1
|
Hosseini F, Dashtian K, Golzani M, Ejraei Z, Zare-Dorabei R. Remote magnetically stimulated xanthan-biochar-Fe3O 4-molecularly imprinted biopolymer hydrogel toward electrochemical enantioselection of l-tryptophan. Anal Chim Acta 2024; 1316:342837. [PMID: 38969427 DOI: 10.1016/j.aca.2024.342837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/23/2024] [Accepted: 06/05/2024] [Indexed: 07/07/2024]
Abstract
Monitoring the levels of L-Tryptophan (L-Trp) in body fluids is crucial due to its significant role in metabolism and protein synthesis, which ultimately affects neurological health. Herein, we have developed a novel magneto-responsive electrochemical enantioselective sensor for the recognition of L-Trp based on oriented biochar derived from Loofah, Fe3O4 nanoparticles, and molecularly imprinted polydopamine (MIPDA) in xanthan hydrogel. The successful synthesis of these materials has been confirmed through physicochemical and electrochemical characterization. Various operational factors such as pH, response time, loading sample volume, and loading of active materials were optimized. As a result, the sensor exhibited an affordable linear range of 1.0-60.0 μM, with a desirable limit of detection of 0.44 μM. Furthermore, the proposed electrochemical sensor demonstrated good reproducibility and desirable selectivity for the determination of L-Trp, making it suitable for analyzing L-Trp levels in human plasma and serum samples. The development presented offers an appealing, easily accessible, and efficient strategy. It utilizes xanthan hydrogel to improve mass transfer and adhesion, biochar-stabilized Fe3O4 to facilitate magnetic orientation and accelerate mass transfer and sensitivity, and polydopamine MIP to enhance selectivity. This approach enables on-site evaluation of L-Trp levels, which holds significant value for healthcare monitoring and early detection of related conditions.
Collapse
Affiliation(s)
- Fatemeh Hosseini
- Research Laboratory of Spectrometry & Micro and Nano Extraction, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Kheibar Dashtian
- Research Laboratory of Spectrometry & Micro and Nano Extraction, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran.
| | - Mojdeh Golzani
- Research Laboratory of Spectrometry & Micro and Nano Extraction, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Zahra Ejraei
- Research Laboratory of Spectrometry & Micro and Nano Extraction, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Rouholah Zare-Dorabei
- Research Laboratory of Spectrometry & Micro and Nano Extraction, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran.
| |
Collapse
|
2
|
Mohiuddin I, Singh R, Kaur V. Blending polydopamine-derived imprinted polymers with rice straw-based fluorescent carbon dots for selective detection and adsorptive removal of ibuprofen. Int J Biol Macromol 2024; 269:131765. [PMID: 38677686 DOI: 10.1016/j.ijbiomac.2024.131765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 03/05/2024] [Accepted: 04/20/2024] [Indexed: 04/29/2024]
Abstract
Dual-functioning probes capable of detecting and removing hazardous substances have recently received increased attention compared to exclusive sensory probes. Herein, a new composite is synthesized by blending polydopamine imprinted polymers with fluorescent carbon dots (PIP-FCDs) for the selective recognition and adsorption of Ibuprofen (IBF). IBF is a nonsteroidal anti-inflammatory drug and is excessively released in the pharmaceutical wastes. The PIP-FCDs consist of confined pockets for encasing IBF and quenches fluorescence signal when contact with the molecule. PIP-FCDs show high sensitivity (limit of detection = 1.58 × 10-5 μM) and selectivity towards IBF in the presence of other pharmaceutical drugs i.e., aspirin, ketoprofen, norfloxacin, and levofloxacin. The adsorption studies show an adsorption capacity of 209.8 mg g-1 with an extraction efficiency of around 99.9 %. Furthermore, PIP-FCDs are utilized to determine IBF levels in various aqueous pharmaceutical samples. This development provides a simple and dual-functioning probe for the detection and adsorption of IBF from various matrices.
Collapse
Affiliation(s)
- Irshad Mohiuddin
- Department of Chemistry, Panjab University, Sector-14, Chandigarh 160014, India.
| | - Raghubir Singh
- Department of Chemistry, DAV College, Sector, 10, Chandigarh, -160011, India
| | - Varinder Kaur
- Department of Chemistry, Panjab University, Sector-14, Chandigarh 160014, India.
| |
Collapse
|
3
|
Gao H, Liu Z, Song F, Xing J, Zheng Z, Hou Z, Liu S. Establishment of Polydopamine-Modified HK-2 Cell Membrane Chromatography and Screening of Active Components from Plantago asiatica L. Int J Mol Sci 2024; 25:1153. [PMID: 38256226 PMCID: PMC10816010 DOI: 10.3390/ijms25021153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
Cell membrane chromatography (CMC) has been widely recognized as a highly efficient technique for in vitro screening of active compounds. Nevertheless, conventional CMC approaches suffer from a restricted repertoire of cell membrane proteins, making them susceptible to oversaturation. Moreover, the binding mechanism between silica gel and proteins primarily relies on intermolecular hydrogen bonding, which is inherently unstable and somewhat hampers the advancement of CMC. Consequently, this investigation aimed to establish a novel CMC column that could augment protein loading, enhance detection throughput, and bolster binding affinity through the introduction of covalent bonding with proteins. This study utilizes polydopamine (PDA)-coated silica gel, which is formed through the self-polymerization of dopamine (DA), as the carrier for the CMC column filler. The objective is to construct the HK-2/SiO2-PDA/CMC model to screen potential therapeutic drugs for gout. To compare the quantity and characteristics of Human Kidney-2 (HK-2) cell membrane proteins immobilized on SiO2-PDA and silica gel, the proteins were immobilized on both surfaces. The results indicate that SiO2-PDA has a notably greater affinity for membrane proteins compared to silica gel, resulting in a significant improvement in detection efficiency. Furthermore, a screening method utilizing HK-2/SiO2-PDA/CMC was utilized to identify seven potential anti-gout compounds derived from Plantago asiatica L. (PAL). The effectiveness of these compounds was further validated using an in vitro cell model of uric acid (UA) reabsorption. In conclusion, this study successfully developed and implemented a novel CMC filler, which has practical implications in the field.
Collapse
Affiliation(s)
- Hongxue Gao
- State Key Laboratory of Electroanalytical Chemistry & Jilin Provincial Key Laboratory of Chinese Medicine Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; (H.G.)
- Institute of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230029, China
| | - Zhiqiang Liu
- State Key Laboratory of Electroanalytical Chemistry & Jilin Provincial Key Laboratory of Chinese Medicine Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; (H.G.)
- Institute of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230029, China
| | - Fengrui Song
- State Key Laboratory of Electroanalytical Chemistry & Jilin Provincial Key Laboratory of Chinese Medicine Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; (H.G.)
| | - Junpeng Xing
- State Key Laboratory of Electroanalytical Chemistry & Jilin Provincial Key Laboratory of Chinese Medicine Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; (H.G.)
| | - Zhong Zheng
- State Key Laboratory of Electroanalytical Chemistry & Jilin Provincial Key Laboratory of Chinese Medicine Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; (H.G.)
| | - Zong Hou
- State Key Laboratory of Electroanalytical Chemistry & Jilin Provincial Key Laboratory of Chinese Medicine Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; (H.G.)
| | - Shu Liu
- State Key Laboratory of Electroanalytical Chemistry & Jilin Provincial Key Laboratory of Chinese Medicine Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; (H.G.)
- Institute of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230029, China
| |
Collapse
|
4
|
Cavalera S, Anfossi L, Di Nardo F, Baggiani C. Mycotoxins-Imprinted Polymers: A State-of-the-Art Review. Toxins (Basel) 2024; 16:47. [PMID: 38251263 PMCID: PMC10818578 DOI: 10.3390/toxins16010047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 01/02/2024] [Accepted: 01/13/2024] [Indexed: 01/23/2024] Open
Abstract
Mycotoxins are toxic metabolites of molds which can contaminate food and beverages. Because of their acute and chronic toxicity, they can have harmful effects when ingested or inhaled, posing severe risks to human health. Contemporary analytical methods have the sensitivity required for contamination detection and quantification, but the direct application of these methods on real samples is not straightforward because of matrix complexity, and clean-up and preconcentration steps are needed, more and more requiring the application of highly selective solid-phase extraction materials. Molecularly imprinted polymers (MIPs) are artificial receptors mimicking the natural antibodies that are increasingly being used as a solid phase in extraction methods where selectivity towards target analytes is mandatory. In this review, the state-of-the-art about molecularly imprinted polymers as solid-phase extraction materials in mycotoxin contamination analysis will be discussed, with particular attention paid to the use of mimic molecules in the synthesis of mycotoxin-imprinted materials, to the application of these materials to food real samples, and to the development of advanced extraction methods involving molecular imprinting technology.
Collapse
Affiliation(s)
| | | | | | - Claudio Baggiani
- Laboratory of Bioanalytical Chemistry, Department of Chemistry, University of Torino, 10125 Torino, Italy; (S.C.); (L.A.); (F.D.N.)
| |
Collapse
|
5
|
Mazzotta E, Di Giulio T, Mariani S, Corsi M, Malitesta C, Barillaro G. Vapor-Phase Synthesis of Molecularly Imprinted Polymers on Nanostructured Materials at Room-Temperature. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302274. [PMID: 37222612 DOI: 10.1002/smll.202302274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/27/2023] [Indexed: 05/25/2023]
Abstract
Molecularly imprinted polymers (MIPs) have recently emerged as robust and versatile artificial receptors. MIP synthesis is carried out in liquid phase and optimized on planar surfaces. Application of MIPs to nanostructured materials is challenging due to diffusion-limited transport of monomers within the nanomaterial recesses, especially when the aspect ratio is >10. Here, the room temperature vapor-phase synthesis of MIPs in nanostructured materials is reported. The vapor phase synthesis leverages a >1000-fold increase in the diffusion coefficient of monomers in vapor phase, compared to liquid phase, to relax diffusion-limited transport and enable the controlled synthesis of MIPs also in nanostructures with high aspect ratio. As proof-of-concept application, pyrrole is used as the functional monomer thanks to its large exploitation in MIP preparation; nanostructured porous silicon oxide (PSiO2 ) is chosen to assess the vapor-phase deposition of PPy-based MIP in nanostructures with aspect ratio >100; human hemoglobin (HHb) is selected as the target molecule for the preparation of a MIP-based PSiO2 optical sensor. High sensitivity and selectivity, low detection limit, high stability and reusability are achieved in label-free optical detection of HHb, also in human plasma and artificial serum. The proposed vapor-phase synthesis of MIPs is immediately transferable to other nanomaterials, transducers, and proteins.
Collapse
Affiliation(s)
- Elisabetta Mazzotta
- Laboratory of Analytical Chemistry, Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, via Monteroni, Lecce, 73100, Italy
| | - Tiziano Di Giulio
- Laboratory of Analytical Chemistry, Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, via Monteroni, Lecce, 73100, Italy
| | - Stefano Mariani
- Information Engineering Department, University of Pisa, via G. Caruso 16, Pisa, 56122, Italy
| | - Martina Corsi
- Information Engineering Department, University of Pisa, via G. Caruso 16, Pisa, 56122, Italy
| | - Cosimino Malitesta
- Laboratory of Analytical Chemistry, Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, via Monteroni, Lecce, 73100, Italy
| | - Giuseppe Barillaro
- Information Engineering Department, University of Pisa, via G. Caruso 16, Pisa, 56122, Italy
| |
Collapse
|
6
|
Mohiuddin I, Singh R, Kaur V. A Review of Sensing Applications of Molecularly Imprinted Fluorescent Carbon Dots for Food and Biological Sample Analysis. Crit Rev Anal Chem 2023; 54:3212-3233. [PMID: 37467171 DOI: 10.1080/10408347.2023.2236215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
Molecularly imprinted fluorescent carbon dots (MI-FCDs) find numerous applications in analytical chemistry due to their outstanding photoluminescent properties and having specific pockets for the recognition of target molecules. Despite significant advances, practical applications of MI-FCDs-based fluorescent sensors are still in their initial stages. Therefore, the topical developments in the synthesis, working, and application of MI-FCDs for sensing various target species (e.g., pharmaceuticals, biomolecules, pesticides, food additives, and miscellaneous species) in food and biological media have been highlighted. Moreover, a careful evaluation has been made to select the best methods based on their performance in terms of analytical parameters. To expand the horizons of this field, important challenges and future directions for developing MI-FCDs for practical use are also presented. This review will highlight important aspects of MI-FCDs-based fluorescent sensors for their applicability in food science, material science, environmental science, nanoscience, and biotechnology.
Collapse
Affiliation(s)
| | | | - Varinder Kaur
- Department of Chemistry, Panjab University, Chandigarh, India
| |
Collapse
|
7
|
Wang J, Liu J, Liu W, Guo Y, Wu Q, Wang Z, Yan H. Porphyrin-based hypercrosslinked polymers as sorbents for efficient extraction of nitroimidazoles from water, honey and chicken breast. J Chromatogr A 2023; 1702:464087. [PMID: 37230054 DOI: 10.1016/j.chroma.2023.464087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/08/2023] [Accepted: 05/18/2023] [Indexed: 05/27/2023]
Abstract
In this work, a series of 5,10,15,20-tetraphenylporphyrin (TPP)-based hyper crosslinked polymers were prepared by Friedel-Crafts reaction. Among them, the HCP-TPP-BCMBP, which was prepared by using TPP as the monomer and with 4,4'-Bis(chloromethyl)-1,1'-biphenyl (BCMBP) as the cross-linking agent, had the best adsorption capability for the enrichment of the nitroimidazoles of dimetridazole, ronidazole, secnidazole, metronidazole, and ornidazole. Then, a solid-phase extraction (SPE) method with the HCP-TPP-BCMBP as adsorbent coupled with HPLC-UV detection for the determination of nitroimidazole residues in honey, environmental water, and chicken breast samples was established. The influence of the main factors that affect the SPE, i.e., sample solution volume, sample loading rate, sample pH, and eluent and its volume, were studied. Under the optimal conditions, the limits of detection (S/N = 3) for the nitroimidazoles were measured to be in the range of 0.02-0.04 ng mL-1, 0.4-1.0 ng g-1 and 0.5-0.7 ng g-1 for environmental water, honey, and chicken breast samples, with the determination coefficients being in the range of 0.9933-0.9998. The analytes recoveries by the method in fortified samples fell in the range from 91.1% to 102.7% for environmental water, from 83.2% to 105.0% for honey, and from 85.9% to 103.0% for chicken breast samples, and the relative standard deviations for the determination were less than 10%. It shows that the HCP-TPP-BCMBP has a strong adsorption capability for some polar compounds.
Collapse
Affiliation(s)
- Juntao Wang
- College of Pharmaceutical Sciences, Hebei University, Baoding 071002, China; College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Jiajia Liu
- China Petroleum Engineering & Construction Corp. North China Company, Renqiu 062550, Hebei, China
| | - Weihua Liu
- Department of Chemistry, College of Science, Hebei Agricultural University, Baoding 071001, China
| | - Yaxing Guo
- Department of Chemistry, College of Science, Hebei Agricultural University, Baoding 071001, China
| | - Qiuhua Wu
- Department of Chemistry, College of Science, Hebei Agricultural University, Baoding 071001, China; College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Zhi Wang
- Department of Chemistry, College of Science, Hebei Agricultural University, Baoding 071001, China; College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China.
| | - Hongyuan Yan
- College of Pharmaceutical Sciences, Hebei University, Baoding 071002, China.
| |
Collapse
|
8
|
Ye J, Bao H, Zheng M, Liu H, Chen J, Wang S, Ma H, Zhang Y. Development of a Novel Magnetic-Bead-Based Automated Strategy for Efficient and Low-Cost Sample Preparation for Ochratoxin A Detection Using Mycotoxin–Albumin Interaction. Toxins (Basel) 2023; 15:toxins15040270. [PMID: 37104208 PMCID: PMC10145472 DOI: 10.3390/toxins15040270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/28/2023] [Accepted: 04/04/2023] [Indexed: 04/08/2023] Open
Abstract
The mycotoxin ochratoxin A (OTA) is toxic to humans and frequently contaminates wine and beer. Antibodies are essential recognition probes for the detection of OTA. However, they have several drawbacks, such as high costs and difficulty in preparation. In this study, a novel magnetic-bead-based automated strategy for efficient and low-cost OTA sample preparation was developed. Human serum albumin, which is an economical and stable receptor based on the mycotoxin–albumin interaction, was adapted and validated to replace conventional antibodies to capture OTA in the sample. Ultra-performance liquid chromatography–fluorescence detection was used in combination with this preparation method for efficient detection. The effects of different conditions on this method were investigated. The recovery of OTA samples spiked at three different concentrations ranged from 91.2% to 102.1%, and the relative standard deviations (RSDs) were 1.2%–8.2% in wine and beer. For red wine and beer samples, the LODs were 0.37 and 0.15 µg/L, respectively. This reliable method overcomes the drawbacks of conventional methods and offers significant application prospects.
Collapse
Affiliation(s)
- Jin Ye
- Key Laboratory of Grain Information Processing and Control, Henan University of Technology, Ministry of Education, Zhengzhou 450001, China
- Henan Key Laboratory of Grain Photoelectric Detection and Control, Henan University of Technology, Zhengzhou 450001, China
- College of Information Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
- Academy of National Food and Strategic Reserves Administration, Beijing 102600, China
| | - Hui Bao
- Key Laboratory of Grain Information Processing and Control, Henan University of Technology, Ministry of Education, Zhengzhou 450001, China
- Henan Key Laboratory of Grain Photoelectric Detection and Control, Henan University of Technology, Zhengzhou 450001, China
- College of Information Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Mengyao Zheng
- Academy of National Food and Strategic Reserves Administration, Beijing 102600, China
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Hongmei Liu
- Academy of National Food and Strategic Reserves Administration, Beijing 102600, China
| | - Jinnan Chen
- Academy of National Food and Strategic Reserves Administration, Beijing 102600, China
| | - Songxue Wang
- Academy of National Food and Strategic Reserves Administration, Beijing 102600, China
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Haihua Ma
- Key Laboratory of Grain Information Processing and Control, Henan University of Technology, Ministry of Education, Zhengzhou 450001, China
- Henan Key Laboratory of Grain Photoelectric Detection and Control, Henan University of Technology, Zhengzhou 450001, China
- College of Information Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Yuan Zhang
- Key Laboratory of Grain Information Processing and Control, Henan University of Technology, Ministry of Education, Zhengzhou 450001, China
- Henan Key Laboratory of Grain Photoelectric Detection and Control, Henan University of Technology, Zhengzhou 450001, China
- College of Information Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| |
Collapse
|
9
|
Dou M, Wang S, Li W, Li Q, Xu J, Li J. High-performance molecularly imprinted polymers grafted magnetic photonic crystal microspheres for selective enrichment of Ochratoxin A. J Chromatogr A 2023; 1695:463932. [PMID: 36972663 DOI: 10.1016/j.chroma.2023.463932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 03/11/2023] [Accepted: 03/14/2023] [Indexed: 03/17/2023]
Abstract
Development of selective enrichment materials for the accurate analysis of ochratoxin a (OTA) in environmental and food samples is an effective way to protect human health. Here, a molecularly imprinted polymer (MIP) known as plastic antibody was synthesized onto the magnetic inverse opal photonic crystal microsphere (MIPCM) using a low-cost dummy template imprinting strategy targeting OTA. The MIP@MIPCM exhibited ultrahigh selectivity with an imprinting factor of 130, high specificity with cross-reactivity factors of 3.3-10.5, and large adsorption capacity of 60.5 μg/mg. Such MIP@MIPCM was used for selective capture of OTA in real samples which was quantified in combination with high-performance liquid chromatography, giving a wide linear detection range of 5-20,000 ng/mL, a detection limit of 0.675 ng/mL, and good recovery rates of 84-116%. Moreover, the MIP@MIPCM can be produced simply and rapidly and is very stable under different environmental conditions and easy to store and transport, so it is an ideal substitute of biological antibody modified materials for the selective enrichment of OTA in real samples.
Collapse
Affiliation(s)
- Menghua Dou
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Siwei Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Wei Li
- Medical Imaging Center the First Affiliated Hospital, Jinan University, Guangdong 510627, China
| | - Qianjin Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China.
| | - Jianhong Xu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.
| | - Jianlin Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
10
|
Bhogal S, Mohiuddin I, Kumar S, Malik AK, Kim KH, Kaur K. Self-polymerized polydopamine-imprinted layer-coated carbon dots as a fluorescent sensor for selective and sensitive detection of 17β-oestradiol. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 847:157356. [PMID: 35843330 DOI: 10.1016/j.scitotenv.2022.157356] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/10/2022] [Accepted: 07/10/2022] [Indexed: 06/15/2023]
Abstract
The compound 17β-oestradiol (E2) is a steroidal oestrogen used extensively in food processing and animal husbandry. As E2 is well-known as a typical endocrine disrupting chemical, its release, penetration, and exposure create serious environmental concerns. Carbon dots (CDs) have attracted great attention due to their excellent fluorescent and non-toxic properties. To help improve the selectivity of CDs, they can be combined with molecularly-imprinted polymers (MIPs). In light of the limitations involved in the fabrication of MIP layer on CDs (e.g., time consumption and low controllability of imprinted layer), the mussel inspired dopamine self-polymerization can be considered as an alternative option. As functional monomer in molecular imprinted technology, dopamine can be used efficiently to polymerize in weak alkaline condition (e.g., formation of polydopamine). In this research, a new method was developed for selective and sensitive fluorescent detection of E2 based on self-polymerization of dopamine (functional monomer) on fluorescent carbon dots (CDs@MI-PDA). The developed sensor selectively binds with E2 to quench the fluorescence intensity of CDs by photo-induced electron transfer. The sensor showcases a detection limit of E2 as 0.34 ng/mL with a linearity over 1-50 ng/mL. Furthermore, the probe was successfully applied to water (tap and river water) and milk samples with recoveries of 96.4-102.2 %. This study is expected to open a new path for the development of a simple and convenient detection approach for E2 present in complex matrices.
Collapse
Affiliation(s)
- Shikha Bhogal
- Department of Chemistry, Punjabi University, Patiala 147002, Punjab, India
| | - Irshad Mohiuddin
- Department of Chemistry, Panjab University, Sector-14, Chandigarh 160014, India
| | - Sandeep Kumar
- Department of Chemistry, Punjabi University, Patiala 147002, Punjab, India
| | - Ashok Kumar Malik
- Department of Chemistry, Punjabi University, Patiala 147002, Punjab, India
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea.
| | - Kuldeep Kaur
- Department of Chemistry, Mata Gujri College, Fatehgarh Sahib 140407, India
| |
Collapse
|
11
|
Fast extraction of aflatoxins, ochratoxins and enniatins from maize with magnetic covalent organic framework prior to HPLC-MS/MS detection. Food Chem 2022; 404:134464. [DOI: 10.1016/j.foodchem.2022.134464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 09/23/2022] [Accepted: 09/27/2022] [Indexed: 11/21/2022]
|
12
|
Hu M, Ge W, Liu X, Suo L, Wan Q, Wu F. Facile Synthesis of Dopamine-based Magnetic Molecularly Imprinted Polymers for Selective Recognition and Enrichment of Aflatoxin B in Food Matrices before HPLC Analysis. CHEM LETT 2022. [DOI: 10.1246/cl.220233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Meihua Hu
- College of Chemistry and Food Science, Nanchang Normal University, Nanchang, Jiangxi, 330032, P. R. China
| | - Wen Ge
- College of Chemistry and Food Science, Nanchang Normal University, Nanchang, Jiangxi, 330032, P. R. China
| | - Xiujuan Liu
- College of Chemistry and Food Science, Nanchang Normal University, Nanchang, Jiangxi, 330032, P. R. China
| | - Lili Suo
- Physical and Chemical Department, Nanchang Center for Disease Control and Prevention, Nanchang, Jiangxi, 330038, P. R. China
| | - Quanyu Wan
- College of Chemistry and Food Science, Nanchang Normal University, Nanchang, Jiangxi, 330032, P. R. China
| | - Fangying Wu
- College of Chemistry, Nanchang University, Nanchang, Jiangxi, 330031, P. R. China
| |
Collapse
|
13
|
Wang J, Li X, Zhang R, Fu B, Chen M, Ye M, Liu W, Xu J, Pan G, Zhang H. A molecularly imprinted antibiotic receptor on magnetic nanotubes for the detection and removal of environmental oxytetracycline. J Mater Chem B 2022; 10:6777-6783. [PMID: 35583296 DOI: 10.1039/d2tb00497f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The detection and elimination of antibiotic contaminants, such as oxytetracycline (OTC), a broad-spectrum tetracycline antibiotic, would be of help in efficient environmental monitoring, agriculture and food safety tests. Nevertheless, currently available methodologies, which mostly rely on the chromatographic separation of OTC, suffer from low sensitivity and complicated processes. Thus, we report here on the design and synthesis of a fluorescent sensor based on molecularly imprinted magnetic halloysite nanotubes (referred to as MHNTs@FMIPs) for the effective detection and purification of OTC in actual environmental samples. The fluorescence of the MHNTs@FMIPs was quenched obviously upon loading with OTC, covering a linear concentration range of 10-300 nM with a limit of detection (LOD) as low as 8.1 nM. The imprinting factor is 4.47, indicating an excellent specificity. Furthermore, the MHNTs@FMIPs can be applied to the quantitative detection of OTC (5 cycles of 300 nM) in aquaculture wastewater and Yangtze River water, demonstrating their immense application potential.
Collapse
Affiliation(s)
- Jixiang Wang
- Sino-European School of Technology of Shanghai University, Shanghai University, CN-200444, Shanghai, P. R. China. .,Pharmaceutical Sciences Laboratory, Åbo Akademi University, FI-20520, Turku, Finland. .,Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520, Turku, Finland
| | - Xiaolei Li
- Sino-European School of Technology of Shanghai University, Shanghai University, CN-200444, Shanghai, P. R. China.
| | - Rong Zhang
- Department of Interventional Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, CN-200233, Shanghai, China
| | - Bingjie Fu
- Sino-European School of Technology of Shanghai University, Shanghai University, CN-200444, Shanghai, P. R. China.
| | - Mingcan Chen
- Sino-European School of Technology of Shanghai University, Shanghai University, CN-200444, Shanghai, P. R. China.
| | - Mengxue Ye
- Sino-European School of Technology of Shanghai University, Shanghai University, CN-200444, Shanghai, P. R. China.
| | - Wanyu Liu
- Sino-European School of Technology of Shanghai University, Shanghai University, CN-200444, Shanghai, P. R. China.
| | - Jingjing Xu
- Sino-European School of Technology of Shanghai University, Shanghai University, CN-200444, Shanghai, P. R. China.
| | - Guoqing Pan
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
| | - Hongbo Zhang
- Pharmaceutical Sciences Laboratory, Åbo Akademi University, FI-20520, Turku, Finland. .,Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520, Turku, Finland
| |
Collapse
|
14
|
Sohrabi N, Mohammadi R, Ghassemzadeh HR, Heris SSS. Design and synthesis of a new magnetic molecularly imprinted polymer nanocomposite for specific adsorption and separation of diazinon insecticides from aqueous media. Microchem J 2022. [DOI: 10.1016/j.microc.2021.107087] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
15
|
Recent advances of magnetic molecularly imprinted materials: From materials design to complex sample pretreatment. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2021.116514] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
16
|
Sun J, Li M, Xing F, Wang H, Zhang Y, Sun X. Novel dual immunochromatographic test strip based on double antibodies and biotin-streptavidin system for simultaneous sensitive detection of aflatoxin M1 and ochratoxin A in milk. Food Chem 2021; 375:131682. [PMID: 34863599 DOI: 10.1016/j.foodchem.2021.131682] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/13/2021] [Accepted: 11/23/2021] [Indexed: 12/25/2022]
Abstract
The coexistence of mycotoxins in agricultural products poses a serious threat to food safety. This study developed a dual immunochromatographic test strips (DICTS) method based on double antibodies labeled with time-resolved fluorescent microspheres (TRFM) to realize simultaneous rapid detection of aflatoxin M1 (AFM1) and ochratoxin A (OTA) in milk. As bridge antibody, the polyclonal antibody (pAb) was first conjugated with the TRFM and then with the monoclonal antibody (mAb). Meanwhile, a biotin-streptavidin system was introduced to replace the traditional goat anti-mouse Immunoglobulin G, thus providing a stable signal on the control line. After optimization, the detection limit of AFM1 and OTA in milk was respectively 0.018 and 0.036 ng/mL. The recoveries of intraassay and interassay experiments ranged from 89.65% to 103.99%. The accuracy, repeatability, and specificity of the developed TRFM-DICTS were estimated. The results of TRFM-DICTS showed a high consistency with those of the ultrahigh-performance liquid chromatography-tandem mass spectrometry.
Collapse
Affiliation(s)
- Jiadi Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, School of Food Science Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Miao Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, School of Food Science Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Fuguo Xing
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, PR China
| | - Haiming Wang
- Guangzhou GRG Metrology & Test Co., Ltd., Guangzhou 510630, China
| | - Yinzhi Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, School of Food Science Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xiulan Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, School of Food Science Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
17
|
Liu Y, Su Z, Wang J, Gong Z, Lyu H, Xie Z. Molecularly imprinted polymer with mixed-mode mechanism for selective extraction and on-line detection of ochratoxin A in beer sample. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106696] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
18
|
Hu M, Ge W, Liu X, Zhu Y. Preconcentration and Determination of Zearalenone in Corn Oil by a One-Step Prepared Polydopamine-Based Magnetic Molecularly Imprinted Polymer (MIP) with High-Performance Liquid Chromatography with Fluorescence (HPLC-FLD) Detection. ANAL LETT 2021. [DOI: 10.1080/00032719.2021.1931268] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Meihua Hu
- College of Chemistry and Food Science, Nanchang Normal University, Nanchang, China
| | - Wen Ge
- College of Chemistry and Food Science, Nanchang Normal University, Nanchang, China
| | - Xiujuan Liu
- College of Chemistry and Food Science, Nanchang Normal University, Nanchang, China
| | - Yuling Zhu
- School of Chemistry, Biology and Material Science, East China University of Technology, Nanchang, China
| |
Collapse
|
19
|
Akgönüllü S, Armutcu C, Denizli A. Molecularly imprinted polymer film based plasmonic sensors for detection of ochratoxin A in dried fig. Polym Bull (Berl) 2021. [DOI: 10.1007/s00289-021-03699-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
20
|
Yang Y, Yan W, Wang X, Yu L, Zhang J, Bai B, Guo C, Fan S. Development of a molecularly imprinted photoelectrochemical sensing platform based on NH 2-MIL-125(Ti)-TiO 2 composite for the sensitive and selective determination of oxtetracycline. Biosens Bioelectron 2021; 177:113000. [PMID: 33485152 DOI: 10.1016/j.bios.2021.113000] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 01/02/2021] [Accepted: 01/09/2021] [Indexed: 10/22/2022]
Abstract
In this work, a molecularly imprinted photoelectrochemical (MIP-PEC) sensor based on a novel PEC composite of metal-organic frameworks (MOFs) and TiO2 (NH2-MIL-125(Ti)-TiO2) was established for the ultrasensitive and selective detection of oxytetracycline (OTC). This is the first attempt of applying MOFs in the construction of MIP-PEC sensor. The NH2-MIL-125(Ti)-TiO2 was synthesized by a simple one-step solvothermal method and modified onto the surface of indium tin oxide (ITO) electrode as the photosensitive layer. Subsequently, molecularly imprinted polymer (MIP) was modified as recognition element by electropolymerization. The NH2-MIL-125(Ti)-TiO2 showed an enhanced photocurrent response due to stronger light absorption capacity and matched energy band. Furthermore, MIP greatly improved the selectivity and sensitivity of the constructed PEC sensor. The photocurrent response of the MIP-PEC sensor was reduced after OTC recognition because the specific binding of OTC to the imprinted cavities blocked the electron transfer of the electrode. Under optimal experimental conditions, the MIP-PEC sensor exhibited a wide detection range from 0.1 nM to 10 μM with a low limit of detection (LOD) of 60 pM, as well as certain reproducibility, stability and good applicability in real samples. The proposed sensor provides ideas for the application of MOFs in the construction of PEC sensors and will offer an alternative method for the detection of other pollutants in the field of food safety.
Collapse
Affiliation(s)
- Yukun Yang
- School of Life Science, Shanxi University, Taiyuan, 030006, China; Xinghuacun College of Shanxi University(Shanxi Institute of Brewing Technology and Industry (Preparation)), Taiyuan, 030006, China.
| | - Wenyan Yan
- School of Life Science, Shanxi University, Taiyuan, 030006, China
| | - Xiaomin Wang
- Institute of Pharmaceutical and Food Engineering, Shanxi University of Chinese Medicine, Yuci, 030619, China.
| | - Ligang Yu
- School of Life Science, Shanxi University, Taiyuan, 030006, China; Xinghuacun College of Shanxi University(Shanxi Institute of Brewing Technology and Industry (Preparation)), Taiyuan, 030006, China
| | - Jinhua Zhang
- School of Life Science, Shanxi University, Taiyuan, 030006, China; Xinghuacun College of Shanxi University(Shanxi Institute of Brewing Technology and Industry (Preparation)), Taiyuan, 030006, China
| | - Baoqing Bai
- School of Life Science, Shanxi University, Taiyuan, 030006, China; Xinghuacun College of Shanxi University(Shanxi Institute of Brewing Technology and Industry (Preparation)), Taiyuan, 030006, China
| | - Caixia Guo
- School of Life Science, Shanxi University, Taiyuan, 030006, China; Xinghuacun College of Shanxi University(Shanxi Institute of Brewing Technology and Industry (Preparation)), Taiyuan, 030006, China
| | - Sanhong Fan
- School of Life Science, Shanxi University, Taiyuan, 030006, China; Xinghuacun College of Shanxi University(Shanxi Institute of Brewing Technology and Industry (Preparation)), Taiyuan, 030006, China.
| |
Collapse
|
21
|
Khataee A, Sohrabi H, Arbabzadeh O, Khaaki P, Majidi MR. Frontiers in conventional and nanomaterials based electrochemical sensing and biosensing approaches for Ochratoxin A analysis in foodstuffs: A review. Food Chem Toxicol 2021; 149:112030. [DOI: 10.1016/j.fct.2021.112030] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 01/19/2021] [Accepted: 01/24/2021] [Indexed: 12/22/2022]
|
22
|
Delaunay N, Combès A, Pichon V. Immunoaffinity Extraction and Alternative Approaches for the Analysis of Toxins in Environmental, Food or Biological Matrices. Toxins (Basel) 2020; 12:toxins12120795. [PMID: 33322240 PMCID: PMC7764248 DOI: 10.3390/toxins12120795] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 12/09/2020] [Accepted: 12/11/2020] [Indexed: 12/12/2022] Open
Abstract
The evolution of instrumentation in terms of separation and detection allowed a real improvement of the sensitivity and analysis time. However, the analysis of ultra-traces of toxins in complex samples requires often a step of purification and even preconcentration before their chromatographic analysis. Therefore, immunoaffinity sorbents based on specific antibodies thus providing a molecular recognition mechanism appear as powerful tools for the selective extraction of a target molecule and its structural analogs to obtain more reliable and sensitive quantitative analysis in environmental, food or biological matrices. This review focuses on immunosorbents that have proven their efficiency in selectively extracting various types of toxins of various sizes (from small mycotoxins to large proteins) and physicochemical properties. Immunosorbents are now commercially available, and their use has been validated for numerous applications. The wide variety of samples to be analyzed, as well as extraction conditions and their impact on extraction yields, is discussed. In addition, their potential for purification and thus suppression of matrix effects, responsible for quantification problems especially in mass spectrometry, is presented. Due to their similar properties, molecularly imprinted polymers and aptamer-based sorbents that appear to be an interesting alternative to antibodies are also briefly addressed by comparing their potential with that of immunosorbents.
Collapse
Affiliation(s)
- Nathalie Delaunay
- Department of Analytical, Bioanalytical Sciences and Miniaturization (LSABM), CBI ESPCI Paris, PSL University, CNRS, 75005 Paris, France; (N.D.); (A.C.)
| | - Audrey Combès
- Department of Analytical, Bioanalytical Sciences and Miniaturization (LSABM), CBI ESPCI Paris, PSL University, CNRS, 75005 Paris, France; (N.D.); (A.C.)
| | - Valérie Pichon
- Department of Analytical, Bioanalytical Sciences and Miniaturization (LSABM), CBI ESPCI Paris, PSL University, CNRS, 75005 Paris, France; (N.D.); (A.C.)
- Department of Chemistry, Sorbonne University, 75005 Paris, France
- Correspondence:
| |
Collapse
|
23
|
He J, Lu Y, Zhao T, Li Y. Preparation of polydopamine-coated, graphene oxide/Fe 3 O 4 - imprinted nanoparticles for selective removal of sulfonylurea herbicides in cereals. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:3822-3831. [PMID: 32277468 DOI: 10.1002/jsfa.10419] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 03/29/2020] [Accepted: 04/10/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Sulfonylureas are potentially toxic broad-spectrum herbicides. They pose a persistent threat to food safety and the environment. It is therefore important to develop a rapid and efficient pretreatment and detection method to prevent their harmful effects on human health. RESULTS In the present work, a novel and highly selective absorbent for chlorosulfuron (CS) detection was prepared by the simple self-polymerization of dopamine on the surface of magnetic graphene oxide using a CS template. The resultant imprinted nanoparticles (MGO@PDA-MIPs) were characterized by transmission electron microscopy, X-ray diffraction, vibrating-sample magnetometry, thermogravimetric analysis, and nitrogen adsorption-desorption. The adsorption experiments demonstrated that the MGO@PDA-MIPs have excellent selectivity with regard to CS, with a high imprinting factor of 3.41 compared with a non-imprinted polymer. The nanoparticles rapidly achieve adsorption equilibrium and efficient desorption because there are numerous binding sites on the thin polydopamine imprinting layer. Under optimized conditions, the MGO@PDA-MIPs can be used to detect sulfonylurea residues in cereal samples by magnetic solid phase extraction coupled with high performance liquid chromatography (HPLC). The nanoparticles have a satisfactory recovery rate (80.65-101.01%) with a relative standard deviation (RSD) of less than 7.15%, and a limit of detection with regard to CS of 1.61 μg kg-1 (S/N = 3). They can also be re-used at least seven times. CONCLUSION The MGO@PDA-MIPs have outstanding recognition performance, and can be prepared by a facile, single-step, and environmentally friendly process. They therefore have excellent potential for the recognition and separation of trace sulfonylurea herbicides in complex matrices. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jinxing He
- School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Yue Lu
- School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Tao Zhao
- School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Yingqiu Li
- School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| |
Collapse
|
24
|
Tang C, He Z, Liu H, Xu Y, Huang H, Yang G, Xiao Z, Li S, Liu H, Deng Y, Chen Z, Chen H, He N. Application of magnetic nanoparticles in nucleic acid detection. J Nanobiotechnology 2020; 18:62. [PMID: 32316985 PMCID: PMC7171821 DOI: 10.1186/s12951-020-00613-6] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 03/25/2020] [Indexed: 12/16/2022] Open
Abstract
Nucleic acid is the main material for storing, copying, and transmitting genetic information. Gene sequencing is of great significance in DNA damage research, gene therapy, mutation analysis, bacterial infection, drug development, and clinical diagnosis. Gene detection has a wide range of applications, such as environmental, biomedical, pharmaceutical, agriculture and forensic medicine to name a few. Compared with Sanger sequencing, high-throughput sequencing technology has the advantages of larger output, high resolution, and low cost which greatly promotes the application of sequencing technology in life science research. Magnetic nanoparticles, as an important part of nanomaterials, have been widely used in various applications because of their good dispersion, high surface area, low cost, easy separation in buffer systems and signal detection. Based on the above, the application of magnetic nanoparticles in nucleic acid detection was reviewed.
Collapse
Affiliation(s)
- Congli Tang
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, 412007 China
| | - Ziyu He
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, 412007 China
| | - Hongmei Liu
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, 412007 China
| | - Yuyue Xu
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, 412007 China
| | - Hao Huang
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, 412007 China
| | - Gaojian Yang
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, 412007 China
| | - Ziqi Xiao
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, 412007 China
| | - Song Li
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, 412007 China
| | - Hongna Liu
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, 412007 China
| | - Yan Deng
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, 412007 China
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing, 210096 China
| | - Zhu Chen
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, 412007 China
| | - Hui Chen
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, 412007 China
| | - Nongyue He
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing, 210096 China
| |
Collapse
|
25
|
Casado N, Gañán J, Morante-Zarcero S, Sierra I. New Advanced Materials and Sorbent-Based Microextraction Techniques as Strategies in Sample Preparation to Improve the Determination of Natural Toxins in Food Samples. Molecules 2020; 25:E702. [PMID: 32041287 PMCID: PMC7038030 DOI: 10.3390/molecules25030702] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 02/03/2020] [Accepted: 02/05/2020] [Indexed: 02/05/2023] Open
Abstract
Natural toxins are chemical substances that are not toxic to the organisms that produce them, but which can be a potential risk to human health when ingested through food. Thus, it is of high interest to develop advanced analytical methodologies to control the occurrence of these compounds in food products. However, the analysis of food samples is a challenging task because of the high complexity of these matrices, which hinders the extraction and detection of the analytes. Therefore, sample preparation is a crucial step in food analysis to achieve adequate isolation and/or preconcentration of analytes and provide suitable clean-up of matrix interferences prior to instrumental analysis. Current trends in sample preparation involve moving towards "greener" approaches by scaling down analytical operations, miniaturizing the instruments and integrating new advanced materials as sorbents. The combination of these new materials with sorbent-based microextraction technologies enables the development of high-throughput sample preparation methods, which improve conventional extraction and clean-up procedures. This review gives an overview of the most relevant analytical strategies employed for sorbent-based microextraction of natural toxins of exogenous origin from food, as well as the improvements achieved in food sample preparation by the integration of new advanced materials as sorbents in these microextraction techniques, giving some relevant examples from the last ten years. Challenges and expected future trends are also discussed.
Collapse
Affiliation(s)
| | | | | | - Isabel Sierra
- Department of Chemical and Environmental Technology, E.S.C.E.T, Rey Juan Carlos University, C/Tulipán s/n, 28933 Móstoles, Madrid, Spain; (N.C.); (J.G.); (S.M.-Z.)
| |
Collapse
|
26
|
Lyu H, Sun H, Zhu Y, Wang J, Xie Z, Li J. A double-recognized aptamer-molecularly imprinted monolithic column for high-specificity recognition of ochratoxin A. Anal Chim Acta 2019; 1103:97-105. [PMID: 32081193 DOI: 10.1016/j.aca.2019.12.052] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 12/14/2019] [Accepted: 12/18/2019] [Indexed: 12/27/2022]
Abstract
In this study, a double-recognized aptamer-molecularly imprinted monolithic column (Apt-MIP monolithic column) was prepared by introducing both aptamer and MIP to reduce non-specific adsorption. Its preparation parameters such as the time of photo-initiation, the dosage of photo-initiator and the concentration of aptamer were investigated in detail. The recovery ratios of ochratoxin A (OTA) to ochratoxin B (OTB) on Apt-MIP monolithic column, Apt monolithic column and MIP monolithic column were 116.1, 40.8 and 69, respectively. Even if the concentration of OTB was 10 times that of OTA, the recovery of OTB was only about 2.9%. Applied to beer samples, the prepared Apt-MIP monolithic column drastically resisted background adsorption and the high-specificity recognition for OTA was obtained with the recoveries of 95.5-105.9%. This work provided a simple and effective method to selectively identify OTA from complex samples.
Collapse
Affiliation(s)
- Haixia Lyu
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, China.
| | - Haoran Sun
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Yimen Zhu
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Jun Wang
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Zenghong Xie
- College of Chemistry, Fuzhou University, Fuzhou, 350108, China.
| | - Jinxia Li
- Lanzhou Uranium Enrichment Plant, Lanzhou, 730065, China
| |
Collapse
|
27
|
Bodoki AE, Iacob BC, Bodoki E. Perspectives of Molecularly Imprinted Polymer-Based Drug Delivery Systems in Cancer Therapy. Polymers (Basel) 2019; 11:polym11122085. [PMID: 31847103 PMCID: PMC6960886 DOI: 10.3390/polym11122085] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/03/2019] [Accepted: 12/11/2019] [Indexed: 01/09/2023] Open
Abstract
Despite the considerable effort made in the past decades, multiple aspects of cancer management remain a challenge for the scientific community. The severe toxicity and poor bioavailability of conventional chemotherapeutics, and the multidrug resistance have turned the attention of researchers towards the quest of drug carriers engineered to offer an efficient, localized, temporized, and doze-controlled delivery of antitumor agents of proven clinical value. Molecular imprinting of chemotherapeutics is very appealing in the design of drug delivery systems since the specific and selective binding sites created within the polymeric matrix turn these complex structures into value-added carriers with tunable features, notably high loading capacity, and a good control of payload release. Our work aims to summarize the present state-of-the art of molecularly imprinted polymer-based drug delivery systems developed for anticancer therapy, with emphasis on the particularities of the chemotherapeutics’ release and with a critical assessment of the current challenges and future perspectives of these unique drug carriers.
Collapse
Affiliation(s)
- Andreea Elena Bodoki
- Inorganic Chemistry Dept., Faculty of Pharmacy, “Iuliu Haţieganu” University of Medicine and Pharmacy, 8 Ion Creangă St., 400010 Cluj-Napoca, Romania;
| | - Bogdan-Cezar Iacob
- Analytical Chemistry Dept., Faculty of Pharmacy, “Iuliu Haţieganu” University of Medicine and Pharmacy, 4 Pasteur St., 400349 Cluj-Napoca, Romania;
| | - Ede Bodoki
- Analytical Chemistry Dept., Faculty of Pharmacy, “Iuliu Haţieganu” University of Medicine and Pharmacy, 4 Pasteur St., 400349 Cluj-Napoca, Romania;
- Correspondence: ; Tel.: +40-264-597-256 (int. 2838)
| |
Collapse
|
28
|
Jiang HL, Li N, Cui L, Wang X, Zhao RS. Recent application of magnetic solid phase extraction for food safety analysis. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.115632] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
29
|
Gao W, Li P, Qin S, Huang Z, Cao Y, Liu X. A highly sensitive tetracycline sensor based on a combination of magnetic molecularly imprinted polymer nanoparticles and surface plasmon resonance detection. Mikrochim Acta 2019; 186:637. [DOI: 10.1007/s00604-019-3718-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 07/31/2019] [Indexed: 12/15/2022]
|
30
|
Magnetic nanospheres for convenient and efficient capture and release of hepatitis B virus DNA. Talanta 2019; 197:605-611. [PMID: 30771983 DOI: 10.1016/j.talanta.2019.01.077] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 01/20/2019] [Accepted: 01/24/2019] [Indexed: 11/21/2022]
Abstract
Nucleic acid isolation and purification are essential steps in molecular biology. Currently-used isolation methods focus on the extraction of all the nucleic acids from crude samples, yet ignore the specific nucleic acids of interest, which may induce the loss of the specific nucleic acids and hinder their analyses. Herein, a magnetic nanospheres (MNs)-based strategy for efficient capture and release of specific nucleic acids is developed. The DNA sequence of hepatitis B virus (HBV) is taken as a model to validate this method. The MNs are modified with the complementary strand of HBV DNA for specific capture based on hybridization reaction. Then, by melting at high temperature, the captured DNAs are detached from the MNs to achieve release. The capture and release process are performed conveniently with magnetic separation. High capture efficiency (over 80%) and nearly 100% release efficiency for HBV DNA are achieved respectively via 40 min and 5 min interaction. While non-target DNAs are hardly captured, indicative of good selectivity. Moreover, after releasing DNAs, the MNs are directly regenerated and can be reused without degrading performance, which greatly reduces the operation costs. Finally, this method is applied to serum samples without any pretreatment, which exhibits similar capture and release capacity with those in the ideal samples, indicating its great application potential in practice.
Collapse
|
31
|
Zaidi SA. An Account on the Versatility of Dopamine as a Functional Monomer in Molecular Imprinting. ChemistrySelect 2019. [DOI: 10.1002/slct.201901029] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Shabi Abbas Zaidi
- Department of ChemistryKwangwoon University, 20 Kwangwoon-ro, Nowon-Gu Seoul 01897 Korea
| |
Collapse
|
32
|
Tittlemier S, Cramer B, Dall’Asta C, Iha M, Lattanzio V, Malone R, Maragos C, Solfrizzo M, Stranska-Zachariasova M, Stroka J. Developments in mycotoxin analysis: an update for 2017-2018. WORLD MYCOTOXIN J 2019. [DOI: 10.3920/wmj2018.2398] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
This review summarises developments that have been published in the period from mid-2017 to mid-2018 on the analysis of various matrices for mycotoxins. Analytical methods to determine aflatoxins, Alternaria toxins, ergot alkaloids, fumonisins, ochratoxins, patulin, trichothecenes, and zearalenone are covered in individual sections. Advances in sampling strategies are discussed in a dedicated section, as are methods used to analyse botanicals and spices, and newly developed comprehensive liquid chromatographic-mass spectrometric based multi-mycotoxin methods. This critical review aims to briefly discuss the most important recent developments and trends in mycotoxin determination as well as to address limitations of the presented methodologies.
Collapse
Affiliation(s)
- S.A. Tittlemier
- Canadian Grain Commission, Grain Research Laboratory, 1404-303 Main Street, Winnipeg, MB R3C 3G8, Canada
| | - B. Cramer
- University of Münster, Institute of Food Chemistry, Corrensstr. 45, 48149 Münster, Germany
| | - C. Dall’Asta
- Università di Parma, Department of Food and Drug, Viale delle Scienze 23/A, 43124 Parma, Italy
| | - M.H. Iha
- Nucleous of Chemistry and Bromatology Science, Adolfo Lutz Institute of Ribeirão Preto, Rua Minas 866, CEP 14085-410, Ribeirão Preto, SP, Brazil
| | - V.M.T. Lattanzio
- National Research Council of Italy, Institute of Sciences of Food Production, via Amendola 122/O, 70126 Bari, Italy
| | - R.J. Malone
- Trilogy Analytical Laboratory, 870 Vossbrink Dr, Washington, MO 63090, USA
| | - C. Maragos
- Mycotoxin Prevention and Applied Microbiology Research Unit, USDA, ARS National Center for Agricultural Utilization Research, 1815 N. University St., Peoria, IL 61604, USA
| | - M. Solfrizzo
- National Research Council of Italy, Institute of Sciences of Food Production, via Amendola 122/O, 70126 Bari, Italy
| | - M. Stranska-Zachariasova
- Department of Food Analysis and Nutrition, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Technická 5, 166 28 Prague 6 – Dejvice, Czech Republic
| | - J. Stroka
- European Commission, Joint Research Centre, Retieseweg 111, 2440 Geel, Belgium
| |
Collapse
|
33
|
Hu C, Yang Z, Yan F, Sun B. Extraction of the toluene exposure biomarkers hippuric acid and methylhippuric acid using a magnetic molecularly imprinted polymer, and their quantitation by LC-MS/MS. Mikrochim Acta 2019; 186:135. [DOI: 10.1007/s00604-019-3239-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 01/05/2019] [Indexed: 12/17/2022]
|
34
|
A FRET-based dual-color evanescent wave optical fiber aptasensor for simultaneous fluorometric determination of aflatoxin M1 and ochratoxin A. Mikrochim Acta 2018; 185:508. [PMID: 30338352 DOI: 10.1007/s00604-018-3046-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 10/06/2018] [Indexed: 01/09/2023]
Abstract
A dual-color fluorescence resonance energy transfer (FRET) based aptasensor is described for simultaneous determination of the mycotoxins aflatoxin M1 (AFM1) and ochratoxin A (OTA). Aptamers against AFM1 and OTA were labeled with two fluorophores with different excitation wavelengths (Cy5.5; 675 nm; and Alexa 405; 401 nm), respectively. They were used as the signalling probes. A compact dual-color evanescent wave all-fiber detection system with two lasers (635 nm; red; and 405 nm; purple) was used for the simultaneous collection of two-wavelength fluorescence signals. The hybridization of labeled aptamers with complementary sequences (Q-cDNA) labeled with a dark quencher (BHQ3 or dabcyl) causes fluorescence to be strongly reduced because of the fluorescence resonance energy transfer. In the presence of AFM1 and OTA, they bind to their respective aptamer and result in the dissociation of double stranded DNA, which induce fluorescence recovery. Under the optimum conditions, AFM1 and OTA can simultaneously and selectively be determined ranged from 1 ng·L-1 to 1 mg·L-1. The detection limits of AFM1 and OTA are 21 and 330 ng·L-1, respectively (S/N = 3). The FRET-based dual-color detection scheme was applied to the simultaneous detection of AFM1 and OTA in milk with good recovery, precision, and accuracy. Graphical abstract Aptamers against AFM1 and OTA were labeled with two fluorophores with different excitation wavelengths (Cy5.5; 675 nm; and Alexa 405; 401 nm) and then used as signalling probes. A FRET-based aptasensor is described for simultaneous determination of AFM1 and OTA using dual-color evanescent wave system with two lasers (635 nm; red; and 405 nm).
Collapse
|
35
|
Song D, Yang R, Fang S, Liu Y, Long F, Zhu A. SERS based aptasensor for ochratoxin A by combining Fe3O4@Au magnetic nanoparticles and Au-DTNB@Ag nanoprobes with multiple signal enhancement. Mikrochim Acta 2018; 185:491. [DOI: 10.1007/s00604-018-3020-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 09/23/2018] [Indexed: 11/29/2022]
|