1
|
Kaur P, Khan H, Grewal AK, Dua K, Singh TG. Therapeutic potential of NOX inhibitors in neuropsychiatric disorders. Psychopharmacology (Berl) 2023; 240:1825-1840. [PMID: 37507462 DOI: 10.1007/s00213-023-06424-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023]
Abstract
RATIONALE Neuropsychiatric disorders encompass a broad category of medical conditions that include both neurology as well as psychiatry such as major depressive disorder, autism spectrum disorder, bipolar disorder, schizophrenia as well as psychosis. OBJECTIVE NADPH-oxidase (NOX), which is the free radical generator, plays a substantial part in oxidative stress in neuropsychiatric disorders. It is thought that elevated oxidative stress as well as neuroinflammation plays a part in the emergence of neuropsychiatric disorders. Including two linked with membranes and four with subunits of cytosol, NOX is a complex of multiple subunits. NOX has been linked to a significant source of reactive oxygen species in the brain. NOX has been shown to control memory processing and neural signaling. However, excessive NOX production has been linked to cardiovascular disorders, CNS degeneration, and neurotoxicity. The increase in NOX leads to the progression of neuropsychiatric disorders. RESULT Our review mainly emphasized the characteristics of NOX and its various mechanisms, the modulation of NOX in various neuropsychiatric disorders, and various studies supporting the fact that NOX might be the potential therapeutic target for neuropsychiatric disorders. CONCLUSION Here, we summarizes various pharmacological studies involving NOX inhibitors in neuropsychiatric disorders.
Collapse
Affiliation(s)
- Parneet Kaur
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, India
| | - Heena Khan
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, India
| | | | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW, 2007, Australia
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | | |
Collapse
|
2
|
Fang J, Sheng R, Qin ZH. NADPH Oxidases in the Central Nervous System: Regional and Cellular Localization and the Possible Link to Brain Diseases. Antioxid Redox Signal 2021; 35:951-973. [PMID: 34293949 DOI: 10.1089/ars.2021.0040] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Significance: The significant role of reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (Nox) in signal transduction is mediated by the production of reactive oxygen species (ROS), especially in the central nervous system (CNS). The pathogenesis of some neurologic and psychiatric diseases is regulated by ROS, acting as a second messenger or pathogen. Recent Advances: In the CNS, the involvement of Nox-derived ROS has been implicated in the regulation of multiple signals, including cell survival/apoptosis, neuroinflammation, migration, differentiation, proliferation, and synaptic plasticity, as well as the integrity of the blood/brain barrier. In these processes, the intracellular signals mediated by the members of the Nox family vary among different tissues. The present review illuminates the regions and cellular, subcellular localization of Nox isoforms in the brain, the signal transduction, and the role of NOX enzymes in pathophysiology, respectively. Critical Issues: Different signal transduction cascades are coupled to ROS derived from various Nox homologues with varying degrees. Therefore, a critical issue worth noting is the varied role of the homologues of NOX enzymes in different signaling pathways and also they mediate different phenotypes in the diverse pathophysiological condition. This substantiates the effectiveness of selective Nox inhibitors in the CNS. Future Directions: Further investigation to elucidate the role of various homologues of NOX enzymes in acute and chronic brain diseases and signaling mechanisms, and the development of more specific NOX inhibitors for the treatment of CNS disease are urgently needed. Antioxid. Redox Signal. 35, 951-973.
Collapse
Affiliation(s)
- Jie Fang
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, College of Pharmaceutical Science, Soochow University, Suzhou, China
| | - Rui Sheng
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, College of Pharmaceutical Science, Soochow University, Suzhou, China
| | - Zheng-Hong Qin
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, College of Pharmaceutical Science, Soochow University, Suzhou, China
| |
Collapse
|
3
|
Towner RA, Saunders D, Smith N, Gulej R, McKenzie T, Lawrence B, Morton KA. Anti-inflammatory agent, OKN-007, reverses long-term neuroinflammatory responses in a rat encephalopathy model as assessed by multi-parametric MRI: implications for aging-associated neuroinflammation. GeroScience 2019; 41:483-494. [PMID: 31478121 PMCID: PMC6815317 DOI: 10.1007/s11357-019-00094-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 08/15/2019] [Indexed: 02/07/2023] Open
Abstract
Lipopolysaccharide (LPS)-induced encephalopathy induces neuroinflammation. Long-term neuroinflammation is associated with aging and subsequent cognitive impairment (CI). We treated rats that had LPS-induced neuroinflammation with OKN-007, with an anti-inflammatory agent currently considered an anti-cancer investigational new drug in clinical trials for glioblastoma (GBM). Contrast-enhanced magnetic resonance imaging (MRI) (CE-MRI), perfusion MRI, and MR spectroscopy were used as methods to assess long-term (up to 6 weeks post-LPS) alterations in blood-brain barrier (BBB) permeability, microvascularity, and metabolism, respectively, and the therapeutic effect of OKN-007. A free radical-targeted molecular MRI approach was also used to detect the effect of OKN-007 on brain free radical levels at 24 h and 1 week post-LPS injection. OKN-007 was able to reduce BBB permeability in the cerebral cortex and hippocampus at 1 week post-LPS using CE-MRI. OKN-007 was able to restore vascular perfusion rates by reducing LPS-induced increased relative cerebral blood flow (rCBF) in the cortex and hippocampus regions at all time points studied (1, 3, and 6 weeks post-LPS). OKN-007 was also able to restore LPS-induced brain metabolite depletions. NAA/Cho, Cr/Cho, and Myo-Ins/Cho metabolite ratios at 1, 3, and 6 weeks post-LPS were all restored to normal levels following OKN-007 treatment. OKN-007 also reduced LPS-induced free radical levels at 24 h and 1 week post-LPS, as detected by free radical-targeted MRI. LPS-exposed rats were compared with saline-treated controls and LPS + OKN-007-treated animals. We clearly demonstrated that OKN-007 restores LPS-induced BBB dysfunction, impaired vascularity, and decreased brain metabolites, all long-term neuroinflammatory indicators, as well as decreases free radicals in a LPS-induced neuroinflammation model. OKN-007 should be considered an anti-inflammatory agent for age-associated neuroinflammation.
Collapse
Affiliation(s)
- Rheal A Towner
- Advanced Magnetic Resonance Center, Oklahoma Medical Research Foundation, 825 N.E. 13th Street, Oklahoma City, OK, 73104, USA.
- Oklahoma Nathan Shock Aging Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| | - Debra Saunders
- Advanced Magnetic Resonance Center, Oklahoma Medical Research Foundation, 825 N.E. 13th Street, Oklahoma City, OK, 73104, USA
| | - Nataliya Smith
- Advanced Magnetic Resonance Center, Oklahoma Medical Research Foundation, 825 N.E. 13th Street, Oklahoma City, OK, 73104, USA
| | - Rafal Gulej
- Advanced Magnetic Resonance Center, Oklahoma Medical Research Foundation, 825 N.E. 13th Street, Oklahoma City, OK, 73104, USA
| | - Tyler McKenzie
- Advanced Magnetic Resonance Center, Oklahoma Medical Research Foundation, 825 N.E. 13th Street, Oklahoma City, OK, 73104, USA
| | - Brandy Lawrence
- Advanced Magnetic Resonance Center, Oklahoma Medical Research Foundation, 825 N.E. 13th Street, Oklahoma City, OK, 73104, USA
- Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Kathryn A Morton
- Department of Radiology and Imaging Sciences, University of Utah School of Medicine, Salt Lake City, UT, USA
| |
Collapse
|
4
|
Sommer O, Aug RL, Schmidt AJ, Heiser P, Schulz E, Vedder H, Clement HW. Hydrogen Sulfide Affects Radical Formation in the Hippocampus of LPS Treated Rats and the Effect of Antipsychotics on Hydrogen Sulfide Forming Enzymes in Human Cell Lines. Front Psychiatry 2018; 9:501. [PMID: 30386265 PMCID: PMC6198150 DOI: 10.3389/fpsyt.2018.00501] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 09/24/2018] [Indexed: 12/19/2022] Open
Abstract
Objectives: Psychiatric disorders, such as schizophrenia and other neuroinflammatory diseases are accompanied by an increase in the oxidative stress and changes in the immune system and in the metabolic, hormonal and neurological components of the central nervous system (CNS). Hydrogen sulfide (H2S) is a gaseous molecule that is endogenously produced in the peripheral and central nervous system through cysteine by the following major H2S producing enzymes in the brain: cystathionine-γlyase (CSE), cystathionine ß-synthase (CBS) and 3-mercaptopyruvate sulfurtransferase (MPST). The physiological effects of H2S are broad, with antioxidative properties being a major role in the body. The aims of our investigation were to analyze the central nervous antioxidant, metabolic and neuronal effects in the hippocampus of the rat after inflammatory peripheral lipopolysaccharide (LPS) treatment; and to examine the effects of antipsychotics on the expression of these enzymes in human cell lines. Material and Methods: Male Lewis rats (250 g) received an i.p. LPS injection (1 mg/kg) 24 h before microdialysis experiments. Conscious rats were infused via these probes (1.5 μl/min) with a radical scavenger 1-hydroxy-3-methoxycarbonyl-2,2,5,5-tetramethylpyrrolidine (CMH) in Krebs-Ringer solution. Sodiumhydrogensulfide (NaHS, 10 μg/min) was infused after a 2- h baseline for 1 h. Corticosterone, glutamate, glucose and lactate were measured by Elisa. Reactive oxygen species (ROS) were detected by electron spin resonance spectroscopy (ESR). The impact of the antipsychotics haloperidol, clozapine, olanzapine and risperidone on the expression of genes encoding the key enzymes of H2S synthesis was studied at the human neuroblastoma SH-SY5Y and monocytic U-937 cell lines. The cells were incubated for 24 h with 30 μM antipsychotic following which mRNA levels were measured by polymerase chain reaction. Results: Microdialysate glucose and lactate levels dramatically increased in the hippocampus of LPS untreated rats by local application of NaHS. By contrast, in the LPS pretreated rats, there was no effect of NaHS infusion on glucose but a further significant increase in microdialysate lactate was found. It was LPS pretreatment alone that particularly enhanced lactate levels. There was a marked increase in hippocampal microdialysate glutamate levels after local NaHS infusion in LPS untreated animals. In LPS treated rats, no change was observed by NaHS, but LPS itself had the strongest effect on microdialysate glutamate levels. Microdialysate corticosterone levels were reduced by NaHS in both LPS pretreated and untreated rats. The formation of free radicals in the hippocampus significantly reduced in LPS pretreated rats, while in LPS untreated rats a significant increase was observed after NaHS infusion. In human SH-SY5Y and U-937 cells, all three major enzymes of H2S-Synthesis, namely cystathionine-γ-lyase, cystathione ß-synthase and 3-mercaptopyruvate sulfurtransferase, could be detected by PCR. The antipsychotics haloperidol, clozapine, olanzapine and risperidone affected all three enzymes in different ways; with haloperidol and risperidone showing major effects that led to reductions in CBS or CSE expression. Discussion: The local application of NaHS in the hippocampus of the rat strongly affected glucose, lactate and glutamate release. Contrastingly, in LPS pretreated rats, a decreased radical formation was the only effect found. H2S synthetizing enzymes may be involved in antipsychotic mechanisms, although no clear common mechanism could be found.
Collapse
Affiliation(s)
- Olaf Sommer
- Department of Child and Adolescent Psychiatry, Psychotherapy, and Psychosomatics, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Rosana L. Aug
- Department of Child and Adolescent Psychiatry, Psychotherapy, and Psychosomatics, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Andreas J. Schmidt
- Department of Psychiatry and Psychotherapy, Philipps-University, Marburg, Germany
| | - Philip Heiser
- Department of Child and Adolescent Psychiatry, Psychotherapy, and Psychosomatics, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Eberhard Schulz
- Department of Child and Adolescent Psychiatry, Psychotherapy, and Psychosomatics, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Helmut Vedder
- Department of Psychiatry and Psychotherapy, Philipps-University, Marburg, Germany
| | - Hans-Willi Clement
- Department of Child and Adolescent Psychiatry, Psychotherapy, and Psychosomatics, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| |
Collapse
|
5
|
Sarkar S, Malovic E, Sarda D, Lawana V, Rokad D, Jin H, Anantharam V, Kanthasamy A, Kanthasamy AG. Characterization and comparative analysis of a new mouse microglial cell model for studying neuroinflammatory mechanisms during neurotoxic insults. Neurotoxicology 2018; 67:129-140. [PMID: 29775624 DOI: 10.1016/j.neuro.2018.05.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 05/07/2018] [Accepted: 05/14/2018] [Indexed: 12/13/2022]
Abstract
Microglia are the first responders of the central nervous system, acting as the key modulators of neuroinflammation observed during neurotoxic insults as well as in the pathophysiology of several neurodegenerative disorders including Alzheimer's (AD), Parkinson's (PD), and Huntington's diseases (HD). The number of publications on microglia has increased steadily throughout the past decade because of immense interests in the neuroinflammation that precedes the neurodegenerative process. To study microglial biology and its role in modulating neuroinflammation, immortalized microglial cell lines derived from mice, rats, and humans have been developed. Among these, the BV2 mouse microglial cell line is the most well characterized and widely used cell culture model. However, even unstimulated BV2 cells exhibit an amoeboid, hypertrophied morphology, indicating a highly activated and inflammatory state compared to primary microglia, thus making them less than ideal for studying the low-dose effects of toxicants on microglial activation. Therefore, we performed an in-depth characterization of a recently developed mouse microglial cell (MMC) line, which we compared with primary mouse microglia (PMG) and BV2s to identify which cell line was best suited for studying the microglial response to neurotoxicants. Comparative analyses reveal that MMCs are strikingly more similar to PMGs in basal activity, morphology, and sensitivity, than are BV2s. Furthermore, basal nitrite and inflammatory cytokine levels are significantly higher in BV2s compared to MMCs. BV2 cells are also less reactive to the inflammagen LPS compared to MMCs, due to the higher basal activation state of BV2s. Collectively, our in-depth analyses of morphology, basal activity, and responsivity to two different stimuli (LPS, aggregated α-synuclein) demonstrate that MMCs closely mimic neonatal PMGs, and are discernibly more suitable than BV2s for studying the neuroinflammatory mechanisms of neurotoxicants.
Collapse
Affiliation(s)
- Souvarish Sarkar
- Parkinson Disorders Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, 2062 Veterinary Medicine Building, Iowa State University, Ames, IA, 50011, United States
| | - Emir Malovic
- Parkinson Disorders Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, 2062 Veterinary Medicine Building, Iowa State University, Ames, IA, 50011, United States
| | - Deeksha Sarda
- Parkinson Disorders Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, 2062 Veterinary Medicine Building, Iowa State University, Ames, IA, 50011, United States
| | - Vivek Lawana
- Parkinson Disorders Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, 2062 Veterinary Medicine Building, Iowa State University, Ames, IA, 50011, United States
| | - Dharmin Rokad
- Parkinson Disorders Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, 2062 Veterinary Medicine Building, Iowa State University, Ames, IA, 50011, United States
| | - Huajun Jin
- Parkinson Disorders Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, 2062 Veterinary Medicine Building, Iowa State University, Ames, IA, 50011, United States
| | - Vellareddy Anantharam
- Parkinson Disorders Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, 2062 Veterinary Medicine Building, Iowa State University, Ames, IA, 50011, United States
| | - Arthi Kanthasamy
- Parkinson Disorders Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, 2062 Veterinary Medicine Building, Iowa State University, Ames, IA, 50011, United States
| | - Anumantha G Kanthasamy
- Parkinson Disorders Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, 2062 Veterinary Medicine Building, Iowa State University, Ames, IA, 50011, United States.
| |
Collapse
|
6
|
Towner RA, Saunders D, Smith N, Towler W, Cruz M, Do S, Maher JE, Whitaker K, Lerner M, Morton KA. Assessing long-term neuroinflammatory responses to encephalopathy using MRI approaches in a rat endotoxemia model. GeroScience 2018; 40:49-60. [PMID: 29417380 PMCID: PMC5832664 DOI: 10.1007/s11357-018-0009-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 01/30/2018] [Indexed: 02/08/2023] Open
Abstract
Sepsis-associated encephalopathy (SAE) induces neuroinflammation, which is associated with cognitive impairment (CI). CI is also correlated with aging. We used contrast-enhanced magnetic resonance imaging (MRI), perfusion MRI, and MR spectroscopy to assess long-term alterations in BBB permeability, microvascularity, and metabolism, respectively, in a rat lipopolysaccharide-induced SAE model. Free radical-targeted molecular MRI was used to detect brain radical levels at 24 h and 1 week post-LPS injection. CE-MRI showed increased Gd-DTPA uptake in LPS rat brains at 24 h in cerebral cortex, hippocampus, thalamus, and perirhinal cortex regions. Increased MRI signal intensities were observed in LPS rat brains in cerebral cortex, perirhinal cortex, and hippocampus regions 1 week post-LPS. Long-term BBB dysfunction was detected in the cerebral cortex at 6 weeks post-LPS. Increased relative cerebral blood flow (rCBF) in cortex and thalamus regions at 24 h, decreased cortical and hippocampal rCBF at 6 weeks, decreased cortical rCBF at 3 and 12 weeks, and increased thalamus rCBF at 6 weeks post-LPS, were detected. MRS indicated that LPS-exposed rat brains had decreased: NAA/Cho metabolite ratios at 1, 3, 6, and 12 weeks; Cr/Cho at 1, 3, and 12 weeks; and Myo-Ins/Cho at 1, 3, and 6 weeks post-LPS. Free radical imaging detected increased radical levels in LPS rat brains at 24 h and 1 week post-LPS. LPS-exposed rats were compared to saline-treated controls. We clearly demonstrated BBB dysfunction, impaired vascularity, and decreased brain metabolites, as measures of long-term neuroinflammatory indicators, as well as increased free radicals in a LPS-induced rat SAE model.
Collapse
Affiliation(s)
- Rheal A Towner
- Advanced Magnetic Resonance Center, Oklahoma Medical Research Foundation, 825 N.E. 13th Street, Oklahoma City, OK, 73104, USA.
- Oklahoma Nathan Shock Aging Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| | - D Saunders
- Advanced Magnetic Resonance Center, Oklahoma Medical Research Foundation, 825 N.E. 13th Street, Oklahoma City, OK, 73104, USA
| | - N Smith
- Advanced Magnetic Resonance Center, Oklahoma Medical Research Foundation, 825 N.E. 13th Street, Oklahoma City, OK, 73104, USA
| | - W Towler
- Advanced Magnetic Resonance Center, Oklahoma Medical Research Foundation, 825 N.E. 13th Street, Oklahoma City, OK, 73104, USA
| | - M Cruz
- Advanced Magnetic Resonance Center, Oklahoma Medical Research Foundation, 825 N.E. 13th Street, Oklahoma City, OK, 73104, USA
| | - S Do
- Advanced Magnetic Resonance Center, Oklahoma Medical Research Foundation, 825 N.E. 13th Street, Oklahoma City, OK, 73104, USA
| | - J E Maher
- Advanced Magnetic Resonance Center, Oklahoma Medical Research Foundation, 825 N.E. 13th Street, Oklahoma City, OK, 73104, USA
| | - K Whitaker
- Advanced Magnetic Resonance Center, Oklahoma Medical Research Foundation, 825 N.E. 13th Street, Oklahoma City, OK, 73104, USA
| | - M Lerner
- Department of Surgery Research Laboratory, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - K A Morton
- Department of Radiology and Imaging Sciences, University of Utah School of Medicine, Salt Lake City, UT, USA
| |
Collapse
|
7
|
Lipopolysaccharide-Induced Striatal Nitrosative Stress and Impaired Social Recognition Memory Are Not Magnified by Paraquat Coexposure. Neurochem Res 2018; 43:745-759. [PMID: 29362970 DOI: 10.1007/s11064-018-2477-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 12/18/2017] [Accepted: 01/16/2018] [Indexed: 12/20/2022]
Abstract
Systemic inflammation triggered by lipopolysaccharide (LPS) administration disrupts blood-brain barrier (BBB) homeostasis in animal models. This event leads to increased susceptibility of several encephalic structures to potential neurotoxicants present in the bloodstream. In this study, we investigated the effects of alternate intraperitoneal injections of LPS on BBB permeability, social recognition memory and biochemical parameters in the striatum 24 h and 60 days after treatments. In addition, we investigated whether the exposure to a moderate neurotoxic dose of the herbicide paraquat could potentiate LPS-induced neurotoxicity. LPS administration caused a transient disruption of BBB integrity, evidenced by increased levels of exogenously administered sodium fluorescein in the striatum. Also, LPS exposure caused delayed impairment in social recognition memory (evaluated at day 38 after treatments) and increase in the striatal levels of 3-nitrotyrosine. These events were observed in the absence of significant changes in motor coordination and in the levels of tyrosine hydroxylase (TH) in the striatum and substantia nigra. PQ exposure, which caused a long-lasting decrease of striatal mitochondrial complex I activity, did not modify LPS-induced behavioral and striatal biochemical changes. The results indicate that systemic administration of LPS causes delayed social recognition memory deficit and striatal nitrosative stress in adult mice and that the coexposure to a moderately toxic dose of PQ did not magnify these events. In addition, PQ-induced inhibition of striatal mitochondrial complex I was also not magnified by LPS exposure, indicating the absence of synergic neurotoxic effects of LPS and PQ in this experimental model.
Collapse
|
8
|
Nadeem A, Siddiqui N, Al-Harbi NO, Attia SM, AlSharari SD, Ahmad SF. Acute lung injury leads to depression-like symptoms through upregulation of neutrophilic and neuronal NADPH oxidase signaling in a murine model. Int Immunopharmacol 2017; 47:218-226. [PMID: 28433943 DOI: 10.1016/j.intimp.2017.04.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Revised: 04/11/2017] [Accepted: 04/11/2017] [Indexed: 02/07/2023]
Abstract
There is an increased prevalence of comorbid major depressive disorders with a number of inflammatory conditions which is thought to result from activation of the immune system. Acute lung injury (ALI) in humans has been also shown to be associated with depression previously. However, no study has explored the mechanism behind ALI-induced depression. NADPH oxidase (NOX-2) derived reactive oxygen species (ROS) are associated with neuropsychiatric disorders including depression. ROS generation via NOX-2 is also shown to be involved in the pathogenesis of ALI. Therefore, we hypothesized that ROS generation may be a common link between ALI and depression. The present study utilized LPS model of ALI in mice to explore the effect of lung inflammation on depression-like behavior and further delineate the role of NOX-2 signaling in it. ALI led to enhanced NOX-2 activation in neutrophils/brain and neuronal oxidative stress which was concurrent with depression-like symptoms as assessed by sucrose preference and tail suspension test. Role of neutrophilic NOX-2 in ALI-induced depression was confirmed by depletion of neutrophils as well NOX-2 inhibitor, apocynin. Both of these approaches led to reduction in depressive symptoms induced by ALI. The present study suggests that ALI-induced upregulation of neutrophilic NOX-2/ROS may contribute to depression-like symptoms in mice.
Collapse
Affiliation(s)
- Ahmed Nadeem
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.
| | - Nahid Siddiqui
- Amity Institute of Biotechnology, Amity University, Noida, India
| | - Naif O Al-Harbi
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Sabry M Attia
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Shakir D AlSharari
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Sheikh F Ahmad
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
9
|
Role of Protein Kinase C and Nox2-Derived Reactive Oxygen Species Formation in the Activation and Maturation of Dendritic Cells by Phorbol Ester and Lipopolysaccharide. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:4157213. [PMID: 28458776 PMCID: PMC5387830 DOI: 10.1155/2017/4157213] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 02/07/2017] [Accepted: 02/08/2017] [Indexed: 12/25/2022]
Abstract
Aims. Activation/maturation of dendritic cells (DCs) plays a central role in adaptive immune responses by antigen processing and (cross-) activation of T cells. There is ongoing discussion on the role of reactive oxygen species (ROS) in these processes and with the present study we investigated this enigmatic pathway. Methods and Results. DCs were cultured from precursors in the bone marrow of mice (BM-DCs) and analyzed for ROS formation, maturation, and T cell stimulatory capacity upon stimulation with phorbol ester (PDBu) and lipopolysaccharide (LPS). LPS stimulation of BM-DCs caused maturation with moderate intracellular ROS formation, whereas PDBu treatment resulted in maturation with significant ROS formation. The NADPH oxidase inhibitors apocynin/VAS2870 and genetic gp91phox deletion both decreased the ROS signal in PDBu-stimulated BM-DCs without affecting maturation and T cell stimulatory capacity of BM-DCs. In contrast, the protein kinase C inhibitors chelerythrine/Gö6983 decreased PDBu-stimulated ROS formation in BM-DCs as well as maturation. Conclusion. Obviously Nox2-dependent ROS formation in BM-DCs is not always required for their maturation or T cell stimulatory potential. PDBu/LPS-triggered BM-DC maturation rather relies on phosphorylation cascades. Our results question the role of oxidative stress as an essential “danger signal” for BM-DC activation, although we cannot exclude contribution by other ROS sources.
Collapse
|
10
|
Taetzsch T, Levesque S, McGraw C, Brookins S, Luqa R, Bonini MG, Mason RP, Oh U, Block ML. Redox regulation of NF-κB p50 and M1 polarization in microglia. Glia 2014; 63:423-40. [PMID: 25331559 DOI: 10.1002/glia.22762] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Accepted: 10/02/2014] [Indexed: 12/17/2022]
Abstract
Redox-signaling is implicated in deleterious microglial activation underlying CNS disease, but how ROS program aberrant microglial function is unknown. Here, the oxidation of NF-κB p50 to a free radical intermediate is identified as a marker of dysfunctional M1 (pro-inflammatory) polarization in microglia. Microglia exposed to steady fluxes of H2 O2 showed altered NF-κB p50 protein-protein interactions, decreased NF-κB p50 DNA binding, and augmented late-stage TNFα expression, indicating that H2 O2 impairs NF-κB p50 function and prolongs amplified M1 activation. NF-κB p50(-/-) mice and cultures exhibited a disrupted M2 (alternative) response and impaired resolution of the M1 response. Persistent neuroinflammation continued 1 week after LPS (1 mg/kg, IP) administration in the NF-κB p50(-/-) mice. However, peripheral inflammation had already resolved in both strains of mice. Treatment with the spin-trap DMPO mildly reduced LPS-induced 22 h TNFα in the brain in NF-κB p50(+/+) mice. Interestingly, DMPO failed to reduce and strongly augmented brain TNFα production in NF-κB p50(-/-) mice, implicating a fundamental role for NF-κB p50 in the regulation of chronic neuroinflammation by free radicals. These data identify NF-κB p50 as a key redox-signaling mechanism regulating the M1/M2 balance in microglia, where loss of function leads to a CNS-specific vulnerability to chronic inflammation.
Collapse
Affiliation(s)
- Thomas Taetzsch
- Department of Anatomy and Neurobiology, Virginia Commonwealth University Medical Campus, Richmond, Virginia
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Le Belle JE, Sperry J, Ngo A, Ghochani Y, Laks DR, López-Aranda M, Silva AJ, Kornblum HI. Maternal inflammation contributes to brain overgrowth and autism-associated behaviors through altered redox signaling in stem and progenitor cells. Stem Cell Reports 2014; 3:725-34. [PMID: 25418720 PMCID: PMC4235743 DOI: 10.1016/j.stemcr.2014.09.004] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 09/08/2014] [Accepted: 09/08/2014] [Indexed: 11/25/2022] Open
Abstract
A period of mild brain overgrowth with an unknown etiology has been identified as one of the most common phenotypes in autism. Here, we test the hypothesis that maternal inflammation during critical periods of embryonic development can cause brain overgrowth and autism-associated behaviors as a result of altered neural stem cell function. Pregnant mice treated with low-dose lipopolysaccharide at embryonic day 9 had offspring with brain overgrowth, with a more pronounced effect in PTEN heterozygotes. Exposure to maternal inflammation also enhanced NADPH oxidase (NOX)-PI3K pathway signaling, stimulated the hyperproliferation of neural stem and progenitor cells, increased forebrain microglia, and produced abnormal autism-associated behaviors in affected pups. Our evidence supports the idea that a prenatal neuroinflammatory dysregulation in neural stem cell redox signaling can act in concert with underlying genetic susceptibilities to affect cellular responses to environmentally altered cellular levels of reactive oxygen species. Mild maternal inflammation produces brain overgrowth and autistic behaviors in pups Maternal inflammation increases stem cell division, ROS levels, and PI3K activation Genetic susceptibility produces even greater brain overgrowth when combined with MIR Overgrowth and some associated abnormal behaviors can be rescued by inhibition of NOX
Collapse
Affiliation(s)
- Janel E Le Belle
- NPI-Semel Institute for Neuroscience & Human Behavior and Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jantzen Sperry
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Amy Ngo
- NPI-Semel Institute for Neuroscience & Human Behavior and Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yasmin Ghochani
- The Molecular Biology Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Dan R Laks
- NPI-Semel Institute for Neuroscience & Human Behavior and Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Manuel López-Aranda
- NPI-Semel Institute for Neuroscience & Human Behavior and Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Integrative Center for Learning and Memory and Brain Research Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Alcino J Silva
- NPI-Semel Institute for Neuroscience & Human Behavior and Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Integrative Center for Learning and Memory and Brain Research Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Harley I Kornblum
- NPI-Semel Institute for Neuroscience & Human Behavior and Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; The Molecular Biology Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; The Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
12
|
Kumar A, Chen SH, Kadiiska MB, Hong JS, Zielonka J, Kalyanaraman B, Mason RP. Inducible nitric oxide synthase is key to peroxynitrite-mediated, LPS-induced protein radical formation in murine microglial BV2 cells. Free Radic Biol Med 2014; 73:51-9. [PMID: 24746617 PMCID: PMC4111989 DOI: 10.1016/j.freeradbiomed.2014.04.014] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 04/02/2014] [Accepted: 04/09/2014] [Indexed: 11/24/2022]
Abstract
Microglia are the resident immune cells in the brain. Microglial activation is characteristic of several inflammatory and neurodegenerative diseases including Alzheimer's disease, multiple sclerosis, and Parkinson's disease. Though lipopolysaccharide (LPS)-induced microglial activation in models of Parkinson's disease is well documented, the free radical-mediated protein radical formation and its underlying mechanism during LPS-induced microglial activation are not known. Here we have used immuno-spin trapping and RNA interference to investigate the role of inducible nitric oxide synthase (iNOS) in peroxynitrite-mediated protein radical formation in murine microglial BV2 cells treated with LPS. Treatment of BV2 cells with LPS resulted in morphological changes, induction of iNOS, and increased protein radical formation. Pretreatments with FeTPPS (a peroxynitrite decomposition catalyst), L-NAME (total NOS inhibitor), 1400W (iNOS inhibitor), and apocynin significantly attenuated LPS-induced protein radical formation and tyrosine nitration. Results obtained with coumarin-7-boronic acid, a highly specific probe for peroxynitrite detection, correlated with LPS-induced tyrosine nitration, which demonstrated involvement of peroxynitrite in protein radical formation. A similar degree of protection conferred by 1400W and L-NAME led us to conclude that only iNOS, and no other forms of NOS, is involved in LPS-induced peroxynitrite formation. Subsequently, siRNA for iNOS, the iNOS-specific inhibitor 1400W, the NF-κB inhibitor PDTC, and the p38 MAPK inhibitor SB202190 was used to inhibit iNOS directly or indirectly. Inhibition of iNOS precisely correlated with decreased protein radical formation in LPS-treated BV2 cells. The time course of protein radical formation also matched the time course of iNOS expression. Taken together, these results prove the role of iNOS in peroxynitrite-mediated protein radical formation in LPS-treated microglial BV2 cells.
Collapse
Affiliation(s)
- Ashutosh Kumar
- Free Radical Metabolism Group, Laboratory of Toxicology & Pharmacology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA.
| | - Shih-Heng Chen
- Neuropharmacology Group, Laboratory of Toxicology & Pharmacology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Maria B Kadiiska
- Free Radical Metabolism Group, Laboratory of Toxicology & Pharmacology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Jau-Shyong Hong
- Neuropharmacology Group, Laboratory of Toxicology & Pharmacology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Jacek Zielonka
- Department of Biophysics and Free Radical Research Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Balaraman Kalyanaraman
- Department of Biophysics and Free Radical Research Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Ronald P Mason
- Free Radical Metabolism Group, Laboratory of Toxicology & Pharmacology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| |
Collapse
|
13
|
Sommer J, Garbers C, Wolf J, Trad A, Moll JM, Sack M, Fischer R, Grötzinger J, Waetzig GH, Floss DM, Scheller J. Alternative intronic polyadenylation generates the interleukin-6 trans-signaling inhibitor sgp130-E10. J Biol Chem 2014; 289:22140-50. [PMID: 24973212 DOI: 10.1074/jbc.m114.560938] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Interleukin (IL)-6 signals via a receptor complex composed of the signal-transducing β-receptor gp130 and the non-signaling membrane-bound or soluble IL-6 receptor α (IL-6R, sIL-6R), which is referred to as classic and trans-signaling, respectively. IL-6 trans-signaling is functionally associated with the development of chronic inflammatory diseases and cancer. Soluble gp130 (sgp130) variants are natural inhibitors of trans-signaling. Differential splicing yields sgp130 isoforms. Here, we describe that alternative intronic polyadenylation in intron 10 of the gp130 transcript results in a novel mRNA coding for an sgp130 protein isoform (sgp130-E10) of 70-80 kDa. The sgp130-E10 protein was expressed in vivo in human peripheral blood mononuclear cells. To assess the biological activity of sgp130-E10, we expressed this variant as Fc-tagged fusion protein (sgp130-E10Fc). Recombinant sgp130-E10Fc binds to a complex of IL-6 and sIL-6R, but not to IL-6 alone, and specifically inhibits IL-6 trans-signaling. Thus, it might play an important role in the regulation of trans-signaling in vivo.
Collapse
Affiliation(s)
- Jan Sommer
- From the Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, 40225 Düsseldorf
| | - Christoph Garbers
- the Institute of Biochemistry, Medical Faculty, Christian-Albrechts-University, 24118 Kiel
| | - Janina Wolf
- the Institute of Biochemistry, Medical Faculty, Christian-Albrechts-University, 24118 Kiel
| | - Ahmad Trad
- the Institute of Biochemistry, Medical Faculty, Christian-Albrechts-University, 24118 Kiel
| | - Jens M Moll
- From the Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, 40225 Düsseldorf
| | - Markus Sack
- the Institute of Molecular Biotechnology, RWTH Aachen University, 52062 Aachen, and
| | - Rainer Fischer
- the Institute of Molecular Biotechnology, RWTH Aachen University, 52062 Aachen, and
| | - Joachim Grötzinger
- the Institute of Biochemistry, Medical Faculty, Christian-Albrechts-University, 24118 Kiel
| | | | - Doreen M Floss
- From the Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, 40225 Düsseldorf
| | - Jürgen Scheller
- From the Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, 40225 Düsseldorf,
| |
Collapse
|
14
|
Kim EA, Han AR, Choi J, Ahn JY, Choi SY, Cho SW. Anti-inflammatory mechanisms of N-adamantyl-4-methylthiazol-2-amine in lipopolysaccharide-stimulated BV-2 microglial cells. Int Immunopharmacol 2014; 22:73-83. [PMID: 24975832 DOI: 10.1016/j.intimp.2014.06.022] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 06/03/2014] [Accepted: 06/10/2014] [Indexed: 01/03/2023]
Abstract
The activation of microglia is crucially associated with the neurodegeneration observed in many neuroinflammatory pathologies, such as multiple sclerosis, Parkinson's disease, and Alzheimer's disease. We have examined various thiazole derivatives with the goal of developing new anti-neuroinflammatory drugs. Thiazole derivatives are attractive candidates for drug development, because they are efficiently synthesized and active against a number of disease organisms and conditions, including neurodegenerative disorders. The present study investigated the effects of a new compound, N-adamantyl-4-methylthiazol-2-amine (KHG26693), against lipopolysaccharide (LPS)-induced inflammation in cultured BV-2 microglial cells. KHG26693 suppressed several inflammatory responses in LPS-activated cells, as evidenced by decreased levels of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), hydrogen peroxide (H(2)O(2)), reactive oxygen species (ROS), nitric oxide (NO), and lipid peroxidation. These anti-inflammatory/antioxidative actions occurred as a result of the downregulation of NADPH oxidase (NOX), inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2) content, but not as a result of the upregulation of superoxide dismutase (SOD) or catalase activity. The pharmacological properties of KHG26693 were also facilitated via inhibition of both the cluster of differentiation 14 (CD14)/toll-like receptor 4 (TLR4)-dependent nuclear factor kappa B (NF-κB) signaling pathway and extracellular signal-regulated kinase (ERK) phosphorylation. Furthermore, KHG26693 successfully blocked the migration of LPS-activated microglia, most likely by modulating the ERK pathway. Taken together, these results demonstrate that the anti-inflammatory and antioxidative actions of KHG26693 are mediated, at least in part, through the control of microglial activation.
Collapse
Affiliation(s)
- Eun-A Kim
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul 138-736, Republic of Korea
| | - A Reum Han
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul 138-736, Republic of Korea
| | - Jiyoung Choi
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul 138-736, Republic of Korea
| | - Jee-Yin Ahn
- Department of Molecular Cell Biology, Center for Molecular Medicine, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 440-746, Republic of Korea
| | - Soo Young Choi
- Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University, Chunchon 200-702, Republic of Korea
| | - Sung-Woo Cho
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul 138-736, Republic of Korea.
| |
Collapse
|
15
|
Gong H, Gao X, Feng S, Siddiqui MR, Garcia A, Bonini MG, Komarova Y, Vogel SM, Mehta D, Malik AB. Evidence of a common mechanism of disassembly of adherens junctions through Gα13 targeting of VE-cadherin. ACTA ACUST UNITED AC 2014; 211:579-91. [PMID: 24590762 PMCID: PMC3949568 DOI: 10.1084/jem.20131190] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The heterotrimeric G protein Gα13 transduces signals from G protein-coupled receptors (GPCRs) to induce cell spreading, differentiation, migration, and cell polarity. Here, we describe a novel GPCR-independent function of Gα13 in regulating the stability of endothelial cell adherens junctions (AJs). We observed that the oxidant H2O2, which is released in response to multiple proinflammatory mediators, induced the interaction of Gα13 with VE-cadherin. Gα13 binding to VE-cadherin in turn induced Src activation and VE-cadherin phosphorylation at Tyr 658, the p120-catenin binding site thought to be responsible for VE-cadherin internalization. Inhibition of Gα13-VE-cadherin interaction using an interfering peptide derived from the Gα13 binding motif on VE-cadherin abrogated the disruption of AJs in response to inflammatory mediators. These studies identify a unique role of Gα13 binding to VE-cadherin in mediating VE-cadherin internalization and endothelial barrier disruption and inflammation.
Collapse
Affiliation(s)
- Haixia Gong
- Department of Pharmacology and the Center for Lung and Vascular Biology, University of Illinois, Chicago, Il 60612
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Lee I, Dodia C, Chatterjee S, Feinstein SI, Fisher AB. Protection against LPS-induced acute lung injury by a mechanism-based inhibitor of NADPH oxidase (type 2). Am J Physiol Lung Cell Mol Physiol 2014; 306:L635-44. [PMID: 24487388 DOI: 10.1152/ajplung.00374.2013] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The phospholipase A2 activity of peroxiredoxin 6 is inhibited by the transition state analog, 1-hexadecyl-3-(trifluoroethyl)-sn-glycero-2-phosphomethanol (MJ33). This activity is required for the activation of NADPH oxidase, type 2. The present study evaluated the effect of MJ33 on manifestations of acute lung injury. Mice were injected intratracheally (IT) with LPS from Escherichia coli 0111:B4 (LPS, 1 or 5 mg/kg), either concurrently with LPS or 2 h later, and evaluated for lung injury 24 h later. MJ33 inhibited reactive oxygen species (ROS) generation by lungs when measured at 24 h after LPS. LPS at either a low or high dose significantly increased lung infiltration with inflammatory cells, secretion of proinflammatory cytokines (IL-6, TNF-α, and the chemokine macrophage inflammatory protein-2), expression of lung vascular cell adhesion molecule, lung permeability (protein in bronchoalveolar lavage fluid, leakage of FITC-dextran, lung wet-to-dry weight ratio), tissue lipid peroxidation (thiobarbituric acid reactive substances, 8-isoprostanes), tissue protein oxidation (protein carbonyls), and activation of NF-κB. MJ33, given either concurrently or 2 h subsequent to LPS, significantly reduced all of these measured parameters. Previous studies of toxicity showed a high margin of safety for MJ33 in the intact mouse. Thus we have identified MJ33 as a potent, nontoxic, and specific mechanism-based inhibitor of NADPH oxidase type 2-mediated ROS generation that protects mice against lung injury associated with inflammation.
Collapse
Affiliation(s)
- Intae Lee
- Institute for Environmental Medicine, Univ. of Pennsylvania, 3620 Hamilton Walk, 1 John Morgan Bldg., Philadelphia, PA 19104.
| | | | | | | | | |
Collapse
|
17
|
Contributions of microdialysis to new alternative therapeutics for hepatic encephalopathy. Int J Mol Sci 2013; 14:16184-206. [PMID: 23921686 PMCID: PMC3759906 DOI: 10.3390/ijms140816184] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 07/24/2013] [Accepted: 07/29/2013] [Indexed: 02/07/2023] Open
Abstract
Hepatic encephalopathy (HE) is a common complication of cirrhosis, of largely reversible impairment of brain function occurring in patients with acute or chronic liver failure or when the liver is bypassed by portosystemic shunts. The mechanisms causing this brain dysfunction are still largely unclear. The need to avoid complications caused by late diagnosis has attracted interest to understand the mechanisms underlying neuronal damage in order to find markers that will allow timely diagnosis and to propose new therapeutic alternatives to improve the care of patients. One of the experimental approaches to study HE is microdialysis; this technique allows evaluation of different chemical substances in several organs through the recollection of samples in specific places by semi-permeable membranes. In this review we will discuss the contributions of microdialysis in the understanding of the physiological alterations in human hepatic encephalopathy and experimental models and the studies to find novel alternative therapies for this disease.
Collapse
|
18
|
Zeng KW, Zhao MB, Ma ZZ, Jiang Y, Tu PF. Protosappanin A inhibits oxidative and nitrative stress via interfering the interaction of transmembrane protein CD14 with Toll-like receptor-4 in lipopolysaccharide-induced BV-2 microglia. Int Immunopharmacol 2012; 14:558-69. [PMID: 23000519 DOI: 10.1016/j.intimp.2012.09.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2012] [Revised: 08/30/2012] [Accepted: 09/10/2012] [Indexed: 01/13/2023]
Abstract
Oxidative and nitrative stresses have been established to play a pivotal role in neuroinflammation. During inflammation-mediated neurodegenerative diseases, including Alzheimer's disease and Parkinson's disease, reactive oxygen species (ROS) and nitric oxide (NO) are produced by activated microglia, further inducing increased neuronal injury in the brain. Protosappanin A (PTA) is a bioactive compound isolated from a traditional Chinese medicine, Caesalpinia sappan L. (Lignum Sappan), showing immunosuppressive effects. However, the molecular mechanisms responsible for the anti-oxidative and nitrative activity of PTA have not been elucidated, particularly in central nervous system. In this study, we found that PTA significantly inhibited ROS and NO production by suppression of NADPH oxidase and inducible nitric oxide synthase (iNOS) activity on lipopolysaccharide (LPS)-stimulated BV-2 microglia. Moreover, PTA modulated IKK/IκB/NF-κB inflammation signal pathway to inhibit the activity and expressions of NADPH oxidase and iNOS. A further study indicated that PTA didn't inhibit LPS interaction with transmembrane protein CD14, which is a receptor for LPS binding. However, PTA interfered with the interaction of CD14 with Toll-like receptor (TLR4), an early cell event of IKK/IκB/NF-κB inflammation signal activation, resulting in a block on LPS translocation from CD14 to TLR4. Therefore, CD14/TLR4 interaction may be a potential drug target in neuroinflammation-related oxidative and nitrative stress. Taken together, these results suggest that PTA has anti-oxidative/nitrative activities on brain immune and neuroinflammation through regulation of CD14/TLR4-dependent IKK/IκB/NF-κB inflammation signal pathway.
Collapse
Affiliation(s)
- Ke-Wu Zeng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing 100191, China
| | | | | | | | | |
Collapse
|
19
|
Zhai D, Gomez-Mejiba SE, Gimenez MS, Deter ding LJ, Tomer KB, Mason RP, Ashby MT, Ramirez DC. Free radical-operated proteotoxic stress in macrophages primed with lipopolysaccharide. Free Radic Biol Med 2012; 53:172-81. [PMID: 22580125 PMCID: PMC4078023 DOI: 10.1016/j.freeradbiomed.2012.04.023] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Revised: 04/17/2012] [Accepted: 04/21/2012] [Indexed: 01/13/2023]
Abstract
The free-radical-operated mechanism of death of activated macrophages at sites of inflammation is unclear, but it is important to define it in order to find targets to prevent further tissue dysfunction. A well-defined model of macrophage activation at sites of inflammation is the treatment of RAW 264.7 cells with lipopolysaccharide (LPS), with the resulting production of reactive oxygen species (ROS). ROS and other free radicals can be trapped with the nitrone spin trap 5,5-dimethyl-1-pyrroline N-oxide (DMPO), a cell-permeable probe with antioxidant properties, which thus interferes with free-radical-operated oxidation processes. Here we have used immuno-spin trapping to investigate the role of free-radical-operated protein oxidation in LPS-induced cytotoxicity in macrophages. Treatment of RAW 264.7 cells with LPS resulted in increased ROS production, oxidation of proteins, cell morphological changes and cytotoxicity. DMPO was found to trap protein radicals to form protein-DMPO nitrone adducts, to reduce protein carbonyls, and to block LPS-induced cell death. N-Acetylcysteine (a source of reduced glutathione), diphenyleneiodonium (an inhibitor of NADPH oxidase), and 2,2'-dipyridyl (a chelator of Fe(2+)) prevented LPS-induced oxidative stress and cell death and reduced DMPO-nitrone adduct formation, suggesting a critical role of ROS, metals, and protein-radical formation in LPS-induced cell cytotoxicity. We also determined the subcellular localization of protein-DMPO nitrone adducts and identified some candidate proteins for DMPO attachment by LC-MS/MS. The LC-MS/MS data are consistent with glyceraldehyde-3-phosphate dehydrogenase, one of the most abundant, sensitive, and ubiquitous proteins in the cell, becoming labeled with DMPO when the cell is primed with LPS. This information will help find strategies to treat inflammation-associated tissue dysfunction by focusing on preventing free radical-operated proteotoxic stress and death of macrophages.
Collapse
Affiliation(s)
- Dili Zhai
- Department of Medicine, Gastroenterology Section, University of Chicago, Chicago, IL 60637, USA
| | - Sandra E. Gomez-Mejiba
- Laboratory of Experimental and Therapeutic Medicine, Instituto Multidisciplinario de Investigaciones Biológicas-San Luis (IMIBIO-SL)-Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), San Luis, San Luis 5700, Argentina
| | - Maria S. Gimenez
- Laboratory of Experimental and Therapeutic Medicine, Instituto Multidisciplinario de Investigaciones Biológicas-San Luis (IMIBIO-SL)-Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), San Luis, San Luis 5700, Argentina
| | - Leesa J. Deter ding
- Laboratory of Structural Biology, NIEHS, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Kenneth B. Tomer
- Laboratory of Structural Biology, NIEHS, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Ronald P. Mason
- Laboratory of Pharmacology and Chemistry, NIEHS, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Michael T. Ashby
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019, USA
| | - Dario C. Ramirez
- Laboratory of Experimental and Therapeutic Medicine, Instituto Multidisciplinario de Investigaciones Biológicas-San Luis (IMIBIO-SL)-Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), San Luis, San Luis 5700, Argentina
- Department of Biochemistry and Biological Sciences, School of Chemistry, Biochemistry and Pharmacy, National University of San Luis, San Luis, San Luis 5700, Argentina
| |
Collapse
|
20
|
Targeting microglia-mediated neurotoxicity: the potential of NOX2 inhibitors. Cell Mol Life Sci 2012; 69:2409-27. [PMID: 22581365 DOI: 10.1007/s00018-012-1015-4] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Revised: 04/18/2012] [Accepted: 04/20/2012] [Indexed: 12/24/2022]
Abstract
Microglia are key sentinels of central nervous system health, and their dysfunction has been widely implicated in the progressive nature of neurodegenerative diseases. While microglia can produce a host of factors that are toxic to neighboring neurons, NOX2 has been implicated as a common and essential mechanism of microglia-mediated neurotoxicity. Accumulating evidence indicates that activation of the NOX2 enzyme complex in microglia is neurotoxic, both through the production of extracellular reactive oxygen species that damage neighboring neurons as well as the initiation of redox signaling in microglia that amplifies the pro-inflammatory response. More specifically, evidence supports that NOX2 redox signaling enhances microglial sensitivity to pro-inflammatory stimuli, and amplifies the production of neurotoxic cytokines, to promote chronic and neurotoxic microglial activation. Here, we describe the evidence denoting the role of NOX2 in microglia-mediated neurotoxicity with an emphasis on Alzheimer's and Parkinson's disease, describe available inhibitors that have been tested, and detail evidence of the neuroprotective and therapeutic potential of targeting this enzyme complex to regulate microglia.
Collapse
|
21
|
Leonard B, Maes M. Mechanistic explanations how cell-mediated immune activation, inflammation and oxidative and nitrosative stress pathways and their sequels and concomitants play a role in the pathophysiology of unipolar depression. Neurosci Biobehav Rev 2011; 36:764-85. [PMID: 22197082 DOI: 10.1016/j.neubiorev.2011.12.005] [Citation(s) in RCA: 597] [Impact Index Per Article: 42.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Revised: 11/24/2011] [Accepted: 12/10/2011] [Indexed: 12/17/2022]
Abstract
This paper reviews that cell-mediated-immune (CMI) activation and inflammation contribute to depressive symptoms, including anhedonia; anxiety-like behaviors; fatigue and somatic symptoms, e.g. illness behavior or malaise; and mild cognitive impairment (MCI). These effects are in part mediated by increased levels of pro-inflammatory cytokines (PICs), e.g. interleukin-1 (IL-1), IL-6 and tumor necrosis factor (TNF)α, and Th-1-derived cytokines, such as IL-2 and interferon (IFN)γ. Moreover, new pathways, i.e. concomitants and sequels of CMI activation and inflammation, were detected in depression: (1) Induction of indoleamine 2,3-dioxygenase (IDO) by IFNγ and some PICs is associated with depleted plasma tryptophan, which may interfere with brain 5-HT synthesis, and increased production of anxiogenic and depressogenic tryptophan catabolites. (2) Increased bacterial translocation may cause depression-like behaviors by activating the cytokine network, oxidative and nitrosative stress (O&NS) pathways and IDO. (3) Induction of O&NS causes damage to membrane ω3 PUFAs, functional proteins, DNA and mitochondria, and autoimmune responses directed against intracellular molecules that may cause dysfunctions in intracellular signaling. (4) Decreased levels of ω3 PUFAs and antioxidants, such as coenzyme Q10, glutathione peroxidase or zinc, are associated with an increased inflammatory potential; more oxidative damage; the onset of specific symptoms; and changes in the expression or functions of brain 5-HT and N-methyl-d-aspartate receptors. (5) All abovementioned factors cause neuroprogression, that is a combination of neurodegeneration, neuronal apoptosis, and lowered neurogenesis and neuroplasticity. It is concluded that depression may be the consequence of a complex interplay between CMI activation and inflammation and their sequels/concomitants which all together cause neuroprogression that further shapes the depression phenotype. Future research should employ high throughput technologies to collect genetic and gene expression and protein data from patients with depression and analyze these data by means of systems biology methods to define the dynamic interactions between the different cell signaling networks and O&NS pathways that cause depression.
Collapse
Affiliation(s)
- Brian Leonard
- Pharmacology Department, National University of Ireland, Galway, Ireland
| | | |
Collapse
|
22
|
Fehér J, Kovács I, Balacco Gabrieli C. [Role of gastrointestinal inflammations in the development and treatment of depression]. Orv Hetil 2011; 152:1477-85. [PMID: 21893478 DOI: 10.1556/oh.2011.29166] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Recent studies have revealed that inflammation, among other factors, may be involved in the pathogenesis of depression. One line of studies has shown that depression is frequently associated with manifest gastrointestinal inflammations and autoimmune diseases as well as with cardiovascular diseases, neurodegenerative diseases, type 2-diabetes and also cancer, in which chronic low-grade inflammation is a significant contributing factor. Thus depression may be a neuropsychiatric manifestation of a chronic inflammatory syndrome. Another line of studies has shown that the primary cause of inflammation may be the dysfunction of the "gut-brain axis". Although, this is a bidirectional mechanism, life style factors may primarily affect the symbiosis between host mucous membrane and the microbiota. Local inflammation through the release of cytokines, neuropeptides and eicosanoids may also influence the function of the brain and of other organs. Role of metabolic burst due to inflammation represents a new aspect in both pathophysiology and treatment of the depression. Finally, an increasing number of clinical studies have shown that treating gastrointestinal inflammations with probiotics, vitamin B, D and omega 3 fatty acids, through attenuating proinflammatory stimuli to brain, may also improve depression symptoms and quality of life. All these findings justify an assumption that treating gastrointestinal inflammations may improve the efficacy of the currently used treatment modalities of depression and related diseases. However, further studies are certainly needed to confirm these findings.
Collapse
Affiliation(s)
- János Fehér
- Sapienza Tudományegyetem Szemészeti Klinika 00187 Roma Via Sardegna, 139.
| | | | | |
Collapse
|
23
|
Nuñez-Villena F, Becerra A, Echeverría C, Briceño N, Porras O, Armisén R, Varela D, Montorfano I, Sarmiento D, Simon F. Increased expression of the transient receptor potential melastatin 7 channel is critically involved in lipopolysaccharide-induced reactive oxygen species-mediated neuronal death. Antioxid Redox Signal 2011; 15:2425-38. [PMID: 21539414 DOI: 10.1089/ars.2010.3825] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
AIMS To assess the mechanisms involved in lipopolysaccharide (LPS)-induced neuronal cell death, we examined the cellular consequences of LPS exposure in differentiated PC12 neurons and primary hippocampal neurons. RESULTS Our data show that LPS is able to induce PC12 neuronal cell death without the participation of glial cells. Neuronal cell death was mediated by an increase in cellular reactive oxygen species (ROS) levels. Considering the prevalent role of specific ion channels in mediating the deleterious effect of ROS, we assessed their contribution to this process. Neurons exposed to LPS showed a significant intracellular Ca(2+) overload, and nonselective cationic channel blockers inhibited LPS-induced neuronal death. In particular, we observed that both LPS and hydrogen peroxide exposure strongly increased the expression of the transient receptor protein melastatin 7 (TRPM7), which is an ion channel directly implicated in neuronal cell death. Further, both LPS-induced TRPM7 overexpression and LPS-induced neuronal cell death were decreased with dithiothreitol, dipheniliodonium, and apocynin. Finally, knockdown of TRPM7 expression using small interference RNA technology protected primary hippocampal neurons and differentiated PC12 neurons from the LPS challenge. INNOVATION This is the first report showing that TRPM7 is a key protein involved in neuronal death after LPS challenge. CONCLUSION We conclude that LPS promotes an abnormal ROS-dependent TRPM7 overexpression, which plays a crucial role in pathologic events, thus leading to neuronal dysfunction and death.
Collapse
Affiliation(s)
- Felipe Nuñez-Villena
- Departamento de Ciencias Biologicas, Facultad de Ciencias Biologicas, Universidad Andres Bello, Santiago, Chile
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Song C, Wang H. Cytokines mediated inflammation and decreased neurogenesis in animal models of depression. Prog Neuropsychopharmacol Biol Psychiatry 2011; 35:760-8. [PMID: 20600462 DOI: 10.1016/j.pnpbp.2010.06.020] [Citation(s) in RCA: 211] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2010] [Revised: 06/15/2010] [Accepted: 06/23/2010] [Indexed: 11/19/2022]
Abstract
In patients with major depression or in animal models of depression, significantly increases in the concentrations of pro-inflammatory cytokines have been consistently reported. Proinflammatory cytokines can stimulate the hypothalamic-pituitary-adrenal (HPA) axis to release stress hormone, glucocorticoids. As a consequence of excessive inflammatory response triggered by pro-inflammatory cytokines in the periphery, free radicals, oxidants and glucocorticoids are over-produced, which can affect glial cell functions and damage neurons in the brain. Indeed, decreased neurogenesis and the dysfunction of neurotrophic system (up- or down-regulations of neurotrophins and their receptors) have been recently found. Effective treatments for depressive symptoms, such as antidepressants and omega-3 fatty acids can increase or modulate neurotrophic system and enhance neurogenesis. However, the relationship between glial cells; microglia (mostly involved in neuroinflammation) and astrocytes (producing neurotrophins), and the contribution of inflammation to decreased neurogenesis and dysfunction of neurotrophic system are almost unknown. This review first introduces changes in behavior, neurotransmitter, cytokine and neurogenesis aspects in depressed patients and several animal models of depression, secondly explores the possible relationship between pro- and anti-inflammatory cytokines and neurogenesis in these models, then discusses the effects of current treatments on inflammation, neurotrophic system and neurogenesis, and finally pointes out the limitations and future research directions.
Collapse
Affiliation(s)
- Cai Song
- Department of Biomedical Sciences, AVC, University of Prince Edward Island, and Canada National Research Institute for Nutriscience and Health, Charlottetown, PE, Canada.
| | | |
Collapse
|
25
|
DeSimone JA, Phan THT, Heck GL, Ren Z, Coleman J, Mummalaneni S, Melone P, Lyall V. Involvement of NADPH-dependent and cAMP-PKA sensitive H+ channels in the chorda tympani nerve responses to strong acids. Chem Senses 2011; 36:389-403. [PMID: 21339339 DOI: 10.1093/chemse/bjq148] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
To investigate if chorda tympani (CT) taste nerve responses to strong (HCl) and weak (CO(2) and acetic acid) acidic stimuli are dependent upon NADPH oxidase-linked and cAMP-sensitive proton conductances in taste cell membranes, CT responses were monitored in rats, wild-type (WT) mice, and gp91(phox) knockout (KO) mice in the absence and presence of blockers (Zn(2+) and diethyl pyrocarbonate [DEPC]) or activators (8-(4-chlorophenylthio)-cAMP; 8-CPT-cAMP) of proton channels and activators of the NADPH oxidase enzyme (phorbol 12-myristate 13-acetate [PMA], H(2)O(2), and nitrazepam). Zn(2+) and DEPC inhibited and 8-CPT-cAMP, PMA, H(2)O(2), and nitrazepam enhanced the tonic CT responses to HCl without altering responses to CO(2) and acetic acid. In KO mice, the tonic HCl CT response was reduced by 64% relative to WT mice. The residual CT response was insensitive to H(2)O(2) but was blocked by Zn(2+). Its magnitude was further enhanced by 8-CPT-cAMP treatment, and the enhancement was blocked by 8-CPT-adenosine-3'-5'-cyclic monophospho-rothioate, a protein kinase A (PKA) inhibitor. Under voltage-clamp conditions, before cAMP treatment, rat tonic HCl CT responses demonstrated voltage-dependence only at ±90 mV, suggesting the presence of H(+) channels with voltage-dependent conductances. After cAMP treatment, the tonic HCl CT response had a quasi-linear dependence on voltage, suggesting that the cAMP-dependent part of the HCl CT response has a quasi-linear voltage dependence between +60 and -60 mV, only becoming sigmoidal when approaching +90 and -90 mV. The results suggest that CT responses to HCl involve 2 proton entry pathways, an NADPH oxidase-dependent proton channel, and a cAMP-PKA sensitive proton channel.
Collapse
Affiliation(s)
- John A DeSimone
- Department of Physiology and Biophysics, Virginia Commonwealth University,1220 East Broad Street, Richmond, VA 23219, USA
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Li J, Ye L, Cook DR, Wang X, Liu J, Kolson DL, Persidsky Y, Ho WZ. Soybean-derived Bowman-Birk inhibitor inhibits neurotoxicity of LPS-activated macrophages. J Neuroinflammation 2011; 8:15. [PMID: 21324129 PMCID: PMC3046894 DOI: 10.1186/1742-2094-8-15] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2010] [Accepted: 02/15/2011] [Indexed: 12/12/2022] Open
Abstract
Background Lipopolysaccharide (LPS), the major component of the outer membrane of gram-negative bacteria, can activate immune cells including macrophages. Activation of macrophages in the central nervous system (CNS) contributes to neuronal injury. Bowman-Birk inhibitor (BBI), a soybean-derived protease inhibitor, has anti-inflammatory properties. In this study, we examined whether BBI has the ability to inhibit LPS-mediated macrophage activation, reducing the release of pro-inflammatory cytokines and subsequent neurotoxicity in primary cortical neural cultures. Methods Mixed cortical neural cultures from rat were used as target cells for testing neurotoxicity induced by LPS-treated macrophage supernatant. Neuronal survival was measured using a cell-based ELISA method for expression of the neuronal marker MAP-2. Intracellular reactive oxygen species (ROS) production in macrophages was measured via 2', 7'-dichlorofluorescin diacetate (DCFH2DA) oxidation. Cytokine expression was determined by quantitative real-time PCR. Results LPS treatment of macrophages induced expression of proinflammatory cytokines (IL-1β, IL-6 and TNF-α) and of ROS. In contrast, BBI pretreatment (1-100 μg/ml) of macrophages significantly inhibited LPS-mediated induction of these cytokines and ROS. Further, supernatant from BBI-pretreated and LPS-activated macrophage cultures was found to be less cytotoxic to neurons than that from non-BBI-pretreated and LPS-activated macrophage cultures. BBI, when directly added to the neuronal cultures (1-100 μg/ml), had no protective effect on neurons with or without LPS-activated macrophage supernatant treatment. In addition, BBI (100 μg/ml) had no effect on N-methyl-D-aspartic acid (NMDA)-mediated neurotoxicity. Conclusions These findings demonstrate that BBI, through its anti-inflammatory properties, protects neurons from neurotoxicity mediated by activated macrophages.
Collapse
Affiliation(s)
- Jieliang Li
- Department of Pathology & Laboratory Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | | | | | |
Collapse
|