1
|
Staats Pires A, Krishnamurthy S, Sharma S, Chow S, Klistorner S, Guillemin GJ, Klistorner A, You Y, Heng B. Dysregulation of the Kynurenine Pathway in Relapsing Remitting Multiple Sclerosis and Its Correlations With Progressive Neurodegeneration. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2025; 12:e200372. [PMID: 39823555 PMCID: PMC11744609 DOI: 10.1212/nxi.0000000000200372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 12/03/2024] [Indexed: 01/19/2025]
Abstract
BACKGROUND AND OBJECTIVES Despite the absence of acute lesion activity in multiple sclerosis (MS), chronic neurodegeneration continues to progress, and a potential underlying mechanism could be the kynurenine pathway (KP). Prolonged activation of the KP from chronic inflammation is known to exacerbate the progression of neurodegenerative diseases through the production of neurotoxic metabolites. Among the 8 KP metabolites, six of them, namely kynurenine (KYN), 3-hydroxylkynurenine (3HK), anthranilic acid (AA), kynurenic acid (KYNA), and quinolinic acid (QUIN), have been associated with neurodegeneration. METHODS To gain insights into the links between the KP and neurodegeneration in MS, we investigated the KP metabolomics profile of relapsing remitting MS (RRMS) patients and their correlation with parameters of neurodegeneration in brain and retinal. Outpatients with a clinical diagnosis of RRMS (n = 98) or age-matched and sex-matched healthy controls (n = 39) were included. MS participants undertook yearly evaluation of MRI and optical coherence tomography scan to evaluate neuroaxonal loss. Blood samples were collected at the baseline from all participants for the biochemical analysis of KP metabolites. RESULTS We identified increased plasma levels of AA and 3HAA in the MS group, indicating an anti-inflammatory response alongside active neurodegeneration. By contrast, plasma levels of KYNA and 3HK were lower in the MS group than in healthy controls. Our analysis revealed a higher KYN:tryptophan (TRP) and QUIN:KYNA ratios in the MS cohort, suggesting activation of the pathway toward the production of neurotoxic QUIN. Another important finding was that KP metabolites were correlated with measures of axonal degeneration in patients with MS. Notably, central brain atrophy positively correlated with the TRP levels, but negatively correlated with KYN and level KYN:TRP ratio. Finally, the choroid plexus volume was inversely correlated with KYNA plasma levels. DISCUSSION These findings highlight changes in the biosynthesis of KP during the progression of RRMS and its correlation with axonal loss. This study underscores the potential of targeting the KP in developing novel treatments for neuroaxonal damage in MS and warrants future research in greater depth.
Collapse
Affiliation(s)
- Ananda Staats Pires
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney
| | - Shivani Krishnamurthy
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney
| | - Samridhi Sharma
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney
| | - Sharron Chow
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney
| | - Samuel Klistorner
- Save Sight Institute, Sydney Medical School, The University of Sydney, Camperdown, NSW, Australia; and
| | | | - Alexander Klistorner
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney
- Save Sight Institute, Sydney Medical School, The University of Sydney, Camperdown, NSW, Australia; and
| | - Yuyi You
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney
- Save Sight Institute, Sydney Medical School, The University of Sydney, Camperdown, NSW, Australia; and
| | - Benjamin Heng
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney
| |
Collapse
|
2
|
Kupjetz M, Wences Chirino TY, Joisten N, Zimmer P. Kynurenine pathway dysregulation as a mechanistic link between cognitive impairment and brain damage: Implications for multiple sclerosis. Brain Res 2024:149415. [PMID: 39710050 DOI: 10.1016/j.brainres.2024.149415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/29/2024] [Accepted: 12/19/2024] [Indexed: 12/24/2024]
Abstract
Cognitive impairment is a core symptom of multiple sclerosis (MS), resulting from inflammation-related brain damage and brain network dysfunction. Inflammation also causes dysregulation of the kynurenine pathway which is the primary route of tryptophan catabolism. Kynurenine pathway dysregulation is characterised by a shift in concentrations of tryptophan catabolites, also referred to as kynurenines. Some kynurenines have neurotoxic effects that partly resemble the molecular mechanisms of MS pathophysiology underpinning brain damage and network dysfunction. The kynurenine pathway may therefore qualify as a mechanistic link between systemic inflammation, brain damage, and cognitive impairment in MS. This perspective article (1) provides an overview of inflammation-related KP dysregulation and MS-relevant neuroimmune properties of kynurenines and (2) summarises the current evidence on associations between systemic kynurenines, imaging metrics of brain structure or related markers, and cognitive performance in populations that present with kynurenine pathway dysregulation and are prone to cognitive impairment. These findings (3) are used to set a research agenda for future studies aimed at clarifying the role of the kynurenine pathway in brain damage and cognitive impairment in MS.
Collapse
Affiliation(s)
- Marie Kupjetz
- Research Group 'Sports Medicine', Institute for Sport and Sport Science, TU Dortmund University, Otto-Hahn-Str. 3, Dortmund 44227, Germany.
| | - Tiffany Y Wences Chirino
- Research Group 'Sports Medicine', Institute for Sport and Sport Science, TU Dortmund University, Otto-Hahn-Str. 3, Dortmund 44227, Germany.
| | - Niklas Joisten
- Research Group 'Sports Medicine', Institute for Sport and Sport Science, TU Dortmund University, Otto-Hahn-Str. 3, Dortmund 44227, Germany; Division of Exercise and Movement Science, Institute for Sport Science, University of Göttingen, Sprangerweg 2, Göttingen, Lower Saxony 37075, Germany.
| | - Philipp Zimmer
- Research Group 'Sports Medicine', Institute for Sport and Sport Science, TU Dortmund University, Otto-Hahn-Str. 3, Dortmund 44227, Germany.
| |
Collapse
|
3
|
Carrillo-Mora P, Landa-Solís C, Valle-Garcia D, Luna-Angulo A, Avilés-Arnaut H, Robles-Bañuelos B, Sánchez-Chapul L, Rangel-López E. Kynurenines and Inflammation: A Remarkable Axis for Multiple Sclerosis Treatment. Pharmaceuticals (Basel) 2024; 17:983. [PMID: 39204088 PMCID: PMC11356993 DOI: 10.3390/ph17080983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/20/2024] [Accepted: 07/23/2024] [Indexed: 09/03/2024] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory autoimmune neurological disease characterized by the recurrent appearance of demyelinating lesions and progressive disability. Currently, there are multiple disease-modifying treatments, however, there is a significant need to develop new therapeutic targets, especially for the progressive forms of the disease. This review article provides an overview of the most recent studies aimed at understanding the inflammatory processes that are activated in response to the accumulation of kynurenine pathway (KP) metabolites, which exacerbate an imbalance between immune system cells (e.g., Th1, Th2, and T reg) and promote the release of pro-inflammatory interleukins that modulate different mechanisms: membrane-receptors function; nuclear factors expression; and cellular signals. Together, these alterations trigger cell death mechanisms in brain cells and promote neuron loss and axon demyelination. This hypothesis could represent a remarkable approach for disease-modifying therapies for MS. Here, we also provide a perspective on the repositioning of some already approved drugs involved in other signaling pathways, which could represent new therapeutic strategies for MS treatment.
Collapse
Affiliation(s)
- Paul Carrillo-Mora
- Clinical Neurosciences Division, National Institute of Rehabilitation “Luis Guillermo Ibarra Ibarra”, Mexico City 14389, Mexico;
| | - Carlos Landa-Solís
- Tissue Engineering, Cell Therapy, and Regenerative Medicine Unit, National Institute of Rehabilitation “Luis Guillermo Ibarra Ibarra”, Mexico City 14389, Mexico;
| | - David Valle-Garcia
- Neuroimmunology Laboratory, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Mexico City 14269, Mexico;
| | - Alexandra Luna-Angulo
- Neuromuscular Diseases Laboratory, Clinical Neurosciences Division, National Institute of Rehabilitation “Luis Guillermo Ibarra Ibarra”, Mexico City 14389, Mexico;
| | - Hamlet Avilés-Arnaut
- Faculty of Biological Sciences, Institute of Biotechnology, National Autonomous University of Nuevo Leon, Nuevo León 66455, Mexico;
| | - Benjamín Robles-Bañuelos
- Cell Reprogramming Laboratory, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Mexico City 14269, Mexico;
| | - Laura Sánchez-Chapul
- Neuromuscular Diseases Laboratory, Clinical Neurosciences Division, National Institute of Rehabilitation “Luis Guillermo Ibarra Ibarra”, Mexico City 14389, Mexico;
| | - Edgar Rangel-López
- Cell Reprogramming Laboratory, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Mexico City 14269, Mexico;
| |
Collapse
|
4
|
Gawel K. A Review on the Role and Function of Cinnabarinic Acid, a "Forgotten" Metabolite of the Kynurenine Pathway. Cells 2024; 13:453. [PMID: 38474418 PMCID: PMC10930587 DOI: 10.3390/cells13050453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/01/2024] [Accepted: 03/02/2024] [Indexed: 03/14/2024] Open
Abstract
In the human body, the majority of tryptophan is metabolized through the kynurenine pathway. This consists of several metabolites collectively called the kynurenines and includes, among others, kynurenic acid, L-kynurenine, or quinolinic acid. The wealth of metabolites, as well as the associated molecular targets and biological pathways, bring about a situation wherein even a slight imbalance in the kynurenine levels, both in the periphery and central nervous system, have broad consequences regarding general health. Cinnabarinic acid (CA) is the least known trace kynurenine, and its physiological and pathological roles are not widely understood. Some studies, however, indicate that it might be neuroprotective. Information on its hepatoprotective properties have also emerged, although these are pioneering studies and need to be replicated. Therefore, in this review, I aim to present and critically discuss the current knowledge on CA and its role in physiological and pathological settings to guide future studies.
Collapse
Affiliation(s)
- Kinga Gawel
- Department of Experimental and Clinical Pharmacology, Medical University of Lublin, Jaczewskiego 8b Str., 20-090 Lublin, Poland
| |
Collapse
|
5
|
Adamczyk B, Morawiec N, Mamak G, Boczek S, Brzęk D, Trędota N, Walocha P, Czuba ZP, Błachut M, Bartman W, Adamczyk-Sowa M. The Comparison of the Selected Parameters of Brain Injury and Interleukins in the CSF in Patients Diagnosed De Novo with RRMS Compared to the Control Group. Diagnostics (Basel) 2023; 13:3436. [PMID: 37998571 PMCID: PMC10670079 DOI: 10.3390/diagnostics13223436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/09/2023] [Accepted: 11/11/2023] [Indexed: 11/25/2023] Open
Abstract
BACKGROUND Multiple sclerosis (MS) is a chronic autoimmune disorder affecting the central nervous system (CNS). Due to the different phenotypes of the disease and non-specific symptoms of MS, there is a great need for a validated panel of biomarkers to facilitate the diagnosis, predict disease progression, and evaluate treatment outcomes. METHODS We determined the levels of the parameters of brain injury (NF-H, GPAF, S100B, and UCHL1) and the selected cytokines in the cerebrospinal fluid (CSF) in 101 patients diagnosed de novo with RRMS and 75 healthy controls. All determinations were made using the Bio-Plex method. RESULTS We found higher levels of NF-H and GFAP in the relapsing-remitting multiple sclerosis (RRMS) group compared to the controls. The concentrations of both molecules were significantly increased in patients with Gd+ lesions on brain MRI. The level of S100B did not differ significantly between the groups. UCHL1 concentrations were higher in the control group. We found some correlations between the selected cytokines, the levels of the parameters of brain injury, and the time from the first symptoms to the diagnosis of MS. CONCLUSIONS The role of the above molecules in MS is promising. However, further research is warranted to define their precise functions.
Collapse
Affiliation(s)
- Bożena Adamczyk
- Department of Neurology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, ul. 3 Maja 13-15, 41-800 Zabrze, Poland; (N.M.); (G.M.); (S.B.); (D.B.); (N.T.); (P.W.); (W.B.); (M.A.-S.)
| | - Natalia Morawiec
- Department of Neurology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, ul. 3 Maja 13-15, 41-800 Zabrze, Poland; (N.M.); (G.M.); (S.B.); (D.B.); (N.T.); (P.W.); (W.B.); (M.A.-S.)
| | - Gabriela Mamak
- Department of Neurology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, ul. 3 Maja 13-15, 41-800 Zabrze, Poland; (N.M.); (G.M.); (S.B.); (D.B.); (N.T.); (P.W.); (W.B.); (M.A.-S.)
| | - Sylwia Boczek
- Department of Neurology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, ul. 3 Maja 13-15, 41-800 Zabrze, Poland; (N.M.); (G.M.); (S.B.); (D.B.); (N.T.); (P.W.); (W.B.); (M.A.-S.)
| | - Dominika Brzęk
- Department of Neurology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, ul. 3 Maja 13-15, 41-800 Zabrze, Poland; (N.M.); (G.M.); (S.B.); (D.B.); (N.T.); (P.W.); (W.B.); (M.A.-S.)
| | - Natalia Trędota
- Department of Neurology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, ul. 3 Maja 13-15, 41-800 Zabrze, Poland; (N.M.); (G.M.); (S.B.); (D.B.); (N.T.); (P.W.); (W.B.); (M.A.-S.)
| | - Patryk Walocha
- Department of Neurology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, ul. 3 Maja 13-15, 41-800 Zabrze, Poland; (N.M.); (G.M.); (S.B.); (D.B.); (N.T.); (P.W.); (W.B.); (M.A.-S.)
| | - Zenon P. Czuba
- Department of Microbiology and Immunology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, ul. Jordana 19, 41-808 Zabrze, Poland;
| | - Michał Błachut
- Clinical Department of Psychiatry, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 40-055 Katowice, Poland;
| | - Wojciech Bartman
- Department of Neurology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, ul. 3 Maja 13-15, 41-800 Zabrze, Poland; (N.M.); (G.M.); (S.B.); (D.B.); (N.T.); (P.W.); (W.B.); (M.A.-S.)
| | - Monika Adamczyk-Sowa
- Department of Neurology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, ul. 3 Maja 13-15, 41-800 Zabrze, Poland; (N.M.); (G.M.); (S.B.); (D.B.); (N.T.); (P.W.); (W.B.); (M.A.-S.)
| |
Collapse
|
6
|
Isık SMT, Onmaz DE, Ekmekci AH, Ozturk S, Unlu A, Abusoglu S. Relationship of tryptophan metabolites with the type and severity of multiple sclerosis. Mult Scler Relat Disord 2023; 77:104898. [PMID: 37481818 DOI: 10.1016/j.msard.2023.104898] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 07/14/2023] [Accepted: 07/15/2023] [Indexed: 07/25/2023]
Abstract
BACKGROUND Tryptophan is an essential amino acid primarily metabolized by the kynurenine pathway in mammals. Intermediate metabolites emerging in this pathway have been associated with many neurogenerative diseases. This study aimed to compare tryptophan pathway metabolite levels in patients with multiple sclerosis (MS) and healthy controls and reveal the relationship of tryptophan metabolites with disease subtype and the Expanded Disability Status Scale (EDSS) score. METHODS The study included a total of 80 MS cases [53 with relapsing remitting MS (RRMS) and 27 with secondary progressive MS (SPMS)] and 41 healthy volunteers. The patients with RRMS were further divided into relapse (RRMS-attack) and non-attack (RRMS-stable) groups. Using liquid chromatography mass spectrometry, tryptophan, kynurenine, kynurenic acid, quinolinic acid, 3-hydroxykynurenine, and 3-hydroxyanthranilic acid levels were measured. The serum metabolite levels of the patient and control groups were compared. In addition, the link and relationship between the EDSS score and disease duration of the patients and their plasma tryptophan metabolite levels were examined. RESULTS The tryptophan level of the patient group was significantly lower than that of the healthy controls (p<0.05). The kynurenine (105.38±65.43), quinolinic acid (10.42±3.56), kynurenine/tryptophan ratio (0.0218±0.019), and quinolinic acid/kynurenic acid ratio (1.7054±0.96141) of the patients with MS were significantly higher compared to the controls (p<0.05). In the receiver operating characteristic analysis of the power of kynurenine/tryptophan and quinolinic acid/kynurenic acid ratios in predicting the disease, both ratios predicted the diagnosis of MS (area under the curve: 0.793 and 0.645, respectively; p<0.05), albeit at low sensitivity and specificity. The parameters were similar between the RRMS-attack and RRMS-stable patient groups (p>0.05). There was also no significant difference between the RRMS and SPMS patient groups in terms of tryptophan metabolites (p>0.05). Lastly, no significant relationship was observed between tryptophan metabolites and MS subtype and the EDSS score. CONCLUSION Our findings revealed that the kynurenine pathway involved in the tryptophan metabolism differed between the patients with MS and healthy controls, and this difference may be a limited guide in the diagnosis of MS, due to major overlaps in values for MS versus Controls, and is insufficient to determine the disease subtype.
Collapse
Affiliation(s)
| | - Duygu Eryavuz Onmaz
- Department of Biochemistry, Selcuk University Faculty of Medicine, Konya, Turkiye
| | - Ahmet Hakan Ekmekci
- Department of Neurology, Selcuk University Faculty of Medicine, Konya, Turkiye
| | - Serefnur Ozturk
- Department of Neurology, Selcuk University Faculty of Medicine, Konya, Turkiye
| | - Ali Unlu
- Department of Biochemistry, Selcuk University Faculty of Medicine, Konya, Turkiye
| | - Sedat Abusoglu
- Department of Biochemistry, Selcuk University Faculty of Medicine, Konya, Turkiye
| |
Collapse
|
7
|
Miyamoto K, Sujino T, Harada Y, Ashida H, Yoshimatsu Y, Yonemoto Y, Nemoto Y, Tomura M, Melhem H, Niess JH, Suzuki T, Suzuki T, Suzuki S, Koda Y, Okamoto R, Mikami Y, Teratani T, Tanaka KF, Yoshimura A, Sato T, Kanai T. The gut microbiota-induced kynurenic acid recruits GPR35-positive macrophages to promote experimental encephalitis. Cell Rep 2023; 42:113005. [PMID: 37590143 DOI: 10.1016/j.celrep.2023.113005] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/25/2023] [Accepted: 08/02/2023] [Indexed: 08/19/2023] Open
Abstract
The intricate interplay between gut microbes and the onset of experimental autoimmune encephalomyelitis (EAE) remains poorly understood. Here, we uncover remarkable similarities between CD4+ T cells in the spinal cord and their counterparts in the small intestine. Furthermore, we unveil a synergistic relationship between the microbiota, particularly enriched with the tryptophan metabolism gene EC:1.13.11.11, and intestinal cells. This symbiotic collaboration results in the biosynthesis of kynurenic acid (KYNA), which modulates the recruitment and aggregation of GPR35-positive macrophages. Subsequently, a robust T helper 17 (Th17) immune response is activated, ultimately triggering the onset of EAE. Conversely, modulating the KYNA-mediated GPR35 signaling in Cx3cr1+ macrophages leads to a remarkable amelioration of EAE. These findings shed light on the crucial role of microbial-derived tryptophan metabolites in regulating immune responses within extraintestinal tissues.
Collapse
Affiliation(s)
- Kentaro Miyamoto
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; Miyarisan Pharmaceutical Co., Ltd., Research Laboratory, 1-10-3, Kaminagazato, Kita-ku, Tokyo 114-0016, Japan
| | - Tomohisa Sujino
- Center for Diagnostic and Therapeutic Endoscopy, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan.
| | - Yosuke Harada
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Hiroshi Ashida
- Department of Bacterial Infection and Host Response, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8510, Japan; Medical Mycology Research Center, Chiba University, 1-8-1, Inohana, Cyuo-ku, Chiba city, Chiba 260-8673, Japan
| | - Yusuke Yoshimatsu
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Yuki Yonemoto
- Department of Gastroenterology and Hepatology, Tokyo Medical Dental University (TMDU), 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Yasuhiro Nemoto
- Department of Gastroenterology and Hepatology, Tokyo Medical Dental University (TMDU), 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Michio Tomura
- Laboratory of Immunology, Faculty of Pharmacy, Osaka Otani University, 3-11-1 Nshikiorikita, Tondabayshi, Osaka, 584-8584, Japan
| | - Hassan Melhem
- Department of Biomedicine, University of Basel, 4031 Basel, Switzerland
| | - Jan Hendrik Niess
- Department of Biomedicine, University of Basel, 4031 Basel, Switzerland; Clarunis-University Center for Gastrointestinal and Liver Diseases, University Hospital Basel, 4002 Basel, Switzerland
| | - Toshihiko Suzuki
- Department of Bacterial Infection and Host Response, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Toru Suzuki
- Division of Brain Sciences Institute for Advanced Medical Research, Keio University School of Medicne, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Shohei Suzuki
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Yuzo Koda
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Ryuichi Okamoto
- Department of Gastroenterology and Hepatology, Tokyo Medical Dental University (TMDU), 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Yohei Mikami
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Toshiaki Teratani
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Kenji F. Tanaka
- Division of Brain Sciences Institute for Advanced Medical Research, Keio University School of Medicne, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Akihiko Yoshimura
- Department of Microbiology and Immunology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Toshiro Sato
- Department of Organoid Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Takanori Kanai
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; AMED-CREST, Japan Agency for Medical Research and Development, 1-7-1, Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan.
| |
Collapse
|
8
|
Gill AJ, Schorr EM, Gadani SP, Calabresi PA. Emerging imaging and liquid biomarkers in multiple sclerosis. Eur J Immunol 2023; 53:e2250228. [PMID: 37194443 PMCID: PMC10524168 DOI: 10.1002/eji.202250228] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/10/2023] [Accepted: 05/12/2023] [Indexed: 05/18/2023]
Abstract
The advent of highly effective disease modifying therapy has transformed the landscape of multiple sclerosis (MS) care over the last two decades. However, there remains a critical, unmet need for sensitive and specific biomarkers to aid in diagnosis, prognosis, treatment monitoring, and the development of new interventions, particularly for people with progressive disease. This review evaluates the current data for several emerging imaging and liquid biomarkers in people with MS. MRI findings such as the central vein sign and paramagnetic rim lesions may improve MS diagnostic accuracy and evaluation of therapy efficacy in progressive disease. Serum and cerebrospinal fluid levels of several neuroglial proteins, such as neurofilament light chain and glial fibrillary acidic protein, show potential to be sensitive biomarkers of pathologic processes such as neuro-axonal injury or glial-inflammation. Additional promising biomarkers, including optical coherence tomography, cytokines and chemokines, microRNAs, and extracellular vesicles/exosomes, are also reviewed, among others. Beyond their potential integration into MS clinical care and interventional trials, several of these biomarkers may be informative of MS pathogenesis and help elucidate novel targets for treatment strategies.
Collapse
Affiliation(s)
- Alexander J. Gill
- Johns Hopkins University School of Medicine, Department of Neurology, Baltimore, MD, US
| | - Emily M. Schorr
- Johns Hopkins University School of Medicine, Department of Neurology, Baltimore, MD, US
| | - Sachin P. Gadani
- Johns Hopkins University School of Medicine, Department of Neurology, Baltimore, MD, US
| | - Peter A. Calabresi
- Johns Hopkins University School of Medicine, Department of Neurology, Baltimore, MD, US
- Department of Neuroscience, Baltimore, MD, US
- Department of Ophthalmology, Baltimore, MD, US
| |
Collapse
|
9
|
Polyák H, Galla Z, Nánási N, Cseh EK, Rajda C, Veres G, Spekker E, Szabó Á, Klivényi P, Tanaka M, Vécsei L. The Tryptophan-Kynurenine Metabolic System Is Suppressed in Cuprizone-Induced Model of Demyelination Simulating Progressive Multiple Sclerosis. Biomedicines 2023; 11:biomedicines11030945. [PMID: 36979924 PMCID: PMC10046567 DOI: 10.3390/biomedicines11030945] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/07/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Progressive multiple sclerosis (MS) is a chronic disease with a unique pattern, which is histologically classified into the subpial type 3 lesions in the autopsy. The lesion is also homologous to that of cuprizone (CPZ) toxin-induced animal models of demyelination. Aberration of the tryptophan (TRP)-kynurenine (KYN) metabolic system has been observed in patients with MS; nevertheless, the KYN metabolite profile of progressive MS remains inconclusive. In this study, C57Bl/6J male mice were treated with 0.2% CPZ toxin for 5 weeks and then underwent 4 weeks of recovery. We measured the levels of serotonin, TRP, and KYN metabolites in the plasma and the brain samples of mice at weeks 1, 3, and 5 of demyelination, and at weeks 7 and 9 of remyelination periods by ultra-high-performance liquid chromatography with tandem mass spectrometry (UHPLC-MS/MS) after body weight measurement and immunohistochemical analysis to confirm the development of demyelination. The UHPLC-MS/MS measurements demonstrated a significant reduction of kynurenic acid, 3-hydoxykynurenine (3-HK), and xanthurenic acid in the plasma and a significant reduction of 3-HK, and anthranilic acid in the brain samples at week 5. Here, we show the profile of KYN metabolites in the CPZ-induced mouse model of demyelination. Thus, the KYN metabolite profile potentially serves as a biomarker of progressive MS and thus opens a new path toward planning personalized treatment, which is frequently obscured with immunologic components in MS deterioration.
Collapse
Affiliation(s)
- Helga Polyák
- Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
- Doctoral School of Clinical Medicine, University of Szeged, Korányi fasor 6, H-6720 Szeged, Hungary
| | - Zsolt Galla
- Department of Pediatrics, Albert Szent-Györgyi Faculty of Medicine, University of Szeged, H-6725 Szeged, Hungary
| | - Nikolett Nánási
- Danube Neuroscience Research Laboratory, ELKH-SZTE Neuroscience Research Group, Eötvös Loránd Research Network, University of Szeged (ELKH-SZTE), Tisza Lajos krt. 113, H-6725 Szeged, Hungary
| | - Edina Katalin Cseh
- Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
| | - Cecília Rajda
- Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
| | - Gábor Veres
- Independent Researcher, H-6726 Szeged, Hungary
| | - Eleonóra Spekker
- Danube Neuroscience Research Laboratory, ELKH-SZTE Neuroscience Research Group, Eötvös Loránd Research Network, University of Szeged (ELKH-SZTE), Tisza Lajos krt. 113, H-6725 Szeged, Hungary
| | - Ágnes Szabó
- Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
- Doctoral School of Clinical Medicine, University of Szeged, Korányi fasor 6, H-6720 Szeged, Hungary
| | - Péter Klivényi
- Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
| | - Masaru Tanaka
- Danube Neuroscience Research Laboratory, ELKH-SZTE Neuroscience Research Group, Eötvös Loránd Research Network, University of Szeged (ELKH-SZTE), Tisza Lajos krt. 113, H-6725 Szeged, Hungary
| | - László Vécsei
- Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
- Danube Neuroscience Research Laboratory, ELKH-SZTE Neuroscience Research Group, Eötvös Loránd Research Network, University of Szeged (ELKH-SZTE), Tisza Lajos krt. 113, H-6725 Szeged, Hungary
| |
Collapse
|
10
|
Central Stimulatory Effect of Kynurenic Acid on BDNF-TrkB Signaling and BER Enzymatic Activity in the Hippocampal CA1 Field in Sheep. Int J Mol Sci 2022; 24:ijms24010136. [PMID: 36613581 PMCID: PMC9820639 DOI: 10.3390/ijms24010136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/12/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Deficiency of neurotrophic factors and oxidative DNA damage are common causes of many neurodegenerative diseases. Recently, the importance of kynurenic acid (KYNA), an active metabolite of tryptophan, has increased as a neuroprotective molecule in the brain. Therefore, the present study tested the hypothesis that centrally acting KYNA would positively affect: (1) brain-derived neurotrophic factor (BDNF)-tyrosine receptor kinase B (TrkB) signaling and (2) selected base excision repair (BER) pathway enzymes activities in the hippocampal CA1 field in sheep. Both lower (20 μg in total) and higher (100 μg in total) doses of KYNA infused into the third brain ventricle differentially increased the abundance of BDNF and TrkB mRNA in the CA1 field; additionally, the higher dose increased BDNF tissue concentration. The lower dose of KYNA increased mRNA expression for 8-oxoguanine glycosylase (OGG1), N-methylpurine DNA glycosylase (MPG), and thymine DNA glycosylase and stimulated the repair of 1,N6-ethenodeoxyadenosine and 3,N4-ethenodeoxy-cytosine as determined by the excision efficiency of lesioned nucleobases. The higher dose increased the abundance of OGG1 and MPG transcripts, however, its stimulatory effect on repair activity was less pronounced in all cases compared to the lower dose. The increased level of AP-endonuclease mRNA expression was dose-dependent. In conclusion, the potential neurotrophic and neuroprotective effects of KYNA in brain cells may involve stimulation of the BDNF-TrkB and BER pathways.
Collapse
|
11
|
Montgomery TL, Eckstrom K, Lile KH, Caldwell S, Heney ER, Lahue KG, D'Alessandro A, Wargo MJ, Krementsov DN. Lactobacillus reuteri tryptophan metabolism promotes host susceptibility to CNS autoimmunity. MICROBIOME 2022; 10:198. [PMID: 36419205 PMCID: PMC9685921 DOI: 10.1186/s40168-022-01408-7] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 11/01/2022] [Indexed: 05/27/2023]
Abstract
BACKGROUND Dysregulation of gut microbiota-associated tryptophan metabolism has been observed in patients with multiple sclerosis. However, defining direct mechanistic links between this apparent metabolic rewiring and individual constituents of the gut microbiota remains challenging. We and others have previously shown that colonization with the gut commensal and putative probiotic species, Lactobacillus reuteri, unexpectedly enhances host susceptibility to experimental autoimmune encephalomyelitis (EAE), a murine model of multiple sclerosis. To identify underlying mechanisms, we characterized the genome of commensal L. reuteri isolates, coupled with in vitro and in vivo metabolomic profiling, modulation of dietary substrates, and gut microbiota manipulation. RESULTS The enzymes necessary to metabolize dietary tryptophan into immunomodulatory indole derivatives were enriched in the L. reuteri genomes, including araT, fldH, and amiE. Moreover, metabolite profiling of L. reuteri monocultures and serum of L. reuteri-colonized mice revealed a depletion of kynurenines and production of a wide array of known and novel tryptophan-derived aryl hydrocarbon receptor (AhR) agonists and antagonists, including indole acetate, indole-3-glyoxylic acid, tryptamine, p-cresol, and diverse imidazole derivatives. Functionally, dietary tryptophan was required for L. reuteri-dependent EAE exacerbation, while depletion of dietary tryptophan suppressed disease activity and inflammatory T cell responses in the CNS. Mechanistically, L. reuteri tryptophan-derived metabolites activated the AhR and enhanced T cell production of IL-17. CONCLUSIONS Our data suggests that tryptophan metabolism by gut commensals, such as the putative probiotic species L. reuteri, can unexpectedly enhance autoimmunity, inducing broad shifts in the metabolome and immunological repertoire. Video Abstract.
Collapse
Affiliation(s)
- Theresa L Montgomery
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT, 05401, USA
| | - Korin Eckstrom
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT, 05401, USA
| | - Katarina H Lile
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT, 05401, USA
| | - Sydney Caldwell
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT, 05401, USA
| | - Eamonn R Heney
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT, 05401, USA
| | - Karolyn G Lahue
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT, 05401, USA
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado, Aurora, CO, 80045, USA
| | - Matthew J Wargo
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT, 05401, USA
| | - Dimitry N Krementsov
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT, 05401, USA.
| |
Collapse
|
12
|
Fathi M, Vakili K, Yaghoobpoor S, Tavasol A, Jazi K, Mohamadkhani A, Klegeris A, McElhinney A, Mafi Z, Hajiesmaeili M, Sayehmiri F. Dynamic changes in kynurenine pathway metabolites in multiple sclerosis: A systematic review. Front Immunol 2022; 13:1013784. [PMID: 36426364 PMCID: PMC9680557 DOI: 10.3389/fimmu.2022.1013784] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 10/04/2022] [Indexed: 11/05/2022] Open
Abstract
Background Multiple sclerosis (MS) is a debilitating neurodegenerative disorder characterized by axonal damage, demyelination, and perivascular inflammatory lesions in the white matter of the central nervous system (CNS). Kynurenine pathway (KP), which is the major route of tryptophan (TRP) metabolism, generates a variety of neurotoxic as well as neuroprotective compounds, affecting MS pathology and the severity of impairments. Alterations in KP have been described not only in MS, but also in various psychiatric and neurodegenerative diseases. The purpose of this systematic review is to investigate the previously reported dysregulation of KP and differences in its metabolites and enzymes in patients with MS compared to healthy control subjects. Method Electronic databases of PubMed, Scopus, Cochrane Database of Systematic Reviews, and Web of Science were searched to identify studies measuring concentrations of KP metabolites and enzymes in MS patients and control subjects. The following metabolites and enzymes implicated in the KP were investigated: TRP, kynurenine (KYN), kynurenic acid (KYNA), quinolinic acid (QUIN), picolinic acid (PIC), hydroxyindoleacetic acid (HIAA), indoleamine 2,3-dioxygenase (IDO), kynurenine aminotransferase (KAT), and their related ratios. Result Ten studies were included in our systematic review. Our review demonstrates that IDO expression is reduced in the peripheral blood mononuclear cells (PBMCs) of MS patients compared to healthy controls. Also, increased levels of QUIN and QUIN/KYNA in the serum and cerebrospinal fluid (CSF) of MS patients is observed. Differences in levels of other metabolites and enzymes of KP are also reported in some of the reviewed studies, however there are discrepancies among the included reports. Conclusion The results of this investigation suggest a possible connection between alterations in the levels of KP metabolite or enzymes and MS. QUIN levels in CSF were higher in MS patients than in healthy controls, suggesting that QUIN may be involved in the pathogenesis of MS. The data indicate that differences in the serum/blood or CSF levels of certain KP metabolites and enzymes could potentially be used to differentiate between MS patients and control subjects.
Collapse
Affiliation(s)
- Mobina Fathi
- Student Research Committee, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kimia Vakili
- Student Research Committee, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shirin Yaghoobpoor
- Student Research Committee, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arian Tavasol
- Student Research Committee, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kimia Jazi
- Faculty of Medicine, Medical University of Qom, Qom, Iran
| | - Ashraf Mohamadkhani
- Liver and Pancreatobiliary Diseases Research Center, Digestive Disease Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Andis Klegeris
- Department of Biology, Faculty of Science, University of British Columbia, Kelowna, BC, Canada
| | - Alyssa McElhinney
- Department of Biology, Faculty of Science, University of British Columbia, Kelowna, BC, Canada
| | - Zahedeh Mafi
- Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Hajiesmaeili
- Critical Care Quality Improvement Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Sayehmiri
- Student Research Committee, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
Pashaei S, Yarani R, Mohammadi P, Emami Aleagha MS. The potential roles of amino acids and their major derivatives in the management of multiple sclerosis. Amino Acids 2022; 54:841-858. [PMID: 35471671 DOI: 10.1007/s00726-022-03162-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 04/05/2022] [Indexed: 11/29/2022]
Abstract
Recently, we reviewed the important role of carbohydrates and lipids metabolism in different clinical aspects of multiple sclerosis (MS) disease. In the current paper, we aimed to review the contribution of amino acids and their major derivatives to different clinical outcomes of the disease, including etiology, pathogenesis, diagnosis, prognosis, and treatment. In this line, Thr (threonine), Phe (phenylalanine), Glu (glutamate), Trp (tryptophan), and Sero (serotonin) are the main examples of biomolecules that have been suggested for MS therapy. It has been concluded that different amino acids and their derivatives might be considered prominent tools for the clinical management of MS disease.
Collapse
Affiliation(s)
- Somayeh Pashaei
- Department of Clinical Biochemistry, School of Medicine, Kermanshah University of Medical Sciences, Sorkhe-Ligeh Street, Kermanshah, Iran
| | - Reza Yarani
- Translational Type 1 Diabetes Biology, Department of Clinical Research, Steno Diabetes Center Copenhagen, Copenhagen, Denmark.,Interventional Regenerative Medicine and Imaging Laboratory, Department of Radiology, Stanford University School of Medicine, Palo Alto, CA, 94304, USA
| | - Pantea Mohammadi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Sajad Emami Aleagha
- Department of Clinical Biochemistry, School of Medicine, Kermanshah University of Medical Sciences, Sorkhe-Ligeh Street, Kermanshah, Iran.
| |
Collapse
|
14
|
Förster M, Nelke C, Räuber S, Lassmann H, Ruck T, Sormani MP, Signori A, Hartung HP, Küry P, Meuth SG, Kremer D. Nitrosative Stress Molecules in Multiple Sclerosis: A Meta-Analysis. Biomedicines 2021; 9:biomedicines9121899. [PMID: 34944714 PMCID: PMC8698769 DOI: 10.3390/biomedicines9121899] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/03/2021] [Accepted: 12/10/2021] [Indexed: 11/16/2022] Open
Abstract
Multiple sclerosis (MS) is an immune-mediated disease of the central nervous system of unknown etiology. As it is still a diagnosis of exclusion, there is an urgent need for biomarkers supporting its diagnosis. Increasing evidence suggests that nitrosative stress may play a pivotal role in the pathogenesis of MS. However, previous reports supporting the role of nitrosative stress molecules as disease biomarkers are inconsistent overall. We therefore systematically analyzed the existing literature to compare the serum and cerebrospinal fluid (CSF) levels of nitrite/nitrate in MS patients with those in patients with noninflammatory other neurological diseases (NIOND) and healthy controls (HC), respectively. We searched the PubMed database and included original articles investigating nitrite/nitrate levels in MS patients and NIOND patients or HC based on predefined selection criteria. Effect sizes were estimated by the standardized mean difference using a random effects model. Our results suggest that MS is associated with higher nitrite/nitrate levels within the CSF compared with patients with NIOND (SMD of 1.51; 95% CI: 0.72, 2.30; p = 0.0008). Likewise, nitrite/nitrate in the CSF of MS patients trends towards increased levels compared with those of HC but does not reach statistical significance (SMD of 3.35; 95% CI: −0.48, 7.19; p = 0.07). Measurement of nitrite/nitrate in the CSF might be a valuable tool facilitating the differentiation of MS and NIOND. Further studies with more homogeneous study criteria are needed to corroborate this hypothesis.
Collapse
Affiliation(s)
- Moritz Förster
- Department of Neurology, Medical Faculty, Heinrich Heine University, 40225 Düsseldorf, Germany; (M.F.); (C.N.); (S.R.); (T.R.); (H.-P.H.); (P.K.); (S.G.M.)
| | - Christopher Nelke
- Department of Neurology, Medical Faculty, Heinrich Heine University, 40225 Düsseldorf, Germany; (M.F.); (C.N.); (S.R.); (T.R.); (H.-P.H.); (P.K.); (S.G.M.)
| | - Saskia Räuber
- Department of Neurology, Medical Faculty, Heinrich Heine University, 40225 Düsseldorf, Germany; (M.F.); (C.N.); (S.R.); (T.R.); (H.-P.H.); (P.K.); (S.G.M.)
| | - Hans Lassmann
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, 1090 Vienna, Austria;
| | - Tobias Ruck
- Department of Neurology, Medical Faculty, Heinrich Heine University, 40225 Düsseldorf, Germany; (M.F.); (C.N.); (S.R.); (T.R.); (H.-P.H.); (P.K.); (S.G.M.)
| | - Maria Pia Sormani
- Department of Health Sciences, University of Genoa, 16121 Genoa, Italy; (M.P.S.); (A.S.)
- IRCCS Ospedale Policlinico San Martino, 16121 Genoa, Italy
| | - Alessio Signori
- Department of Health Sciences, University of Genoa, 16121 Genoa, Italy; (M.P.S.); (A.S.)
| | - Hans-Peter Hartung
- Department of Neurology, Medical Faculty, Heinrich Heine University, 40225 Düsseldorf, Germany; (M.F.); (C.N.); (S.R.); (T.R.); (H.-P.H.); (P.K.); (S.G.M.)
- Brain and Mind Center, University of Sydney, Sydney 2006, Australia
- Department of Neurology, Medical University of Vienna, 1090 Vienna, Austria
- Department of Neurology, Palacky University Olomouc, 77900 Olomouc, Czech Republic
| | - Patrick Küry
- Department of Neurology, Medical Faculty, Heinrich Heine University, 40225 Düsseldorf, Germany; (M.F.); (C.N.); (S.R.); (T.R.); (H.-P.H.); (P.K.); (S.G.M.)
| | - Sven G. Meuth
- Department of Neurology, Medical Faculty, Heinrich Heine University, 40225 Düsseldorf, Germany; (M.F.); (C.N.); (S.R.); (T.R.); (H.-P.H.); (P.K.); (S.G.M.)
| | - David Kremer
- Department of Neurology, Medical Faculty, Heinrich Heine University, 40225 Düsseldorf, Germany; (M.F.); (C.N.); (S.R.); (T.R.); (H.-P.H.); (P.K.); (S.G.M.)
- Correspondence: ; Tel.: +49-(0)2-1181-08084
| |
Collapse
|
15
|
Sandi D, Fricska-Nagy Z, Bencsik K, Vécsei L. Neurodegeneration in Multiple Sclerosis: Symptoms of Silent Progression, Biomarkers and Neuroprotective Therapy-Kynurenines Are Important Players. Molecules 2021; 26:molecules26113423. [PMID: 34198750 PMCID: PMC8201043 DOI: 10.3390/molecules26113423] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/01/2021] [Accepted: 06/03/2021] [Indexed: 12/17/2022] Open
Abstract
Neurodegeneration is one of the driving forces behind the pathogenesis of multiple sclerosis (MS). Progression without activity, pathopsychological disturbances (cognitive impairment, depression, fatigue) and even optic neuropathy seems to be mainly routed in this mechanism. In this article, we aim to give a comprehensive review of the clinical aspects and symptomology, radiological and molecular markers and potential therapeutic targets of neurodegeneration in connection with MS. As the kynurenine pathway (KP) was evidenced to play an important role in the pathogenesis of other neurodegenerative conditions (even implied to have a causative role in some of these diseases) and more and more recent evidence suggest the same central role in the neurodegenerative processes of MS as well, we pay special attention to the KP. Metabolites of the pathway are researched as biomarkers of the disease and new, promising data arising from clinical evaluations show the possible therapeutic capability of KP metabolites as neuroprotective drugs in MS. Our conclusion is that the kynurenine pathway is a highly important route of research both for diagnostic and for therapeutic values and is expected to yield concrete results for everyday medicine in the future.
Collapse
Affiliation(s)
- Dániel Sandi
- Albert Szent-Györgyi Clinical Centre, Department of Neurology, Faculty of General Medicine, University of Szeged, H-6725 Szeged, Hungary; (D.S.); (Z.F.-N.); (K.B.)
| | - Zsanett Fricska-Nagy
- Albert Szent-Györgyi Clinical Centre, Department of Neurology, Faculty of General Medicine, University of Szeged, H-6725 Szeged, Hungary; (D.S.); (Z.F.-N.); (K.B.)
| | - Krisztina Bencsik
- Albert Szent-Györgyi Clinical Centre, Department of Neurology, Faculty of General Medicine, University of Szeged, H-6725 Szeged, Hungary; (D.S.); (Z.F.-N.); (K.B.)
| | - László Vécsei
- Albert Szent-Györgyi Clinical Centre, Department of Neurology, Faculty of General Medicine, University of Szeged, H-6725 Szeged, Hungary; (D.S.); (Z.F.-N.); (K.B.)
- MTA-SZTE Neuroscience Research Group, University of Szeged, H-6725 Szeged, Hungary
- Interdisciplinary Excellence Centre, University of Szeged, H-6725 Szeged, Hungary
- Correspondence: ; Tel.: +36-62-545-384; Fax: +36-62-545-597
| |
Collapse
|
16
|
Pukoli D, Polyák H, Rajda C, Vécsei L. Kynurenines and Neurofilament Light Chain in Multiple Sclerosis. Front Neurosci 2021; 15:658202. [PMID: 34113231 PMCID: PMC8185147 DOI: 10.3389/fnins.2021.658202] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/29/2021] [Indexed: 12/30/2022] Open
Abstract
Multiple sclerosis is an autoimmune, demyelinating, and neurodegenerative disease of the central nervous system. In recent years, it has been proven that the kynurenine system plays a significant role in the development of several nervous system disorders, including multiple sclerosis. Kynurenine pathway metabolites have both neurotoxic and neuroprotective effects. Moreover, the enzymes of the kynurenine pathway play an important role in immunomodulation processes, among others, as well as interacting with neuronal energy balance and various redox reactions. Dysregulation of many of the enzymatic steps in kynurenine pathway and upregulated levels of these metabolites locally in the central nervous system, contribute to the progression of multiple sclerosis pathology. This process can initiate a pathogenic cascade, including microglia activation, glutamate excitotoxicity, chronic oxidative stress or accumulated mitochondrial damage in the axons, that finally disrupt the homeostasis of neurons, leads to destabilization of neuronal cell cytoskeleton, contributes to neuro-axonal damage and neurodegeneration. Neurofilaments are good biomarkers of the neuro-axonal damage and their level reliably indicates the severity of multiple sclerosis and the treatment response. There is increasing evidence that connections exist between the molecules generated in the kynurenine metabolic pathway and the change in neurofilament concentrations. Thus the alterations in the kynurenine pathway may be an important biomarker of the course of multiple sclerosis. In our present review, we report the possible relationship and connection between neurofilaments and the kynurenine system in multiple sclerosis based on the available evidences.
Collapse
Affiliation(s)
- Dániel Pukoli
- Department of Neurology, Faculty of Medicine, University of Szeged, Szeged, Hungary.,Department of Neurology, Vaszary Kolos Hospital, Esztergom, Hungary
| | - Helga Polyák
- Department of Neurology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Cecilia Rajda
- Department of Neurology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - László Vécsei
- Department of Neurology, Faculty of Medicine, University of Szeged, Szeged, Hungary.,MTA-SZTE Neuroscience Research Group, Department of Neurology, Faculty of Medicine, Interdisciplinary Excellence Centre, University of Szeged, Szeged, Hungary
| |
Collapse
|
17
|
Momtazmanesh S, Shobeiri P, Saghazadeh A, Teunissen CE, Burman J, Szalardy L, Klivenyi P, Bartos A, Fernandes A, Rezaei N. Neuronal and glial CSF biomarkers in multiple sclerosis: a systematic review and meta-analysis. Rev Neurosci 2021; 32:573-595. [PMID: 33594840 DOI: 10.1515/revneuro-2020-0145] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 01/15/2021] [Indexed: 12/29/2022]
Abstract
Multiple sclerosis (MS) is a neurodegenerative disease associated with inflammatory demyelination and astroglial activation, with neuronal and axonal damage as the leading factors of disability. We aimed to perform a meta-analysis to determine changes in CSF levels of neuronal and glial biomarkers, including neurofilament light chain (NFL), total tau (t-tau), chitinase-3-like protein 1 (CHI3L1), glial fibrillary acidic protein (GFAP), and S100B in various groups of MS (MS versus controls, clinically isolated syndrome (CIS) versus controls, CIS versus MS, relapsing-remitting MS (RRMS) versus progressive MS (PMS), and MS in relapse versus remission. According to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses, we included 64 articles in the meta-analysis, including 4071 subjects. For investigation of sources of heterogeneity, subgroup analysis, meta-regression, and sensitivity analysis were conducted. Meta-analyses were performed for comparisons including at least three individual datasets. NFL, GFAP, t-tau, CHI3L1, and S100B were higher in MS and NFL, t-tau, and CHI3L1 were also elevated in CIS patients than controls. CHI3L1 was the only marker with higher levels in MS than CIS. GFAP levels were higher in PMS versus RRMS, and NFL, t-tau, and CHI3L1 did not differ between different subtypes. Only levels of NFL were higher in patients in relapse than remission. Meta-regression showed influence of sex and disease severity on NFL and t-tau levels, respectively and disease duration on both. Added to the role of these biomarkers in determining prognosis and treatment response, to conclude, they may serve in diagnosis of MS and distinguishing different subtypes.
Collapse
Affiliation(s)
- Sara Momtazmanesh
- School of Medicine, Tehran University of Medical Sciences (TUMS), Children's Medical Center Hospital, Dr. Qarib St., Keshavarz Blvd, Tehran14194, Iran.,Systematic Review and Meta-Analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Parnian Shobeiri
- School of Medicine, Tehran University of Medical Sciences (TUMS), Children's Medical Center Hospital, Dr. Qarib St., Keshavarz Blvd, Tehran14194, Iran.,Systematic Review and Meta-Analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Amene Saghazadeh
- Systematic Review and Meta-Analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Charlotte E Teunissen
- Neurochemistry Laboratory, Department of Clinical Chemistry, Location VUmc, PK 2 BR 141, Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Joachim Burman
- Department of Neuroscience, Uppsala University Hospital, 75185Uppsala, Sweden
| | - Levente Szalardy
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Semmelweis u. 6, 6725Szeged, Hungary
| | - Peter Klivenyi
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Semmelweis u. 6, 6725Szeged, Hungary
| | - Ales Bartos
- Department of Neurology, Third Faculty of Medicine, Charles University, Ruska 87, 100 00Prague 10, Czech Republic
| | - Adelaide Fernandes
- Department of Pharmacological Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003Lisbon, Portugal
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| |
Collapse
|
18
|
Correale J. Immunosuppressive Amino-Acid Catabolizing Enzymes in Multiple Sclerosis. Front Immunol 2021; 11:600428. [PMID: 33552055 PMCID: PMC7855700 DOI: 10.3389/fimmu.2020.600428] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/30/2020] [Indexed: 01/01/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease that affects the central nervous system. Although the pathogenesis of MS is not yet fully elucidated, several evidences suggest that autoimmune processes mediated by Th1, Th17, and B cells play an important role in the development of the disease. Similar to other cells, immune cells need continuous access to amino acids (AA) in order to maintain basal metabolism and maintain vitality. When immune cells are activated by inflammation or antigenic signals, their demand for AA increases rapidly. Although AA deprivation itself may weaken the immune response under certain conditions, cells also have AA sensitive pathways that can activate intense alterations in cell metabolism based on changes in AA levels. Several data indicate that cells expressing enzymes that can degrade AA can regulate the functions of antigen-presenting cells and lymphocytes, revealing that the AA pathways are essential for controlling the function, and survival of immune cells, as well as immune cell gene expression. Basal AA catabolism may contribute to immune homeostasis and prevent autoimmunity, while increased AA catalytic activity may enhance immune suppression. In addition, there is increasing evidence that some downstream AA metabolites are important biological mediators of autoimmune response regulation. Two of the most important AA that modulate the immune response are L-Tryptophan (Trp) and L-Arginine (Arg). Tryptophan is catabolized through 2,3-dioxygenase (TDO) and indoleamine 2,3-dioxygenase (IDO) 1 and IDO2 enzymes, while three other enzymes catabolize Arg: inducible nitric oxide synthetase (iNOS), and two arginase isoforms (ARG1, ARG2). Genes encoding IDO, iNOS and ARG are induced by inflammatory cues such as cytokines, a key feature that distinguishes them from enzymes that catabolize other AA. Evidence suggests that AA catabolism is decreased in MS patients and that this decrease has functional consequences, increasing pro-inflammatory cytokines and decreasing Treg cell numbers. These effects are mediated by at least two distinct pathways involving serine/threonine kinases: the general control nonderepressible 2 kinase (GCN2K) pathway; and the mammalian target of rapamycin (mTOR) pathway. Similarly, IDO1-deficient mice showed exacerbation of experimental autoimmune encephalomyelitis (EAE), increased Th1 and Th17 cells, and decreased Treg cells. On the contrary, the administration of downstream Trp metabolite 3-HAA, inhibits Th1/Th17 effector cells and promotes Treg response by up-regulating TGF-β production by dendritic cells, thereby improving EAE. Collectively, these observations stand out the significance of AA catabolism in the regulation of the immune responses in MS patients. The molecules related to these pathways deserve further exploration as potential new therapeutic targets in MS.
Collapse
|
19
|
Natural Molecules and Neuroprotection: Kynurenic Acid, Pantethine and α-Lipoic Acid. Int J Mol Sci 2021; 22:ijms22010403. [PMID: 33401674 PMCID: PMC7795784 DOI: 10.3390/ijms22010403] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/19/2020] [Accepted: 12/29/2020] [Indexed: 02/06/2023] Open
Abstract
The incidence of neurodegenerative diseases has increased greatly worldwide due to the rise in life expectancy. In spite of notable development in the understanding of these disorders, there has been limited success in the development of neuroprotective agents that can slow the progression of the disease and prevent neuronal death. Some natural products and molecules are very promising neuroprotective agents because of their structural diversity and wide variety of biological activities. In addition to their neuroprotective effect, they are known for their antioxidant, anti-inflammatory and antiapoptotic effects and often serve as a starting point for drug discovery. In this review, the following natural molecules are discussed: firstly, kynurenic acid, the main neuroprotective agent formed via the kynurenine pathway of tryptophan metabolism, as it is known mainly for its role in glutamate excitotoxicity, secondly, the dietary supplement pantethine, that is many sided, well tolerated and safe, and the third molecule, α-lipoic acid is a universal antioxidant. As a conclusion, because of their beneficial properties, these molecules are potential candidates for neuroprotective therapies suitable in managing neurodegenerative diseases.
Collapse
|
20
|
Török N, Tanaka M, Vécsei L. Searching for Peripheral Biomarkers in Neurodegenerative Diseases: The Tryptophan-Kynurenine Metabolic Pathway. Int J Mol Sci 2020; 21:E9338. [PMID: 33302404 PMCID: PMC7762583 DOI: 10.3390/ijms21249338] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 11/28/2020] [Accepted: 11/29/2020] [Indexed: 12/11/2022] Open
Abstract
Neurodegenerative diseases are multifactorial, initiated by a series of the causative complex which develops into a certain clinical picture. The pathogenesis and disease course vary from patient to patient. Thus, it should be likewise to the treatment. Peripheral biomarkers are to play a central role for tailoring a personalized therapeutic plan for patients who suffered from neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, and multiple sclerosis, among others. Nevertheless, the use of biomarkers in clinical practice is still underappreciated and data presented in biomarker research for clinical use is still uncompelling, compared to the abundant data available for drug research and development. So is the case with kynurenines (KYNs) and the kynurenine pathway (KP) enzymes, which have been associated with a wide range of diseases including cancer, autoimmune diseases, inflammatory diseases, neurologic diseases, and psychiatric disorders. This review article discusses current knowledge of KP alterations observed in the central nervous system as well as the periphery, its involvement in pathogenesis and disease progression, and emerging evidence of roles of microbiota in the gut-brain axis, searching for practical peripheral biomarkers which ensure personalized treatment plans for neurodegenerative diseases.
Collapse
Affiliation(s)
- Nóra Török
- MTA-SZTE, Neuroscience Research Group, Semmelweis u. 6, H-6725 Szeged, Hungary; (N.T.); (M.T.)
| | - Masaru Tanaka
- MTA-SZTE, Neuroscience Research Group, Semmelweis u. 6, H-6725 Szeged, Hungary; (N.T.); (M.T.)
- Department of Neurology, Interdisciplinary Excellence Centre, Faculty of Medicine, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
| | - László Vécsei
- MTA-SZTE, Neuroscience Research Group, Semmelweis u. 6, H-6725 Szeged, Hungary; (N.T.); (M.T.)
- Department of Neurology, Interdisciplinary Excellence Centre, Faculty of Medicine, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
| |
Collapse
|
21
|
Bai JH, Zheng YL, Yu YP. Urinary kynurenine as a biomarker for Parkinson's disease. Neurol Sci 2020; 42:697-703. [PMID: 32661882 DOI: 10.1007/s10072-020-04589-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 07/08/2020] [Indexed: 11/28/2022]
Abstract
OBJECTIVE To examine whether urine kynurenine (KYN) levels were associated with early-stage Parkinson's disease (PD), as well as the value of urine KYN as a potential biomarker in early-stage PD. METHOD Eighty-two participants including 41 PD patients and 41 healthy controls were enrolled into this study. Urine KYN levels were measured with a KYN enzyme-linked immunoassay kit. In order to explore the correlation between some clinical parameters and urine KYN, the clinical parameters for these participants were recorded. Diagnostic value and clinical relevance of urine KYN were assessed by using receiver operator characteristic (ROC) curve and correlation analysis. RESULTS Urine KYN levels were significantly higher in the PD group than in the healthy group (891.95 ± 276.65 pg/ml vs. 640.11 ± 122.37 pg/ml, p = 0.000). The correlations between urine KYN levels and clinical parameters are as follows: Hoehn-Yahr stage (r = 0.676, p = 0.000), disease duration (r = 0.772, p = 0.000), Mini-Mental State Examination scores (r = -0.434, p = 0.005). There was no statistically significant correlation between urine KYN with age, low-density cholesterol (LDL), triglycerides (TG), cholesterol (TC), homocysteine (HCY), uric acid (UA), and glomerular filtration rate (GFR). The ROC analysis showed that urine KYN optimal cutoff value of 751.88 pg/ml had a sensitivity of 65.9% and a specificity of 90.2% for distinguishing between PD and controls, with an area under the curve (AUC) of 0.776. CONCLUSION Urine KYN were significantly associated with PD severity and mild cognitive impairment. Urine KYN may be a new biomarker for early-stage PD.
Collapse
Affiliation(s)
- Jia-He Bai
- Yu Yongpeng Innovation Studio and Department of Neurology, Weihai Central Hospital, Qingdao University, Weihai, 264400, China
| | - Ya-Li Zheng
- Yu Yongpeng Innovation Studio and Department of Neurology, Weihai Central Hospital, Qingdao University, Weihai, 264400, China
| | - Yong-Peng Yu
- Yu Yongpeng Innovation Studio and Department of Neurology, Weihai Central Hospital, Qingdao University, Weihai, 264400, China. .,Department of Neurology, Weihai Central Hospital, Weifang Medical college, Weihai, 264400, China.
| |
Collapse
|
22
|
Biernacki T, Sandi D, Bencsik K, Vécsei L. Kynurenines in the Pathogenesis of Multiple Sclerosis: Therapeutic Perspectives. Cells 2020; 9:cells9061564. [PMID: 32604956 PMCID: PMC7349747 DOI: 10.3390/cells9061564] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/22/2020] [Accepted: 06/23/2020] [Indexed: 12/11/2022] Open
Abstract
Over the past years, an increasing amount of evidence has emerged in support of the kynurenine pathway’s (KP) pivotal role in the pathogenesis of several neurodegenerative, psychiatric, vascular and autoimmune diseases. Different neuroactive metabolites of the KP are known to exert opposite effects on neurons, some being neuroprotective (e.g., picolinic acid, kynurenic acid, and the cofactor nicotinamide adenine dinucleotide), while others are toxic to neurons (e.g., 3-hydroxykynurenine, quinolinic acid). Not only the alterations in the levels of the metabolites but also disturbances in their ratio (quinolinic acid/kynurenic acid) have been reported in several diseases. In addition to the metabolites, the enzymes participating in the KP have been unearthed to be involved in modulation of the immune system, the energetic upkeep of neurons and have been shown to influence redox processes and inflammatory cascades, revealing a sophisticated, intertwined system. This review considers various methods through which enzymes and metabolites of the kynurenine pathway influence the immune system, the roles they play in the pathogenesis of neuroinflammatory diseases based on current evidence with a focus on their involvement in multiple sclerosis, as well as therapeutic approaches.
Collapse
Affiliation(s)
- Tamás Biernacki
- Department of Neurology, Faculty of General Medicine, Albert Szent-Györgyi Clinical Centre, University of Szeged, H-6725 Szeged, Hungary; (T.B.); (D.S.); (K.B.)
| | - Dániel Sandi
- Department of Neurology, Faculty of General Medicine, Albert Szent-Györgyi Clinical Centre, University of Szeged, H-6725 Szeged, Hungary; (T.B.); (D.S.); (K.B.)
| | - Krisztina Bencsik
- Department of Neurology, Faculty of General Medicine, Albert Szent-Györgyi Clinical Centre, University of Szeged, H-6725 Szeged, Hungary; (T.B.); (D.S.); (K.B.)
| | - László Vécsei
- Department of Neurology, Faculty of General Medicine, Albert Szent-Györgyi Clinical Centre, University of Szeged, H-6725 Szeged, Hungary; (T.B.); (D.S.); (K.B.)
- MTA—SZTE Neuroscience Research Group, H-6725 Szeged, Hungary
- Interdisciplinary Excellence Center, University of Szeged, H-6720 Szeged, Hungary
- Correspondence: ; Tel.: +36-62-545-356; Fax: +36-62-545-597
| |
Collapse
|
23
|
Cerebrospinal Fluid Neurofilament Light Chain Is Associated with Kynurenine Pathway Metabolite Changes in Multiple Sclerosis. Int J Mol Sci 2020; 21:ijms21082665. [PMID: 32290514 PMCID: PMC7216195 DOI: 10.3390/ijms21082665] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/02/2020] [Accepted: 04/08/2020] [Indexed: 12/13/2022] Open
Abstract
Neurofilament light (NFL) has proved to be a good prognostic factor in multiple sclerosis (MS), as its level is proportionally elevated with extended neuraxonal damage. The involvement of the kynurenine pathway in neuroinflammation has been proved. The precursor of this pathway is the essential amino acid tryptophan, which is catabolized 95% towards kynurenine metabolites. Quinolinic acid (QUIN) within the brain is only produced in activated microglia and macrophages, leading to axonal degeneration via the activation of N-Methyl-D-aspartate receptors. Neopterin is a biomarker for inflammation produced by macrophages. The association of these biomarkers has not previously been investigated. Our aim was to assess whether there is an association of the neurodegenerative biomarker NFL with the markers of neuroinflammation, e.g., kynurenine metabolites and neopterin, in the cerebrospinal fluid (CSF). CSF samples of patients with MS (pwMS; n = 37) and age-matched controls (n = 22) were compared for NFL levels by ELISA, while the kynurenine pathway metabolites tryptophan and neopterin were detected with mass spectrometry. Spearman’s correlation showed that NFL is an independent predictor of neurological disability in the MS group. Significant correlations were found between NFL, neopterin, and QUIN, and between kynurenine and neopterin. Receiver operating characteristic (ROC) curve analysis was used to plot the top three best predictors of MS-related disability that yielded the best specificity and sensitivity. Normalized NFL (AUC: 0.923), QUIN (AUC: 0.803), and neopterin (AUC: 0.843) were the best independent predictors of neurological disability in pwMS. The CSF NFL and CSF QUIN, together with neopterin, were elevated in the CSF of pwMS compared to controls. The combination of the neurodegenerative biomarkers together with biomarkers of neuroinflammation could provide additional information on the underlying pathomechanism of disease activity, which is essential for the identification of patients at risk of developing cumulative disabilities.
Collapse
|
24
|
Dudzińska E, Szymona K, Kloc R, Gil-Kulik P, Kocki T, Świstowska M, Bogucki J, Kocki J, Urbanska EM. Increased expression of kynurenine aminotransferases mRNA in lymphocytes of patients with inflammatory bowel disease. Therap Adv Gastroenterol 2019; 12:1756284819881304. [PMID: 31666808 PMCID: PMC6801885 DOI: 10.1177/1756284819881304] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 09/18/2019] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Complex interaction of genetic defects with environmental factors seems to play a substantial role in the pathogenesis of inflammatory bowel disease (IBD). Accumulating data implicate a potential role of disturbed tryptophan metabolism in IBD. Kynurenic acid (KYNA), a derivative of tryptophan (TRP) along the kynurenine (KYN) pathway, displays cytoprotective and immunomodulating properties, whereas 3-OH-KYN is a cytotoxic compound, generating free radicals. METHODS The expression of lymphocytic mRNA encoding enzymes synthesizing KYNA (KAT I-III) and serum levels of TRP and its metabolites were evaluated in 55 patients with IBD, during remission or relapse [27 patients with ulcerative colitis (UC) and 28 patients with Crohn's disease (CD)] and in 50 control individuals. RESULTS The increased expression of KAT1 and KAT3 mRNA characterized the entire cohorts of patients with UC and CD, as well as relapse-remission subsets. Expression of KAT2 mRNA was enhanced in patients with UC and in patients with CD in remission. In the entire cohorts of UC or CD, TRP levels were lower, whereas KYN, KYNA and 3-OH-KYN were not altered. When analysed in subsets of patients with UC and CD (active phase-remission), KYNA level was significantly lower during remission than relapse, yet not versus control. Functionally, in the whole groups of patients with UC or CD, the TRP/KYN ratio has been lower than control, whereas KYN/KYNA and KYNA/3-OH-KYN ratios were not altered. The ratio KYN/3-OH-KYN increased approximately two-fold among all patients with CD; furthermore, patients with CD with relapse, manifested a significantly higher KYNA/3-OH-KYN ratio than patients in remission. CONCLUSION The presented data indicate that IBD is associated with an enhanced expression of genes encoding KYNA biosynthetic enzymes in lymphocytes; however, additional mechanisms appear to influence KYNA levels. Higher metabolic conversion of serum TRP in IBD seems to be followed by the functional shift of KYN pathway towards the arm producing KYNA during exacerbation. We propose that KYNA, possibly via interaction with aryl hydrocarbon receptor or G-protein-coupled orphan receptor 35, may serve as a counter-regulatory mechanism, decreasing cytotoxicity and inflammation in IBD. Further longitudinal studies evaluating the individual dynamics of TRP and KYN pathway in patients with IBD, as well as the nature of precise mechanisms regulating KYNA synthesis, should be helpful in better understanding the processes underlying the observed changes.
Collapse
Affiliation(s)
- Ewa Dudzińska
- Medical University of Lublin, Chodźki 1 Street,
Lublin, 20-093, Lubelskie, Poland
| | - Kinga Szymona
- Medical University of Lublin, Lublin, Lubelskie,
Poland
| | - Renata Kloc
- Department of Experimental and Clinical
Pharmacology, Medical University of Lublin, Lublin, Lubelskie, Poland
| | - Paulina Gil-Kulik
- Department of Clinical Genetics, Medical
University of Lublin, Lublin, Lubelskie, Poland
| | - Tomasz Kocki
- Department of Experimental and Clinical
Pharmacology, Medical University of Lublin, Lublin, Lubelskie, Poland
| | - Małgorzata Świstowska
- Department of Clinical Genetics, Medical
University of Lublin, Lublin, Lubelskie, Poland
| | - Jacek Bogucki
- Department of Clinical Genetics, Medical
University of Lublin, Lublin, Lubelskie, Poland
| | - Janusz Kocki
- Department of Clinical Genetics, Medical
University of Lublin, Lublin, Lubelskie, Poland
| | - Ewa M. Urbanska
- Department of Experimental and Clinical
Pharmacology, Medical University of Lublin, Lublin, Lubelskie, Poland
| |
Collapse
|
25
|
Biochemical Differences in Cerebrospinal Fluid between Secondary Progressive and Relapsing⁻Remitting Multiple Sclerosis. Cells 2019; 8:cells8020084. [PMID: 30678351 PMCID: PMC6406712 DOI: 10.3390/cells8020084] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 01/16/2019] [Accepted: 01/22/2019] [Indexed: 11/29/2022] Open
Abstract
To better understand the pathophysiological differences between secondary progressive multiple sclerosis (SPMS) and relapsing-remitting multiple sclerosis (RRMS), and to identify potential biomarkers of disease progression, we applied high-resolution mass spectrometry (HRMS) to investigate the metabolome of cerebrospinal fluid (CSF). The biochemical differences were determined using partial least squares discriminant analysis (PLS-DA) and connected to biochemical pathways as well as associated to clinical and radiological measures. Tryptophan metabolism was significantly altered, with perturbed levels of kynurenate, 5-hydroxytryptophan, 5-hydroxyindoleacetate, and N-acetylserotonin in SPMS patients compared with RRMS and controls. SPMS patients had altered kynurenine compared with RRMS patients, and altered indole-3-acetate compared with controls. Regarding the pyrimidine metabolism, SPMS patients had altered levels of uridine and deoxyuridine compared with RRMS and controls, and altered thymine and glutamine compared with RRMS patients. Metabolites from the pyrimidine metabolism were significantly associated with disability, disease activity and brain atrophy, making them of particular interest for understanding the disease mechanisms and as markers of disease progression. Overall, these findings are of importance for the characterization of the molecular pathogenesis of SPMS and support the hypothesis that the CSF metabolome may be used to explore changes that occur in the transition between the RRMS and SPMS pathologies.
Collapse
|
26
|
Fakan B, Szalardy L, Vecsei L. Exploiting the Therapeutic Potential of Endogenous Immunomodulatory Systems in Multiple Sclerosis-Special Focus on the Peroxisome Proliferator-Activated Receptors (PPARs) and the Kynurenines. Int J Mol Sci 2019; 20:ijms20020426. [PMID: 30669473 PMCID: PMC6358998 DOI: 10.3390/ijms20020426] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 01/13/2019] [Accepted: 01/15/2019] [Indexed: 01/20/2023] Open
Abstract
Multiple sclerosis (MS) is a progressive neurodegenerative disease, characterized by autoimmune central nervous system (CNS) demyelination attributable to a disturbed balance between encephalitic T helper 1 (Th1) and T helper 17 (Th17) and immunomodulatory regulatory T cell (Treg) and T helper 2 (Th2) cells, and an alternatively activated macrophage (M2) excess. Endogenous molecular systems regulating these inflammatory processes have recently been investigated to identify molecules that can potentially influence the course of the disease. These include the peroxisome proliferator-activated receptors (PPARs), PPARγ coactivator-1alpha (PGC-1α), and kynurenine pathway metabolites. Although all PPARs ameliorate experimental autoimmune encephalomyelitis (EAE), recent evidence suggests that PPARα, PPARβ/δ agonists have less pronounced immunomodulatory effects and, along with PGC-1α, are not biomarkers of neuroinflammation in contrast to PPARγ. Small clinical trials with PPARγ agonists have been published with positive results. Proposed as immunomodulatory and neuroprotective, the therapeutic use of PGC-1α activation needs to be assessed in EAE/MS. The activation of indolamine 2,3-dioxygenase (IDO), the rate-limiting step of the kynurenine pathway of tryptophan (Trp) metabolism, plays crucial immunomodulatory roles. Indeed, Trp metabolites have therapeutic relevance in EAE and drugs with structural analogy to kynurenines, such as teriflunomide, are already approved for MS. Further studies are required to gain deeper knowledge of such endogenous immunomodulatory pathways with potential therapeutic implications in MS.
Collapse
Affiliation(s)
- Bernadett Fakan
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, H-6725 Szeged, Semmelweis u. 6, Hungary.
| | - Levente Szalardy
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, H-6725 Szeged, Semmelweis u. 6, Hungary.
| | - Laszlo Vecsei
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, H-6725 Szeged, Semmelweis u. 6, Hungary.
- MTA-SZTE Neuroscience Research Group, H-6725 Szeged, Semmelweis u. 6, Hungary.
| |
Collapse
|
27
|
Negrotto L, Correale J. Amino Acid Catabolism in Multiple Sclerosis Affects Immune Homeostasis. THE JOURNAL OF IMMUNOLOGY 2017; 198:1900-1909. [PMID: 28130499 DOI: 10.4049/jimmunol.1601139] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 12/24/2016] [Indexed: 12/25/2022]
Abstract
Amino acid catabolism has been implicated in immunoregulatory mechanisms present in several diseases, including autoimmune disorders. Our aims were to assess expression and activity of enzymes involved in Trp and Arg catabolism, as well as to investigate amino acid catabolism effects on the immune system of multiple sclerosis (MS) patients. To this end, 40 MS patients, 30 healthy control subjects, and 30 patients with other inflammatory neurological diseases were studied. Expression and activity of enzymes involved in Trp and Arg catabolism (IDO1, IDO2, Trp 2,3-dioxygenase [TDO], arginase [ARG] 1, ARG2, inducible NO synthetase) were evaluated in PBMCs. Expression of general control nonrepressed 2 serine/threonine kinase and mammalian target of rapamycin (both molecules involved in sensing amino acid levels) was assessed in response to different stimuli modulating amino acid catabolism, as were cytokine secretion levels and regulatory T cell numbers. The results demonstrate that expression and activity of IDO1 and ARG1 were significantly reduced in MS patients compared with healthy control subjects and other inflammatory neurological diseases. PBMCs from MS patients stimulated with a TLR-9 agonist showed reduced expression of general control nonrepressed 2 serine/threonine kinase and increased expression of mammalian target of rapamycin, suggesting reduced amino acid catabolism in MS patients. Functionally, this reduction resulted in a decrease in regulatory T cells, with an increase in myelin basic protein-specific T cell proliferation and secretion of proinflammatory cytokines. In contrast, induction of IDO1 using CTLA-4 or a TLR-3 ligand dampened proinflammatory responses. Overall, these results highlight the importance of amino acid catabolism in the modulation of the immunological responses in MS patients. Molecules involved in these pathways warrant further exploration as potential new therapeutic targets in MS.
Collapse
Affiliation(s)
- Laura Negrotto
- Department of Neurology, Raúl Carrea Institute for Neurological Research, FLENI, 1428 Buenos Aires, Argentina
| | - Jorge Correale
- Department of Neurology, Raúl Carrea Institute for Neurological Research, FLENI, 1428 Buenos Aires, Argentina
| |
Collapse
|
28
|
Serum Compounds of Energy Metabolism Impairment Are Related to Disability, Disease Course and Neuroimaging in Multiple Sclerosis. Mol Neurobiol 2016; 54:7520-7533. [DOI: 10.1007/s12035-016-0257-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 10/24/2016] [Indexed: 12/15/2022]
|
29
|
Lovelace MD, Varney B, Sundaram G, Franco NF, Ng ML, Pai S, Lim CK, Guillemin GJ, Brew BJ. Current Evidence for a Role of the Kynurenine Pathway of Tryptophan Metabolism in Multiple Sclerosis. Front Immunol 2016; 7:246. [PMID: 27540379 PMCID: PMC4972824 DOI: 10.3389/fimmu.2016.00246] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 06/10/2016] [Indexed: 12/13/2022] Open
Abstract
The kynurenine pathway (KP) is the major metabolic pathway of the essential amino acid tryptophan (TRP). Stimulation by inflammatory molecules, such as interferon-γ (IFN-γ), is the trigger for induction of the KP, driving a complex cascade of production of both neuroprotective and neurotoxic metabolites, and in turn, regulation of the immune response and responses of brain cells to the KP metabolites. Consequently, substantial evidence has accumulated over the past couple of decades that dysregulation of the KP and the production of neurotoxic metabolites are associated with many neuroinflammatory and neurodegenerative diseases, including Parkinson’s disease, AIDS-related dementia, motor neurone disease, schizophrenia, Huntington’s disease, and brain cancers. In the past decade, evidence of the link between the KP and multiple sclerosis (MS) has rapidly grown and has implicated the KP in MS pathogenesis. KP enzymes, indoleamine 2,3-dioxygenase (IDO-1) and tryptophan dioxygenase (highest expression in hepatic cells), are the principal enzymes triggering activation of the KP to produce kynurenine from TRP. This is in preference to other routes such as serotonin and melatonin production. In neurological disease, degradation of the blood–brain barrier, even if transient, allows the entry of blood monocytes into the brain parenchyma. Similar to microglia and macrophages, these cells are highly responsive to IFN-γ, which upregulates the expression of enzymes, including IDO-1, producing neurotoxic KP metabolites such as quinolinic acid. These metabolites circulate systemically or are released locally in the brain and can contribute to the excitotoxic death of oligodendrocytes and neurons in neurological disease principally by virtue of their agonist activity at N-methyl-d-aspartic acid receptors. The latest evidence is presented and discussed. The enzymes that control the checkpoints in the KP represent an attractive therapeutic target, and consequently several KP inhibitors are currently in clinical trials for other neurological diseases, and hence may make suitable candidates for MS patients. Underpinning these drug discovery endeavors, in recent years, several advances have been made in how KP metabolites are assayed in various biological fluids, and tremendous advancements have been made in how specimens are imaged to determine disease progression and involvement of various cell types and molecules in MS.
Collapse
Affiliation(s)
- Michael D Lovelace
- Applied Neurosciences Program, Peter Duncan Neurosciences Research Unit, St Vincent's Centre for Applied Medical Research, Sydney, NSW, Australia; Faculty of Medicine, St Vincent's Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - Bianca Varney
- Applied Neurosciences Program, Peter Duncan Neurosciences Research Unit, St Vincent's Centre for Applied Medical Research , Sydney, NSW , Australia
| | - Gayathri Sundaram
- Applied Neurosciences Program, Peter Duncan Neurosciences Research Unit, St Vincent's Centre for Applied Medical Research , Sydney, NSW , Australia
| | - Nunzio F Franco
- Applied Neurosciences Program, Peter Duncan Neurosciences Research Unit, St Vincent's Centre for Applied Medical Research , Sydney, NSW , Australia
| | - Mei Li Ng
- Faculty of Medicine, Sydney Medical School, University of Sydney , Sydney, NSW , Australia
| | - Saparna Pai
- Sydney Medical School, University of Sydney , Sydney, NSW , Australia
| | - Chai K Lim
- Neuroinflammation Group, Faculty of Medicine and Health Sciences, Macquarie University , Sydney, NSW , Australia
| | - Gilles J Guillemin
- Neuroinflammation Group, Faculty of Medicine and Health Sciences, Macquarie University , Sydney, NSW , Australia
| | - Bruce J Brew
- Applied Neurosciences Program, Peter Duncan Neurosciences Research Unit, St Vincent's Centre for Applied Medical Research, Sydney, NSW, Australia; Faculty of Medicine, St Vincent's Clinical School, University of New South Wales, Sydney, NSW, Australia; Department of Neurology, St Vincent's Hospital, Sydney, NSW, Australia
| |
Collapse
|
30
|
Ibitoye R, Kemp K, Rice C, Hares K, Scolding N, Wilkins A. Oxidative stress-related biomarkers in multiple sclerosis: a review. Biomark Med 2016; 10:889-902. [PMID: 27416337 DOI: 10.2217/bmm-2016-0097] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM To provide an up-to-date review of oxidative stress biomarkers in multiple sclerosis and thus identify candidate molecules with greatest promise as biomarkers of diagnosis, disease activity or prognosis. METHOD A semi-systematic literature search using PubMed and other databases. RESULTS Nitric oxide metabolites, superoxide dismutase, catalase, glutathione reductase, inducible nitric oxide synthase, protein carbonyl, 3-nitrotyrosine, isoprostanes, malondialdehyde and products of DNA oxidation have been identified across multiple studies as having promise as diagnostic, therapeutic or prognostic markers in MS. CONCLUSION Heterogeneity of study design, particularly patient selection, limits comparability across studies. Further cohort studies are needed, and we would recommend promising markers be incorporated into future clinical trials to prospectively validate their potential.
Collapse
Affiliation(s)
- Richard Ibitoye
- Institute of Clinical Neurosciences, University of Bristol/Level 1, Learning & Research, Southmead Hospital, Southmead Road, Bristol, BS10 5NB, UK
| | - Kevin Kemp
- Institute of Clinical Neurosciences, University of Bristol/Level 1, Learning & Research, Southmead Hospital, Southmead Road, Bristol, BS10 5NB, UK
| | - Claire Rice
- Institute of Clinical Neurosciences, University of Bristol/Level 1, Learning & Research, Southmead Hospital, Southmead Road, Bristol, BS10 5NB, UK
| | - Kelly Hares
- Institute of Clinical Neurosciences, University of Bristol/Level 1, Learning & Research, Southmead Hospital, Southmead Road, Bristol, BS10 5NB, UK
| | - Neil Scolding
- Institute of Clinical Neurosciences, University of Bristol/Level 1, Learning & Research, Southmead Hospital, Southmead Road, Bristol, BS10 5NB, UK
| | - Alastair Wilkins
- Institute of Clinical Neurosciences, University of Bristol/Level 1, Learning & Research, Southmead Hospital, Southmead Road, Bristol, BS10 5NB, UK
| |
Collapse
|
31
|
Aeinehband S, Brenner P, Ståhl S, Bhat M, Fidock MD, Khademi M, Olsson T, Engberg G, Jokinen J, Erhardt S, Piehl F. Cerebrospinal fluid kynurenines in multiple sclerosis; relation to disease course and neurocognitive symptoms. Brain Behav Immun 2016; 51:47-55. [PMID: 26189678 DOI: 10.1016/j.bbi.2015.07.016] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Revised: 06/22/2015] [Accepted: 07/14/2015] [Indexed: 12/14/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory and neurodegenerative disease of the central nervous system, with a high rate of neurocognitive symptoms for which the molecular background is still uncertain. There is accumulating evidence for dysregulation of the kynurenine pathway (KP) in different psychiatric and neurodegenerative conditions. We here report the first comprehensive analysis of cerebrospinal fluid (CSF) kynurenine metabolites in MS patients of different disease stages and in relation to neurocognitive symptoms. Levels of tryptophan (TRP), kynurenine (KYN), kynurenic acid (KYNA) and quinolinic acid (QUIN) were determined with liquid chromatography mass spectrometry in cell-free CSF. At the group level MS patients (cohort 1; n=71) did not differ in absolute levels of TRP, KYN, KYNA or QUIN as compared to non-inflammatory neurological disease controls (n=20). Stratification of patients into different disease courses revealed that both absolute QUIN levels and the QUIN/KYN ratio were increased in relapsing-remitting MS (RRMS) patients in relapse. Interestingly, secondary progressive MS (SPMS) displayed a trend for lower TRP and KYNA, while primary progressive (PPMS) patients displayed increased levels of all metabolites, similar to a group of inflammatory neurological disease controls (n=13). In the second cohort (n=48), MS patients with active disease and short disease duration were prospectively evaluated for neuropsychiatric symptoms. In a supervised multivariate analysis using orthogonal projection to latent structures (OPLS-DA) depressed patients displayed higher KYNA/TRP and KYN/TRP ratios, mainly due to low TRP levels. Still, this model had low predictive value and could not completely separate the clinically depressed patients from the non-depressed MS patients. No correlation was evident for other neurocognitive measures. Taken together these results demonstrate that clinical disease activity and differences in disease courses are reflected by changes in KP metabolites. Increased QUIN levels of RRMS patients in relapse and generally decreased levels of TRP in SPMS may relate to neurotoxicity and failure of remyelination, respectively. In contrast, PPMS patients displayed a more divergent pattern more resembling inflammatory conditions such as systemic lupus erythematosus. The pattern of KP metabolites in RRMS patients could not predict neurocognitive symptoms.
Collapse
Affiliation(s)
- Shahin Aeinehband
- Department of Clinical Neuroscience, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.
| | - Philip Brenner
- Department of Clinical Neuroscience, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Sara Ståhl
- Department of Clinical Neuroscience, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Maria Bhat
- Department of Clinical Neuroscience, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden; AstraZeneca, Research & Development, Innovative Medicines, Personalized Healthcare & Biomarkers, Science for Life Laboratory, Stockholm, Sweden
| | - Mark D Fidock
- AstraZeneca, Research & Development, Innovative Medicines, Personalized Healthcare & Biomarkers, Science for Life Laboratory, Stockholm, Sweden
| | - Mohsen Khademi
- Department of Clinical Neuroscience, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Tomas Olsson
- Department of Clinical Neuroscience, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Göran Engberg
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Jussi Jokinen
- Department of Clinical Neuroscience, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden; Department of Clinical Sciences, Umeå University, Umeå, Sweden
| | - Sophie Erhardt
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Fredrik Piehl
- Department of Clinical Neuroscience, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
32
|
O'Farrell K, Harkin A. Stress-related regulation of the kynurenine pathway: Relevance to neuropsychiatric and degenerative disorders. Neuropharmacology 2015; 112:307-323. [PMID: 26690895 DOI: 10.1016/j.neuropharm.2015.12.004] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 12/02/2015] [Accepted: 12/08/2015] [Indexed: 02/08/2023]
Abstract
The kynurenine pathway (KP), which is activated in times of stress and infection has been implicated in the pathophysiology of neurodegenerative and psychiatric disorders. Activation of this tryptophan metabolising pathway results in the production of neuroactive metabolites which have the potential to interfere with normal neuronal functioning which may contribute to altered neuronal transmission and the emergence of symptoms of these brain disorders. This review investigates the involvement of the KP in a range of neurological disorders, examining recent in vitro, in vivo and clinical discoveries highlights evidence to indicate that the KP is a potential therapeutic target in both neurodegenerative and stress-related neuropsychiatric disorders. Furthermore, this review identifies gaps in our knowledge with regard to this field which are yet to be examined to lead to a more comprehensive understanding of the role of KP activation in brain health and disease. This article is part of the Special Issue entitled 'The Kynurenine Pathway in Health and Disease'.
Collapse
Affiliation(s)
- Katherine O'Farrell
- Neuropsychopharmacology Research Group, School of Pharmacy and Pharmaceutical Sciences & Trinity College Institute of Neuroscience, Trinity College Dublin, Ireland
| | - Andrew Harkin
- Neuropsychopharmacology Research Group, School of Pharmacy and Pharmaceutical Sciences & Trinity College Institute of Neuroscience, Trinity College Dublin, Ireland; Neuroimmunology Research Group, Department of Physiology, School of Medicine & Trinity College Institute of Neuroscience, Trinity College Dublin, Ireland.
| |
Collapse
|
33
|
Dabrowski W, Kwiecien JM, Rola R, Klapec M, Stanisz GJ, Kotlinska-Hasiec E, Oakden W, Janik R, Coote M, Frey BN, Turski WA. Prolonged Subdural Infusion of Kynurenic Acid Is Associated with Dose-Dependent Myelin Damage in the Rat Spinal Cord. PLoS One 2015; 10:e0142598. [PMID: 26562835 PMCID: PMC4643054 DOI: 10.1371/journal.pone.0142598] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 10/23/2015] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Kynurenic acid (KYNA) is the end stage metabolite of tryptophan produced mainly by astrocytes in the central nervous system (CNS). It has neuroprotective activities but can be elevated in the neuropsychiatric disorders. Toxic effects of KYNA in the CNS are unknown. The aim of this study was to assess the effect of the subdural KYNA infusion on the spinal cord in adult rats. METHODS A total of 42 healthy adult rats were randomly assigned into six groups and were infused for 7 days with PBS (control) or 0.0002 pmol/min, 0.01 nmol/min, 0.1 nmol/min, 1 nmol/min, and 10 nmol/min of KYNA per 7 days. The effect of KYNA on spinal cord was determined using histological and electron microscopy examination. Myelin oligodendrocyte glycoprotein (MOG) was measured in the blood serum to assess a degree of myelin damage. RESULT In all rats continuous long-lasting subdural KYNA infusion was associated with myelin damage and myelin loss that was increasingly widespread in a dose-depended fashion in peripheral, sub-pial areas. Damage to myelin sheaths was uniquely related to the separation of lamellae at the intraperiod line. The damaged myelin sheaths and areas with complete loss of myelin were associated with limited loss of scattered axons while vast majority of axons in affected areas were morphologically intact. The myelin loss-causing effect of KYNA occurred with no necrosis of oligodendrocytes, with locally severe astrogliosis and no cellular inflammatory response. Additionally, subdural KYNA infusion increased blood MOG concentration. Moreover, the rats infused with the highest doses of KYNA (1 and 10 nmol/min) demonstrated adverse neurological signs including weakness and quadriplegia. CONCLUSIONS We suggest, that subdural infusion of high dose of KYNA can be used as an experimental tool for the study of mechanisms of myelin damage and regeneration. On the other hand, the administration of low, physiologically relevant doses of KYNA may help to discover the role of KYNA in control of physiological myelination process.
Collapse
Affiliation(s)
- Wojciech Dabrowski
- Department of Anaesthesiology and Intensive Therapy Medical University, Lublin, Poland
- * E-mail:
| | - Jacek M. Kwiecien
- Department of Pathology and Molecular Medicine, M. deGroote School of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Radoslaw Rola
- Department of Neurosurgery and Paediatric Neurosurgery Medical University, Lublin, Poland
| | - Michal Klapec
- Department of Orthopaedic and Traumatology Medical University, Lublin, Poland
| | - Greg J. Stanisz
- Department of Medical Biophysics, University of Toronto, Ontario, Canada
- Physical Sciences Platform, Sunnybrook Research Institute, Ontario, Canada
| | | | - Wendy Oakden
- Department of Medical Biophysics, University of Toronto, Ontario, Canada
| | - Rafal Janik
- Department of Medical Biophysics, University of Toronto, Ontario, Canada
| | - Margaret Coote
- Department of Psychiatry and Behavioural Neurosciences, M. deGroote School of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Benicio N. Frey
- Department of Psychiatry and Behavioural Neurosciences, M. deGroote School of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Waldemar A. Turski
- Department of Experimental and Clinical Pharmacology, Medical University, Lublin, Poland
| |
Collapse
|
34
|
Kynurenines and Multiple Sclerosis: The Dialogue between the Immune System and the Central Nervous System. Int J Mol Sci 2015; 16:18270-82. [PMID: 26287161 PMCID: PMC4581244 DOI: 10.3390/ijms160818270] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 07/22/2015] [Accepted: 07/23/2015] [Indexed: 11/16/2022] Open
Abstract
Multiple sclerosis is an inflammatory disease of the central nervous system, in which axonal transection takes place in parallel with acute inflammation to various, individual extents. The importance of the kynurenine pathway in the physiological functions and pathological processes of the nervous system has been extensively investigated, but it has additionally been implicated as having a regulatory function in the immune system. Alterations in the kynurenine pathway have been described in both preclinical and clinical investigations of multiple sclerosis. These observations led to the identification of potential therapeutic targets in multiple sclerosis, such as synthetic tryptophan analogs, endogenous tryptophan metabolites (e.g., cinnabarinic acid), structural analogs (laquinimod, teriflunomid, leflunomid and tranilast), indoleamine-2,3-dioxygenase inhibitors (1MT and berberine) and kynurenine-3-monooxygenase inhibitors (nicotinylalanine and Ro 61-8048). The kynurenine pathway is a promising novel target via which to influence the immune system and to achieve neuroprotection, and further research is therefore needed with the aim of developing novel drugs for the treatment of multiple sclerosis and other autoimmune diseases.
Collapse
|
35
|
Dounay AB, Tuttle JB, Verhoest PR. Challenges and Opportunities in the Discovery of New Therapeutics Targeting the Kynurenine Pathway. J Med Chem 2015. [DOI: 10.1021/acs.jmedchem.5b00461] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Amy B. Dounay
- Department
of Chemistry and Biochemistry, Colorado College, 14 E. Cache
La Poudre Street, Colorado Springs, Colorado 80903, United States
| | - Jamison B. Tuttle
- Worldwide Medicinal Chemistry, Pfizer Worldwide Research & Development, Cambridge, Massachusetts 02139, United States
| | - Patrick R. Verhoest
- Worldwide Medicinal Chemistry, Pfizer Worldwide Research & Development, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
36
|
Barateiro A, Afonso V, Santos G, Cerqueira JJ, Brites D, van Horssen J, Fernandes A. S100B as a Potential Biomarker and Therapeutic Target in Multiple Sclerosis. Mol Neurobiol 2015; 53:3976-3991. [DOI: 10.1007/s12035-015-9336-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 07/01/2015] [Indexed: 12/30/2022]
|
37
|
Changing the face of kynurenines and neurotoxicity: therapeutic considerations. Int J Mol Sci 2015; 16:9772-93. [PMID: 25938971 PMCID: PMC4463617 DOI: 10.3390/ijms16059772] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 04/09/2015] [Accepted: 04/13/2015] [Indexed: 12/14/2022] Open
Abstract
Kynurenines are the products of tryptophan metabolism. Among them, kynurenine and kynurenic acid are generally thought to have neuroprotective properties, while 3-hydroxykynurenine, 3-hydroxyanthranilic acid and quinolinic acid are considered neurotoxic. They participate in immunoregulation and inflammation and possess pro- or anti-excitotoxic properties, and their involvement in oxidative stress has also been suggested. Consequently, it is not surprising that kynurenines have been closely related to neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis and multiple sclerosis. More information about the less-known metabolites, picolinic and cinnabarinic acid, evaluation of new receptorial targets, such as aryl-hydrocarbon receptors, and intensive research on the field of the immunomodulatory function of kynurenines delineated the high importance of this pathway in general homeostasis. Emerging knowledge about the kynurenine pathway provides new target points for the development of therapeutical solutions against neurodegenerative diseases.
Collapse
|
38
|
Campbell BM, Charych E, Lee AW, Möller T. Kynurenines in CNS disease: regulation by inflammatory cytokines. Front Neurosci 2014; 8:12. [PMID: 24567701 PMCID: PMC3915289 DOI: 10.3389/fnins.2014.00012] [Citation(s) in RCA: 269] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 01/20/2014] [Indexed: 12/27/2022] Open
Abstract
The kynurenine pathway (KP) metabolizes the essential amino acid tryptophan and generates a number of neuroactive metabolites collectively called the kynurenines. Segregated into at least two distinct branches, often termed the “neurotoxic” and “neuroprotective” arms of the KP, they are regulated by the two enzymes kynurenine 3-monooxygenase and kynurenine aminotransferase, respectively. Interestingly, several enzymes in the pathway are under tight control of inflammatory mediators. Recent years have seen a tremendous increase in our understanding of neuroinflammation in CNS disease. This review will focus on the regulation of the KP by inflammatory mediators as it pertains to neurodegenerative and psychiatric disorders.
Collapse
Affiliation(s)
- Brian M Campbell
- Neuroinflammation Disease Biology Unit, Lundbeck Research USA Paramus, NJ, USA
| | - Erik Charych
- Neuroinflammation Disease Biology Unit, Lundbeck Research USA Paramus, NJ, USA
| | - Anna W Lee
- Neuroinflammation Disease Biology Unit, Lundbeck Research USA Paramus, NJ, USA
| | - Thomas Möller
- Neuroinflammation Disease Biology Unit, Lundbeck Research USA Paramus, NJ, USA
| |
Collapse
|
39
|
Benjamins JA. Direct effects of secretory products of immune cells on neurons and glia. J Neurol Sci 2013; 333:30-6. [DOI: 10.1016/j.jns.2013.06.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2013] [Revised: 05/30/2013] [Accepted: 06/02/2013] [Indexed: 11/29/2022]
|
40
|
Serum nicotinamide adenine dinucleotide levels through disease course in multiple sclerosis. Brain Res 2013; 1537:267-72. [PMID: 23973746 DOI: 10.1016/j.brainres.2013.08.025] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 08/02/2013] [Accepted: 08/13/2013] [Indexed: 12/22/2022]
Abstract
The levels of the essential pyridine nucleotide, NAD(+) and its reduced form NADH have not been documented in MS patients. We aimed to investigate NAD(+) and NADH levels in serum in patients with different disease stages and forms of MS. NAD(+) and NADH levels were measured in the serum from 209 patients with relapsing remitting MS (RRMS), 136 with secondary progressive MS (SPMS), 51 with primary progressive MS (PPMS), and 99 healthy controls. All patients were in a clinically stable phase. Serum NAD(+) levels declined by at least 50% in patients with MS compared to controls (17.9 ± 3.2 μg/ml; p=0.0012). Within the MS sub-groups NAD(+) levels were higher in RRMS (9.9 ± 2.9 μg/ml; p=0.001) compared to PPMS (6.3 ± 2.1 μg/ml; p=0.003) and SPMS (7.8 ± 2.0 μg/ml; p=0.005). A two-fold increase in NADH levels (p=0.002) and at least three-fold reduction in the NAD(+)/NADH ratio (p=0.009) were observed in MS patients compared to controls. Serum NAD(+) and NADH levels are may be associated with disease progression in MS. Given the importance of NAD(+) in the maintenance of normal cellular function, it is likely that this molecule is of therapeutic relevance in MS.
Collapse
|
41
|
Abstract
Various pathologies of the central nervous system (CNS) are accompanied by alterations in tryptophan metabolism. The main metabolic route of tryptophan degradation is the kynurenine pathway; its metabolites are responsible for a broad spectrum of effects, including the endogenous regulation of neuronal excitability and the initiation of immune tolerance. This Review highlights the involvement of the kynurenine system in the pathology of neurodegenerative disorders, pain syndromes and autoimmune diseases through a detailed discussion of its potential implications in Huntington's disease, migraine and multiple sclerosis. The most effective preclinical drug candidates are discussed and attention is paid to currently under-investigated roles of the kynurenine pathway in the CNS, where modulation of kynurenine metabolism might be of therapeutic value.
Collapse
|
42
|
Abstract
Psychiatric disorders are documented to be associated with a mild pro-inflammatory state. Pro-inflammatory mediators could activate the tryptophan breakdown and kynurenine pathway with a shift toward the neurotoxic arm where excitotoxic N-methyl-D-aspartate receptor agonist quinolinic acid is formed. An unbalanced metabolism in terms of neuroprotective and neurotoxic effects, such as reduced kynurenic acid to kynurenine ratio, has been demonstrated in the major psychiatric disorders such as unipolar depression, bipolar manic-depressive disorder and schizophrenia, and in drug-induced neuropsychiatric side effects such as interferon-α treated patients. The changes in serum or plasma are shown to be associated with central changes such as in the cerebrospinal fluid and certain brain areas. While currently available antidepressants and mood stabilizers could not efficiently improve these neurochemical changes within the same period that could induce clinical improvement, some antipsychotic treatments could reverse certain metabolic imbalances. Some of these changes were tested also in animal models. In this review the role of this unbalanced kynurenine metabolism through interactions with other neurochemicals is discussed as a major contributing pathophysiological mechanism in psychiatric disorders. Moreover, the biomarker role of kynurenine metabolites and future therapeutic opportunities are also discussed.
Collapse
Affiliation(s)
- Aye M Myint
- Psychiatric Hospital, Ludwig-Maximilian University, Munich, Germany.
| |
Collapse
|
43
|
The role of kynurenines in the pathomechanism of amyotrophic lateral sclerosis and multiple sclerosis: therapeutic implications. J Neural Transm (Vienna) 2012; 119:225-34. [DOI: 10.1007/s00702-012-0765-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Accepted: 01/09/2012] [Indexed: 12/14/2022]
|
44
|
Szabó N, Kincses ZT, Toldi J, Vécsei L. Altered tryptophan metabolism in Parkinson's disease: A possible novel therapeutic approach. J Neurol Sci 2011; 310:256-60. [DOI: 10.1016/j.jns.2011.07.021] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Revised: 07/13/2011] [Accepted: 07/14/2011] [Indexed: 02/06/2023]
|
45
|
Serum metabolic profile in multiple sclerosis patients. Mult Scler Int 2011; 2011:167156. [PMID: 22096628 PMCID: PMC3196932 DOI: 10.1155/2011/167156] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Revised: 03/30/2011] [Accepted: 05/02/2011] [Indexed: 12/31/2022] Open
Abstract
Multiple sclerosis (MS) is a progressive demyelinating process considered as an autoimmune disease, although the causes of this pathology have not been yet fully established. Similarly to other neurodegenerations, MS is characterized by a series of biochemical changes affecting to different extent neuronal functions; great attention has been given to oxidative/nitrosative stress and to alterations in mitochondrial functions. According to previous data, MS patients show significant changes in the circulating concentrations of different metabolites, although it is still unclear whether uric acid undergoes to decrease, increase, or no change under this pathological condition. In this study, we report the serum metabolic profile in terms of purines, pyrimidines, creatinine, malondialdehyde, ascorbic acid, nitrite, and nitrate in a group of 170 MS patients. The results show increase in circulating uric acid and other oxypurines (hypoxanthine and xanthine), as well as in uridine and β-pseudouridine. The concomitant increase in circulating creatinine, malondialdehyde, nitrite, and nitrate, and decrease in ascorbic acid, demonstrates that MS induces alteration in energy metabolism and in oxidants/antioxidants balance that can be monitored in serum of MS patients.
Collapse
|
46
|
Lim CK, Brew BJ, Sundaram G, Guillemin GJ. Understanding the roles of the kynurenine pathway in multiple sclerosis progression. Int J Tryptophan Res 2010; 3:157-67. [PMID: 22084596 PMCID: PMC3195238 DOI: 10.4137/ijtr.s4294] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The kynurenine pathway (KP) is a major degradative pathway of tryptophan ultimately leading to the production of nicotinamide adenine dinucleotide (NAD+) and is also one of the major regulatory mechanisms of the immune response. The KP is known to be involved in several neuroinflammatory disorders including Alzheimer’s disease, amyotrophic lateral sclerosis, AIDS dementia complex, Parkinson’s disease, schizophrenia, Huntington’s disease and brain tumours. However, the KP remains a relatively new topic for the field of multiple sclerosis (MS). Over the last 2–3 years, some evidence has progressively emerged suggesting that the KP is likely to be involved in the pathogenesis of autoimmune diseases especially MS. Some KP modulators are already in clinical trials for other inflammatory diseases and would potentially provide a new and important therapeutic strategy for MS patients. This review summarizes the known relationships between the KP and MS.
Collapse
Affiliation(s)
- Chai K Lim
- Department of Pharmacology, School of Medical Sciences, University of New South Wales, Sydney 2052, Australia
| | | | | | | |
Collapse
|
47
|
Effects of S100B on Serotonergic Plasticity and Neuroinflammation in the Hippocampus in Down Syndrome and Alzheimer's Disease: Studies in an S100B Overexpressing Mouse Model. Cardiovasc Psychiatry Neurol 2010; 2010. [PMID: 20827311 PMCID: PMC2933893 DOI: 10.1155/2010/153657] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Revised: 06/01/2010] [Accepted: 07/02/2010] [Indexed: 12/17/2022] Open
Abstract
S100B promotes development and maturation in the mammalian brain. However, prolonged or extensive exposure can lead to neurodegeneration. Two important functions of S100B in this regard, are its role in the development and plasticity of the serotonergic neurotransmitter system, and its role in the cascade of glial changes associated with neuroinflammation. Both of these processes are therefore accelerated towards degeneration in disease processes wherein S100B is increased, notably, Alzheimer's disease (AD) and Down syndrome (DS).
In order to study the role of S100B in this context, we have examined S100B overexpressing transgenic mice. Similar to AD and DS, the transgenic animals show a profound change in serotonin innervation. By 28 weeks of age, there is a significant loss of terminals in the hippocampus. Similarly, the transgenic animals show neuroinflammatory changes analogous with AD and DS. These include decreased numbers of mature, stable astroglial cells, increased numbers of activated microglial cells and increased microglial expression of the cell surface receptor RAGE. Eventually, the S100B transgenic animals show neurodegeneration and the appearance of hyperphosphorylated tau structures, as seen in late stage DS and AD. The role of S100B in these conditions is discussed.
Collapse
|
48
|
Yao S, Pandey P, Ljunggren-Rose A, Sriram S. LPS mediated injury to oligodendrocytes is mediated by the activation of nNOS: relevance to human demyelinating disease. Nitric Oxide 2009; 22:197-204. [PMID: 20005301 DOI: 10.1016/j.niox.2009.12.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2009] [Revised: 11/19/2009] [Accepted: 12/06/2009] [Indexed: 10/20/2022]
Abstract
Loss of oligodendrocytes and the destruction of myelin form the core features of inflammatory demyelinating disease. Although many of the inflammatory and cellular mediators of tissue injury are known, recent studies have suggested an important role for nitric oxide NO and other reactive nitrogen species in oligodendrocyte injury. The human transformed oligodendrocyte cell line, MO3.13 cells, express Toll like receptor genes (TLR) genes and are activated by lipopolysaccharide (LPS). We determined the activation and consequences of neuronal nitric oxide synthase (nNOS) following stimulation with LPS in the MO3.13 cell line. Our studies show that MO3.13 cells induce nNOS following stimulation with LPS. Most importantly, these studies show a susceptibility of MO3.13 cells to NO mediated cell death by the activation of nNOS but not of inducible NOS (iNOS). MO3.13 cells show increased susceptibility to peroxynitrite mediated cellular injury to mitochondrial proteins and decreased cell survival in the presence of LPS. Our studies suggest that the presence and activation of nNOS in oligodendrocytes can directly mediate oligodendrocyte (OC) injury and reduce cell viability.
Collapse
Affiliation(s)
- S Yao
- Department of Neurology, Multiple Sclerosis Research Center, Vanderbilt University Medical Center, Nashville, TN 37212, USA
| | | | | | | |
Collapse
|
49
|
Long-term exposure to nicotine markedly reduces kynurenic acid in rat brain — In vitro and ex vivo evidence. Toxicol Appl Pharmacol 2009; 240:174-9. [DOI: 10.1016/j.taap.2009.07.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2009] [Revised: 07/06/2009] [Accepted: 07/10/2009] [Indexed: 11/18/2022]
|
50
|
Vamos E, Pardutz A, Klivenyi P, Toldi J, Vecsei L. The role of kynurenines in disorders of the central nervous system: possibilities for neuroprotection. J Neurol Sci 2009; 283:21-7. [PMID: 19268309 DOI: 10.1016/j.jns.2009.02.326] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The metabolism of tryptophan mostly proceeds through the kynurenine pathway. The biochemical reaction includes both an agonist (quinolinic acid) at the N-methyl-d-aspartate receptor and an antagonist (kynurenic acid). Besides the N-methyl-d-aspartate antagonism, an important feature of kynurenic acid is the blockade of the alpha7-nicotinic acetylcholine receptor and its influence on the alpha-amino-3-hydroxy-5-methylisoxazole-4-proprionic acid receptor. Kynurenic acid has proven to be neuroprotective in several experimental settings. On the other hand, quinolinic acid is a potent neurotoxin with an additional and marked free radical-producing property. In consequence of these various receptor activities, the possible roles of these substances in various neurological disorders have been proposed. Moreover, the possibility of influencing the kynurenine pathway to reduce quinolinic acid and increase the level of kynurenic acid in the brain offers a new target for drug action designed to change the balance, decreasing excitotoxins and enhancing neuroprotectants. This review surveys both the early and the current research in this field, focusing on the possible therapeutic effects of kynurenines.
Collapse
Affiliation(s)
- Eniko Vamos
- Department of Neurology, Albert Szent-Györgyi Clinical Centre, University of Szeged, Hungary
| | | | | | | | | |
Collapse
|