackish water desalination via capacitive deionization (CDI) were developed. The electrodes contained activated carbon (AC), polyvinylidene fluoride (PVDF), and zinc-benzene tricarboxylic acid (Zn-BTC) MOF in varying proportions, improving their electrochemical performance. Among them, the E4 electrode with 6% Zn-BTC MOF exhibited the best performance in terms of CV and EIS analyses, with a specific capacity of 88 F g-1 and low ion charge transfer resistance of 4.9 Ω. The E4 electrode showed a 46.7% increase in specific capacitance compared to the E1 electrode, which did not include the MOF. Physicochemical analyses, including XRD, FTIR, FESEM, BET, EDS, elemental mapping, and contact angle measurements, verified the superior properties of the E4 electrode compared to E1, showcasing successful MOF synthesis, desirable pore size, elemental and particle-size distribution of materials, and the superior hydrophilicity enhancement. By evaluating salt removal capacity (SRC) in various setups using an initially 100.0 mg L-1 NaCl feed solution, the asymmetric arrangement of E1 and E4 electrodes outperformed symmetric arrangements, achieving a 21.1% increase in SRC to 6.3 mg g-1. This study demonstrates the potential of MOF-incorporated electrodes for efficient CDI desalination processes.
Collapse
Affiliation(s)
- Amirshahriar Ghorbanian
- Hydrogen & Fuel Cell Research Laboratory, School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology, Narmak, Tehran, 16846-13114, Iran
| | - Soosan Rowshanzamir
- Hydrogen & Fuel Cell Research Laboratory, School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology, Narmak, Tehran, 16846-13114, Iran.
- Center of Excellence for Membrane Science and Technology, Iran University of Science and Technology, Narmak, Tehran, Iran.
| | - Foad Mehri
- Hydrogen & Fuel Cell Research Laboratory, School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology, Narmak, Tehran, 16846-13114, Iran
| |
Collapse
|
3
|
Li X, Li S, Liu J, Zhang J, Ren Y, Zhao J. Construction of Zn-Cu bimetallic metal-organic frameworks for carbon dioxide capture. RSC Adv 2024; 14:20780-20785. [PMID: 38952934 PMCID: PMC11215807 DOI: 10.1039/d4ra03539a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 06/19/2024] [Indexed: 07/03/2024] Open
Abstract
Bimetallic metal-organic frameworks (MOFs) have shown more impressive performance in gas adsorption compared with monometallic MOFs. Herein, a Cu-Zn bimetallic metal-organic framework (Zn/Cu-BTC) was synthesized via a one-pot method, and its structure, thermal stability and CO2 adsorption property were investigated and compared with those of corresponding monometallic Cu-BTC and Zn-BTC. The results showed that Zn/Cu-BTC has a specific ortho-octahedral crystal morphology with a unique X-ray diffraction peak, the atomic ratio of Zn to Cu is about 1 : 5, and it remained stable at a temperature up to 490 K. In Zn/Cu-BTC, Cu2+ played a role in increasing the specific surface area and porosity of the MOF and improving the gas adsorption performance. The CO2 adsorption of Zn/Cu-BTC is lower than that of Cu-BTC but much higher than that of Zn-BTC, and CO2 adsorption heat was 30.52 kJ mol-1, which indicated physical adsorption. In addition, Zn/Cu-BTC had higher CO2/N2 adsorption selectivity compared with Zn-BTC and Cu-BTC, with a maximum value of 17. This study can be a reference for the research on improving the adsorption selectivity of gases by constructing bimetallic MOFs.
Collapse
Affiliation(s)
- Xinyu Li
- Engineering Research Center of Coal-based Ecological Carbon Sequestration Technology of the Ministry of Education, Shanxi Datong University Datong 037009 China
| | - Shijie Li
- Engineering Research Center of Coal-based Ecological Carbon Sequestration Technology of the Ministry of Education, Shanxi Datong University Datong 037009 China
| | - Jiahao Liu
- Engineering Research Center of Coal-based Ecological Carbon Sequestration Technology of the Ministry of Education, Shanxi Datong University Datong 037009 China
| | - Jin Zhang
- Engineering Research Center of Coal-based Ecological Carbon Sequestration Technology of the Ministry of Education, Shanxi Datong University Datong 037009 China
| | - Yunpeng Ren
- Engineering Research Center of Coal-based Ecological Carbon Sequestration Technology of the Ministry of Education, Shanxi Datong University Datong 037009 China
| | - Jianguo Zhao
- Engineering Research Center of Coal-based Ecological Carbon Sequestration Technology of the Ministry of Education, Shanxi Datong University Datong 037009 China
| |
Collapse
|
4
|
Lal S, Singh P, Singhal A, Kumar S, Singh Gahlot AP, Gandhi N, Kumari P. Advances in metal-organic frameworks for water remediation applications. RSC Adv 2024; 14:3413-3446. [PMID: 38259988 PMCID: PMC10801355 DOI: 10.1039/d3ra07982a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 12/05/2023] [Indexed: 01/24/2024] Open
Abstract
Rapid industrialization and agricultural development have resulted in the accumulation of a variety of harmful contaminants in water resources. Thus, various approaches such as adsorption, photocatalytic degradation and methods for sensing water contaminants have been developed to solve the problem of water pollution. Metal-organic frameworks (MOFs) are a class of coordination networks comprising organic-inorganic hybrid porous materials having organic ligands attached to inorganic metal ions/clusters via coordination bonds. MOFs represent an emerging class of materials for application in water remediation owing to their versatile structural and chemical characteristics, such as well-ordered porous structures, large specific surface area, structural diversity, and tunable sites. The present review is focused on recent advances in various MOFs for application in water remediation via the adsorption and photocatalytic degradation of water contaminants. The sensing of water pollutants using MOFs via different approaches, such as luminescence, electrochemical, colorimetric, and surface-enhanced Raman spectroscopic techniques, is also discussed. The high porosity and chemical tunability of MOFs are the main driving forces for their widespread applications, which have huge potential for their commercial use.
Collapse
Affiliation(s)
- Seema Lal
- Department of Chemistry, Deshbandhu College, University of Delhi New Delhi India
| | - Parul Singh
- Department of Chemistry, Deshbandhu College, University of Delhi New Delhi India
| | - Anchal Singhal
- Department of Chemistry, St. Joseph's College Bengaluru Karnataka India
| | - Sanjay Kumar
- Department of Chemistry, Deshbandhu College, University of Delhi New Delhi India
| | | | - Namita Gandhi
- Department of Chemistry, Deshbandhu College, University of Delhi New Delhi India
| | - Pratibha Kumari
- Department of Chemistry, Deshbandhu College, University of Delhi New Delhi India
| |
Collapse
|
5
|
Li S, Wu Y, Ma X, Pang C, Wang M, Xu Z, Li B. Monitoring levamisole in food and the environment with high selectivity using an electrochemical chiral sensor comprising an MOF and molecularly imprinted polymer. Food Chem 2024; 430:137105. [PMID: 37562261 DOI: 10.1016/j.foodchem.2023.137105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/12/2023]
Abstract
We used an enhanced recognition strategy to fabricate a novel levamisole-detecting chiral electrochemical sensor featuring a metal-organic framework (MOF) combined with a molecularly imprinted polymer (MIP). We first synthesised a Cu/Zn-[benzene-1,3,5-tricarboxylic acid] (Cu/Zn-BTC) MOF as the molecular immobilisation and signal-amplifying unit, and then prepared the MIP (molecular recognition unit) using levamisole as the template on a glassy carbon electrode modified with Cu/Zn-BTC. We obtained a composite chiral sensor with enhanced recognition capability for levamisole after template removal. Using the templated sites as the switch and K3[Fe(CN)6]/K4[Fe(CN)6] as a probe, we established a new method for detecting levamisole in meat products and water bodies. The linear detection range and detection limit of our chiral sensor are 5 to 6000 × 10-11 mol/L and 1.65 × 10-12 mol/L, respectively. Moreover, the sensor exhibited 93.8-109.0% recovery in the detection of levamisole in chicken and other real samples.
Collapse
Affiliation(s)
- Shuhuai Li
- Analysis and Test Center, Chinese Academy of Tropical Agricultural Sciences, Hainan Provincial Key Laboratory of Quality and Safety for Tropical Fruits and Vegetables, Key Laboratory of Quality and Safety Control of Subtropical Fruits and Vegetables, Ministry of Agriculture and Rural Affairs, Haikou 571101, China; Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Haikou 570311, China.
| | - Yuwei Wu
- Analysis and Test Center, Chinese Academy of Tropical Agricultural Sciences, Hainan Provincial Key Laboratory of Quality and Safety for Tropical Fruits and Vegetables, Key Laboratory of Quality and Safety Control of Subtropical Fruits and Vegetables, Ministry of Agriculture and Rural Affairs, Haikou 571101, China; Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Haikou 570311, China
| | - Xionghui Ma
- Analysis and Test Center, Chinese Academy of Tropical Agricultural Sciences, Hainan Provincial Key Laboratory of Quality and Safety for Tropical Fruits and Vegetables, Key Laboratory of Quality and Safety Control of Subtropical Fruits and Vegetables, Ministry of Agriculture and Rural Affairs, Haikou 571101, China; Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Haikou 570311, China
| | - Chaohai Pang
- Analysis and Test Center, Chinese Academy of Tropical Agricultural Sciences, Hainan Provincial Key Laboratory of Quality and Safety for Tropical Fruits and Vegetables, Key Laboratory of Quality and Safety Control of Subtropical Fruits and Vegetables, Ministry of Agriculture and Rural Affairs, Haikou 571101, China; Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Haikou 570311, China
| | - Mingyue Wang
- Analysis and Test Center, Chinese Academy of Tropical Agricultural Sciences, Hainan Provincial Key Laboratory of Quality and Safety for Tropical Fruits and Vegetables, Key Laboratory of Quality and Safety Control of Subtropical Fruits and Vegetables, Ministry of Agriculture and Rural Affairs, Haikou 571101, China; Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Haikou 570311, China.
| | - Zhi Xu
- Analysis and Test Center, Chinese Academy of Tropical Agricultural Sciences, Hainan Provincial Key Laboratory of Quality and Safety for Tropical Fruits and Vegetables, Key Laboratory of Quality and Safety Control of Subtropical Fruits and Vegetables, Ministry of Agriculture and Rural Affairs, Haikou 571101, China; Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Haikou 570311, China.
| | - Bei Li
- Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Haikou 570311, China
| |
Collapse
|
6
|
Mohammed Ameen SS, Qasim FO, Alhasan HS, Hama Aziz KH, Omer KM. Intrinsic Dual-State Emission Zinc-Based MOF Rodlike Nanostructures with Applications in Smartphone Readout Visual-Based Detection for Tetracycline: MOF-Based Color Tonality. ACS APPLIED MATERIALS & INTERFACES 2023; 15:46098-46107. [PMID: 37733947 DOI: 10.1021/acsami.3c11950] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
Dual-state emitters (DSEs) are entities that exhibit fluorescence in both the solution and solid state, which open up a wide range of possibilities for their utilization in various fields. The development of detection platforms using intrinsic luminescent metal-organic frameworks (LMOFs) is highly desirable for a variety of applications. DSE MOFs as a subclass of intrinsic LMOFs are highly attractive due to no need for encapsulation/functionalization by fluorophores and/or using luminescent linkers. Herein, a highly stable intrinsic dual-state blue emission (λem = 425 nm) zinc-based MOF with rodlike nanostructures (denoted as UoZ-2) was synthesized and characterized. To the best of our knowledge, intrinsic DSE of Zn-MOFs with blue emission in the dispersed form in solution and solid-state fluorescence have not been reported yet. When tetracycline (TC) was added, a continuous color evolution from blue to greenish-yellow with dramatic enhancement was observed due to aggregation induced emission (AIE). Thus, a sensitive ratiometry-based visual detection platform, in solution and on paper independently, was designed for detection of TC exploiting the DSE and AIE properties of UoZ-2 alone and UoZ-2:TC. The detection limit was estimated to be 4.5 nM, which is considered to be one of the most sensitive ratiometric fluorescent probes for TC sensing. The ratiometry paper-based UoZ-2 sensor displays a reliable TC quantitative analysis by recognizing RGB values in the on-site TC detection with satisfactory recoveries.
Collapse
Affiliation(s)
- Sameera Sh Mohammed Ameen
- Department of Chemistry, Faculty of Science, University of Zakho, Zakho 42002, Kurdistan Region, Iraq
| | - Faroq Omer Qasim
- Department of Horticulture, Technical College of Akre, Duhok Polytechnic University, Duhok 42001, Kurdistan Regin, Iraq
- Department of Horticulture, Technical College of Akre, Akre University for Applied Sciences, 42001, Kurdistan Region, Iraq
| | - Huda S Alhasan
- Environmental Research and Studies Center, University of Babylon, Hilla 51002, Iraq
| | - Kosar H Hama Aziz
- Department of Medical Laboratory of Science, College of Health Sciences, University of Human Development, Sulaimaniyah 46001, Iraq
| | - Khalid M Omer
- Department of Chemistry, College of Science, University of Sulaimani, Qliasan Street, 46002 Sulaimani City, Kurdistan Region, Iraq
| |
Collapse
|
7
|
Wang D, Du LH, Li L, Wei YM, Wang T, Cheng J, Du B, Jia Y, Yu BY. Zn(II)-Based Mixed-Ligand-Bearing Coordination Polymers as Multi-Responsive Fluorescent Sensors for Detecting Dichromate, Iodide, Nitenpyram, and Imidacloprid. Polymers (Basel) 2023; 15:polym15112570. [PMID: 37299368 DOI: 10.3390/polym15112570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/18/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
Coordination polymers (CPs) are organo-inorganic porous materials consisting of metal ions or clusters and organic linkers. These compounds have attracted attention for use in the fluorescence detection of pollutants. Here, two Zn-based mixed-ligand-bearing CPs, [Zn2(DIN)2(HBTC2-)2] (CP-1) and [Zn(DIN)(HBTC2-)]·ACN·H2O (CP-2) (DIN = 1,4-di(imidazole-1-yl)naphthalene, H3BTC = 1,3,5-benzenetricarboxylic acid, and ACN = acetonitrile), were synthesized under solvothermal conditions. CP-1 and CP-2 were characterized by single-crystal X-ray diffraction, Fourier transform infrared spectroscopy, thermogravimetric analysis, elemental analysis, and powder X-ray diffraction analysis. Solid-state fluorescence analysis revealed an emission peak at 350 nm upon excitation at 225 and 290 nm. Fluorescence sensing tests showed that CP-1 was highly efficient, sensitive, and selective for detecting Cr2O72- at 225 and 290 nm, whereas I- was only detected well at an excitation of 225 nm. CP-1 detected pesticides differently at excitation wavelengths of 225 and 290 nm; the highest quenching rates were for nitenpyram at 225 nm and imidacloprid at 290 nm. The quenching process may occur via the inner filter effect and fluorescence resonance energy transfer.
Collapse
Affiliation(s)
- Dan Wang
- Key Laboratory of Urban Agriculture in North China, Ministry of Agriculture and Rural Affairs, Beijing University of Agriculture, Beijing 102206, China
| | - Lin-Huan Du
- Key Laboratory of Urban Agriculture in North China, Ministry of Agriculture and Rural Affairs, Beijing University of Agriculture, Beijing 102206, China
| | - Long Li
- Key Laboratory of Urban Agriculture in North China, Ministry of Agriculture and Rural Affairs, Beijing University of Agriculture, Beijing 102206, China
| | - Yu-Meng Wei
- Key Laboratory of Urban Agriculture in North China, Ministry of Agriculture and Rural Affairs, Beijing University of Agriculture, Beijing 102206, China
| | - Tao Wang
- Key Laboratory of Urban Agriculture in North China, Ministry of Agriculture and Rural Affairs, Beijing University of Agriculture, Beijing 102206, China
| | - Jun Cheng
- Key Laboratory of Urban Agriculture in North China, Ministry of Agriculture and Rural Affairs, Beijing University of Agriculture, Beijing 102206, China
| | - Bin Du
- Beijing Key Laboratory of Agricultural Product Detection and Control of Spoilage Organisms and Pesticide Residue, Faculty of Food Science and Engineering, Beijing University of Agriculture, Beijing 102206, China
| | - Yi Jia
- Beijing National Laboratory for Molecular Sciences, CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Bao-Yi Yu
- Key Laboratory of Urban Agriculture in North China, Ministry of Agriculture and Rural Affairs, Beijing University of Agriculture, Beijing 102206, China
| |
Collapse
|
8
|
Pereira HA, da Boit Martinello K, Vieira Y, Diel JC, Netto MS, Reske GD, Lorenzett E, Silva LFO, Burgo TAL, Dotto GL. Adsorptive behavior of multi-walled carbon nanotubes immobilized magnetic nanoparticles for removing selected pesticides from aqueous matrices. CHEMOSPHERE 2023; 325:138384. [PMID: 36931403 DOI: 10.1016/j.chemosphere.2023.138384] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 06/18/2023]
Abstract
The present work synthesized two new materials of functionalized multi-walled carbon nanotubes (MWCNT-OH and MWCNT-COOH) impregnated with magnetite (Fe3O4) using solution precipitation methodology. The resulting MWCNT-OH-Mag and MWCNT-COOH-Mag materials were characterized by scanning electron microscopy coupled with energy dispersion X-ray spectroscopy, Fourier transform infrared, X-ray diffraction, atomic force microscopy, and electrical force microscopy. The characterization results indicate that the -OH functional groups in the MWCNT interact effectively with magnetite iron favoring impregnation and indicating the regular distribution of nanoparticles on the surface of the synthesized materials. The adsorption efficiency of the MWCNT-OH-Mag and MWCNT-COOH-Mag materials was tested using the pollutants 2,4-D and Atrazine. Over batch studies carried out under different pH ranges, it was found that the optimal condition for 2,4-D adsorption was at pH 2, while for Atrazine, it was found at pH 6. The rapid adsorption kinetics of 2,4-D and Atrazine reaches equilibrium within 30 min. The pseudo-first-order model described 2,4-D adsorption well. The General-order model described better atrazine adsorption. The magnetically doped adsorbent functionalized with -OH surface groups (MWCNT-OH-Mag) demonstrated superior adsorption performance and increased Fe-doped sites. The Sips model described the adsorption isotherms accurately. MWCNT-OH-Mag presented the greatest adsorption capacity at 51.4 and 47.7 mg g-1 for 2,4-D and Atrazine, respectively. Besides, electrostatic forces and complexation rule the molecular interactions between metals and pesticides. The leaching and regeneration tests of the synthesized materials indicate high stability in an aqueous solution. Furthermore, experiments with wastewater samples contaminated with the model pollutants indicate that the novel adsorbents are highly promising for enhancing water purification by adsorptive separation.
Collapse
Affiliation(s)
- Hercules A Pereira
- Research Group on Adsorptive and Catalytic Process Engineering (ENGEPAC), Federal University of Santa Maria, Av. Roraima, 1000-7, 97105-900, Santa Maria, RS, Brazil
| | | | - Yasmin Vieira
- Research Group on Adsorptive and Catalytic Process Engineering (ENGEPAC), Federal University of Santa Maria, Av. Roraima, 1000-7, 97105-900, Santa Maria, RS, Brazil
| | - Júlia C Diel
- Research Group on Adsorptive and Catalytic Process Engineering (ENGEPAC), Federal University of Santa Maria, Av. Roraima, 1000-7, 97105-900, Santa Maria, RS, Brazil
| | - Matias S Netto
- Research Group on Adsorptive and Catalytic Process Engineering (ENGEPAC), Federal University of Santa Maria, Av. Roraima, 1000-7, 97105-900, Santa Maria, RS, Brazil
| | - Gabriel D Reske
- Research Group on Adsorptive and Catalytic Process Engineering (ENGEPAC), Federal University of Santa Maria, Av. Roraima, 1000-7, 97105-900, Santa Maria, RS, Brazil
| | - Ezequiel Lorenzett
- Research Group on Adsorptive and Catalytic Process Engineering (ENGEPAC), Federal University of Santa Maria, Av. Roraima, 1000-7, 97105-900, Santa Maria, RS, Brazil
| | - Luis F O Silva
- Universidad De La Costa, Calle 58 # 55-66, 080002, Barranquilla, Atlántico, Colombia.
| | - Thiago A L Burgo
- Research Group on Adsorptive and Catalytic Process Engineering (ENGEPAC), Federal University of Santa Maria, Av. Roraima, 1000-7, 97105-900, Santa Maria, RS, Brazil
| | - Guilherme Luiz Dotto
- Research Group on Adsorptive and Catalytic Process Engineering (ENGEPAC), Federal University of Santa Maria, Av. Roraima, 1000-7, 97105-900, Santa Maria, RS, Brazil.
| |
Collapse
|
9
|
Jafari Z, Ghani M. Magnetic carbonized cellulose-MIL 101(Fe) composite as a sorbent for magnetic solid phase extraction of selected organophosphorus pesticides combined with high performance liquid chromatography-ultraviolet detection. TALANTA OPEN 2023. [DOI: 10.1016/j.talo.2023.100212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023] Open
|
10
|
Ansari-Asl Z, Nikpour S, Sedaghat T, Hoveizi E. Preparation, Characterization, and Wound Healing Assessment of Curcumin-Loaded M-MOF (M = Cu, Zn)@Polycaprolactone Nanocomposite Sponges. Appl Biochem Biotechnol 2023:10.1007/s12010-023-04316-0. [PMID: 36689161 DOI: 10.1007/s12010-023-04316-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/06/2023] [Indexed: 01/24/2023]
Abstract
The fabrication of multifunctional scaffolds has attracted much attention in biological fields. In this research, some novel composites of Cu(II) or Zn(II) metal-organic framework (M-MOF) and polycaprolactone (PCL), M-MOF@PCL, have been fabricated as multifunctional scaffolds for application in the tissue engineering (TE) field. The porous three-dimensional sponges were prepared by the salt leaching method. Then, the M-MOF@PCL composite sponges have been prepared by in situ synthesis of M-MOF in the presence of the as-obtained PCL sponge to gain a new compound with proper features for biological applications. Finally, curcumin was attached to the M-MOF@PCL as a bioactive compound that can act as a wound-healing agent, anti-oxidant, and anti-inflammatory. The presence of the M-MOF in final composites was investigated by different methods such as FTIR (Fourier-transform infrared), XRD (X-ray diffraction), SEM (scanning electron microscope), EDS (energy-dispersive X-ray spectroscopy), and TEM (transmission electron microscope). SEM images confirmed the porous structure of the as-obtained composites. According to the EDS and TEM images, M-MOFs were uniformly incorporated throughout the PCL sponges. The water sorption capacities of the blank PCL, Cu-MOF@PCL, and Zn-MOF@PCL were determined as 56%, 155%, and 119%, respectively. In vivo investigation on a third-degree burn model in adult male Wistar rats exhibited an accelerated wound healing for Cu-MOF@PCL compared to with Zn-MOF@PCL and the control group.
Collapse
Affiliation(s)
- Zeinab Ansari-Asl
- Department of Chemistry, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
| | - Soghra Nikpour
- Department of Chemistry, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Tahereh Sedaghat
- Department of Chemistry, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Elham Hoveizi
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| |
Collapse
|
11
|
A review on metal-organic frameworks for the removal of hazardous environmental contaminants. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
12
|
Kulasekaran P, Maria Mahimai B, Sivasubramanian G, Pushparaj H, Deivanayagam P. Zinc‐trimesic acid metal–organic framework incorporated sulfonated poly(ether ether sulfone) based polymer composite membranes for fuel cell. POLYM ENG SCI 2022. [DOI: 10.1002/pen.26079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
| | - Berlina Maria Mahimai
- Department of Chemistry SRM Institute of Science and Technology Kattankulathur India
| | | | | | - Paradesi Deivanayagam
- Department of Chemistry SRM Institute of Science and Technology Kattankulathur India
| |
Collapse
|
13
|
Rojas S, Rodríguez-Diéguez A, Horcajada P. Metal-Organic Frameworks in Agriculture. ACS APPLIED MATERIALS & INTERFACES 2022; 14:16983-17007. [PMID: 35393858 PMCID: PMC9026272 DOI: 10.1021/acsami.2c00615] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Agrochemicals, which are crucial to meet the world food qualitative and quantitative demand, are compounds used to kill pests (insects, fungi, rodents, or unwanted plants). Regrettably, there are some important issues associated with their widespread and extensive use (e.g., contamination, bioaccumulation, and development of pest resistance); thus, a reduced and more controlled use of agrochemicals and thorough detection in food, water, soil, and fields are necessary. In this regard, the development of new functional materials for the efficient application, detection, and removal of agrochemicals is a priority. Metal-organic frameworks (MOFs) with exceptional sorptive, recognition capabilities, and catalytical properties have very recently shown their potential in agriculture. This Review emphasizes the recent advances in the use of MOFs in agriculture through three main views: environmental remediation, controlled agrochemical release, and detection of agrochemicals.
Collapse
Affiliation(s)
- Sara Rojas
- Biochemistry
and Electronics as Sensing Technologies Group, Department of Inorganic
Chemistry, University of Granada, Av. Fuentenueva s/n, 18071 Granada, Spain
| | - Antonio Rodríguez-Diéguez
- Biochemistry
and Electronics as Sensing Technologies Group, Department of Inorganic
Chemistry, University of Granada, Av. Fuentenueva s/n, 18071 Granada, Spain
| | - Patricia Horcajada
- Advanced
Porous Materials Unit (APMU), IMDEA Energy, Av. Ramón de la Sagra, 3, 28935 Móstoles, Madrid, Spain
| |
Collapse
|
14
|
Singh S, Aldawsari HM, Alam A, Alqarni MHS, Ranjan S, Kesharwani P. Synthesis and antimicrobial activity of vancomycin–conjugated zinc coordination polymer nanoparticles against methicillin-resistant staphylococcus aureus. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103255] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
15
|
In-syringe solid-phase extraction of polycyclic aromatic hydrocarbons using an iron–carboxylate metal–organic framework and hypercrosslinked polymer composite gelatin cryogel–modified cellulose acetate adsorbent. Mikrochim Acta 2022; 189:164. [DOI: 10.1007/s00604-022-05276-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/11/2022] [Indexed: 11/30/2022]
|
16
|
Liu T, Li Z, Zhang X, Tan H, Chen Z, Wu J, Chen J, Qiu H. Metal-Organic Framework-Intercalated Graphene Oxide Membranes for Selective Separation of Uranium. Anal Chem 2021; 93:16175-16183. [PMID: 34806872 DOI: 10.1021/acs.analchem.1c03982] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Design and construction of a membrane that can achieve selective separation of uranium from spent fuel or seawater is a big challenge in the field of separation science. In this work, 1,3,5-benzenetricarboxylic acid (BTC) and three different nitrates (Zn/Ni/Cu) were used to prepare metal-organic frameworks (BTC-MOFs) with different pore sizes, and then, BTC-MOFs were intercalated into the interlayers of graphene oxide (GO) for preparing the composite membranes which presented selective separation of uranium with strong acid resistance. Composite membranes prepared by Zn/Ni/Cu-BTC-MOFs and GO can achieve the separation between ions of different valence states, and their permeability and selectivity depend on the membrane thickness, the acidity of driving solution, and the pore sizes of MOFs. Importantly, Cu-BTC-MOF-intercalated GO membranes can not only achieve the selective separation of Th4+ and UO22+ with a selectivity of ≈6 but also induce the ultra-high selectively separation of UO22+ and Ce3+ because the rejection rate of Ce3+ is about 100%. Moreover, the Zn-BTC-MOF-intercalated GO membrane shows an excellent selectivity of Th4+ and UO22+ with a selectivity of ≈25, and it may also achieve selective separation of uranium from seawater.
Collapse
Affiliation(s)
- Tianqi Liu
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.,School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Zhan Li
- Institute of National Nuclear Industry, Lanzhou University, Lanzhou 730000, China
| | - Xin Zhang
- School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Hongxin Tan
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Ziying Chen
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Jinsheng Wu
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Jia Chen
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Hongdeng Qiu
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.,College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.,College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, China
| |
Collapse
|
17
|
‘‘Biopolymer-PAA and surfactant-CTAB assistant solvothermal synthesis of Zn-based MOFs: design, characterization for removal of toxic dyes, copper and their biological activities”. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108928] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
18
|
Manousi N, Zachariadis GA, Deliyanni EA. On the use of metal-organic frameworks for the extraction of organic compounds from environmental samples. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:59015-59039. [PMID: 32077018 DOI: 10.1007/s11356-020-07911-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 01/27/2020] [Indexed: 06/10/2023]
Abstract
The determination of trace metals and organic contaminants in environmental samples, such as water, air, soil, and sediment, is until today a challenging process for the analytical chemistry. Metal-organic frameworks (MOFs) are novel porous nanomaterials that are composed of metal ions and an organic connector. These materials are gaining more and more attention due to their superior characteristics, such as high surface area, tunable pore size, mechanical and thermal stability, luminosity, and charge transfer ability between metals and ligands. Among the various applications of MOFs are gas storage, separation, catalysis, and drug delivery. Recently, MOFs have been successfully introduced in the field of sample preparation for analytical chemistry and they have been used for sample pretreatment of various matrices. This review focuses on the applications of MOFs as novel adsorbents for the extraction of organic compounds from environmental samples.
Collapse
Affiliation(s)
- Natalia Manousi
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece.
| | - George A Zachariadis
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Eleni A Deliyanni
- Laboratory of Chemical and Environmental Technology, Department of Chemistry, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| |
Collapse
|
19
|
Nguyen MB, Le GH, Nguyen TD, Nguyen QK, Pham TTT, Lee T, Vu TA. Bimetallic Ag-Zn-BTC/GO composite as highly efficient photocatalyst in the photocatalytic degradation of reactive yellow 145 dye in water. JOURNAL OF HAZARDOUS MATERIALS 2021; 420:126560. [PMID: 34274809 DOI: 10.1016/j.jhazmat.2021.126560] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/05/2021] [Accepted: 07/01/2021] [Indexed: 06/13/2023]
Abstract
Agx-Zn100-x-BTC/GO composites (BTC: benzene-1,3,5-tricarboxylic, GO: graphene oxide) with different Ag/Zn molar ratios were synthesized using microwave-assisted hydrothermal treatment. The Agx-Zn100-x-BTC/GO exhibited excellent photocatalytic performance in the reactive yellow 145 dye (RY-145) degradation under irradiation of visible light with nearly 100% of RY-145 removal after 35 min, as compared to Zn-BTC/GO and Ag-BTC/GO. Reactive oxygen species scavenging assays have shown that the holes (h+) and superoxide radical anion (O2-•) play a primary role in RY-145 degradation. Based on the band structure of materials, the Z-scheme photocatalytic mechanism was suggested. The effect of catalyst dosage, pH and dye concentration on the efficiency of photocatalytic activity of bimetallic Ag50-Zn50-BTC/GO was also investigated. The improvement in photocatalytic activity of bimetallic Ag50-Zn50-BTC/GO could be given by the synergism of (i) absorption of visible light confirmed by UV-Vis diffuse reflectance spectra; (ii) the increased lifetime as evidenced by photoluminescence spectra and transient photocurrent response; (iii) the increased oxygen vacancy defects as confirmed by X-ray photoelectron spectroscopy results. The degradation pathway of RY-145 dye was also predicted based on liquid chromatography-mass spectrometer analysis. The removed chemical oxygen demand, biological oxygen demand, total organic carbon outcomes indicated the high mineralization ability for RY-145 degradation over Ag50-Zn50-BTC/GO.
Collapse
Affiliation(s)
- Manh B Nguyen
- Institute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet street, Cau Giay, Ha Noi, Viet Nam; Hanoi University of Science and Technology (HUST), 01 Dai Co Viet Road, Ha Noi City, Viet Nam
| | - Giang H Le
- Institute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet street, Cau Giay, Ha Noi, Viet Nam
| | - Trinh Duy Nguyen
- Department of Environmental Engineering, College of Environmental and Marine, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan 48513, Republic of Korea; Institute of Environmental Sciences, Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam.
| | - Quang K Nguyen
- MIREA Russian Technological University, Moscow 119571, Russia
| | - Trang T T Pham
- Institute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet street, Cau Giay, Ha Noi, Viet Nam
| | - Taeyoon Lee
- Department of Environmental Engineering, College of Environmental and Marine, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan 48513, Republic of Korea
| | - Tuan A Vu
- Institute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet street, Cau Giay, Ha Noi, Viet Nam
| |
Collapse
|
20
|
Liu G, Tian M, Lu M, Shi W, Li L, Gao Y, Li T, Xu D. Preparation of magnetic MOFs for use as a solid-phase extraction absorbent for rapid adsorption of triazole pesticide residues in fruits juices and vegetables. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1166:122500. [PMID: 33578273 DOI: 10.1016/j.jchromb.2020.122500] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 09/06/2020] [Accepted: 12/13/2020] [Indexed: 11/16/2022]
Abstract
Detection of low levels of triazole fungicides in agricultural product matrices is important. Although several detection methods have been developed, all have some drawbacks, such as being time-consuming, requiring complex sample pretreatment, and consuming large volumes of organic solvents. There is an urgent need for a simple and rapid detection method for triazole fungicides. In this study, the adsorbent composite material magnetic MOFs based on Fe3O4-MWCNT was synthesized by in-situ polymerization at room temperature, and was applied to extract triazole pesticides from fruits and vegetables. High-performance liquid chromatography-tandem mass spectrometry was used for quantification. Under optimized conditions, the constructed detection method showed a low detection (LOD) of 0.52-1.83 μg/L (S/N = 3) and wide linear range of 5.00-500.00 μg/L for triazole fungicides in the fruit and vegetable samples. The method recovery for spiked fungicides (10, 50, and 100 μg/L) in cabbage, spinach, orange juice, and apple juice ranged from 62.80% to 94.20%. The constructed detection method has a lower detection limit than previously reported methods and has a higher sensitivity for triazole pesticide residues in complex matrices.
Collapse
Affiliation(s)
- Guangyang Liu
- College of Life Sciences and Food Engineering, Hebei University of Engineering, Handan 056021, PR China; Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Beijing 100081, PR China.
| | - Mingshuo Tian
- College of Life Sciences and Food Engineering, Hebei University of Engineering, Handan 056021, PR China
| | - Meng Lu
- College of Life Sciences and Food Engineering, Hebei University of Engineering, Handan 056021, PR China
| | - Weiye Shi
- Institute of Biological Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, PR China
| | - Lingyun Li
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Beijing 100081, PR China
| | - Yuhang Gao
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Beijing 100081, PR China
| | - Tengfei Li
- College of Life Sciences and Food Engineering, Hebei University of Engineering, Handan 056021, PR China.
| | - Donghui Xu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Beijing 100081, PR China.
| |
Collapse
|
21
|
Bagheri AR, Aramesh N, Bilal M. New frontiers and prospects of metal-organic frameworks for removal, determination, and sensing of pesticides. ENVIRONMENTAL RESEARCH 2021; 194:110654. [PMID: 33359702 DOI: 10.1016/j.envres.2020.110654] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/16/2020] [Accepted: 12/18/2020] [Indexed: 06/12/2023]
Abstract
Pesticides have been widely used in agriculture to control, reduce, and kill insects. Humans are also being using pesticides to control insidious animals in daily life. By these practices, a huge volume of pesticides is introduced to the environment. Despite broad-spectrum applicability, pesticides also have hazardous effects on both humans and animals at high and low concentrations. Long-term exposure to pesticides can cause different diseases, like leukemia, lymphoma, and cancers of the brain, breasts, prostate, testis, and ovaries. Reproductive disorders from pesticides include birth defects, stillbirth, spontaneous abortion, sterility, and infertility. Therefore, the application of determination and treatment methods for pre-concentration and removal of these toxic materials from the environment appears a vital concern. To date, different materials and approaches have been employed for these purposes. Among these approaches, multifunctional metal-organic frameworks (MOFs)-assisted adsorption and determination processes have always been in the spotlight. These facts are due to exclusive properties of MOFs in terms of the crystallinity, large surface area, high chemical, and physical stability, and controllable structure as well as unique features of adsorption and determination process in terms of simple, easy, cheap, available method and ability to use in large and industrial scales. In the present work, we illustrate the exceptional features of MOFs as well as the possible mechanism for the adsorption of pesticides by MOFs. The use of these fantastic materials for pre-concentration and removal of pesticides are extensively explored. In addition, the performance of MOFs was compared with other adsorbents. Finally, the new frontiers and prospects of MOFs for the determination, sensing, and removal of pesticides are presented.
Collapse
Affiliation(s)
| | - Nahal Aramesh
- Chemistry Department, Yasouj University, Yasouj, 75918-74831, Iran
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China.
| |
Collapse
|
22
|
Lunardi V, Gunawan F, Soetaredjo FE, Santoso SP, Chen CH, Yuliana M, Kurniawan A, Lie J, Angkawijaya AE, Ismadji S. Efficient One-Step Conversion of a Low-Grade Vegetable Oil to Biodiesel over a Zinc Carboxylate Metal-Organic Framework. ACS OMEGA 2021; 6:1834-1845. [PMID: 33521424 PMCID: PMC7841777 DOI: 10.1021/acsomega.0c03826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 01/04/2021] [Indexed: 05/10/2023]
Abstract
In this study, a metal-organic framework, namely, Zn3(BTC)2 (BTC = 1,3,5-benzenetricaboxylic acid), was solvothermally synthesized and employed as a catalyst for biodiesel production from degummed vegetable oil via a one-step transesterification and esterification reaction. The resulting Zn3(BTC)2 particles exhibit a well-defined triclinic structure with an average size of about 1.2 μm, high specific surface area of 1176 m2/g, and thermal stability up to 300 °C. The response surface methodology-Box-Behnken design (RSM-BBD) was employed to identify the optimal reaction conditions and to model the biodiesel yield in relation to three important parameters, namely, the methanol/oil molar ratio (4:1-8:1), temperature (45-65 °C), and time (1.5-4.5 h). Under the optimized reaction conditions (i.e., 6:1 methanol/oil molar ratio, 65 °C, 4.5 h), the maximum biodiesel yield reached 89.89% in a 1 wt % catalyst, which agreed very well with the quadratic polynomial model's prediction (89.96%). The intrinsic catalytic activity of Zn3(BTC)2, expressed as the turnover frequency, was found to be superior to that of other MOF catalysts applied in the transesterification and esterification reactions. The reusability study showed that the as-synthesized Zn3(BTC)2 catalyst exhibited good stability upon three consecutive reuses without a noticeable decrease in the methyl ester yield (∼4%) and any appreciable metal leaching (<5%). Furthermore, a preliminary technoeconomic analysis showed that the total direct operating cost for the kilogram-scale production of Zn3(BTC)2 is estimated to be US$50, which may sound economically attractive.
Collapse
Affiliation(s)
- Valentino
Bervia Lunardi
- Department
of Chemical Engineering, Widya Mandala Surabaya
Catholic University, Kalijudan 37, Surabaya 60114, Indonesia
| | - Fransiska Gunawan
- Department
of Chemical Engineering, Widya Mandala Surabaya
Catholic University, Kalijudan 37, Surabaya 60114, Indonesia
| | - Felycia Edi Soetaredjo
- Department
of Chemical Engineering, Widya Mandala Surabaya
Catholic University, Kalijudan 37, Surabaya 60114, Indonesia
- Department
of Chemical Engineering, National Taiwan
University of Science and Technology, No. 43, Sec. 4, Keelung Road., Taipei 10607, Taiwan
| | - Shella Permatasari Santoso
- Department
of Chemical Engineering, Widya Mandala Surabaya
Catholic University, Kalijudan 37, Surabaya 60114, Indonesia
| | - Chun-Hu Chen
- Department
of Chemistry, National Sun Yat-Sen University, No. 70, Lianhai Road, Kaohsiung 80424, Taiwan
| | - Maria Yuliana
- Department
of Chemical Engineering, Widya Mandala Surabaya
Catholic University, Kalijudan 37, Surabaya 60114, Indonesia
| | - Alfin Kurniawan
- Department
of Chemistry, National Sun Yat-Sen University, No. 70, Lianhai Road, Kaohsiung 80424, Taiwan
| | - Jenni Lie
- Department
of Chemical Engineering, National Taiwan
University of Science and Technology, No. 43, Sec. 4, Keelung Road., Taipei 10607, Taiwan
| | - Artik Elisa Angkawijaya
- Graduate
Institute of Applied Science and Technology, National Taiwan University of Science and Technology, No. 43, Sec. 4, Keelung Road, Taipei 10607, Taiwan
| | - Suryadi Ismadji
- Department
of Chemical Engineering, Widya Mandala Surabaya
Catholic University, Kalijudan 37, Surabaya 60114, Indonesia
- Department
of Chemical Engineering, National Taiwan
University of Science and Technology, No. 43, Sec. 4, Keelung Road., Taipei 10607, Taiwan
| |
Collapse
|
23
|
Jafari Z, Hadjmohammadi MR. Polyvinylidene difluoride film with embedded poly(amidoamine) modified graphene oxide for extraction of chlorpyrifos and diazinon. Mikrochim Acta 2021; 188:37. [PMID: 33427963 DOI: 10.1007/s00604-020-04694-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 12/22/2020] [Indexed: 12/12/2022]
Abstract
An effective, sensitive, relatively fast, and cost-effective method was developed to determine two types of selected organophosphorus pesticides (OPPs) including diazinon and chlorpyrifos in apple, peach, and four different water samples (river, sea, well, and agriculture wastewater samples) through applying poly(amidoamine)@graphene oxide-reinforced polyvinylidene difluoride thin-film microextraction (PAMAM@GO-PVDF-TFME). The extracted analytes were desorbed via organic solvent and determined using high-performance liquid chromatography-ultraviolet detection (HPLC-UV). The strong interactions between the sorbent and selected analytes (coordination bonds, intermolecular hydrogen bonding, π-π interactions, and hydrophobic effects) made this TFME capable of high extraction performance and capacity. Several factors involved in the PAMAM@GO-PVDF-TFME experiments such as desorption volume, desorption time, sample pH, extraction time, and stirring rate were screened via Plackett-Burman design and then optimized through Box-Behnken design with the purpose of reaching the highest extraction efficiency. The above method showed a good linear range (0.5-500 μg L-1 and 1-500 μg L-1) with the coefficient of determination better 0.9944, low limits of determination (0.12 and 0.20 μg L-1), good enrichment factors (99 and 98), acceptable extraction recoveries (99 and 98%), and good spiking recoveries (90-98%) under the optimized condition at three different spike levels for chlorpyrifos and diazinon, respectively. The results confirmed that the presented method would be promising for the determination of various types of these pesticides in environmental and beverage samples.
Collapse
Affiliation(s)
- Zahra Jafari
- Department of Analytical Chemistry, Faculty of Chemistry, University of Mazandaran, Niroo Havayii Boulevard, Babolsar, 47416-95447, Iran
| | - Mohammad Reza Hadjmohammadi
- Department of Analytical Chemistry, Faculty of Chemistry, University of Mazandaran, Niroo Havayii Boulevard, Babolsar, 47416-95447, Iran.
| |
Collapse
|
24
|
Adotey EK, Amouei Torkmahalleh M, Balanay MP. Zinc metal–organic framework with 3-pyridinecarboxaldehyde and trimesic acid as co-ligands for selective detection of Cr (VI) ions in aqueous solution. Methods Appl Fluoresc 2020; 8:045007. [DOI: 10.1088/2050-6120/abb364] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
25
|
Chansi, Bhardwaj R, Rao RP, Mukherjee I, Agrawal PK, Basu T, Bharadwaj LM. Layered construction of nano immuno-hybrid embedded MOF as an electrochemical sensor for rapid quantification of total pesticides load in vegetable extract. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114386] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
26
|
Aftab L, Iqbal N, Asghar A, Noor T. Synthesis, characterization and gas adsorption analysis of solvent dependent Zn-BTC metal organic frameworks. SEP SCI TECHNOL 2020. [DOI: 10.1080/01496395.2020.1813176] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Leena Aftab
- U.S Pakistan Center for Advanced Studies in Energy (USPCAS-E, National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Naseem Iqbal
- U.S Pakistan Center for Advanced Studies in Energy (USPCAS-E, National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Aisha Asghar
- U.S Pakistan Center for Advanced Studies in Energy (USPCAS-E, National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Tayyaba Noor
- School of Chemical and Materials Engineering (SCME), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| |
Collapse
|
27
|
Xia L, Dou Y, Gao J, Gao Y, Fan W, Li G, You J. Adsorption behavior of a metal organic framework of University in Oslo 67 and its application to the extraction of sulfonamides in meat samples. J Chromatogr A 2020; 1619:460949. [DOI: 10.1016/j.chroma.2020.460949] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/03/2020] [Accepted: 02/04/2020] [Indexed: 01/27/2023]
|
28
|
Ranjbar Bandforuzi S, Hadjmohammadi MR. Modified magnetic chitosan nanoparticles based on mixed hemimicelle of sodium dodecyl sulfate for enhanced removal and trace determination of three organophosphorus pesticides from natural waters. Anal Chim Acta 2019; 1078:90-100. [DOI: 10.1016/j.aca.2019.06.026] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 06/09/2019] [Accepted: 06/10/2019] [Indexed: 01/15/2023]
|
29
|
Amiri A, Tayebee R, Abdar A, Narenji Sani F. Synthesis of a zinc-based metal-organic framework with histamine as an organic linker for the dispersive solid-phase extraction of organophosphorus pesticides in water and fruit juice samples. J Chromatogr A 2019; 1597:39-45. [DOI: 10.1016/j.chroma.2019.03.039] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 02/15/2019] [Accepted: 03/19/2019] [Indexed: 12/12/2022]
|
30
|
Maya F, Ghani M. Ordered macro/micro-porous metal-organic framework of type ZIF-8 in a steel fiber as a sorbent for solid-phase microextraction of BTEX. Mikrochim Acta 2019; 186:425. [DOI: 10.1007/s00604-019-3560-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 05/27/2019] [Indexed: 12/27/2022]
|
31
|
Si T, Liu L, Liang X, Duo H, Wang L, Wang S. Solid-phase extraction of phenoxyacetic acid herbicides in complex samples with a zirconium(IV)-based metal-organic framework. J Sep Sci 2019; 42:2148-2154. [PMID: 30997954 DOI: 10.1002/jssc.201900243] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 04/13/2019] [Accepted: 04/14/2019] [Indexed: 12/11/2022]
Abstract
A zirconium(IV)-based metal-organic framework material (MOF-808) has been synthesized in a simple way and used for the extraction of phenoxyacetic acids in complex samples. The material has good thermal and chemical stability, large specific surface area (905.36 m²/g), and high pore size (22.18 Å). Besides, it contains a large amount of Zr-O groups, easy-to-form Zr-O-H bond with carboxyl groups of phenoxyacetic acids, and possesses biphenyl skeleton structure, easy to interact with compounds through π-π and hydrophobic interactions. These characteristics make the material very suitable for the extraction of certain compounds with a high extraction efficiency and excellent selectivity. The extraction conditions were optimized, and then an analytical method was successfully established and applied for analysis of actual samples. The solid-phase extraction method based on prepared material had a wide linear range of 0.2-250 μg/L and a low detection limit of 0.1-0.5 μg/L for four phenoxyacetic acid compounds including 2,4-dichlorophenoxyacetic acid, 2-(2,4-dichlorophenoxy) propionic acid, 4-chlorophenoxyacetic acid, and dicamba. The relative standard deviations of intra- and interday precision were 1.8-3.8 and 4.3-6.9%, and the recoveries after spiking were between 77.1 and 109.3%. The results showed that the material is a desired substituent for the extraction of compounds with benzene ring structure containing carboxyl groups.
Collapse
Affiliation(s)
- Tiantian Si
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Chinese Academy of Sciences, Lanzhou Institute of Chemical Physics, Lanzhou, P. R. China.,University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Lei Liu
- Exploration and Development Research Institute, Changqing Oilfield, Xi'an, P. R. China
| | - Xiaojing Liang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Chinese Academy of Sciences, Lanzhou Institute of Chemical Physics, Lanzhou, P. R. China
| | - Huixiao Duo
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Chinese Academy of Sciences, Lanzhou Institute of Chemical Physics, Lanzhou, P. R. China.,University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Licheng Wang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Chinese Academy of Sciences, Lanzhou Institute of Chemical Physics, Lanzhou, P. R. China
| | - Shuai Wang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Chinese Academy of Sciences, Lanzhou Institute of Chemical Physics, Lanzhou, P. R. China
| |
Collapse
|
32
|
Wei J, Yang Y, Dong J, Wang S, Li P. Fluorometric determination of pesticides and organophosphates using nanoceria as a phosphatase mimic and an inner filter effect on carbon nanodots. Mikrochim Acta 2019; 186:66. [PMID: 30627852 DOI: 10.1007/s00604-018-3175-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 12/12/2018] [Indexed: 02/01/2023]
Abstract
Nanoceria with a remarkable phosphatase mimicking activity was synthesized and used to catalyze the hydrolysis of phosphate esters in pH 10 solution. The catalytic effect of nanoceria was firstly investigated by selecting p-nitrophenyl phosphate as a model substrate. The pH value, incubation temperature, reaction time, and concentration of nanoceria were optimized. The catalytic effect was then confirmed by using methyl-paraoxon as a substrate. The p-nitrophenol anion released by the enzyme mimic is yellow and exerts an inner filter effect on the fluorescence of the carbon dots (with excitation/emission maxima at 400/520 nm). Response to methyl-paraoxon is linear in the 1.125-26.25 μmol L-1 concentration range. The method was applied to the determination of pesticides in spiked Panax quinquefolius and water samples. Recoveries ranged from 85 to 103% (n = 3). The technique is rapid, reliable, and can be used for on-site detection of pesticides and organophosphates. Graphical abstract Schematic presentation of a fluorometric technique for the detection of organophosphate compound and pesticide using nanoceria as a phosphatase mimic and an inner filter effect on the blue fluorescence of carbon dots (with excitation/emission maxima at 400/520 nm).
Collapse
Affiliation(s)
- Jinchao Wei
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, 999078, China
| | - Yu Yang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, 999078, China
| | - Jiayi Dong
- Institute of Applied Physics and Materials Engineering, University of Macau, Macau, 999078, China
| | - Shuangpeng Wang
- Institute of Applied Physics and Materials Engineering, University of Macau, Macau, 999078, China.
| | - Peng Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, 999078, China.
| |
Collapse
|
33
|
Esmaeilzadeh M. A composite prepared from a metal-organic framework of type MIL-101(Fe) and morin-modified magnetite nanoparticles for extraction and speciation of vanadium(IV) and vanadium(V). Mikrochim Acta 2018; 186:14. [DOI: 10.1007/s00604-018-3093-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 11/09/2018] [Indexed: 11/27/2022]
|
34
|
Duo H, Wang Y, Wang L, Lu X, Liang X. Zirconium(IV)-based metal-organic frameworks (UiO-67) as solid-phase extraction adsorbents for extraction of phenoxyacetic acid herbicides from vegetables. J Sep Sci 2018; 41:4149-4158. [DOI: 10.1002/jssc.201800784] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 09/04/2018] [Accepted: 09/04/2018] [Indexed: 01/10/2023]
Affiliation(s)
- Huixiao Duo
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province; Lanzhou Institute of Chemical Physics; Chinese Academy of Sciences; Lanzhou P. R. China
- Chinese Academy of Sciences; University of Chinese Academy of Sciences; Huairou Beijing P. R. China
| | - Yuhuan Wang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province; Lanzhou Institute of Chemical Physics; Chinese Academy of Sciences; Lanzhou P. R. China
- Chinese Academy of Sciences; University of Chinese Academy of Sciences; Huairou Beijing P. R. China
| | - Licheng Wang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province; Lanzhou Institute of Chemical Physics; Chinese Academy of Sciences; Lanzhou P. R. China
| | - Xiaofeng Lu
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province; Lanzhou Institute of Chemical Physics; Chinese Academy of Sciences; Lanzhou P. R. China
| | - Xiaojing Liang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province; Lanzhou Institute of Chemical Physics; Chinese Academy of Sciences; Lanzhou P. R. China
| |
Collapse
|
35
|
Liu C, Yu LQ, Zhao YT, Lv YK. Recent advances in metal-organic frameworks for adsorption of common aromatic pollutants. Mikrochim Acta 2018; 185:342. [PMID: 29951844 DOI: 10.1007/s00604-018-2879-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 06/17/2018] [Indexed: 01/11/2023]
Abstract
This review (with 85 refs.) summarizes the recent literature on the adsorption of common aromatic pollutants by using modified metal-organic frameworks (MOFs). Four kinds of aromatic pollutants are discussed, namely benzene homologues, polycyclic aromatic hydrocarbons (PAHs), organic dyes and their intermediates, and pharmaceuticals and personal care products (PPCPs). MOFs are shown to be excellent adsorbents that can be employed to both the elimination of pollutants and to their extraction and quantitation. Adsorption mechanisms and interactions between aromatic pollutants and MOFs are discussed. Finally, the actual challenges of existence and the perspective routes towards future improvements in the field are addressed. Graphical abstract Recent advance on adsorption of common aromatic pollutants including benzene series, polycyclic aromatic hydrocarbons, organic dyes and their intermediates, pharmaceuticals and personal care products by metal-organic frameworks.
Collapse
Affiliation(s)
- Chang Liu
- College of Chemistry and Environmental Sience, Key Laboratory of Analytical Science and Technology of Hebei Province, Hebei University, Baoding, 071002, China
| | - Li-Qing Yu
- College of Chemistry and Environmental Sience, Key Laboratory of Analytical Science and Technology of Hebei Province, Hebei University, Baoding, 071002, China
| | - Ya-Ting Zhao
- College of Chemistry and Environmental Sience, Key Laboratory of Analytical Science and Technology of Hebei Province, Hebei University, Baoding, 071002, China
| | - Yun-Kai Lv
- College of Chemistry and Environmental Sience, Key Laboratory of Analytical Science and Technology of Hebei Province, Hebei University, Baoding, 071002, China.
| |
Collapse
|
36
|
Tian Y, Feng J, Wang X, Sun M, Luo C. Silicon carbide nanomaterial as a coating for solid-phase microextraction. J Sep Sci 2018; 41:1995-2002. [PMID: 29377595 DOI: 10.1002/jssc.201701156] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 01/17/2018] [Accepted: 01/17/2018] [Indexed: 11/07/2022]
Abstract
Silicon carbide has excellent properties, such as corrosion resistance, high strength, oxidation resistance, high temperature, and so on. Based on these properties, silicon carbide was coated on stainless-steel wire and used as a solid-phase microextraction coating, and polycyclic aromatic hydrocarbons were employed as model analytes. Using gas chromatography, some important factors that affect the extraction efficiency were optimized one by one, and an analytical method was established. The analytical method showed wide linear ranges (0.1-30, 0.03-30, and 0.01-30 μg/L) with satisfactory correlation coefficients (0.9922-0.9966) and low detection limits (0.003-0.03 μg/L). To investigate the practical application of the method, rainwater and cigarette ash aqueous solution were collected as real samples for extraction and detection. The results indicate that silicon carbide has excellent application in the field of solid-phase microextraction.
Collapse
Affiliation(s)
- Yu Tian
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, P. R. China
| | - Juanjuan Feng
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, P. R. China
| | - Xiuqin Wang
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, P. R. China
| | - Min Sun
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, P. R. China
| | - Chuannan Luo
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, P. R. China
| |
Collapse
|
37
|
Amiri A, Saadati-Moshtaghin HR, Zonoz FM. A hybrid material composed of a polyoxometalate of type BeW 12O 40 and an ionic liquid immobilized onto magnetic nanoparticles as a sorbent for the extraction of organophosphorus pesticides prior to their determination by gas chromatography. Mikrochim Acta 2018; 185:176. [PMID: 29594598 DOI: 10.1007/s00604-018-2713-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Accepted: 01/26/2018] [Indexed: 11/26/2022]
Abstract
The authors describe a method for the extraction of organophosphorus pesticides (OPPs) by using a magnetically separable sorbent consisting of a polyoxometalate of type BeW12O40 supported on imidazole functionalized silica-coated cobalt ferrite. The sorbent was characterized by X-ray powder diffraction, field-emission scanning electron micrographs, vibrating sample magnetometry and FT-IR. The effects of the amount of adsorbent, pH value, salt concentration, extraction time, desorption solvent nature and volume and desorption time were investigated. Under optimal conditions, the method resulted in the following figures of merit: (a) the linear parts of the calibration plots typically extend from 0.08 to 300 μg mL-1 of OPPs; (b) detection limits are between 0.02 to 0.06 ng mL-1; and (c), extraction recoveries from spiked samples vary from 70.0 to 89.2%, with relative standard deviations between 5.4 and 7.6%. The nanocomposites can be reused up to 10 times. Compared to other methods for pretreatment and preconcentration of OPPs, the new method is more rapid, sensitive, accurate and eco-friendly. The method was successfully applied to the determination of the OPP residues in water samples and fruit juices. Graphical Abstract Schmatic presenation of the synthesis of core-shell magnetic nanoparticles (MNPs) of the type BeW12O40-ILSCCFNPs, and their application as sorbent for magnetic solid-phase extraction (MSPE) of organophosphorus pesticides.
Collapse
Affiliation(s)
- Amirhassan Amiri
- Department of Chemistry, Faculty of Sciences, Hakim Sabzevari University, Sabzevar, 9617976487, Iran.
| | | | - Farokhzad Mohammadi Zonoz
- Department of Chemistry, Faculty of Sciences, Hakim Sabzevari University, Sabzevar, 9617976487, Iran
| |
Collapse
|
38
|
Wang JP, Wang Y, Guo X, Wang P, Zhao T, Wang J. Matrix assisted laser desorption/ionization time-of-flight mass spectrometric determination of benzo[a]pyrene using a MIL-101(Fe) matrix. Mikrochim Acta 2018; 185:175. [DOI: 10.1007/s00604-017-2627-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Accepted: 12/19/2017] [Indexed: 02/07/2023]
|
39
|
Wang X, Ma X, Huang P, Wang J, Du T, Du X, Lu X. Magnetic Cu-MOFs embedded within graphene oxide nanocomposites for enhanced preconcentration of benzenoid-containing insecticides. Talanta 2018; 181:112-117. [PMID: 29426488 DOI: 10.1016/j.talanta.2018.01.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 12/27/2017] [Accepted: 01/02/2018] [Indexed: 01/12/2023]
Abstract
Hybrid magnetic nanocomposites based on Cu-MOFs, graphene oxide (GO), and Fe3O4 nanoparticles (NPs) were prepared via chemical bonding approach, which GO were used as platforms to load nanostructured Cu-MOFs and Fe3O4 NPs. The composite features both magnetic separation characteristics and high MOFs porosity, making it an excellent adsorbent for magnetic solid-phase extraction (MSPE). The as-synthesized nanocomposites are characterized by XRD, TGA, SEM, TEM, nitrogen adsorption-desorption analysis and FT-IR spectroscopy. The composites are used in MSPE of six aromatic insecticides from various real samples prior to their quantification by HPLC. Amount of adsorbent, extraction times, extraction temperature, desorption times and oscillation rate are optimized. Under the optimal conditions, the method has a relative standard deviations (RSDs) of 1.9-2.7%, and good linearity (correlation coefficients higher than 0.9931). The low LOD and LOQ for six insecticides are found to be 0.30-1.58μgL-1 and 1.0-5.2μgL-1, respectively. The RSDs of within batch extraction are 1.6-9.5% and 3.9-12% for batch to batch extraction. The experimental results suggest that the nanocomposites have potential application for removal of hazardous pollutants from effluents.
Collapse
Affiliation(s)
- Xuemei Wang
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China; Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, Lanzhou 730070, China.
| | - Xiaomin Ma
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Pengfei Huang
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Juan Wang
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Tongtong Du
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Xinzhen Du
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China; Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, Lanzhou 730070, China
| | - Xiaoquan Lu
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China; Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, Lanzhou 730070, China
| |
Collapse
|
40
|
Wang J, Jiao C, Li M, Wang X, Wang C, Wu Q, Wang Z. Porphyrin based porous organic polymer modified with Fe 3O 4 nanoparticles as an efficient adsorbent for the enrichment of benzoylurea insecticides. Mikrochim Acta 2017; 185:36. [PMID: 29594549 DOI: 10.1007/s00604-017-2542-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 11/09/2017] [Indexed: 12/25/2022]
Abstract
Porphyrin-based porous organic polymers (P-POPs) are amorphous polymers linked by strong covalent bonds between the porphyrin subunits that act as building blocks. The authors describe a magnetic P-POP that possesses high surface area, a highly porous structure, and strong magnetism. The MP-POP was employed as a magnetic sorbent for the extraction of benzoylurea insecticides from cucumber and tomato samples prior to their determination by HPLC. The sorbent has a typical sorption capacity of 1.90-2.00 mg∙g-1. The method exhibits a good linear range (0.8-160 ng·g-1), low limits of detection (0.08-0.2 ng·g-1), and high method recoveries (81.8-103.5%) for cucumber and tomato samples. The MP-POP has different adsorption capabilities for the benzoylurea insecticides, phenylurea herbicides and phenols compounds, and the adsorption mechanism is found to be based on π-stacking, hydrogen-bonding, and hydrophobic interactions. Graphical abstract A novel magnetic porphyrin-based porous organic polymer was fabricated and used as the adsorbent for the efficient extraction of benzoylurea insecticides.
Collapse
Affiliation(s)
- Juntao Wang
- College of Food Science and Technology, Hebei Agricultural University, Baoding, 071001, China
| | - Caina Jiao
- College of Science, Hebei Agricultural University, Baoding, Hebei, 071001, China
| | - Menghua Li
- College of Science, Hebei Agricultural University, Baoding, Hebei, 071001, China
| | - Xiaolan Wang
- College of Science, Hebei Agricultural University, Baoding, Hebei, 071001, China
| | - Chun Wang
- College of Science, Hebei Agricultural University, Baoding, Hebei, 071001, China.
| | - Qiuhua Wu
- College of Food Science and Technology, Hebei Agricultural University, Baoding, 071001, China.,College of Science, Hebei Agricultural University, Baoding, Hebei, 071001, China
| | - Zhi Wang
- College of Food Science and Technology, Hebei Agricultural University, Baoding, 071001, China. .,College of Science, Hebei Agricultural University, Baoding, Hebei, 071001, China.
| |
Collapse
|
41
|
Magnetic nanoparticles coated with poly(p-phenylenediamine-co-thiophene) as a sorbent for preconcentration of organophosphorus pesticides. Mikrochim Acta 2017; 185:15. [DOI: 10.1007/s00604-017-2560-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 11/09/2017] [Indexed: 01/06/2023]
|