1
|
Mollarasouli F, Bahrani S, Amrollahimiyandeh Y, Paimard G. Nanomaterials-based immunosensors for avian influenza virus detection. Talanta 2024; 279:126591. [PMID: 39059066 DOI: 10.1016/j.talanta.2024.126591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 07/01/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024]
Abstract
Avian influenza viruses (AIV) are capable of infecting a considerable proportion of the world's population each year, leading to severe epidemics with high rates of morbidity and mortality. The methods now used to diagnose influenza virus A include the Western blot test (WB), hemagglutination inhibition (HI), and enzyme-linked immunosorbent assays (ELISAs). But because of their labor-intensiveness, lengthy procedures, need for costly equipment, and inexperienced staff, these approaches are considered inappropriate. The present review elucidates the recent advancements in the field of avian influenza detection through the utilization of nanomaterials-based immunosensors between 2014 and 2024. The classification of detection techniques has been taken into account to provide a comprehensive overview of the literature. The review encompasses a detailed illustration of the commonly employed detection mechanisms in immunosensors, namely, colorimetry, fluorescence assay, surface plasmon resonance (SPR), surface-enhanced Raman spectroscopy (SERS), electrochemical detection, quartz crystal microbalance (QCM) piezoelectric, and field-effect transistor (FET). Furthermore, the challenges and future prospects for the immunosensors have been deliberated upon. The present review aims to enhance the understanding of immunosensors-based sensing platforms for virus detection and to stimulate the development of novel immunosensors by providing novel ideas and inspirations. Therefore, the aim of this paper is to provide an updated information about biosensors, as a recent detection technique of influenza with its details regarding the various types of biosensors, which can be used for this review.
Collapse
Affiliation(s)
| | - Sonia Bahrani
- Borjobaru Fars Company, Nanotechnology Department, Fars Science and Technology Park, Shiraz, 7197687811, Iran; Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Yousef Amrollahimiyandeh
- Borjobaru Fars Company, Nanotechnology Department, Fars Science and Technology Park, Shiraz, 7197687811, Iran
| | - Giti Paimard
- Laboratory of Nanoscale Biosensing and Bioimaging (NBAB), School of Ophthalmology and Optometry, School of Biomedical Engineering, State Key Laboratory of Ophthalmology Optometry, and Vision Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| |
Collapse
|
2
|
Hanifehpour H, Ashrafi F, Siasi E, Fallahi S. Evaluation and comparison of one-step real-time PCR and one-step RT-LAMP methods for detection of SARS-CoV-2. BMC Infect Dis 2024; 24:679. [PMID: 38982392 PMCID: PMC11232332 DOI: 10.1186/s12879-024-09574-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 06/27/2024] [Indexed: 07/11/2024] Open
Abstract
BACKGROUND There is an increasing disease trend for SARS-COV-2, so need a quick and affordable diagnostic method. It should be highly accurate and save costs compared to other methods. The purpose of this research is to achieve these goals. METHODS This study analyzed 342 samples using TaqMan One-Step RT-qPCR and fast One-Step RT-LAMP (Reverse Transcriptase Loop-Mediated Isothermal Amplification). The One-Step LAMP assay was conducted to assess the sensitivity and specificity. RESULTS The research reported positive samples using two different methods. In the RT-LAMP method, saliva had 92 positive samples (26.9%) and 250 negative samples (73.09%) and nasopharynx had 94 positive samples (27.4%) and 248 negative samples (72.51%). In the RT-qPCR method, saliva had 86 positive samples (25.1%) and 256 negative samples (74.8%) and nasopharynx had 93 positive samples (27.1%) and 249 negative samples (72.8%). The agreement between the two tests in saliva and nasopharynx samples was 93% and 94% respectively, based on Cohen's kappa coefficient (κ) (P < 0.001). The rate of sensitivity in this technique was reported at a dilution of 1 × 101 and 100% specificity. CONCLUSIONS Based on the results of the study the One-Step LAMP assay has multiple advantages. These include simplicity, cost-effectiveness, high sensitivity, and specificity. The One-Step LAMP assay shows promise as a diagnostic tool. It can help manage disease outbreaks, ensure prompt treatment, and safeguard public health by providing rapid, easy-to-use testing.
Collapse
Affiliation(s)
- Hooman Hanifehpour
- Department of Microbiology, Faculty of Biological Sciences, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Fatemeh Ashrafi
- Department of Microbiology, Faculty of Biological Sciences, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Elham Siasi
- Department of Microbiology, Faculty of Biological Sciences, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Shirzad Fallahi
- Hepatitis Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran.
- Department of Parasitology and Mycology, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran.
| |
Collapse
|
3
|
Liang R, Wang F, Li S, Niu Y, Sun Y, Hong S, Fan A. A sensitive gold nanoflower-based lateral flow assay coupled with gold staining technique for the detection of SARS-CoV-2 antigen. Mikrochim Acta 2024; 191:434. [PMID: 38951317 DOI: 10.1007/s00604-024-06502-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 06/11/2024] [Indexed: 07/03/2024]
Abstract
An enhanced lateral flow assay (LFA) is presented for rapid and highly sensitive detection of acute respiratory syndrome coronavirus-2 (SARS-CoV-2) antigens with gold nanoflowers (Au NFs) as signaling markers and gold enhancement to amplify the signal intensities. First, the effect of the morphology of gold nanomaterials on the sensitivity of LFA detection was investigated. The results showed that Au NFs prepared by the seed growth method showed a 5-fold higher detection sensitivity than gold nanoparticles (Au NPs) of the same particle size, which may benefit from the higher extinction coefficient and larger specific surface area of Au NFs. Under the optimized experimental conditions, the Au NFs-based LFA exhibited a detection limit (LOD) of 25 pg mL-1 for N protein using 135 nm Au NFs as the signaling probes. The signal was further amplified by using a gold enhancement strategy, and the LOD for the detection of N protein achieved was 5 pg mL-1. The established LFA also exhibited good repeatability and stability and showed applicability in the diagnosis of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Rushi Liang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin300072, PR China
| | - Feiqian Wang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin300072, PR China
| | - Shanshan Li
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin300072, PR China
| | - Yajing Niu
- Beijing Pharma and Biotech Center, Beijing, 100035, PR China
| | - Yinuo Sun
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin300072, PR China
| | - Sile Hong
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin300072, PR China
| | - Aiping Fan
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin300072, PR China.
| |
Collapse
|
4
|
Keramidas P, Pitou M, Papachristou E, Choli-Papadopoulou T. Insights into the Activation of Unfolded Protein Response Mechanism during Coronavirus Infection. Curr Issues Mol Biol 2024; 46:4286-4308. [PMID: 38785529 PMCID: PMC11120126 DOI: 10.3390/cimb46050261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/24/2024] [Accepted: 05/03/2024] [Indexed: 05/25/2024] Open
Abstract
Coronaviruses represent a significant class of viruses that affect both animals and humans. Their replication cycle is strongly associated with the endoplasmic reticulum (ER), which, upon virus invasion, triggers ER stress responses. The activation of the unfolded protein response (UPR) within infected cells is performed from three transmembrane receptors, IRE1, PERK, and ATF6, and results in a reduction in protein production, a boost in the ER's ability to fold proteins properly, and the initiation of ER-associated degradation (ERAD) to remove misfolded or unfolded proteins. However, in cases of prolonged and severe ER stress, the UPR can also instigate apoptotic cell death and inflammation. Herein, we discuss the ER-triggered host responses after coronavirus infection, as well as the pharmaceutical targeting of the UPR as a potential antiviral strategy.
Collapse
Affiliation(s)
| | | | | | - Theodora Choli-Papadopoulou
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (P.K.); (M.P.); (E.P.)
| |
Collapse
|
5
|
Yadav AK, Basavegowda N, Shirin S, Raju S, Sekar R, Somu P, Uthappa UT, Abdi G. Emerging Trends of Gold Nanostructures for Point-of-Care Biosensor-Based Detection of COVID-19. Mol Biotechnol 2024:10.1007/s12033-024-01157-y. [PMID: 38703305 DOI: 10.1007/s12033-024-01157-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/26/2024] [Indexed: 05/06/2024]
Abstract
In 2019, a worldwide pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged. SARS-CoV-2 is the deadly microorganism responsible for coronavirus disease 2019 (COVID-19), which has caused millions of deaths and irreversible health problems worldwide. To restrict the spread of SARS-CoV-2, accurate detection of COVID-19 is essential for the identification and control of infected cases. Although recent detection technologies such as the real-time polymerase chain reaction delivers an accurate diagnosis of SARS-CoV-2, they require a long processing duration, expensive equipment, and highly skilled personnel. Therefore, a rapid diagnosis with accurate results is indispensable to offer effective disease suppression. Nanotechnology is the backbone of current science and technology developments including nanoparticles (NPs) that can biomimic the corona and develop deep interaction with its proteins because of their identical structures on the nanoscale. Various NPs have been extensively applied in numerous medical applications, including implants, biosensors, drug delivery, and bioimaging. Among them, point-of-care biosensors mediated with gold nanoparticles (GNPSs) have received great attention due to their accurate sensing characteristics, which are widely used in the detection of amino acids, enzymes, DNA, and RNA in samples. GNPS have reconstructed the biomedical application of biosensors because of its outstanding physicochemical characteristics. This review provides an overview of emerging trends in GNP-mediated point-of-care biosensor strategies for diagnosing various mutated forms of human coronaviruses that incorporate different transducers and biomarkers. The review also specifically highlights trends in gold nanobiosensors for coronavirus detection, ranging from the initial COVID-19 outbreak to its subsequent evolution into a pandemic.
Collapse
Affiliation(s)
- Akhilesh Kumar Yadav
- Department of Environmental Engineering and Management, Chaoyang University of Technology, Taichung, 413310, Taiwan
- Department of Mining Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Nagaraj Basavegowda
- Department of Biotechnology, Yeungnam University, Gyeongsan, 38451, Republic of Korea
| | - Saba Shirin
- Department of Mining Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
- Department of Environmental Science, School of Vocational Studies and Applied Sciences, Gautam Buddha University, Greater Noida, 201312, India
| | - Shiji Raju
- Bioengineering and Nano Medicine Group, Faculty of Medicine and Health Technology, Tampere University, 33720, Tampere, Finland
| | - Rajkumar Sekar
- Department of Chemistry, Karpaga Vinayaga College of Engineering and Technology, GST Road, Chinna Kolambakkam, Chengalpattu, Tamil Nadu, 603308, India
| | - Prathap Somu
- Department of Biotechnology and Chemical Engineering, School of Civil, Biotechnology and Chemical Engineering, Manipal University Jaipur, Dehmi Kalan, Off. Jaipur-Ajmeer Expressway, Jaipur, Rajasthan, 303007, India.
| | - U T Uthappa
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518055, China
- Department of Bioengineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, 602105, India
| | - Gholamreza Abdi
- Department of Biotechnology, Persian Gulf Research Institute, Persian Gulf University, Bushehr, 75169, Iran.
| |
Collapse
|
6
|
Yang W, Wang Y, Han D, Tang W, Sun L. Recent advances in application of computer-aided drug design in anti-COVID-19 Virials Drug Discovery. Biomed Pharmacother 2024; 173:116423. [PMID: 38493593 DOI: 10.1016/j.biopha.2024.116423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/05/2024] [Accepted: 03/08/2024] [Indexed: 03/19/2024] Open
Abstract
Corona Virus Disease 2019 (COVID-19) is a global pandemic epidemic caused by severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2), which poses a serious threat to human health worldwide and results in significant economic losses. With the continuous emergence of new virus strains, small molecule drugs remain the most effective treatment for COVID-19. The traditional drug development process usually requires several years; however, the development of computer-aided drug design (CADD) offers the opportunity to develop innovative drugs quickly and efficiently. The literature review describes the general process of CADD, the viral proteins that play essential roles in the life cycle of SARS-CoV-2 and can serve as therapeutic targets, and examples of drug screening of viral target proteins by applying CADD methods. Finally, the potential of CADD in COVID-19 therapy, the deficiency, and the possible future development direction are discussed.
Collapse
Affiliation(s)
- Weiying Yang
- Department of Emergency Medicine, First Hospital of Jilin University, Changchun 130021, China
| | - Ye Wang
- School of Life Sciences, Jilin University, Changchun 130012, China
| | - Dongfeng Han
- Department of Emergency Medicine, First Hospital of Jilin University, Changchun 130021, China
| | - Wenjing Tang
- Department of Emergency Medicine, First Hospital of Jilin University, Changchun 130021, China
| | - Lichao Sun
- Department of Emergency Medicine, First Hospital of Jilin University, Changchun 130021, China.
| |
Collapse
|
7
|
Liu Y, Li Y, Hang Y, Wang L, Wang J, Bao N, Kim Y, Jang HW. Rapid assays of SARS-CoV-2 virus and noble biosensors by nanomaterials. NANO CONVERGENCE 2024; 11:2. [PMID: 38190075 PMCID: PMC10774473 DOI: 10.1186/s40580-023-00408-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/07/2023] [Indexed: 01/09/2024]
Abstract
The COVID-19 outbreak caused by SARS-CoV-2 in late 2019 has spread rapidly across the world to form a global epidemic of respiratory infectious diseases. Increased investigations on diagnostic tools are currently implemented to assist rapid identification of the virus because mass and rapid diagnosis might be the best way to prevent the outbreak of the virus. This critical review discusses the detection principles, fabrication techniques, and applications on the rapid detection of SARS-CoV-2 with three categories: rapid nuclear acid augmentation test, rapid immunoassay test and biosensors. Special efforts were put on enhancement of nanomaterials on biosensors for rapid, sensitive, and low-cost diagnostics of SARS-CoV-2 virus. Future developments are suggested regarding potential candidates in hospitals, clinics and laboratories for control and prevention of large-scale epidemic.
Collapse
Affiliation(s)
- Yang Liu
- School of Public Health, Nantong University, Nantong, 226019, Jiangsu, People's Republic of China
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea
- NantongEgens Biotechnology Co., LTD, Nantong, 226019, Jiangsu, People's Republic of China
| | - Yilong Li
- School of Public Health, Nantong University, Nantong, 226019, Jiangsu, People's Republic of China
| | - Yuteng Hang
- School of Public Health, Nantong University, Nantong, 226019, Jiangsu, People's Republic of China
| | - Lei Wang
- NantongEgens Biotechnology Co., LTD, Nantong, 226019, Jiangsu, People's Republic of China
| | - Jinghan Wang
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea
| | - Ning Bao
- School of Public Health, Nantong University, Nantong, 226019, Jiangsu, People's Republic of China
| | - Youngeun Kim
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Ho Won Jang
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
8
|
Ryoo R, Lee H, Park Y. Potential Antiviral Effect of Korean Forest Wild Mushrooms against Feline Coronavirus (FCoV). Int J Med Mushrooms 2024; 26:1-8. [PMID: 38523445 DOI: 10.1615/intjmedmushrooms.2024052483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
Coronaviruses (CoV) are among the major viruses that cause common cold in humans. Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is a high-risk human pathogen that derived from bat coronaviruses, although several other animals serve as CoV hosts, contributing to human infection. As the human activity area expanded, viruses previously prevalent only in animals mutated and became threats to humans as well, leading to worldwide epidemics. Therefore, controlling CoV infections in animals is essential to prevent CoV-related human infections. Feline coronavirus (FCoV) could be reportedly used as an alternative model for SARS-CoV-2. Traditionally, mushrooms are not only foods but are also consumed to prevent diseases. Importantly, certain edible and medicinal mushrooms display antibacterial and antiviral effects against respiratory pathogens; therefore, they could be tested as potential coronavirus treatment agents. In this study, we investigated if wild forest mushrooms with various reported physiological activities could exhibit an antiviral activity against CoV, using FCoV as a SARS-CoV-2 model infecting Crandell Rees feline kidney cells. We measured the antiviral activity of 11 wild mushrooms overall and our results demonstrated that Pleurotus ostreatus and Phallus luteus displayed the highest antiviral efficacy of 55.33%, followed by Tricholoma bakamatsutake at 43.77%. Grifola frondosa, Morchella esculenta, and Sarcodon imbricatus exhibited mild efficacy of 29.21%. We also tested Amanita caesareoides, Marasmius siccus, Pachyma hoelen, Phallus rubrovolvata, and Sparassis latifolia but could not detect any antiviral activity in their case. Our study confirms that wild forest mushrooms could be used as potential functional foods or pharmacological materials against coronavirus.
Collapse
Affiliation(s)
- Rhim Ryoo
- National Institute of Forest Science
| | - Hyorim Lee
- Division of Forest Microbiology, National Institute of Forest Science, Suwon, (16631), Republic of Korea
| | - Youngki Park
- Division of Biotechnology, Korea Forest Research Institute, Suwon 441-350, S. Korea
| |
Collapse
|
9
|
Metz C, Schmid A, Veldhoen S. Increase in complicated upper respiratory tract infection in children during the 2022/2023 winter season-a post coronavirus disease 2019 effect? Pediatr Radiol 2024; 54:49-57. [PMID: 37999795 PMCID: PMC10776702 DOI: 10.1007/s00247-023-05808-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/31/2023] [Accepted: 11/01/2023] [Indexed: 11/25/2023]
Abstract
BACKGROUND Upper respiratory tract infections usually peak during winter months. OBJECTIVE The purpose of this study was to evaluate whether imaging of complicated upper airway infection in children increased during the winter season of 2022/2023. MATERIALS AND METHODS In a retrospective study setting, pediatric magnetic resonance imaging (MRI) and computed tomography (CT) scans for evaluation of upper respiratory tract infection performed between October 2022 and April 2023 were analyzed regarding presence of the following complications: mastoiditis, abscess, phlegmon, meningitis, reactive vasculitis, and sinus vein thrombosis. Pathogen detection, surgery, and infection parameters were obtained. Data were compared with MRI and CT scans performed in the same months of the preceding five years, distinguishing between pandemic and pre-pandemic years. RESULTS During the 2022/2023 winter season, the number of MRI and CT scans in children with upper airway infections, the complication rate, the rate of detected streptococcal infections, and the rate of surgery increased significantly compared to expectations based on the five prior winter seasons (all P<0.05). During the first complete pandemic winter season in Europe (2020/2021), the number of MRI and CT scans in children with upper airway infection, the complication rate, and the rates of streptococcal detection and surgery decreased significantly compared to expectations based on the pre-pandemic, the second pandemic, and the post-pandemic winter seasons (all P<0.05). CONCLUSION After a decline during the first pandemic winter season, there was a marked rebound in complicated upper airway infection in children, with a significant increase in cases during the 2022/2023 winter season compared to the pre-pandemic and pandemic years.
Collapse
Affiliation(s)
- Corona Metz
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Pediatric Radiology, Augustenburger Platz 1, 13353, Berlin, Germany.
| | - Andrea Schmid
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Pediatric Radiology, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Simon Veldhoen
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Pediatric Radiology, Augustenburger Platz 1, 13353, Berlin, Germany
| |
Collapse
|
10
|
Cao B, Bao Y, Liu C, Qi Q, Zhao Y, Yang F. A gene polymorphism at SP-B 1580 site regulates the pulmonary surfactant tension of viral pneumonia through the cellular pyroptosis signaling pathway. Am J Transl Res 2023; 15:6949-6958. [PMID: 38186981 PMCID: PMC10767512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 12/05/2023] [Indexed: 01/09/2024]
Abstract
BACKGROUND Viral pneumonias, such as SARS and MERS, have been a recurrent challenge for the public healthcare system. COVID-19 posed an unprecedented global crisis. The primary impact of viral pneumonia is pathologic changes of lung tissue. However, the effect of SP-B site gene polymorphism on alveolar surface tension in viral pneumonia remains unexplored. OBJECTIVE To explore the molecular mechanism of how the gene polymorphism at SP-B 1580 site regulates the pulmonary surfactant tension of viral pneumonia through the cellular pyroptosis signaling pathway using an in vivo animal experiment and a clinical trial. METHODS We constructed a genetically modified mouse model of viral pneumonia and administered H5N1 influenza virus through intratracheal injection. After 48 hours, the survival rate of each mouse group was evaluated. Lung tissue, blood, and bronchoalveolar lavage fluid samples were collected for histopathologic analysis. Inflammatory factor concentrations were measured using ELISA. The level of apoptosis was determined using TUNEL assay. Changes in the expression of cell death-related factors were assessed using qRT-PCR and protein blotting. Additionally, blood samples from patients with viral pneumonia were analyzed to detect single nucleotide polymorphisms and explore their correlation with disease severity, inflammatory factor levels, and pulmonary surfactant protein expression. RESULTS Following H5N1 infection of mice, the model group and hSP-B-C group showed high mortality rates within 24 hours. The survival rates in the blank control group, virus model group, hSP-B-C group, and hSP-B-T group were 100%, 50%, 37.5%, and 75%, respectively. Histologic analysis revealed significant lung tissue damage, congestion, alveolar destruction, and thickened alveolar septa in the model and hSP-B-C groups. However, these pulmonary lesions were significantly alleviated in the hSP-B-T group. Inflammatory factor levels were elevated in the model and hSP-B-C groups but reduced in the hSP-B-T group. TUNEL assay demonstrated a decrease in apoptotic cells in the lungs of the hSP-B-T group. Furthermore, the expression of SP-B and cell death-related proteins was downregulated in all three groups, with the lowest expression observed in the hSP-B-C group. The clinical trial found that patients with severe viral pneumonia exhibited a higher frequency of CC genotype and C allele in, along with increased inflammatory factor levels and decreased SP-B expression compared to those with mild-to-moderate viral pneumonia. CONCLUSION SP-B polymorphism at the 1580 site regulates lung surfactant tension through the cell pyroptosis signaling pathway, thus affecting the progression of viral pneumonia.
Collapse
Affiliation(s)
- Bin Cao
- Department of Emergency, People’s Hospital Affiliated to Shandong First Medical University, Jinan Municipal Key Laboratory of Acute Lung Injury Medicine, Jinan Municipal Clinical Research Center of Critical Care Medicine, Jinan Municipal Clinical Research Center of Respiratory MedicineJinan 271199, Shandong, China
| | - Yuzhen Bao
- Department of Emergency, People’s Hospital Affiliated to Shandong First Medical University, Jinan Municipal Key Laboratory of Acute Lung Injury Medicine, Jinan Municipal Clinical Research Center of Critical Care Medicine, Jinan Municipal Clinical Research Center of Respiratory MedicineJinan 271199, Shandong, China
| | - Chunli Liu
- Department of Critical Care Medicine, Shandong Province Public Health CenterJinan 250000, Shandong, China
| | - Qian Qi
- Respiratory Department, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Institute of Respiratory DiseasesJinan 250014, Shandong, China
| | - Yuanhao Zhao
- Clinical Laboratory, People’s Hospital Affiliated to Shandong First Medical University, Jinan Municipal Clinical Research Center of Critical Care MedicineJinan 271199, Shandong, China
| | - Fengyong Yang
- Department of Emergency, People’s Hospital Affiliated to Shandong First Medical University, Jinan Municipal Key Laboratory of Acute Lung Injury Medicine, Jinan Municipal Clinical Research Center of Critical Care Medicine, Jinan Municipal Clinical Research Center of Respiratory MedicineJinan 271199, Shandong, China
| |
Collapse
|
11
|
Zhu Z, Zhang Y, Xue J, Kong J, Huang L, Ouyang H, Fu Z, He Y. Fluorescent immunochromatographic test strip for therapeutic drug monitoring of methotrexate with high sensitivity and wide dynamic range. Mikrochim Acta 2023; 190:342. [PMID: 37540283 DOI: 10.1007/s00604-023-05917-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 07/13/2023] [Indexed: 08/05/2023]
Abstract
As a front-line chemotherapeutic drug for maintenance and consolidation therapy, methotrexate (MTX) has widely been applied to treat various tumors and some inflammatory diseases. However, because of its severe toxicity ascribed to low selectivity, it is necessary to monitor therapeutic drugs in high-dose MTX therapeutic regimens to ensure treatment safety. In this work, we developed a fluorescent immunochromatographic test strip (FITS) for monitoring MTX by employing time-resolved fluorescent microspheres as signal probes. With a competitive immunoassay mode, the FITS for MTX shows a super-wide dynamic range of 10 pM-10 μM, covering the entire clinical therapeutic concentration range of MTX. Therapeutic drug monitoring of MTX can be achieved within 7 min with high specificity, facilitating the timely rescue of drug poisoning led by high-dose MTX treatment. The method was employed for monitoring MTX in the spiked human serum, urine, and milk, showing acceptable recoveries ranging from 94.0 to 110.0%. The established FITS has been applied to MTX detection in serum obtained from high-dose MTX treatment. The results from FITS and enzyme multiplied immunoassay technique showed no significant difference, suggesting its reliability for usage in real biological samples. The device shows promise in point-of-care therapeutic drug monitoring for resource-limited countries and institutes, which significantly facilitates overcoming the lag time between sampling and results.
Collapse
Affiliation(s)
- Zhongjie Zhu
- Department of Pharmacy, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou Province, China
| | - Yu Zhang
- College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China
| | - Jinxia Xue
- College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China
| | - Jing Kong
- Department of Pharmacy, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou Province, China
| | - Ling Huang
- Department of Pharmacy, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou Province, China
| | - Hui Ouyang
- College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China
| | - Zhifeng Fu
- College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China.
| | - Yong He
- Department of Pharmacy, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou Province, China.
| |
Collapse
|
12
|
Detection of live SARS-CoV-2 virus and its variants by specially designed SERS-active substrates and spectroscopic analyses. Anal Chim Acta 2023; 1256:341151. [PMID: 37037632 PMCID: PMC10060322 DOI: 10.1016/j.aca.2023.341151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/07/2023] [Accepted: 03/26/2023] [Indexed: 04/05/2023]
Abstract
A method using label-free surface enhanced Raman spectroscopy (SERS) based on substrate design is provided for an early detection and differentiation of spike glycoprotein mutation sites in live SARS-CoV-2 variants. Two SERS-active substrates, Au nanocavities (Au NCs) and Au NPs on porous ZrO2 (Au NPs/pZrO2), were used to identify specific peaks of A.3, Alpha, and Delta variants at different concentrations and demonstrated the ability to provide their SERS spectra with detection limits of 0.1–1.0% (or 104−5 copies/mL). Variant identification can be achieved by cross-examining reference spectra and analyzing the substrate-analyte relationship between the suitability of the analyte upon the hotspot(s) formed at high concentrations and the effective detection distance at low concentrations. Mutation sites on the S1 chain of the spike glycoprotein for each variant may be related and distinguishable. This method does not require sample preprocessing and therefore allows for fast screening, which is of high value for more comprehensive and specific studies to distinguish upcoming variants.
Collapse
|
13
|
Villa-Manso AM, Guerrero-Esteban T, Pariente F, Toyos-Rodríguez C, de la Escosura-Muñiz A, Revenga-Parra M, Gutiérrez-Sánchez C, Lorenzo E. Bifunctional Au@Pt/Au nanoparticles as electrochemiluminescence signaling probes for SARS-CoV-2 detection. Talanta 2023; 260:124614. [PMID: 37163926 PMCID: PMC10166582 DOI: 10.1016/j.talanta.2023.124614] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/21/2023] [Accepted: 04/26/2023] [Indexed: 05/12/2023]
Abstract
A novel immunosensor based on electrochemiluminescence resonance energy transfer (ECL-RET) for the sensitive determination of N protein of the SARS-CoV-2 coronavirus is described. For this purpose, bifunctional core@shell nanoparticles composed of a Pt-coated Au core and finally decorated with small Au inlays (Au@Pt/Au NPs) have been synthesized to act as ECL acceptor, using [Ru (bpy)3]2+ as ECL donor. These nanoparticles are efficient signaling probes in the immunosensor developed. The proposed ECL-RET immunosensor has a wide linear response to the concentration of N protein of the SARS-CoV-2 coronavirus with a detection limit of 1.27 pg/mL. Moreover, it has a high stability and shows no response to other proteins related to different virus. The immunosensor has achieved the quantification of N protein of the SARS-CoV-2 coronavirus in saliva samples. Results are consistent with those provided by a commercial colorimetric ELISA kit. Therefore, the developed immunosensor provides a feasible and reliable tool for early and effective detection of the virus to protect the population.
Collapse
Affiliation(s)
- Ana M Villa-Manso
- Grupo de Sensores Químicos y Biosensores, Departamento de Química Analítica y Análisis Instrumental, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Tamara Guerrero-Esteban
- Grupo de Sensores Químicos y Biosensores, Departamento de Química Analítica y Análisis Instrumental, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Félix Pariente
- Grupo de Sensores Químicos y Biosensores, Departamento de Química Analítica y Análisis Instrumental, Universidad Autónoma de Madrid, 28049, Madrid, Spain; Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Celia Toyos-Rodríguez
- NanoBioAnalysis Group, Departamento de Química Física y Analítica, Universidad de Oviedo, 33006, Oviedo, Spain; Biotechnology Institute of Asturias, Universidad de Oviedo, Edificio Santiago Gascon, 33006, Oviedo, Spain
| | - Alfredo de la Escosura-Muñiz
- NanoBioAnalysis Group, Departamento de Química Física y Analítica, Universidad de Oviedo, 33006, Oviedo, Spain; Biotechnology Institute of Asturias, Universidad de Oviedo, Edificio Santiago Gascon, 33006, Oviedo, Spain
| | - Mónica Revenga-Parra
- Grupo de Sensores Químicos y Biosensores, Departamento de Química Analítica y Análisis Instrumental, Universidad Autónoma de Madrid, 28049, Madrid, Spain; Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049, Madrid, Spain.
| | - Cristina Gutiérrez-Sánchez
- Grupo de Sensores Químicos y Biosensores, Departamento de Química Analítica y Análisis Instrumental, Universidad Autónoma de Madrid, 28049, Madrid, Spain; Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049, Madrid, Spain.
| | - Encarnación Lorenzo
- Grupo de Sensores Químicos y Biosensores, Departamento de Química Analítica y Análisis Instrumental, Universidad Autónoma de Madrid, 28049, Madrid, Spain; Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049, Madrid, Spain; IMDEA-Nanociencia, Ciudad Universitaria de Cantoblanco, 28049, Madrid, Spain
| |
Collapse
|
14
|
Zhang D, Wang Y, Zhao J, Li X, Zhou Y, Wang S. One-step and Wash-free Multiplexed Immunoassay Platform based on Bioinspired Photonic Barcodes. ENGINEERED REGENERATION 2023. [DOI: 10.1016/j.engreg.2023.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
|
15
|
Sazegari S, Akbarzadeh Niaki M, Afsharifar A, Niazi A, Derakhshandeh A, Moradi Vahdat M, Hemmati F, Eskandari MH. Chimeric Hepatitis B core virus-like particles harboring SARS-CoV2 epitope elicit a humoral immune response in mice. Microb Cell Fact 2023; 22:39. [PMID: 36841778 PMCID: PMC9958315 DOI: 10.1186/s12934-023-02043-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 02/14/2023] [Indexed: 02/27/2023] Open
Abstract
BACKGROUND Virus-like particles are an interesting vector platform for vaccine development. Particularly, Hepatitis B virus core antigen has been used as a promising VLP platform. It is highly expressed in different recombinant expression systems, such as E. coli, and self-assembled in vitro. It effectively improves the immunogenicity of foreign antigenic epitopes on its surface. Various foreign antigens from bacteria, viruses, and protozoa can be genetically inserted into such nanoparticles. The effective immunogenicity due to VLP vaccines has been reported. However, no research has been performed on the SARS-CoV2 vaccine within this unique platform through genetic engineering. Considering the high yield of target proteins, low cost of production, and feasibility of scaling up, E. coli is an outstanding expression platform to develop such vaccines. Therefore, in this investigation, we planned to study and develop a unique HBc VLP-based vaccine against SARS-Cov2 utilizing the E. coli expression system due to its importance. RESULTS Insertion of the selected epitope was done into the major immunodominant region (MIR) of truncated (149 residues) hepatitis B core capsid protein. The chimeric protein was constructed in PET28a+ and expressed through the bacterial E. coli BL21 expression system. However, the protein was expressed in inclusion body forms and extracted following urea denaturation from the insoluble phase. Following the extraction, the vaccine protein was purified using Ni2 + iminodiacetic acid (IDA) affinity chromatography. SDS-PAGE and western blotting were used to confirm the protein expression. Regarding the denaturation step, the unavoidable refolding process was carried out, so that the chimeric VLP reassembled in native conformation. Based on the transmission electron microscopy (TEM) analysis, the HBC VLP was successfully assembled. Confirming the assembled chimeric VLP, we explored the immunogenic effectivity of the vaccine through mice immunization with two-dose vaccination with and without adjuvant. The utilization of adjuvant was suggested to assess the effect of adjuvant on improving the immune elicitation of chimeric VLP-based vaccine. Immunization analysis based on anti-spike specific IgG antibody showed a significant increase in antibody production in harvested serum from immunized mice with HBc-VLP harboring antigenic epitope compared to HBc-VLP- and PBS-injected mice. CONCLUSIONS The results approved the successful production and the effectiveness of the vaccine in terms of humoral IgG antibody production. Therefore, this platform can be considered a promising strategy for developing safe and reasonable vaccines; however, more complementary immunological evaluations are needed.
Collapse
Affiliation(s)
- Sima Sazegari
- grid.412573.60000 0001 0745 1259Institute of Biotechnology, Shiraz University, Shiraz, Fars Iran
| | - Malihe Akbarzadeh Niaki
- grid.412573.60000 0001 0745 1259Department of Food Science and Technology, Shiraz University, Shiraz, Fars Iran
| | - Alireza Afsharifar
- grid.412573.60000 0001 0745 1259Plant Virology Research Center, College of Agriculture, Shiraz University, Shiraz, Iran
| | - Ali Niazi
- grid.412573.60000 0001 0745 1259Institute of Biotechnology, Shiraz University, Shiraz, Fars Iran
| | - Abdollah Derakhshandeh
- grid.412573.60000 0001 0745 1259Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Maryam Moradi Vahdat
- grid.412573.60000 0001 0745 1259Institute of Biotechnology, Shiraz University, Shiraz, Fars Iran
| | - Farshad Hemmati
- grid.412573.60000 0001 0745 1259Plant Virology Research Center, College of Agriculture, Shiraz University, Shiraz, Iran
| | | |
Collapse
|
16
|
Yang J, Wang Y, He S, Peng X, Wang C, Li N, Liao Y. Relationship between Tai Chi and clinical outcomes in elderly patients with COVID-19: a protocol for systematic review and dose-response meta-analysis. BMJ Open 2022; 12:e066803. [PMID: 36523226 PMCID: PMC9748512 DOI: 10.1136/bmjopen-2022-066803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 11/16/2022] [Indexed: 12/14/2022] Open
Abstract
INTRODUCTION COVID-19 has posed a serious threat to people worldwide, especially the older adults, since its discovery. Tai Chi as a traditional Chinese exercisethat belongs to traditional Chinese medicine has proven its effectiveness against COVID-19. However, no high-quality evidence is found on the dose-response relationships between Tai Chi and clinical outcomes in patients with COVID-19. This study will evaluate and determine the clinical evidence of Tai Chi as a treatment in elderly patients with COVID-19. METHODS AND ANALYSIS The following electronic bibliographical databases including PubMed, EMBASE, Web of Science, Cochrane Library, China National Knowledge Infrastructure, VIP Database and Wanfang Database will be screened from their inception date to 30 June 2022. All eligible randomised controlled trials or controlled clinical trials related to Tai Chi for elderly patients with COVID-19 will be included. The primary outcomes are forced expiratory volume in 1 s (FEV1), forced vital capacity (FVC) and FEV1/FVC ratio (FEV1%). The secondary outcomes are the time of main symptoms disappearance, length of hospital stay, serum levels of interleukin (IL)-6, IL-1b and tumour necrosis factor-α, and adverse event rate. Two independent reviewers will select the studies, extract the data, and analyse them on EndNote V.X9.0 and Stata V.12.1. The robust error meta-regression model will be used to establish the dose-response relationships between Tai Chi and clinical outcomes. The heterogeneity and variability will be analysed by I2 and τ2 statistics. Risk of bias, subgroup analysis and sensitivity analysis will also be performed. The quality of evidence will be assessed by the Grading of Recommendations Assessment, Development and Evaluation, and the risk of bias will be evaluated by using the Physiotherapy Evidence Database Scale. ETHICS AND DISSEMINATION This study will review published data; thus, obtaining ethical approval and consent is unnecessary. The results will be disseminated through peer-reviewed publications. PROSPERO REGISTRATION NUMBER CRD42022327694.
Collapse
Affiliation(s)
- Jinfeng Yang
- Department of Sports Medicine and Health, Chengdu Sport University, Chengdu, Sichuan, China
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, Sichuan, China
| | - Yang Wang
- Department of Sports Medicine and Health, Chengdu Sport University, Chengdu, Sichuan, China
| | - Sheng He
- Department of Rehabilitation Medicine, General Hospital of Western Theater Command of Chinese People's Liberation Army, Chengdu, Sichuan, China
| | - Xiao Peng
- Department of Rehabilitation Medicine, No.1 Orthopaedic Hospital of Chengdu, Chengdu, Sichuan, China
| | - Chun Wang
- Department of Sports Medicine and Health, Chengdu Sport University, Chengdu, Sichuan, China
| | - Na Li
- National Clinical Research Center for Geriatrics, Sichuan University West China Hospital, Chengdu, Sichuan, China
| | - Yuanpeng Liao
- Department of Sports Medicine and Health, Chengdu Sport University, Chengdu, Sichuan, China
- Affiliated Hospital of Chengdu Sport University, Chengdu Sport University, Chengdu, Sichuan, China
| |
Collapse
|
17
|
Alsalameh S, Alnajjar K, Makhzoum T, Al Eman N, Shakir I, Mir TA, Alkattan K, Chinnappan R, Yaqinuddin A. Advances in Biosensing Technologies for Diagnosis of COVID-19. BIOSENSORS 2022; 12:898. [PMID: 36291035 PMCID: PMC9599206 DOI: 10.3390/bios12100898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/11/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
The COVID-19 pandemic has severely impacted normal human life worldwide. Due to its rapid community spread and high mortality statistics, the development of prompt diagnostic tests for a massive number of samples is essential. Currently used traditional methods are often expensive, time-consuming, laboratory-based, and unable to handle a large number of specimens in resource-limited settings. Because of its high contagiousness, efficient identification of SARS-CoV-2 carriers is crucial. As the advantages of adopting biosensors for efficient diagnosis of COVID-19 increase, this narrative review summarizes the recent advances and the respective reasons to consider applying biosensors. Biosensors are the most sensitive, specific, rapid, user-friendly tools having the potential to deliver point-of-care diagnostics beyond traditional standards. This review provides a brief introduction to conventional methods used for COVID-19 diagnosis and summarizes their advantages and disadvantages. It also discusses the pathogenesis of COVID-19, potential diagnostic biomarkers, and rapid diagnosis using biosensor technology. The current advancements in biosensing technologies, from academic research to commercial achievements, have been emphasized in recent publications. We covered a wide range of topics, including biomarker detection, viral genomes, viral proteins, immune responses to infection, and other potential proinflammatory biomolecules. Major challenges and prospects for future application in point-of-care settings are also highlighted.
Collapse
Affiliation(s)
| | - Khalid Alnajjar
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Tariq Makhzoum
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Noor Al Eman
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Ismail Shakir
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Tanveer Ahmad Mir
- Laboratory of Tissue/Organ Bioengineering and BioMEMS, Organ Transplant Centre of Excellence, Transplant Research and Innovation Department, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Khaled Alkattan
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Raja Chinnappan
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Ahmed Yaqinuddin
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| |
Collapse
|
18
|
Farzin MA, Abdoos H, Saber R. AuNP-based biosensors for the diagnosis of pathogenic human coronaviruses: COVID-19 pandemic developments. Anal Bioanal Chem 2022; 414:7069-7084. [PMID: 35781591 PMCID: PMC9251037 DOI: 10.1007/s00216-022-04193-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/17/2022] [Accepted: 06/21/2022] [Indexed: 12/15/2022]
Abstract
The outbreak rate of human coronaviruses (CoVs) especially highly pathogenic CoVs is increasing alarmingly. Early detection of these viruses allows treatment interventions to be provided more quickly to people at higher risk, as well as helping to identify asymptomatic carriers and isolate them as quickly as possible, thus preventing the disease transmission chain. The current diagnostic methods such as RT-PCR are not ideal due to high cost, low accuracy, low speed, and probability of false results. Therefore, a reliable and accurate method for the detection of CoVs in biofluids can become a front-line tool in order to deal with the spread of these deadly viruses. Currently, the nanomaterial-based sensing devices for detection of human coronaviruses from laboratory diagnosis to point-of-care (PoC) diagnosis are progressing rapidly. Gold nanoparticles (AuNPs) have revolutionized the field of biosensors because of the outstanding optical and electrochemical properties. In this review paper, a detailed overview of AuNP-based biosensing strategies with the varied transducers (electrochemical, optical, etc.) and also different biomarkers (protein antigens and nucleic acids) was presented for the detection of human coronaviruses including SARS-CoV-2, SARS-CoV-1, and MERS-CoV and lowly pathogenic CoVs. The present review highlights the newest trends in the SARS-CoV-2 nanobiosensors from the beginning of the COVID-19 epidemic until 2022. We hope that the presented examples in this review paper convince readers that AuNPs are a suitable platform for the designing of biosensors.
Collapse
Affiliation(s)
- Mohammad Ali Farzin
- Department of Nanotechnology, Faculty of New Sciences and Technologies, Semnan University, P. O. Box: 35131-19111, Semnan, Iran
| | - Hassan Abdoos
- Department of Nanotechnology, Faculty of New Sciences and Technologies, Semnan University, P. O. Box: 35131-19111, Semnan, Iran.
| | - Reza Saber
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
19
|
Ling M, Luo N, Cui L, Cao Y, Ning X, Sun J, Xu X, He S. On-bead DNA synthesis triggered by allosteric probe for detection of carcinoembryonic antigen. Mikrochim Acta 2022; 189:305. [PMID: 35915288 PMCID: PMC9342938 DOI: 10.1007/s00604-022-05404-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 07/03/2022] [Indexed: 12/02/2022]
Abstract
Sensitive quantification of protein biomarkers is highly desired for clinical diagnosis and treatment. Yet, unlike DNA/RNA which can be greatly amplified by PCR/RT-PCR, the amplification and detection of trace amount of proteins remain a great challenge. Here, we combined allosteric probe (AP) with magnetic bead (MB) for assembling an on-bead DNA synthesis system (named as APMB) to amplify protein signals. The AP is designed and conjugated onto the MB, enabling the protein biomarker to be separated and enriched. Once recognizing the biomarker, the AP alters its conformation to initiate DNA synthesis on beads for primary signal amplification. During the DNA synthesis, biotin-dATPs are incorporated into the newly synthesized DNA strands. Then, the biotin-labeled DNA specifically captures streptavidin (STR)–conjugated horseradish peroxidase (HRP), which is used to catalyze a colorimetric reaction for secondary signal amplification. By using carcinoembryonic antigen (CEA) as a protein model, the APMB can quantify protein biomarkers of as low as 0.01 ng/mL. The response values measured by APMB are linearly related to the protein concentrations in the range 0.05 to 20 ng/mL. Clinical examination demonstrated good practicability of the APMB in quantifying serum protein biomarker. The on-bead DNA synthesis could be exploited to improve protein signal amplification, thus facilitating protein biomarker detection of low abundance for early diagnosis.
Collapse
Affiliation(s)
- Min Ling
- Key Laboratory of Longevity and Aging-Related Diseases of Chinese Ministry of Education, Guangxi Colleges and Universities Key Laboratory of Biological Molecular Medicine Research, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, 530021, People's Republic of China
| | - Na Luo
- Key Laboratory of Longevity and Aging-Related Diseases of Chinese Ministry of Education, Guangxi Colleges and Universities Key Laboratory of Biological Molecular Medicine Research, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, 530021, People's Republic of China
| | - Lanyu Cui
- Key Laboratory of Longevity and Aging-Related Diseases of Chinese Ministry of Education, Guangxi Colleges and Universities Key Laboratory of Biological Molecular Medicine Research, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, 530021, People's Republic of China
| | - Yongqiang Cao
- Key Laboratory of Longevity and Aging-Related Diseases of Chinese Ministry of Education, Guangxi Colleges and Universities Key Laboratory of Biological Molecular Medicine Research, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, 530021, People's Republic of China
| | - Xueping Ning
- Key Laboratory of Longevity and Aging-Related Diseases of Chinese Ministry of Education, Guangxi Colleges and Universities Key Laboratory of Biological Molecular Medicine Research, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, 530021, People's Republic of China
| | - Jian Sun
- Key Laboratory of Longevity and Aging-Related Diseases of Chinese Ministry of Education, Guangxi Colleges and Universities Key Laboratory of Biological Molecular Medicine Research, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, 530021, People's Republic of China
| | - Xiaoping Xu
- College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, People's Republic of China
| | - Shengbin He
- Key Laboratory of Longevity and Aging-Related Diseases of Chinese Ministry of Education, Guangxi Colleges and Universities Key Laboratory of Biological Molecular Medicine Research, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, 530021, People's Republic of China.
| |
Collapse
|
20
|
Effect Evaluation of Echocardiography on Right Ventricular Function in Patients after the Recovering from Coronavirus Disease 2019. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:6161015. [PMID: 35844461 PMCID: PMC9284327 DOI: 10.1155/2022/6161015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/05/2022] [Accepted: 06/21/2022] [Indexed: 11/24/2022]
Abstract
This research was aimed at exploring the changes in right ventricular function in patients after the recovery of coronavirus disease 2019 (COVID-19) under echocardiography and providing a reference for the rehabilitation and treatment of COVID-19 patients. Three echocardiographic follow-up examinations were performed on 40 recovered COVID-19 patients and 40 healthy people. Right ventricular function between patients after COVID-19 rehabilitation and healthy people was compared. The mean values of right ventricular fractional area change (RVFAC), tricuspid annular plane systolic excursion (TAPSE), right ventricular ejection fraction (RVEF), right myocardial performance index (RMPI), and tricuspid annular plane systolic speed (S') were compared between patients after COVID-19 rehabilitation and healthy subjects. The technical parameters of two-dimensional speckle tracking were compared. The results showed that the differences in RVFAC, TAPSE, RVEF, and RMPI between COVID-19 patients and healthy controls were not significant during the three follow-up periods (P > 0.05). At the first follow-up, the S' was 12.78 cm/s in COVID-19 patients and 13.18 cm/s in healthy subjects. At the second follow-up, the S' was 11.98 cm/s in COVID-19 patients and 12.77 cm/s in healthy subjects. At the third follow-up, the S' was 12.79 cm/s in COVID-19 patients and 13.12 cm/s in healthy subjects. There was no significant difference between the two groups (P > 0.05). In addition, there was no significant difference in right ventricular function between COVID-19 patients and healthy controls, and there was no significant difference in cardiovascular symptoms (P > 0.05). In summary, COVID-19 had no substantial effect on right ventricular function and better recovery in patients.
Collapse
|