1
|
Serological Surveillance of the H1N1 and H3N2 Swine Influenza A Virus in Chinese Swine between 2016 and 2021. BIOMED RESEARCH INTERNATIONAL 2022; 2022:5833769. [PMID: 35528158 PMCID: PMC9071888 DOI: 10.1155/2022/5833769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 03/27/2022] [Accepted: 04/07/2022] [Indexed: 11/17/2022]
Abstract
Background Swine influenza A virus (IAV-S) is a common cause of respiratory disease in pigs and poses a major public health threat. However, little attention and funding have been given to such studies. The aim of this study was to assess the prevalence of the Eurasian avian-like H1N1 (EA H1N1), 2009 pandemic H1N1 (pdm/09 H1N1), and H3N2 subtype antibodies in unvaccinated swine populations through serological investigations. Such data are helpful in understanding the prevalence of the IAV-S. Methods A total of 40,343 serum samples from 17 regions in China were examined using hemagglutination inhibition (HI) tests against EA H1N1, pdm/09 H1N1, and H3N2 IAV-S from 2016 to 2021. The results were analyzed based on a reginal distribution, seasonal distribution, and in different breeding stages. Results A total of 19,682 serum samples out of the 40,343 were positive for IAV-S (48.79%). The positivity rates to the EA H1N1 subtype, pdm/09 H1N1 subtype, and H3N2 subtype were 24.75% (9,986/40,343), 7.94% (3,205/40,343), and 0.06% (24/40,343), respectively. The occurrences of coinfections from two or more subtypes were also detected. In general, the positivity rates of serum samples were related to the regional distribution and feeding stages. Conclusions The results of this study showed that the anti-EA H1N1 subtype and pdm/09 H1N1 subtype antibodies were readily detected in swine serum samples. The EA H1N1 subtype has become dominant in the pig population. The occurrences of coinfections from two or more subtypes afforded opportunities for their reassortment to produce new viruses. Our findings emphasized the need for continuous surveillance of influenza viruses.
Collapse
|
2
|
Detection and Characterization of Swine Origin Influenza A(H1N1) Pandemic 2009 Viruses in Humans following Zoonotic Transmission. J Virol 2020; 95:JVI.01066-20. [PMID: 33115872 DOI: 10.1128/jvi.01066-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 10/13/2020] [Indexed: 12/30/2022] Open
Abstract
Human-to-swine transmission of seasonal influenza viruses has led to sustained human-like influenza viruses circulating in the U.S. swine population. While some reverse zoonotic-origin viruses adapt and become enzootic in swine, nascent reverse zoonoses may result in virus detections that are difficult to classify as "swine-origin" or "human-origin" due to the genetic similarity of circulating viruses. This is the case for human-origin influenza A(H1N1) pandemic 2009 (pdm09) viruses detected in pigs following numerous reverse zoonosis events since the 2009 pandemic. We report the identification of two human infections with A(H1N1)pdm09 viruses originating from swine hosts and classify them as "swine-origin" variant influenza viruses based on phylogenetic analysis and sequence comparison methods. Phylogenetic analyses of viral genomes from two cases revealed these viruses were reassortants containing A(H1N1)pdm09 hemagglutinin (HA) and neuraminidase (NA) genes with genetic combinations derived from the triple reassortant internal gene cassette. Follow-up investigations determined that one individual had direct exposure to swine in the week preceding illness onset, while another did not report swine exposure. The swine-origin A(H1N1) variant cases were resolved by full genome sequence comparison of the variant viruses to swine influenza genomes. However, if reassortment does not result in the acquisition of swine-associated genes and swine virus genomic sequences are not available from the exposure source, future cases may not be discernible. We have developed a pipeline that performs maximum likelihood analyses, a k-mer-based set difference algorithm, and random forest algorithms to identify swine-associated sequences in the hemagglutinin gene to differentiate between human-origin and swine-origin A(H1N1)pdm09 viruses.IMPORTANCE Influenza virus infects a wide range of hosts, resulting in illnesses that vary from asymptomatic cases to severe pneumonia and death. Viral transfer can occur between human and nonhuman hosts, resulting in human and nonhuman origin viruses circulating in novel hosts. In this work, we have identified the first case of a swine-origin influenza A(H1N1)pdm09 virus resulting in a human infection. This shows that these viruses not only circulate in swine hosts, but are continuing to evolve and distinguish themselves from previously circulating human-origin influenza viruses. The development of techniques for distinguishing human-origin and swine-origin viruses are necessary for the continued surveillance of influenza viruses. We show that unique genetic signatures can differentiate circulating swine-associated strains from circulating human-associated strains of influenza A(H1N1)pdm09, and these signatures can be used to enhance surveillance of swine-origin influenza.
Collapse
|
3
|
Ma W. Swine influenza virus: Current status and challenge. Virus Res 2020; 288:198118. [PMID: 32798539 PMCID: PMC7587018 DOI: 10.1016/j.virusres.2020.198118] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 08/05/2020] [Accepted: 08/06/2020] [Indexed: 12/19/2022]
Abstract
Since swine influenza virus was first isolated in 1930, it has become endemic in pigs worldwide. Although large amount of swine influenza vaccines has been used in swine industry, swine influenza still cannot be efficiently controlled and has been an important economic disease for swine industry. The high diversity and varied distribution of different subtypes and genotypes of swine influenza viruses circulating in pigs globally is a major challenge to produce broadly effective vaccines and control disease. Importantly, swine influenza virus is able to cross species barrier to infect humans and even caused influenza pandemic in 2009. Herein, current status and challenge of swine influenza viruses is reviewed and discussed.
Collapse
Affiliation(s)
- Wenjun Ma
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65211, United States.
| |
Collapse
|
4
|
Chastagner A, Bonin E, Fablet C, Quéguiner S, Hirchaud E, Lucas P, Gorin S, Barbier N, Béven V, Garin E, Blanchard Y, Rose N, Hervé S, Simon G. Virus persistence in pig herds led to successive reassortment events between swine and human influenza A viruses, resulting in the emergence of a novel triple-reassortant swine influenza virus. Vet Res 2019; 50:77. [PMID: 31590684 PMCID: PMC6781375 DOI: 10.1186/s13567-019-0699-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 09/23/2019] [Indexed: 01/05/2023] Open
Abstract
This report describes the detection of a triple reassortant swine influenza A virus of H1avN2 subtype. It evolved from an avian-like swine H1avN1 that first acquired the N2 segment from a seasonal H3N2, then the M segment from a 2009 pandemic H1N1, in two reassortments estimated to have occurred 10 years apart. This study illustrates how recurrent influenza infections increase the co-infection risk and facilitate evolutionary jumps by successive gene exchanges. It recalls the importance of appropriate biosecurity measures inside holdings to limit virus persistence and interspecies transmissions, which both contribute to the emergence of new potentially zoonotic viruses.
Collapse
Affiliation(s)
- Amélie Chastagner
- Swine Virology Immunology Unit, Ploufragan-Plouzané-Niort Laboratory, ANSES, BP53, 22440, Ploufragan, France.,Bretagne Loire University, Cité internationale, 1 place Paul Ricoeur, CS 54417, 35044, Rennes, France
| | - Emilie Bonin
- Swine Virology Immunology Unit, Ploufragan-Plouzané-Niort Laboratory, ANSES, BP53, 22440, Ploufragan, France.,Bretagne Loire University, Cité internationale, 1 place Paul Ricoeur, CS 54417, 35044, Rennes, France.,INRA, US 1426, GeT-PlaGe, 24 chemin de borde rouge - Auzeville, CS 52627, 31326, Castanet-Tolosan, France
| | - Christelle Fablet
- Epidemiology, Health and Welfare Unit, Ploufragan-Plouzané-Niort Laboratory, ANSES, BP53, 22440, Ploufragan, France.,Bretagne Loire University, Cité internationale, 1 place Paul Ricoeur, CS 54417, 35044, Rennes, France
| | - Stéphane Quéguiner
- Swine Virology Immunology Unit, Ploufragan-Plouzané-Niort Laboratory, ANSES, BP53, 22440, Ploufragan, France.,Bretagne Loire University, Cité internationale, 1 place Paul Ricoeur, CS 54417, 35044, Rennes, France
| | - Edouard Hirchaud
- Viral Genetic and Biosecurity Unit, Ploufragan-Plouzané-Niort Laboratory, ANSES, BP53, 22440, Ploufragan, France.,Bretagne Loire University, Cité internationale, 1 place Paul Ricoeur, CS 54417, 35044, Rennes, France
| | - Pierrick Lucas
- Viral Genetic and Biosecurity Unit, Ploufragan-Plouzané-Niort Laboratory, ANSES, BP53, 22440, Ploufragan, France.,Bretagne Loire University, Cité internationale, 1 place Paul Ricoeur, CS 54417, 35044, Rennes, France
| | - Stéphane Gorin
- Swine Virology Immunology Unit, Ploufragan-Plouzané-Niort Laboratory, ANSES, BP53, 22440, Ploufragan, France.,Bretagne Loire University, Cité internationale, 1 place Paul Ricoeur, CS 54417, 35044, Rennes, France
| | - Nicolas Barbier
- Swine Virology Immunology Unit, Ploufragan-Plouzané-Niort Laboratory, ANSES, BP53, 22440, Ploufragan, France.,Bretagne Loire University, Cité internationale, 1 place Paul Ricoeur, CS 54417, 35044, Rennes, France
| | - Véronique Béven
- Viral Genetic and Biosecurity Unit, Ploufragan-Plouzané-Niort Laboratory, ANSES, BP53, 22440, Ploufragan, France.,Bretagne Loire University, Cité internationale, 1 place Paul Ricoeur, CS 54417, 35044, Rennes, France
| | - Emmanuel Garin
- Animal Health Service, Coop de France, 43 Rue Sedaine, 75538, Paris cedex 11, France.,Operational Team, ESA Platform, 31 Avenue Garnier, 69007, Lyon, France.,GDS-France, 37 Rue de Lyon, 75012, Paris, France
| | - Yannick Blanchard
- Viral Genetic and Biosecurity Unit, Ploufragan-Plouzané-Niort Laboratory, ANSES, BP53, 22440, Ploufragan, France.,Bretagne Loire University, Cité internationale, 1 place Paul Ricoeur, CS 54417, 35044, Rennes, France
| | - Nicolas Rose
- Epidemiology, Health and Welfare Unit, Ploufragan-Plouzané-Niort Laboratory, ANSES, BP53, 22440, Ploufragan, France.,Bretagne Loire University, Cité internationale, 1 place Paul Ricoeur, CS 54417, 35044, Rennes, France
| | - Séverine Hervé
- Swine Virology Immunology Unit, Ploufragan-Plouzané-Niort Laboratory, ANSES, BP53, 22440, Ploufragan, France.,Bretagne Loire University, Cité internationale, 1 place Paul Ricoeur, CS 54417, 35044, Rennes, France
| | - Gaëlle Simon
- Swine Virology Immunology Unit, Ploufragan-Plouzané-Niort Laboratory, ANSES, BP53, 22440, Ploufragan, France. .,Bretagne Loire University, Cité internationale, 1 place Paul Ricoeur, CS 54417, 35044, Rennes, France.
| |
Collapse
|
5
|
|
6
|
Virus survival and fitness when multiple genotypes and subtypes of influenza A viruses exist and circulate in swine. Virology 2019; 532:30-38. [PMID: 31003122 DOI: 10.1016/j.virol.2019.03.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 03/21/2019] [Accepted: 03/26/2019] [Indexed: 01/07/2023]
Abstract
We performed swine influenza virus (SIV) surveillance in Midwest USA and isolated 100 SIVs including endemic and reassortant H1 and H3 viruses with 2009 pandemic H1N1 genes. To determine virus evolution when different genotypes and subtypes of influenza A viruses circulating in the same swine herd, a virus survival experiment was conducted in pigs mimicking field situations. Five different SIVs were used to infect five pigs individually, then two groups of sentinel pigs were introduced to investigate virus transmission. Results showed that each virus replicated efficiently in lungs of each infected pig, but only reassortant H3N2 and H1N2v viruses transmitted to the primary contact pigs. Interestingly, the parental H1N2v was the majority of virus detected in the second group of sentinel pigs. These data indicate that the H1N2v seems to be more viable in swine herds than other SIV genotypes, and reassortment can enhance viral fitness and transmission.
Collapse
|
7
|
Poly-ADP Ribosyl Polymerase 1 (PARP1) Regulates Influenza A Virus Polymerase. Adv Virol 2019; 2019:8512363. [PMID: 31015836 PMCID: PMC6444269 DOI: 10.1155/2019/8512363] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 01/16/2019] [Accepted: 02/11/2019] [Indexed: 11/17/2022] Open
Abstract
Influenza A viruses (IAV) are evolutionarily successful pathogens, capable of infecting a number of avian and mammalian species and responsible for pandemic and seasonal epidemic disease in humans. To infect new species, IAV typically must overcome a number of species barriers to entry, replication, and egress, even while virus replication is counteracted by antiviral host factors and innate immune mechanisms. A number of host factors have been found to regulate the replication of IAV by interacting with the viral RNA-dependent RNA polymerase (RdRP). The host factor PARP1, a poly-ADP ribosyl polymerase, was required for optimal functions of human, swine, and avian influenza RdRP in human 293T cells. In IAV infection, PARP1 was required for efficient synthesis of viral nucleoprotein (NP) in human lung A549 cells. Intriguingly, pharmacological inhibition of PARP1 enzymatic activity (PARylation) by 4-amino-1,8-naphthalimide led to a 4-fold increase in RdRP activity, and a 2.3-fold increase in virus titer. Exogenous expression of the natural PARylation inhibitor PARG also enhanced RdRP activity. These data suggest a virus-host interaction dynamic where PARP1 protein itself is required, but cellular PARylation has a distinct suppressive modality, on influenza A viral polymerase activity in human cells.
Collapse
|
8
|
Novel triple-reassortant influenza viruses in pigs, Guangxi, China. Emerg Microbes Infect 2018; 7:85. [PMID: 29765037 PMCID: PMC5953969 DOI: 10.1038/s41426-018-0088-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 02/10/2018] [Accepted: 04/12/2018] [Indexed: 11/24/2022]
Abstract
Considered a “mixing vessel” for influenza viruses, pigs can give rise to new influenza virus reassortants that can threaten humans. During our surveillance of pigs in Guangxi, China from 2013 to 2015, we isolated 11 H1N1 and three H3N2 influenza A viruses of swine origin (IAVs-S). Out of the 14, we detected ten novel triple-reassortant viruses, which contained surface genes (hemagglutinin and neuraminidase) from Eurasian avian-like (EA) H1N1 or seasonal human-like H3N2, matrix (M) genes from H1N1/2009 pandemic or EA H1N1, nonstructural (NS) genes from classical swine, and the remaining genes from H1N1/2009 pandemic. Mouse studies indicate that these IAVs-S replicate efficiently without prior adaptation, with some isolates demonstrating lethality. Notably, the reassortant EA H1N1 viruses with EA-like M gene have been reported in human infections. Further investigations will help to assess the potential risk of these novel triple-reassortant viruses to humans.
Collapse
|
9
|
Cador C, Andraud M, Willem L, Rose N. Control of endemic swine flu persistence in farrow-to-finish pig farms: a stochastic metapopulation modeling assessment. Vet Res 2017; 48:58. [PMID: 28974251 PMCID: PMC5627436 DOI: 10.1186/s13567-017-0462-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 09/12/2017] [Indexed: 12/26/2022] Open
Abstract
Swine influenza viruses (swIAVs) are known to persist endemically in farrow-to-finish pig farms, leading to repeated swine flu outbreaks in successive batches of pigs at a similar age (mostly around 8 weeks of age). This persistence in European swine herds involves swIAVs from European lineages including H1avN1, H1huN2, H3N2, the 2009 H1N1 pandemic virus and their reassortants. The specific population dynamics of farrow-to-finish pig farms, the immune status of the animals at infection-time, the co-circulation of distinct subtypes leading to consecutive or concomitant infections have been evidenced as factors favouring swIAV persistence within herds. We developed a stochastic metapopulation model representing the co-circulation of two distinct swIAVs within a typical farrow-to-finish pig herd to evaluate the risk of reassortant viruses generation due to co-infection events. Control strategies related to herd management and/or vaccination schemes (batch-to-batch or mass vaccination of the sow herd and vaccination of growing pigs) were implemented to assess their relative efficacy regarding viral persistence. The overall probability of a co-infection event for France, possibly leading to reassortment, was evaluated to 16.8%. The export of consecutive piglets batches was identified as the most efficient measure facilitating swIAV infection fade-out. Although some vaccination schemes (batch-to-batch vaccination) had a beneficial effect in breeding sows by reducing the persistence of swIAVs within this subpopulation, none of vaccination strategies achieved swIAVs fade-out within the entire farrow-to-finish pig herd.
Collapse
Affiliation(s)
- Charlie Cador
- Swine Epidemiology and Welfare Research Unit, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), BP 53, 22440, Ploufragan, France. .,Université Bretagne Loire, Rennes, France.
| | - Mathieu Andraud
- Swine Epidemiology and Welfare Research Unit, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), BP 53, 22440, Ploufragan, France.,Université Bretagne Loire, Rennes, France
| | - Lander Willem
- Centre for Health Economics & Modeling Infectious Diseases, Vaccine and Infectious Disease Institute, University of Antwerp Research, Antwerp, Belgium
| | - Nicolas Rose
- Swine Epidemiology and Welfare Research Unit, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), BP 53, 22440, Ploufragan, France.,Université Bretagne Loire, Rennes, France
| |
Collapse
|
10
|
Yang J, Lee J, Ma J, Lang Y, Nietfeld J, Li Y, Duff M, Li Y, Yang Y, Liu H, Zhou B, Wentworth DE, Richt JA, Li Z, Ma W. Pathogenicity of modified bat influenza virus with different M genes and its reassortment potential with swine influenza A virus. J Gen Virol 2017; 98:577-584. [DOI: 10.1099/jgv.0.000715] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Affiliation(s)
- Jianmei Yang
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, USA
- Innovation Team for Pathogen Ecology Research on Animal Influenza Virus, Department of Avian Infectious Disease, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, PR China
| | - Jinhwa Lee
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, USA
| | - Jingjiao Ma
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, USA
| | - Yuekun Lang
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, USA
| | - Jerome Nietfeld
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, USA
| | - Yuhao Li
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, USA
| | - Michael Duff
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, USA
| | - Yonghai Li
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, USA
| | - Yuju Yang
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, USA
| | - Haixia Liu
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, USA
| | - Bin Zhou
- Department of Virology, J. Craig Venter Institute, Rockville, MD, USA
- Present address: Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY, USA
| | - David E Wentworth
- Department of Virology, J. Craig Venter Institute, Rockville, MD, USA
- Present address: Influenza Division, National Center for Immunization and Respiratory Disease, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Juergen A Richt
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, USA
| | - Zejun Li
- Innovation Team for Pathogen Ecology Research on Animal Influenza Virus, Department of Avian Infectious Disease, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, PR China
| | - Wenjun Ma
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, USA
| |
Collapse
|
11
|
Rajão DS, Walia RR, Campbell B, Gauger PC, Janas-Martindale A, Killian ML, Vincent AL. Reassortment between Swine H3N2 and 2009 Pandemic H1N1 in the United States Resulted in Influenza A Viruses with Diverse Genetic Constellations with Variable Virulence in Pigs. J Virol 2017; 91:e01763-16. [PMID: 27928015 PMCID: PMC5286888 DOI: 10.1128/jvi.01763-16] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 12/01/2016] [Indexed: 11/20/2022] Open
Abstract
Repeated spillovers of the H1N1 pandemic virus (H1N1pdm09) from humans to pigs resulted in substantial evolution of influenza A viruses infecting swine, contributing to the genetic and antigenic diversity of influenza A viruses (IAV) currently circulating in swine. The reassortment with endemic swine viruses and maintenance of some of the H1N1pdm09 internal genes resulted in the circulation of different genomic constellations in pigs. Here, we performed a whole-genome phylogenetic analysis of 368 IAV circulating in swine from 2009 to 2016 in the United States. We identified 44 different genotypes, with the most common genotype (32.33%) containing a clade IV-A HA gene, a 2002-lineage NA gene, an M-pdm09 gene, and remaining gene segments of triple reassortant internal gene (TRIG) origin. To understand how different genetic constellations may relate to viral fitness, we compared the pathogenesis and transmission in pigs of six representative genotypes. Although all six genotypes efficiently infected pigs, they resulted in different degrees of pathology and viral shedding. These results highlight the vast H3N2 genetic diversity circulating in U.S. swine after 2009. This diversity has important implications in the control of this disease by the swine industry, as well as a potential risk for public health if swine-adapted viruses with H1N1pdm09 genes have an increased risk to humans, as occurred in the 2011-2012 and 2016 human variant H3N2v cases associated with exhibition swine. IMPORTANCE People continue to spread the 2009 H1N1 pandemic (H1N1pdm09) IAV to pigs, allowing H1N1pdm09 to reassort with endemic swine IAV. In this study, we determined the 8 gene combinations of swine H3N2 IAV detected from 2009 to 2016. We identified 44 different genotypes of H3N2, the majority of which contained at least one H1N1pdm09 gene segment. We compared six representative genotypes of H3N2 in pigs. All six genotypes efficiently infected pigs, but they resulted in different degrees of lung damage and viral shedding. These results highlight the vast genetic diversity of H3N2 circulating in U.S. swine after 2009, with important implications for the control of IAV for the swine industry. Because H1N1pdm09 is also highly adapted to humans, these swine viruses pose a potential risk to public health if swine-adapted viruses with H1N1pdm09 genes also have an increased risk for human infection.
Collapse
Affiliation(s)
- Daniela S Rajão
- Virus and Prion Diseases Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, Iowa, USA
| | - Rasna R Walia
- Virus and Prion Diseases Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, Iowa, USA
| | - Brian Campbell
- Virus and Prion Diseases Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, Iowa, USA
| | - Phillip C Gauger
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Alicia Janas-Martindale
- Diagnostic Virology Laboratory, National Veterinary Services Laboratories, Science, Technology and Analysis Services, Veterinary Services, Animal and Plant Health Inspection Service, United States Department of Agriculture, Ames, Iowa, USA
| | - Mary Lea Killian
- Diagnostic Virology Laboratory, National Veterinary Services Laboratories, Science, Technology and Analysis Services, Veterinary Services, Animal and Plant Health Inspection Service, United States Department of Agriculture, Ames, Iowa, USA
| | - Amy L Vincent
- Virus and Prion Diseases Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, Iowa, USA
| |
Collapse
|
12
|
|
13
|
Cador C, Rose N, Willem L, Andraud M. Maternally Derived Immunity Extends Swine Influenza A Virus Persistence within Farrow-to-Finish Pig Farms: Insights from a Stochastic Event-Driven Metapopulation Model. PLoS One 2016; 11:e0163672. [PMID: 27662592 PMCID: PMC5035019 DOI: 10.1371/journal.pone.0163672] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 09/12/2016] [Indexed: 12/28/2022] Open
Abstract
Swine Influenza A Viruses (swIAVs) have been shown to persist in farrow-to-finish pig herds with repeated outbreaks in successive batches, increasing the risk for respiratory disorders in affected animals and being a threat for public health. Although the general routes of swIAV transmission (i.e. direct contact and exposure to aerosols) were clearly identified, the transmission process between batches is still not fully understood. Maternally derived antibodies (MDAs) were stressed as a possible factor favoring within-herd swIAV persistence. However, the relationship between MDAs and the global spread among the different subpopulations in the herds is still lacking. The aim of this study was therefore to understand the mechanisms induced by MDAs in relation with swIAV spread and persistence in farrow-to-finish pig herds. A metapopulation model has been developed representing the population dynamics considering two subpopulations—breeding sows and growing pigs—managed according to batch-rearing system. This model was coupled with a swIAV-specific epidemiological model, accounting for partial passive immunity protection in neonatal piglets and an immunity boost in re-infected animals. Airborne transmission was included by a between-room transmission rate related to the current prevalence of shedding pigs. Maternally derived partial immunity in piglets was found to extend the duration of the epidemics within their batch, allowing for efficient between-batch transmission and resulting in longer swIAV persistence at the herd level. These results should be taken into account in the design of control programmes for the spread and persistence of swIAV in swine herds.
Collapse
Affiliation(s)
- Charlie Cador
- Swine epidemiology and welfare research unit, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Ploufragan, France
- Université Bretagne Loire, Rennes, France
- * E-mail:
| | - Nicolas Rose
- Swine epidemiology and welfare research unit, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Ploufragan, France
- Université Bretagne Loire, Rennes, France
| | - Lander Willem
- Centre for Health Economics Research & Modeling of Infectious Diseases, Vaccine and Infectious Disease Institute, University of Antwerp, Wilrijk, Belgium
| | - Mathieu Andraud
- Swine epidemiology and welfare research unit, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Ploufragan, France
- Université Bretagne Loire, Rennes, France
| |
Collapse
|
14
|
Transmission and pathogenicity of novel reassortants derived from Eurasian avian-like and 2009 pandemic H1N1 influenza viruses in mice and guinea pigs. Sci Rep 2016; 6:27067. [PMID: 27252023 PMCID: PMC4890009 DOI: 10.1038/srep27067] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 04/20/2016] [Indexed: 11/08/2022] Open
Abstract
Given the present extensive co-circulation in pigs of Eurasian avian-like (EA) swine H1N1 and 2009 pandemic (pdm/09) H1N1 viruses, reassortment between them is highly plausible but largely uncharacterized. Here, experimentally co-infected pigs with a representative EA virus and a pdm/09 virus yielded 55 novel reassortant viruses that could be categorized into 17 genotypes from Gt1 to Gt17 based on segment segregation. Majority of novel reassortants were isolated from the lower respiratory tract. Most of reassortant viruses were more pathogenic and contagious than the parental EA viruses in mice and guinea pigs. The most transmissible reassortant genotypes demonstrated in guinea pigs (Gt2, Gt3, Gt7, Gt10 and Gt13) were also the most lethal in mice. Notably, nearly all these highly virulent reassortants (all except Gt13) were characterized with possession of EA H1 and full complement of pdm/09 ribonucleoprotein genes. Compositionally, we demonstrated that EA H1-222G contributed to virulence by its ability to bind avian-type sialic acid receptors, and that pdm/09 RNP conferred the most robust polymerase activity to reassortants. The present study revealed high reassortment compatibility between EA and pdm/09 viruses in pigs, which could give rise to progeny reassortant viruses with enhanced virulence and transmissibility in mice and guinea pig models.
Collapse
|
15
|
Wu C, Wang MH, Lu X, Chong KC, He J, Yau CY, Hui M, Cheng X, Yang L, Zee BCY, Zhang R, He ML. Concurrent epidemics of influenza A/H3N2 and A/H1N1pdm in Southern China: A serial cross-sectional study. J Infect 2015; 72:369-76. [PMID: 26747013 DOI: 10.1016/j.jinf.2015.12.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 12/25/2015] [Accepted: 12/26/2015] [Indexed: 02/05/2023]
Abstract
OBJECTIVES This study aimed to elucidate the antibody response pattern of multiple influenza subtypes through a 4-year serological study of a general population in Shenzhen, Southern China. METHODS A serial cross-sectional serological survey was conducted at eight time points between 2009 and 2012. A total number of 5876 subjects were recruited from all age groups. The influenza subtypes tested were A/H1N1, A/H3N2, B/Yamagata, B/Victoria, and A/H1N1pdm. Genetic sequencing and phylogenetic analysis were performed on 127 H3 genes and 28 H1pdm genes. RESULTS We found concurrent epidemics of A/H3N2 and A/H1N1pdm with simultaneous peak times at March 2011. A/H3N2 was the dominant subtype. Ten residue substitutions (S61N, T64I, K78E, K160N, N161S, A214S, T228A, A229V, V239I, N294K, and N328S) were found in the H3 gene that might underlie its epidemic. The elderly group showed an antibody response cycle that was weaker in magnitude and slower in peak time than in younger groups. CONCLUSIONS The study provides a broad transmission picture and epidemiological characteristics of the major flu subtypes. The findings suggest that it may be necessary to include the A/H1N1pdm strain to the current trivalent or quadrivalent vaccine design. The delayed antibody response cycle in the elderly group indicates the need for better protection of elderly people that might be achieved by an earlier vaccination at a higher dose.
Collapse
Affiliation(s)
- Chunli Wu
- Major Infectious Disease Control Key Laboratory, The Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Maggie Haitian Wang
- Division of Biostatistics, JC School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong SAR, China; The CUHK Shenzhen Research Institute, Shenzhen, China
| | - Xing Lu
- Major Infectious Disease Control Key Laboratory, The Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Ka Chun Chong
- Division of Biostatistics, JC School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong SAR, China; The CUHK Shenzhen Research Institute, Shenzhen, China
| | - Jason He
- College of Letter and Science, University of California at Berkeley, CA, USA
| | - Chun-Yip Yau
- Department of Statistics, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Mark Hui
- Department of Statistics, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Xiaowen Cheng
- Major Infectious Disease Control Key Laboratory, The Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Li Yang
- Division of Digestive Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Benny Chung-Ying Zee
- Division of Biostatistics, JC School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong SAR, China; The CUHK Shenzhen Research Institute, Shenzhen, China
| | - Renli Zhang
- Major Infectious Disease Control Key Laboratory, The Shenzhen Center for Disease Control and Prevention, Shenzhen, China.
| | - Ming-Liang He
- The CUHK Shenzhen Research Institute, Shenzhen, China; Stanley Ho Center for Emerging Infectious Diseases, and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, China; Department of Biomedical Science, The City University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
16
|
Sun YF, Wang XH, Li XL, Zhang L, Li HH, Lu C, Yang CL, Feng J, Han W, Ren WK, Tian XX, Tong GZ, Wen F, Li ZJ, Gong XQ, Liu XM, Ruan BY, Yan MH, Yu H. Novel triple-reassortant H1N1 swine influenza viruses in pigs in Tianjin, Northern China. Vet Microbiol 2015; 183:85-91. [PMID: 26790939 DOI: 10.1016/j.vetmic.2015.12.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 12/04/2015] [Accepted: 12/10/2015] [Indexed: 12/09/2022]
Abstract
Pigs are susceptible to both human and avian influenza viruses and therefore have been proposed to be mixing vessels for the generation of pandemic influenza viruses through reassortment. In this study, for the first time, we report the isolation and genetic analyses of three novel triple-reassortant H1N1 swine influenza viruses from pigs in Tianjin, Northern China. Phylogenetic analysis showed that these novel viruses contained genes from the 2009 pandemic H1N1 (PB2, PB1, PA and NP), Eurasian swine (HA, NA and M) and triple-reassortant swine (NS) lineages. This indicated that the reassortment among the 2009 pandemic H1N1, Eurasian swine and triple-reassortant swine influenza viruses had taken place in pigs in Tianjin and resulted in the generation of new viruses. Furthermore, three human-like H1N1, two classical swine H1N1 and two Eurasian swine H1N1 viruses were also isolated during the swine influenza virus surveillance from 2009 to 2013, which indicated that multiple genetic lineages of swine H1N1 viruses were co-circulating in the swine population in Tianjin, China. The emergence of novel triple-reassortant H1N1 swine influenza viruses may be a potential threat to human health and emphasizes the importance of further continuous surveillance.
Collapse
Affiliation(s)
- Ying-Feng Sun
- Tianjin Animal Husbandry and Veterinary Research Institute, Tianjin 300381,China
| | - Xiu-Hui Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Xiu-Li Li
- Tianjin Animal Husbandry and Veterinary Research Institute, Tianjin 300381,China
| | - Li Zhang
- Tianjin Animal Husbandry and Veterinary Research Institute, Tianjin 300381,China
| | - Hai-Hua Li
- Tianjin Animal Husbandry and Veterinary Research Institute, Tianjin 300381,China
| | - Chao Lu
- Tianjin Animal Husbandry and Veterinary Research Institute, Tianjin 300381,China
| | - Chun-Lei Yang
- Tianjin Animal Husbandry and Veterinary Research Institute, Tianjin 300381,China
| | - Jing Feng
- Tianjin Animal Husbandry and Veterinary Research Institute, Tianjin 300381,China
| | - Wei Han
- Tianjin Animal Husbandry and Veterinary Research Institute, Tianjin 300381,China
| | - Wei-Ke Ren
- Tianjin Animal Husbandry and Veterinary Research Institute, Tianjin 300381,China
| | - Xiang-Xue Tian
- Tianjin Animal Husbandry and Veterinary Research Institute, Tianjin 300381,China
| | - Guang-Zhi Tong
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Feng Wen
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Ze-Jun Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Xiao-Qian Gong
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Xiao-Min Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Bao-Yang Ruan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Ming-Hua Yan
- Tianjin Animal Husbandry and Veterinary Research Institute, Tianjin 300381,China.
| | - Hai Yu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China.
| |
Collapse
|
17
|
Decorte I, Steensels M, Lambrecht B, Cay AB, De Regge N. Detection and Isolation of Swine Influenza A Virus in Spiked Oral Fluid and Samples from Individually Housed, Experimentally Infected Pigs: Potential Role of Porcine Oral Fluid in Active Influenza A Virus Surveillance in Swine. PLoS One 2015; 10:e0139586. [PMID: 26431039 PMCID: PMC4592207 DOI: 10.1371/journal.pone.0139586] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 09/15/2015] [Indexed: 12/31/2022] Open
Abstract
Background The lack of seasonality of swine influenza A virus (swIAV) in combination with the capacity of swine to harbor a large number of co-circulating IAV lineages, resulting in the risk for the emergence of influenza viruses with pandemic potential, stress the importance of swIAV surveillance. To date, active surveillance of swIAV worldwide is barely done because of the short detection period in nasal swab samples. Therefore, more sensitive diagnostic methods to monitor circulating virus strains are requisite. Methods qRT-PCR and virus isolations were performed on oral fluid and nasal swabs collected from individually housed pigs that were infected sequentially with H1N1 and H3N2 swIAV strains. The same methods were also applied to oral fluid samples spiked with H1N1 to study the influence of conservation time and temperature on swIAV infectivity and detectability in porcine oral fluid. Results All swIAV infected animals were found qRT-PCR positive in both nasal swabs and oral fluid. However, swIAV could be detected for a longer period in oral fluid than in nasal swabs. Despite the high detectability of swIAV in oral fluid, virus isolation from oral fluid collected from infected pigs was rare. These results are supported by laboratory studies showing that the PCR detectability of swIAV remains unaltered during a 24 h incubation period in oral fluid, while swIAV infectivity drops dramatically immediately upon contact with oral fluid (3 log titer reduction) and gets lost after 24 h conservation in oral fluid at ambient temperature. Conclusions Our data indicate that porcine oral fluid has the potential to replace nasal swabs for molecular diagnostic purposes. The difficulty to isolate swIAV from oral fluid could pose a drawback for its use in active surveillance programs.
Collapse
Affiliation(s)
- Inge Decorte
- Operational Direction Viral Diseases, Enzootic and (re)emerging diseases, CODA-CERVA, Ukkel, Belgium
| | - Mieke Steensels
- Operational Direction Viral Diseases, Avian virology and immunology, CODA-CERVA, Ukkel, Belgium
| | - Bénédicte Lambrecht
- Operational Direction Viral Diseases, Avian virology and immunology, CODA-CERVA, Ukkel, Belgium
| | - Ann Brigitte Cay
- Operational Direction Viral Diseases, Enzootic and (re)emerging diseases, CODA-CERVA, Ukkel, Belgium
| | - Nick De Regge
- Operational Direction Viral Diseases, Enzootic and (re)emerging diseases, CODA-CERVA, Ukkel, Belgium
- * E-mail:
| |
Collapse
|
18
|
Novel reassortant influenza viruses between pandemic (H1N1) 2009 and other influenza viruses pose a risk to public health. Microb Pathog 2015; 89:62-72. [PMID: 26344393 DOI: 10.1016/j.micpath.2015.09.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 09/01/2015] [Accepted: 09/02/2015] [Indexed: 12/21/2022]
Abstract
Influenza A virus (IAV) is characterized by eight single-stranded, negative sense RNA segments, which allows for gene reassortment among different IAV subtypes when they co-infect a single host cell simultaneously. Genetic reassortment is an important way to favor the evolution of influenza virus. Novel reassortant virus may pose a pandemic among humans. In history, three human pandemic influenza viruses were caused by genetic reassortment between avian, human and swine influenza viruses. Since 2009, pandemic (H1N1) 2009 (pdm/09 H1N1) influenza virus composed of two swine influenza virus genes highlighted the genetic reassortment again. Due to wide host species and high transmission of the pdm/09 H1N1 influenza virus, many different avian, human or swine influenza virus subtypes may reassert with it to generate novel reassortant viruses, which may result in a next pandemic among humans. So, it is necessary to understand the potential threat of current reassortant viruses between the pdm/09 H1N1 and other influenza viruses to public health. This study summarized the status of the reassortant viruses between the pdm/09 H1N1 and other influenza viruses of different species origins in natural and experimental conditions. The aim of this summarization is to facilitate us to further understand the potential threats of novel reassortant influenza viruses to public health and to make effective prevention and control strategies for these pathogens.
Collapse
|
19
|
Lee JH, Pascua PNQ, Decano AG, Kim SM, Park SJ, Kwon HI, Kim EH, Kim YI, Kim H, Kim SY, Song MS, Jang HK, Park BK, Choi YK. Evaluation of the zoonotic potential of a novel reassortant H1N2 swine influenza virus with gene constellation derived from multiple viral sources. INFECTION GENETICS AND EVOLUTION 2015; 34:378-93. [PMID: 26051886 DOI: 10.1016/j.meegid.2015.06.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 06/02/2015] [Accepted: 06/03/2015] [Indexed: 12/09/2022]
|
20
|
Abstract
To assess the potential transmission for zoonotic influenza, sero-antibodies against two kinds of influenza viruses—classical swine H1N1 and human H1N1pdm09 virus were detected in persons whose profession involved contact with swine in Guangdong province, China. Compared to the non-exposed control group, a significantly higher proportion of subjects with occupational contact to pigs exhibited positive seroreaction against the classical H1N1 SIV. Participants aged 26–50 years were at high risk of classic swine H1N1 infections. Seropositive rate to 2009 pandemic H1N1 virus among swine workers was similar with controls. The major impact of age was apparent for younger populations. Our present study has documented evidence for swine influenza virus infection among persons with occupational swine exposures. The differences of seroreactivity for the two tested influenza subtypes emphasize the necessity of regular surveillance both in pigs and human.
Collapse
|
21
|
Ferrara F, Molesti E, Temperton N. The application of pseudotypes to influenza pandemic preparedness. Future Virol 2015. [DOI: 10.2217/fvl.15.36] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
ABSTRACT Human and animal populations are constantly exposed to multiple influenza strains due to zoonotic spillover and rapid viral evolution driven by intrinsic error-prone replication and immunological pressure. In this context, antibody responses directed against the hemagglutinin protein on the surface of the virus are of importance since they have been shown to correlate with protective immunity. Serological techniques, detecting these responses, play a critical role in influenza pandemic preparedness in particular with regard to the measurement of vaccine immunogenicity. As the recent human pandemics (H1N1) and avian influenza outbreaks (H5 and H7) have demonstrated, there is an urgent need to be better prepared to assess the contribution of the antibody response to protection against newly emerged viruses and to evaluate the extent of pre-existing heterosubtypic immunity in populations. This review compares pseudotype-based assays with wild-type and virus-like particle virus assays and discusses their place in the pandemic preparedness against the influenza virus. It additionally addresses the state-of-the-art developments of pseudotype-based assays (chimeric hemagglutinins, multiplex and post-attachment) including the development and future deployment of assay kits and approaches toward standardization to both preclinical and clinical endpoints. Progress toward the development of an influenza pseudotype library for the purposes of pandemic preparedness is also outlined and discussed.
Collapse
Affiliation(s)
- Francesca Ferrara
- Viral Pseudotype Unit, School of Pharmacy, University of Kent, Chatham Maritime, Kent, ME4 4TB, UK
| | - Eleonora Molesti
- Viral Pseudotype Unit, School of Pharmacy, University of Kent, Chatham Maritime, Kent, ME4 4TB, UK
| | - Nigel Temperton
- Viral Pseudotype Unit, School of Pharmacy, University of Kent, Chatham Maritime, Kent, ME4 4TB, UK
| |
Collapse
|
22
|
Neumann G, Kawaoka Y. Transmission of influenza A viruses. Virology 2015; 479-480:234-46. [PMID: 25812763 PMCID: PMC4424116 DOI: 10.1016/j.virol.2015.03.009] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Revised: 02/10/2015] [Accepted: 03/02/2015] [Indexed: 12/25/2022]
Abstract
Influenza A viruses cause respiratory infections that range from asymptomatic to deadly in humans. Widespread outbreaks (pandemics) are attributable to 'novel' viruses that possess a viral hemagglutinin (HA) gene to which humans lack immunity. After a pandemic, these novel viruses form stable virus lineages in humans and circulate until they are replaced by other novel viruses. The factors and mechanisms that facilitate virus transmission among hosts and the establishment of novel lineages are not completely understood, but the HA and basic polymerase 2 (PB2) proteins are thought to play essential roles in these processes by enabling avian influenza viruses to infect mammals and replicate efficiently in their new host. Here, we summarize our current knowledge of the contributions of HA, PB2, and other viral components to virus transmission and the formation of new virus lineages.
Collapse
Affiliation(s)
- Gabriele Neumann
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, 575 Science Drive, Madison, WI 53711, USA
| | - Yoshihiro Kawaoka
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, 575 Science Drive, Madison, WI 53711, USA; Division of Virology, Department of Microbiology and Immunology and International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan.
| |
Collapse
|
23
|
Kanehira K, Takemae N, Uchida Y, Hikono H, Saito T. Reassortant swine influenza viruses isolated in Japan contain genes from pandemic A(H1N1) 2009. Microbiol Immunol 2015; 58:327-41. [PMID: 24750464 DOI: 10.1111/1348-0421.12152] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 04/03/2014] [Accepted: 04/14/2014] [Indexed: 11/27/2022]
Abstract
In 2013, three reassortant swine influenza viruses (SIVs)-two H1N2 and one H3N2-were isolated from symptomatic pigs in Japan; each contained genes from the pandemic A(H1N1) 2009 virus and endemic SIVs. Phylogenetic analysis revealed that the two H1N2 viruses, A/swine/Gunma/1/2013 and A/swine/Ibaraki/1/2013, were reassortants that contain genes from the following three distinct lineages: (i) H1 and nucleoprotein (NP) genes derived from a classical swine H1 HA lineage uniquely circulating among Japanese SIVs; (ii) neuraminidase (NA) genes from human-like H1N2 swine viruses; and (iii) other genes from pandemic A(H1N1) 2009 viruses. The H3N2 virus, A/swine/Miyazaki/2/2013, comprised genes from two sources: (i) hemagglutinin (HA) and NA genes derived from human and human-like H3N2 swine viruses and (ii) other genes from pandemic A(H1N1) 2009 viruses. Phylogenetic analysis also indicated that each of the reassortants may have arisen independently in Japanese pigs. A/swine/Miyazaki/2/2013 were found to have strong antigenic reactivities with antisera generated for some seasonal human-lineage viruses isolated during or before 2003, whereas A/swine/Miyazaki/2/2013 reactivities with antisera against viruses isolated after 2004 were clearly weaker. In addition, antisera against some strains of seasonal human-lineage H1 viruses did not react with either A/swine/Gunma/1/2013 or A/swine/Ibaraki/1/2013. These findings indicate that emergence and spread of these reassortant SIVs is a potential public health risk.
Collapse
Affiliation(s)
- Katsushi Kanehira
- Influenza and Prion Disease Research Center, National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), 3-1-5 Kannondai, Tsukuba, Ibaraki, 305-0856, Japan
| | | | | | | | | |
Collapse
|
24
|
European surveillance network for influenza in pigs: surveillance programs, diagnostic tools and Swine influenza virus subtypes identified in 14 European countries from 2010 to 2013. PLoS One 2014; 9:e115815. [PMID: 25542013 PMCID: PMC4277368 DOI: 10.1371/journal.pone.0115815] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 11/26/2014] [Indexed: 12/02/2022] Open
Abstract
Swine influenza causes concern for global veterinary and public health officials. In continuing two previous networks that initiated the surveillance of swine influenza viruses (SIVs) circulating in European pigs between 2001 and 2008, a third European Surveillance Network for Influenza in Pigs (ESNIP3, 2010–2013) aimed to expand widely the knowledge of the epidemiology of European SIVs. ESNIP3 stimulated programs of harmonized SIV surveillance in European countries and supported the coordination of appropriate diagnostic tools and subtyping methods. Thus, an extensive virological monitoring, mainly conducted through passive surveillance programs, resulted in the examination of more than 9 000 herds in 17 countries. Influenza A viruses were detected in 31% of herds examined from which 1887 viruses were preliminary characterized. The dominating subtypes were the three European enzootic SIVs: avian-like swine H1N1 (53.6%), human-like reassortant swine H1N2 (13%) and human-like reassortant swine H3N2 (9.1%), as well as pandemic A/H1N1 2009 (H1N1pdm) virus (10.3%). Viruses from these four lineages co-circulated in several countries but with very different relative levels of incidence. For instance, the H3N2 subtype was not detected at all in some geographic areas whereas it was still prevalent in other parts of Europe. Interestingly, H3N2-free areas were those that exhibited highest frequencies of circulating H1N2 viruses. H1N1pdm viruses were isolated at an increasing incidence in some countries from 2010 to 2013, indicating that this subtype has become established in the European pig population. Finally, 13.9% of the viruses represented reassortants between these four lineages, especially between previous enzootic SIVs and H1N1pdm. These novel viruses were detected at the same time in several countries, with increasing prevalence. Some of them might become established in pig herds, causing implications for zoonotic infections.
Collapse
|
25
|
Pathogenicity and transmissibility of novel reassortant H3N2 influenza viruses with 2009 pandemic H1N1 genes in pigs. J Virol 2014; 89:2831-41. [PMID: 25540372 DOI: 10.1128/jvi.03355-14] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED At least 10 different genotypes of novel reassortant H3N2 influenza viruses with 2009 pandemic H1N1 [A(H1N1)pdm09] gene(s) have been identified in U.S. pigs, including the H3N2 variant with a single A(H1N1)pdm09 M gene, which has infected more than 300 people. To date, only three genotypes of these viruses have been evaluated in animal models, and the pathogenicity and transmissibility of the other seven genotype viruses remain unknown. Here, we show that three H3N2 reassortant viruses that contain 3 (NP, M, and NS) or 5 (PA, PB2, NP, M, and NS) genes from A(H1N1)pdm09 were pathogenic in pigs, similar to the endemic H3N2 swine virus. However, the reassortant H3N2 virus with 3 A(H1N1)pdm09 genes and a recent human influenza virus N2 gene was transmitted most efficiently among pigs, whereas the reassortant H3N2 virus with 5 A(H1N1)pdm09 genes was transmitted less efficiently than the endemic H3N2 virus. Interestingly, the polymerase complex of reassortant H3N2 virus with 5 A(H1N1)pdm09 genes showed significantly higher polymerase activity than those of endemic and reassortant H3N2 viruses with 3 A(H1N1)pdm09 genes. Further studies showed that an avian-like glycine at position 228 at the hemagglutinin (HA) receptor binding site is responsible for inefficient transmission of the reassortant H3N2 virus with 5 A(H1N1)pdm09 genes. Taken together, our results provide insights into the pathogenicity and transmissibility of novel reassortant H3N2 viruses in pigs and suggest that a mammalian-like serine at position 228 in the HA is critical for the transmissibility of these reassortant H3N2 viruses. IMPORTANCE Swine influenza is a highly contagious zoonotic disease that threatens animal and public health. Introduction of 2009 pandemic H1N1 virus [A(H1N1)pdm09] into swine herds has resulted in novel reassortant influenza viruses in swine, including H3N2 and H1N2 variants that have caused human infections in the United States. We showed that reassortant H3N2 influenza viruses with 3 or 5 genes from A(H1N1)pdm09 isolated from diseased pigs are pathogenic and transmissible in pigs, but the reassortant H3N2 virus with 5 A(H1N1)pdm09 genes displayed less efficient transmissibility than the endemic and reassortant H3N2 viruses with 3 A(H1N1)pdm09 genes. Further studies revealed that an avian-like glycine at the HA 228 receptor binding site of the reassortant H3N2 virus with 5 A(H1N1)pdm09 genes is responsible for less efficient transmissibility in pigs. Our results provide insights into viral pathogenesis and the transmission of novel reassortant H3N2 viruses that are circulating in U.S. swine herds and warrant future surveillance.
Collapse
|
26
|
Qiao C, Liu L, Yang H, Chen Y, Xu H, Chen H. Novel triple reassortant H1N2 influenza viruses bearing six internal genes of the pandemic 2009/H1N1 influenza virus were detected in pigs in China. J Clin Virol 2014; 61:529-34. [PMID: 25467861 DOI: 10.1016/j.jcv.2014.10.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 09/30/2014] [Accepted: 10/20/2014] [Indexed: 01/10/2023]
Abstract
BACKGROUND The pandemic A/H1N1 influenza viruses emerged in both Mexico and the United States in March 2009, and were transmitted efficiently in the human population. Transmissions of the pandemic 2009/H1N1 virus from humans to poultry and other species of mammals were reported from several continents during the course of the 2009 H1N1 pandemic. Reassortant H1N1, H1N2, and H3N2 viruses containing genes of the pandemic 2009/H1N1 viruses appeared in pigs in some countries. STUDY DESIGN In winter of 2012, a total of 2600 nasal swabs were collected from healthy pigs in slaughterhouses located throughout 10 provinces in China. The isolated viruses were subjected to genetic and antigenic analysis. Two novel triple-reassortant H1N2 influenza viruses were isolated from swine in China in 2012, with the HA gene derived from Eurasian avian-like swine H1N1, the NA gene from North American swine H1N2, and the six internal genes from the pandemic 2009/H1N1 viruses. The two viruses had similar antigenic features and some significant changes in antigenic characteristics emerged when compared to the previously identified isolates. CONCLUSION We inferred that the novel reassortant viruses in China may have arisen from the accumulation of the three types of influenza viruses, which further indicates that swine herds serve as "mixing vessels" for influenza viruses. Influenza virus reassortment is an ongoing process, and our findings highlight the urgent need for continued influenza surveillance among swine herds.
Collapse
Affiliation(s)
- Chuanling Qiao
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, PR China
| | - Liping Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, PR China
| | - Huanliang Yang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, PR China
| | - Yan Chen
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, PR China
| | - Huiyang Xu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, PR China
| | - Hualan Chen
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, PR China.
| |
Collapse
|
27
|
Kirisawa R, Ogasawara Y, Yoshitake H, Koda A, Furuya T. Genomic reassortants of pandemic A (H1N1) 2009 virus and endemic porcine H1 and H3 viruses in swine in Japan. J Vet Med Sci 2014; 76:1457-70. [PMID: 25056678 PMCID: PMC4272978 DOI: 10.1292/jvms.14-0194] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
From 2010 to 2013 in Japan, we isolated 11 swine influenza viruses (SIVs) from
pigs showing respiratory symptoms. Sequence and phylogenetic analyses showed that 6 H1N1
viruses originated from the pandemic (H1N1) 2009 (pdm 09) virus and the other 5 viruses
were reassortants between SIVs and pdm 09 viruses, representing 4 genotypes. Two H1N2
viruses contained H1 and N2 genes originated from Japanese H1N2 SIV together with internal
genes of pdm 09 viruses. Additionally, 1 H1N2 virus contained a further NP gene
originating from Japanese H1N2 SIV. One H1N1 virus contained only the H1 gene originating
from Japanese H1 SIV in a pdm 09 virus background. One H3N2 virus contained H3 and N2
genes originating from Japanese H3N2 SIV together with internal genes of pdm 09 virus. The
results indicate that pdm 09 viruses are distributed widely in the Japanese swine
population and that several reassortments with Japanese SIVs have occurred.
Collapse
Affiliation(s)
- Rikio Kirisawa
- Laboratory of Veterinary Virology, Department of Pathobiology, School of Veterinary Medicine, Rakuno Gakuen University, 582 Bunkyoudai Midori-machi, Ebetsu, Hokkaido 069-8501, Japan
| | | | | | | | | |
Collapse
|
28
|
Wen F, Ma JH, Yu H, Yang FR, Huang M, Zhou YJ, Li ZJ, Tong GZ. Protective efficacy of a high-growth reassortant swine H3N2 inactivated vaccine constructed by reverse genetic manipulation. J Vet Sci 2014; 15:381-8. [PMID: 24675833 PMCID: PMC4178139 DOI: 10.4142/jvs.2014.15.3.381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 02/22/2014] [Indexed: 11/20/2022] Open
Abstract
Novel reassortant H3N2 swine influenza viruses (SwIV) with the matrix gene from the 2009 H1N1 pandemic virus have been isolated in many countries as well as during outbreaks in multiple states in the United States, indicating that H3N2 SwIV might be a potential threat to public health. Since southern China is the world's largest producer of pigs, efficient vaccines should be developed to prevent pigs from acquiring H3N2 subtype SwIV infections, and thus limit the possibility of SwIV infection at agricultural fairs. In this study, a high-growth reassortant virus (GD/PR8) was generated by plasmid-based reverse genetics and tested as a candidate inactivated vaccine. The protective efficacy of this vaccine was evaluated in mice by challenging them with another H3N2 SwIV isolate [A/Swine/Heilongjiang/1/05 (H3N2) (HLJ/05)]. Prime and booster inoculation with GD/PR8 vaccine yielded high-titer serum hemagglutination inhibiting antibodies and IgG antibodies. Complete protection of mice against H3N2 SwIV was observed, with significantly reduced lung lesion and viral loads in vaccine-inoculated mice relative to mock-vaccinated controls. These results suggest that the GD/PR8 vaccine may serve as a promising candidate for rapid intervention of H3N2 SwIV outbreaks in China.
Collapse
Affiliation(s)
- Feng Wen
- Division of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | | | | | | | | | | | | | | |
Collapse
|
29
|
North American triple reassortant and Eurasian H1N1 swine influenza viruses do not readily reassort to generate a 2009 pandemic H1N1-like virus. mBio 2014; 5:e00919-13. [PMID: 24618255 PMCID: PMC3952159 DOI: 10.1128/mbio.00919-13] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The 2009 pandemic H1N1 virus (pH1N1) was derived through reassortment of North American triple reassortant and Eurasian avian-like swine influenza viruses (SIVs). To date, when, how and where the pH1N1 arose is not understood. To investigate viral reassortment, we coinfected cell cultures and a group of pigs with or without preexisting immunity with a Eurasian H1N1 virus, A/Swine/Spain/53207/2004 (SP04), and a North American triple reassortant H1N1 virus, A/Swine/Kansas/77778/2007 (KS07). The infected pigs were cohoused with one or two groups of contact animals to investigate viral transmission. In coinfected MDCK or PK15 continuous cell lines with KS07 and SP04 viruses, more than 20 different reassortant viruses were found. In pigs without or with preexisting immunity (immunized with commercial inactivated swine influenza vaccines) and coinfected with both viruses, six or seven reassortant viruses, as well as the parental viruses, were identified in bronchoalveolar lavage fluid samples from the lungs. Interestingly, only one or two viruses transmitted to and were detected in contact animals. No reassortant containing a gene constellation similar to that of pH1N1 virus was found in either coinfected cells or pigs, indicating that the reassortment event that resulted in the generation of this virus is a rare event that likely involved specific viral strains and/or a favorable, not-yet-understood environment. IMPORTANCE The 2009 pandemic-like H1N1 virus could not be reproduced either in cell cultures or in pigs coinfected with North American triple reassortant H1N1 and Eurasian H1N1 swine influenza viruses. This finding suggests that the generation of the 2009 pandemic H1N1 virus by reassortment was a rare event that likely involved specific viral strains and unknown factors. Different reassortant viruses were detected in coinfected pigs with and without preexisting immunity, indicating that host immunity plays a relevant role in driving viral reassortment of influenza A virus.
Collapse
|
30
|
Li C, Chen H. Enhancement of influenza virus transmission by gene reassortment. Curr Top Microbiol Immunol 2014; 385:185-204. [PMID: 25048543 DOI: 10.1007/82_2014_389] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Influenza A virus is characterized by a genome composed of eight single-stranded, negative sense RNA segments, which allow for reassortment between different strains when they co-infect the same host cell. Reassortment is an important driving force for the evolution of influenza viruses. The ability of reassortment allows influenza virus to endlessly reinvent itself and pose a constant threat to the health of humans and other animals. Of the four human influenza pandemics since the beginning of the last century, three of them were caused by reassortant viruses bearing genes of avian, human or swine influenza virus origin. In the past decade, great efforts have been made to understand the transmissibility of influenza viruses. The use of reverse genetics technology has made it substantially easier to generate reassortant viruses and evaluate the contribution of individual virus gene on virus transmissibility in animal models such as ferrets and guinea pigs. H5, H7, and H9 avian influenza viruses represent the top three subtypes that are candidates to cause the next human influenza pandemic. Many studies have been conducted to determine whether the transmission of these avian influenza viruses could be enhanced by acquisition of gene segments from human influenza viruses. Moreover, the 2009 pdmH1N1 viruses and the triple reassortant swine influenza viruses were extensively studied to identify the gene segments that contribute to their transmissibility. These studies have greatly deepened our understanding of the transmissibility of reassortant influenza viruses, which, in turn, has improved our ability to be prepared for reassortant influenza virus with enhanced transmissibility and pandemic potential.
Collapse
Affiliation(s)
- Chengjun Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 427 Maduan Street, Harbin, 150001, Nangang, China,
| | | |
Collapse
|
31
|
Abstract
The challenge of increasing swine production and a rising number of novel and known swine influenza viruses has prompted a considerable boost in research into how and why pigs have become such significant hosts for influenza viruses. The ecology of influenza A viruses is rather complicated, involving multiple host species and a segmented genome. Wild aquatic birds are the reservoir for the majority of influenza A viruses, but novel influenza viruses were recently identified in bats. Occasionally, influenza A viruses can be transmitted to mammals from avian species and this event could lead to the generation of human pandemic strains. Swine are thought to be "mixing vessels" because they are susceptible to infection with both avian and mammalian influenza viruses; and novel influenza viruses can be generated in pigs by reassortment. At present, it is difficult to predict which viruses might cause a human pandemic. Therefore, both human and veterinary research needs to give more attention to the potential cross-species transmission capacity of influenza A viruses.
Collapse
|
32
|
Gambhir M, Swerdlow DL, Finelli L, Van Kerkhove MD, Biggerstaff M, Cauchemez S, Ferguson NM. Multiple contributory factors to the age distribution of disease cases: a modeling study in the context of influenza A(H3N2v). Clin Infect Dis 2013; 57 Suppl 1:S23-7. [PMID: 23794728 DOI: 10.1093/cid/cit298] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND In late 2011 and early 2012, 13 cases of human influenza resulted from infection with a novel triple reassortant swine-origin influenza virus, influenza A (H3N2) variant. This variant was notable for its inclusion of the matrix gene from the 2009 influenza A(H1N1) pandemic virus. While most of these confirmed cases were among children, the transmission potential and likely age-dependent susceptibility to the virus was unknown. Preliminary serologic studies indicated that very young children have less protection than older children and adults. METHODS We construct a mathematical transmission model of influenza transmission that allows for external zoonotic exposure to infection and show how exposure and susceptibility-related factors contribute to the observed case distribution. RESULTS AND CONCLUSIONS Age-dependent susceptibility to infection strongly influences epidemic dynamics. The result is that the risk of an outbreak in a highly susceptible age group may be substantially higher than in an older age group with less susceptibility, but exposure-related factors must also be accounted for when interpreting case data.
Collapse
Affiliation(s)
- Manoj Gambhir
- Modeling Unit, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Rd. NE, Atlanta, GA 30333, USA.
| | | | | | | | | | | | | |
Collapse
|
33
|
Scientific opinion on the possible risks posed by the influenza A (H3N2v) virus for animal health and its potential spread and implications for animal and human health. EFSA J 2013. [DOI: 10.2903/j.efsa.2013.3383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
34
|
Lange J, Groth M, Schlegel M, Krumbholz A, Wieczorek K, Ulrich R, Köppen S, Schulz K, Appl D, Selbitz HJ, Sauerbrei A, Platzer M, Zell R, Dürrwald R. Reassortants of the pandemic (H1N1) 2009 virus and establishment of a novel porcine H1N2 influenza virus, lineage in Germany. Vet Microbiol 2013; 167:345-56. [PMID: 24139631 DOI: 10.1016/j.vetmic.2013.09.024] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 09/17/2013] [Accepted: 09/19/2013] [Indexed: 11/19/2022]
Abstract
The incursion of pandemic (H1N1) 2009 virus (pdmH1N1) into the German pig population was investigated in a serosurvey and by virological means between June 2009 and December 2012. Analysis of 23,116 pig sera from a total of 2,666 herds revealed 224 herds that reacted with pdmH1N1 but not with the prevalent avian-like H1N1 swine influenza virus. Sixty-six pdmH1N1 strains and their reassortant derivatives (pdmH1huN2, huH3pdmN1) have been collected since November 2009. Sequencing of three pdmH1N1, 20 pdmH1huN2 and one huH3pdmN1 strains with conventional and next generation sequencing techniques and subsequent phylogenetic analyses with available sequence data revealed the emergence of five distinct reassortant genotypes in Europe. The most frequent genotype emerged at least three times independently, one of which (Papenburg lineage) established a stable infection chain and became more prevalent in pigs than pdmH1N1 in Germany.
Collapse
Affiliation(s)
- Jeannette Lange
- Department of Virology and Antiviral Therapy, Jena University Hospital, Friedrich Schiller University Jena, Hans-Knöll-Str. 2, 07745 Jena, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Jhung MA, Epperson S, Biggerstaff M, Allen D, Balish A, Barnes N, Beaudoin A, Berman L, Bidol S, Blanton L, Blythe D, Brammer L, D'Mello T, Danila R, Davis W, de Fijter S, Diorio M, Durand LO, Emery S, Fowler B, Garten R, Grant Y, Greenbaum A, Gubareva L, Havers F, Haupt T, House J, Ibrahim S, Jiang V, Jain S, Jernigan D, Kazmierczak J, Klimov A, Lindstrom S, Longenberger A, Lucas P, Lynfield R, McMorrow M, Moll M, Morin C, Ostroff S, Page SL, Park SY, Peters S, Quinn C, Reed C, Richards S, Scheftel J, Simwale O, Shu B, Soyemi K, Stauffer J, Steffens C, Su S, Torso L, Uyeki TM, Vetter S, Villanueva J, Wong KK, Shaw M, Bresee JS, Cox N, Finelli L. Outbreak of variant influenza A(H3N2) virus in the United States. Clin Infect Dis 2013; 57:1703-12. [PMID: 24065322 PMCID: PMC5733625 DOI: 10.1093/cid/cit649] [Citation(s) in RCA: 128] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Background. Variant influenza virus infections are rare but may have pandemic potential if person-to-person transmission is efficient. We describe the epidemiology of a multistate outbreak of an influenza A(H3N2) variant virus (H3N2v) first identified in 2011. Methods. We identified laboratory-confirmed cases of H3N2v and used a standard case report form to characterize illness and exposures. We considered illness to result from person-to-person H3N2v transmission if swine contact was not identified within 4 days prior to illness onset. Results. From 9 July to 7 September 2012, we identified 306 cases of H3N2v in 10 states. The median age of all patients was 7 years. Commonly reported signs and symptoms included fever (98%), cough (85%), and fatigue (83%). Sixteen patients (5.2%) were hospitalized, and 1 fatal case was identified. The majority of those infected reported agricultural fair attendance (93%) and/or contact with swine (95%) prior to illness. We identified 15 cases of possible person-to-person transmission of H3N2v. Viruses recovered from patients were 93%–100% identical and similar to viruses recovered from previous cases of H3N2v. All H3N2v viruses examined were susceptible to oseltamivir and zanamivir and resistant to adamantane antiviral medications. Conclusions. In a large outbreak of variant influenza, the majority of infected persons reported exposures, suggesting that swine contact at an agricultural fair was a risk for H3N2v infection. We identified limited person-to-person H3N2v virus transmission, but found no evidence of efficient or sustained person-to-person transmission. Fair managers and attendees should be aware of the risk of swine-to-human transmission of influenza viruses in these settings.
Collapse
Affiliation(s)
- Michael A Jhung
- Influenza Division, National Center for Immunization and Respiratory Disease
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Rose N, Hervé S, Eveno E, Barbier N, Eono F, Dorenlor V, Andraud M, Camsusou C, Madec F, Simon G. Dynamics of influenza A virus infections in permanently infected pig farms: evidence of recurrent infections, circulation of several swine influenza viruses and reassortment events. Vet Res 2013; 44:72. [PMID: 24007505 PMCID: PMC3846378 DOI: 10.1186/1297-9716-44-72] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 08/27/2013] [Indexed: 11/29/2022] Open
Abstract
Concomitant infections by different influenza A virus subtypes within pig farms increase the risk of new reassortant virus emergence. The aims of this study were to characterize the epidemiology of recurrent swine influenza virus infections and identify their main determinants. A follow-up study was carried out in 3 selected farms known to be affected by repeated influenza infections. Three batches of pigs were followed within each farm from birth to slaughter through a representative sample of 40 piglets per batch. Piglets were monitored individually on a monthly basis for serology and clinical parameters. When a flu outbreak occurred, daily virological and clinical investigations were carried out for two weeks. Influenza outbreaks, confirmed by influenza A virus detection, were reported at least once in each batch. These outbreaks occurred at a constant age within farms and were correlated with an increased frequency of sneezing and coughing fits. H1N1 and H1N2 viruses from European enzootic subtypes and reassortants between viruses from these lineages were consecutively and sometimes simultaneously identified depending on the batch, suggesting virus co-circulations at the farm, batch and sometimes individual levels. The estimated reproduction ratio R of influenza outbreaks ranged between 2.5 [1.9-2.9] and 6.9 [4.1-10.5] according to the age at infection-time and serological status of infected piglets. Duration of shedding was influenced by the age at infection time, the serological status of the dam and mingling practices. An impaired humoral response was identified in piglets infected at a time when they still presented maternally-derived antibodies.
Collapse
Affiliation(s)
- Nicolas Rose
- Anses, Laboratoire de Ploufragan/Plouzané, Unité Epidémiologie et Bien-Être du Porc, BP 53, 22440 Ploufragan, France
- Université Européenne de Bretagne, Rennes, France
| | - Séverine Hervé
- Anses, Laboratoire de Ploufragan/Plouzané, Unité Virologie Immunologie Porcines, BP 53, 22440 Ploufragan, France
- Université Européenne de Bretagne, Rennes, France
| | - Eric Eveno
- Anses, Laboratoire de Ploufragan/Plouzané, Unité Epidémiologie et Bien-Être du Porc, BP 53, 22440 Ploufragan, France
- Université Européenne de Bretagne, Rennes, France
| | - Nicolas Barbier
- Anses, Laboratoire de Ploufragan/Plouzané, Unité Virologie Immunologie Porcines, BP 53, 22440 Ploufragan, France
- Université Européenne de Bretagne, Rennes, France
| | - Florent Eono
- Anses, Laboratoire de Ploufragan/Plouzané, Unité Epidémiologie et Bien-Être du Porc, BP 53, 22440 Ploufragan, France
- Université Européenne de Bretagne, Rennes, France
| | - Virginie Dorenlor
- Anses, Laboratoire de Ploufragan/Plouzané, Unité Epidémiologie et Bien-Être du Porc, BP 53, 22440 Ploufragan, France
- Université Européenne de Bretagne, Rennes, France
| | - Mathieu Andraud
- Anses, Laboratoire de Ploufragan/Plouzané, Unité Epidémiologie et Bien-Être du Porc, BP 53, 22440 Ploufragan, France
- Université Européenne de Bretagne, Rennes, France
| | - Claire Camsusou
- Anses, Laboratoire de Ploufragan/Plouzané, Unité Epidémiologie et Bien-Être du Porc, BP 53, 22440 Ploufragan, France
- Université Européenne de Bretagne, Rennes, France
| | - François Madec
- Anses, Laboratoire de Ploufragan/Plouzané, Unité Epidémiologie et Bien-Être du Porc, BP 53, 22440 Ploufragan, France
- Université Européenne de Bretagne, Rennes, France
| | - Gaëlle Simon
- Anses, Laboratoire de Ploufragan/Plouzané, Unité Virologie Immunologie Porcines, BP 53, 22440 Ploufragan, France
- Université Européenne de Bretagne, Rennes, France
| |
Collapse
|
37
|
Pascua PNQ, Lim GJ, Kwon HI, Park SJ, Kim EH, Song MS, Kim CJ, Choi YK. Emergence of H3N2pM-like and novel reassortant H3N1 swine viruses possessing segments derived from the A (H1N1)pdm09 influenza virus, Korea. Influenza Other Respir Viruses 2013; 7:1283-91. [PMID: 24034626 PMCID: PMC4634262 DOI: 10.1111/irv.12154] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/25/2013] [Indexed: 01/11/2023] Open
Abstract
Background Human‐to‐swine transmission of the pandemic H1N1 2009 [A(H1N1)pdm09] virus in pig populations resulted in reassortment events with endemic swine influenza viruses worldwide. Objective We investigated whether A(H1N1)pdm09‐derived reassortant viruses are present in South Korea and sought to determine the pathogenic potential of the novel swine viruses. Methods Pig lung tissues were collected from commercially slaughtered pigs. Isolated swine influenza viruses were genetically analyzed and characterized in vitro and in vivo. Results We identified reassortant H3N2 (H3N2pM‐like) and H3N1 swine viruses containing A(H1N1)pdm09‐like segments in Korean pigs that are genetically closely related to strains recently detected in pigs and humans in North America. Although the H3N2pM‐like and novel H3N1 reassortants demonstrated efficient replication in mice and ferrets, all the H3N1 strains exhibited growth advantage over the representative H3N2pM‐like virus in human airway cells. Interestingly, A/swine/Korea/CY02‐07/2012(H3N1) and A/swine/Korea/CY03‐13/2012(H3N1) reassortants were more readily transmitted to respiratory‐droplet‐contact ferrets compared with the H3N2pM‐like (A/swine/Korea/CY02‐10/2012) isolate. Furthermore, serologic evaluation showed poor antigenicity to contemporary reference human seasonal H3N2 vaccine strains. Conclusions We report here for the first time the isolation of H3N2pM‐like viruses outside North America and of novel reassortant swine H3N1 viruses with A(H1N1)pdm09‐derived genes. Apart from further complicating the genetic diversity of influenza A viruses circulating in domestic pigs, our data also indicate that these strains could potentially pose threat to public health asserting the need for continuous virus monitoring in these ecologically important hosts.
Collapse
Affiliation(s)
- Philippe Noriel Q Pascua
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Korea
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Efficacy in pigs of inactivated and live attenuated influenza virus vaccines against infection and transmission of an emerging H3N2 similar to the 2011-2012 H3N2v. J Virol 2013; 87:9895-903. [PMID: 23824815 DOI: 10.1128/jvi.01038-13] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Vaccines provide a primary means to limit disease but may not be effective at blocking infection and pathogen transmission. The objective of the present study was to evaluate the efficacy of commercial inactivated swine influenza A virus (IAV) vaccines and experimental live attenuated influenza virus (LAIV) vaccines against infection with H3N2 virus and subsequent indirect transmission to naive pigs. The H3N2 virus evaluated was similar to the H3N2v detected in humans during 2011-2012, which was associated with swine contact at agricultural fairs. One commercial vaccine provided partial protection measured by reduced nasal shedding; however, indirect contacts became infected, indicating that the reduction in nasal shedding did not prevent aerosol transmission. One LAIV vaccine provided complete protection, and none of the indirect-contact pigs became infected. Clinical disease was not observed in any group, including nonvaccinated animals, a consistent observation in pigs infected with contemporary reassortant H3N2 swine viruses. Serum hemagglutination inhibition antibody titers against the challenge virus were not predictive of efficacy; titers following vaccination with a LAIV that provided sterilizing immunity were below the level considered protective, yet titers in a commercial vaccine group that was not protected were above that level. While vaccination with currently approved commercial inactivated products did not fully prevent transmission, certain vaccines may provide a benefit by limitating shedding, transmission, and zoonotic spillover of antigenically similar H3N2 viruses at agriculture fairs when administered appropriately and used in conjunction with additional control measures.
Collapse
|
39
|
A Murillo L, Hardick J, Jeng K, Gaydos CA. Evaluation of the Pan Influenza detection kit utilizing the PLEX-ID and influenza samples from the 2011 respiratory season. J Virol Methods 2013; 193:173-6. [PMID: 23764420 DOI: 10.1016/j.jviromet.2013.06.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Revised: 05/21/2013] [Accepted: 06/03/2013] [Indexed: 10/26/2022]
Abstract
A comparison study was performed between the PLEX-ID and the CDC RT-PCR method for the detection and identification of Influenza A viruses using nasopharyngeal samples (N=75) collected between January and May 2011. Overall agreement was 89.3% (67/75 kappa=0.57 95% CI 0.3-0.89). Positive percent agreement was 92.3% (60/65); negative percent agreement was 70% (7/10). H1N1 pdm09 identified: 42.6% (32/75) and 54.7% (41/75) by PLEX-ID and CDC RT-PCR, respectively. H3N2 identified: 29.3% (22/75) and 32% (24/75) of samples by PLEX-ID and CDC RT-PCR, respectively. Negatives identified: 16% (12/75) and 13.3% (10/75), by PLEX-ID and CDC RT-PCR respectively. For influenza viruses identified as H1N1 pdm09, Influenza A virus A/NEW YORK/15/2009(H1N1 pdm09) was the most prevalent genotype at 50% (16/32), followed by A/CALIFORNIA/05/2009(H1N1 pdm09) at 18.2% (6/32). Updated assay plates containing additional primers designed for H1N1 pdm09 HA and NA genes were utilized for this evaluation. Among H1N1 pdm09 samples, the HA gene was conserved in 96.9% (31/32) of samples. The NA gene was conserved in 96.9% (31/32).
Collapse
Affiliation(s)
- Luis A Murillo
- The Johns Hopkins University School of Medicine, Division of Infectious Diseases, 855 North Wolfe Street, Rangos Building, Room 530, Baltimore, MD 21205, United States.
| | | | | | | |
Collapse
|
40
|
Isolation of influenza A(H3N2)v virus from pigs and characterization of its biological properties in pigs and mice. Arch Virol 2013; 158:2351-7. [PMID: 23674250 DOI: 10.1007/s00705-012-1571-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2012] [Accepted: 10/26/2012] [Indexed: 10/26/2022]
Abstract
Recently, a novel reassortant virus, influenza A(H3N2)v [A(H3N2)v], was identified as the causative pathogen in 307 human cases of influenza in the United States. A(H3N2)v contains the matrix gene from the 2009 pandemic H1N1 (pH1N1) virus, while its other genes originate from H3N2 viruses with triple-reassorted internal genes. In this study, we isolated three A(H3N2)v viruses from commercial pigs in Korea that showed similarities with published human A(H3N2)v viruses in eight segment sequence alignments. After genetic characterization, the pathogenicity of one of these viruses was assessed in pigs and mice. Infection of pigs with this novel virus resulted in mild interstitial pneumonia with marked oronasal shedding of viral RNA for about 14 days. In mice, the virus replicated efficiently in the lungs; viral RNA was detected up to 9 days post-inoculation. However, the virus did not cause severe disease or death in mice, despite the administration of a high infectious dose (10(5.2) TCID50). This study demonstrates that A(H3N2)v causes a high morbidity rate with low virulence; however, global monitoring of A(H3N2)v outbreaks in mammals will be needed to determine whether this novel subtype will shift to a highly pathogenic virus.
Collapse
|
41
|
Wong KK, Greenbaum A, Moll ME, Lando J, Moore EL, Ganatra R, Biggerstaff M, Lam E, Smith EE, Storms AD, Miller JR, Dato V, Nalluswami K, Nambiar A, Silvestri SA, Lute JR, Ostroff S, Hancock K, Branch A, Trock SC, Klimov A, Shu B, Brammer L, Epperson S, Finelli L, Jhung MA. Outbreak of influenza A (H3N2) variant virus infection among attendees of an agricultural fair, Pennsylvania, USA, 2011. Emerg Infect Dis 2013; 18:1937-44. [PMID: 23171635 PMCID: PMC3557885 DOI: 10.3201/eid1812.121097] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Avoiding or limiting contact with swine at agricultural events may help prevent A(H3N2)v virus infections in such settings. During August 2011, influenza A (H3N2) variant [A(H3N2)v] virus infection developed in a child who attended an agricultural fair in Pennsylvania, USA; the virus resulted from reassortment of a swine influenza virus with influenza A(H1N1)pdm09. We interviewed fair attendees and conducted a retrospective cohort study among members of an agricultural club who attended the fair. Probable and confirmed cases of A(H3N2)v virus infection were defined by serology and genomic sequencing results, respectively. We identified 82 suspected, 4 probable, and 3 confirmed case-patients who attended the fair. Among 127 cohort study members, the risk for suspected case status increased as swine exposure increased from none (4%; referent) to visiting swine exhibits (8%; relative risk 2.1; 95% CI 0.2–53.4) to touching swine (16%; relative risk 4.4; 95% CI 0.8–116.3). Fairs may be venues for zoonotic transmission of viruses with epidemic potential; thus, health officials should investigate respiratory illness outbreaks associated with agricultural events.
Collapse
Affiliation(s)
- Karen K Wong
- Centers for Disease Control and Prevention, Atlanta, Georgia 30329, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
Influenza virus infects a wide variety of species including humans, pigs, horses, sea mammals and birds. Weight loss caused by influenza infection and/or co-infection with other infectious agents results in significant financial loss in swine herds. The emergence of pandemic H1N1 (A/CA/04/2009/H1N1) and H3N2 variant (H3N2v) viruses, which cause disease in both humans and livestock constitutes a concerning public health threat. Influenza virus contains eight single-stranded, negative-sense RNA genome segments. This genetic structure allows the virus to evolve rapidly by antigenic drift and shift. Antigen-specific antibodies induced by current vaccines provide limited cross protection to heterologous challenge. In pigs, this presents a major obstacle for vaccine development. Different strategies are under development to produce vaccines that provide better cross-protection for swine. Moreover, overriding interfering maternal antibodies is another goal for influenza vaccines in order to permit effective immunization of piglets at an early age. Herein, we present a review of influenza virus infection in swine, including a discussion of current vaccine approaches and techniques used for novel vaccine development.
Collapse
|
43
|
Gray GC, Bender JB, Bridges CB, Daly RF, Krueger WS, Male MJ, Heil GL, Friary JA, Derby RB, Cox NJ. Influenza A(H1N1)pdm09 virus among healthy show pigs, United States. Emerg Infect Dis 2013; 18:1519-21. [PMID: 22932697 PMCID: PMC3437725 DOI: 10.3201/eid1809.120431] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Because animals can transmit some diseases to people, it is wise to be cautious around animals that carry these diseases. But how do you know which animals are carrying disease? Sometimes they appear perfectly healthy. A study of 57 apparently healthy show pigs at a 2009 US state fair found that almost 20% were carrying influenza virus and at least 4 were carrying the 2009 pandemic virus. Of concern is the possibility that different types of influenza virus—pandemic, swine, avian—could combine in pigs and emerge as new viruses that then spread to humans. Swine workers, veterinarians, and other persons with pig contact may be at high risk for infection with pig influenza and should receive seasonal influenza vaccines, use personal protective equipment when working with healthy pigs, and limit their contact with sick pigs. Regular monitoring of influenza virus among pigs and testing of sick persons who have been exposed to pigs are needed. Within 5 months after the earliest detection of human influenza A(H1N1)pdm09 virus, we found molecular and culture evidence of the virus in healthy US show pigs. The mixing of humans and pigs at swine shows possibly could further the geographic and cross-species spread of influenza A viruses.
Collapse
Affiliation(s)
- Gregory C Gray
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Box 100188, Gainesville, FL 32610, USA. .edu
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
Although the ferret model has been extensively used to study pathogenesis and transmission of influenza viruses, little has been done to determine whether ferrets are a good surrogate animal model to study influenza virus reassortment. It has been previously shown that the pandemic 2009 H1N1 (H1N1pdm) virus was able to transmit efficiently in ferrets. In coinfection studies with either seasonal H1N1 or H3N2 strains (H1N1s or H3N2s, respectively), the H1N1pdm virus was able to outcompete these strains and become the dominant transmissible virus. However, lack of reassortment could have been the result of differences in the cell or tissue tropism of these viruses in the ferret. To address this issue, we performed coinfection studies with recombinant influenza viruses carrying the surface genes of a seasonal H3N2 strain in the background of an H1N1pdm strain and vice versa. After serial passages in ferrets, a dominant H1N2 virus population was obtained with a constellation of gene segments, most of which, except for the neuraminidase (NA) and PB1 segments, were from the H1N1pdm strain. Our studies suggest that ferrets recapitulate influenza virus reassortment events. The H1N2 virus generated through this process resembles similar viruses that are emerging in nature, particularly in pigs.
Collapse
|
45
|
Schaefer R, Rech RR, Silva MC, Gava D, Ciacci-Zanella JR. Orientações para o diagnóstico de influenza em suínos. PESQUISA VETERINÁRIA BRASILEIRA 2013. [DOI: 10.1590/s0100-736x2013000100012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Este trabalho descreve a colheita adequada de amostras, as técnicas/procedimentos disponíveis para o diagnóstico de influenza A em suínos, assim como os resultados e suas respectivas interpretações, para auxiliar médicos veterinários de campo na identificação dessa doença. Em suínos vivos, as amostras adequadas são: secreção nasal, fluido oral e sangue (soro). Para suínos mortos, colher preferencialmente amostras de pulmão com consolidação cranioventral. Secreção nasal e fragmentos de pulmão refrigerado são utilizados para detectar partícula viral viável (isolamento viral - IV) ou ácido nucleico viral (RT-PCR convencional e RT-PCR em tempo real). As amostras não devem ser congeladas, pois o vírus é inativado a -20°C. A caracterização molecular dos isolados é feita pela análise filogenética obtida pelo sequenciamento de DNA. O soro é utilizado para a detecção de anticorpos (Acs) por meio do teste da inibição da hemaglutinação e ELISA. O fluido oral pode ser utilizado para detecção de anticorpo (ELISA) ou de vírus. Fragmentos de pulmão fixados em formol a 10% são examinados microscopicamente para identificar pneumonia broncointersticial e para detecção de antígeno viral pela imuno-histoquímica (IHQ). Para o sucesso do diagnóstico, as amostras devem ser colhidas de suínos que estão preferencialmente na fase aguda da doença, para aumentar as chances de detecção viral. As melhores opções para o diagnóstico de influenza A em suínos vivos são RT-PCR e isolamento viral de amostras de swab nasal ou fluido oral. Pulmão para análise por RT-PCR, isolamento viral ou IHQ é a amostra de escolha em suínos mortos. Testes sorológicos têm valor diagnóstico limitado e são utilizados apenas para determinar o estado imune do rebanho, não indicando doença clínica, pois os Acs são detectados 7-10 dias pós-infecção (fase subaguda). O diagnóstico de influenza é importante para avaliar o envolvimento desse agente no complexo de doença respiratória suína. Além disso, o isolamento do vírus influenza é essencial para o monitoramento dos principais subtipos circulantes em uma determinada região ou país, assim como para a detecção de novos rearranjos virais, já que influenza é considerada uma zoonose.
Collapse
|
46
|
Abstract
The pandemic H1N1 influenza that began in Mexico in the spring of 2009 spread rapidly to southern California within days and around the world within a few months. Because the genetic make-up of the new virus was novel, several months of lead-in time were required before a suitable vaccine for human use could be produced and distributed. The effort to confront the virus on the part of the World Health Organization which included almost every nation on earth and a vast array of scientists and public health officials was extensive and timely. However, it was the moderate severity of the virus itself that saved global public health from catastrophe. Because of the extensive publicity and research that occurred during the H1N1 pandemic, many lessons were learned that will be useful in confronting future influenza pandemics. A "One Health" approach to prevent, detect, and combat future pandemics is essential.
Collapse
Affiliation(s)
- Juergen A Richt
- Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, K-224B Mosier Hall, Manhattan, KS, 66506-5601, USA,
| | | | | |
Collapse
|
47
|
Shaw AE, Ratinier M, Nunes SF, Nomikou K, Caporale M, Golder M, Allan K, Hamers C, Hudelet P, Zientara S, Breard E, Mertens P, Palmarini M. Reassortment between two serologically unrelated bluetongue virus strains is flexible and can involve any genome segment. J Virol 2013; 87:543-57. [PMID: 23097432 PMCID: PMC3536370 DOI: 10.1128/jvi.02266-12] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Accepted: 10/16/2012] [Indexed: 11/20/2022] Open
Abstract
Coinfection of a cell by two different strains of a segmented virus can give rise to a "reassortant" with phenotypic characteristics that might differ from those of the parental strains. Bluetongue virus (BTV) is a double-stranded RNA (dsRNA) segmented virus and the cause of bluetongue, a major infectious disease of livestock. BTV exists as at least 26 different serotypes (BTV-1 to BTV-26). Prompted by the isolation of a field reassortant between BTV-1 and BTV-8, we systematically characterized the process of BTV reassortment. Using a reverse genetics approach, our study clearly indicates that any BTV-1 or BTV-8 genome segment can be rescued in the heterologous "backbone." To assess phenotypic variation as a result of reassortment, we examined viral growth kinetics and plaque sizes in in vitro experiments and virulence in an experimental mouse model of bluetongue disease. The monoreassortants generated had phenotypes that were very similar to those of the parental wild-type strains both in vitro and in vivo. Using a forward genetics approach in cells coinfected with BTV-1 and BTV-8, we have shown that reassortants between BTV-1 and BTV-8 are generated very readily. After only four passages in cell culture, we could not detect wild-type BTV-1 or BTV-8 in any of 140 isolated viral plaques. In addition, most of the isolated reassortants contained heterologous VP2 and VP5 structural proteins, while only 17% had homologous VP2 and VP5 proteins. Our study has shown that reassortment in BTV is very flexible, and there is no fundamental barrier to the reassortment of any genome segment. Given the propensity of BTV to reassort, it is increasingly important to have an alternative classification system for orbiviruses.
Collapse
Affiliation(s)
- Andrew E. Shaw
- MRC–University of Glasgow Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Maxime Ratinier
- MRC–University of Glasgow Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Sandro Filipe Nunes
- MRC–University of Glasgow Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | | | - Marco Caporale
- MRC–University of Glasgow Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
- Istituto G. Caporale, Teramo, Italy
| | - Matthew Golder
- MRC–University of Glasgow Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Kathryn Allan
- MRC–University of Glasgow Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | | | | | - Stéphan Zientara
- French Agency for Food, Environment and Occupational Health and Safety (ANSES), Maisons-Alfort, France
| | - Emmanuel Breard
- French Agency for Food, Environment and Occupational Health and Safety (ANSES), Maisons-Alfort, France
| | | | - Massimo Palmarini
- MRC–University of Glasgow Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
48
|
The Pandemic H1N1 Influenza Experience. Curr Top Microbiol Immunol 2013. [DOI: 10.1007/978-3-662-45792-4_309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
|
49
|
Matsuu A, Uchida Y, Takemae N, Mawatari T, Kasai Yoneyama S, Kasai T, Nakamura R, Eto M, Saito T. Genetic characterization of swine influenza viruses isolated in Japan between 2009 and 2012. Microbiol Immunol 2012; 56:792-803. [DOI: 10.1111/j.1348-0421.2012.00501.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
50
|
Abstract
Triple reassortant influenza A viruses (IAVs) of swine, particularly the North American H3N2 subtype, circulate in swine herds and may reassort and result in the emergence of novel zoonotic strains. Current diagnostic tools rely on isolation of the viruses, followed by serotyping by hemagglutination or genome sequencing, both of which can be expensive and time-consuming. Thus, novel subtype-specific ligands and methods are needed for rapid testing and subtyping of IAVs in the field. To address this need, we selected DNA aptamers against the recombinant HA protein from swine IAV H3 cluster IV using systematic evolution of ligands by exponential enrichment (SELEX). Four candidate aptamers (HA68, HA7, HA2a, and HA2b) were identified and characterized. The dissociation constants (K(d)) of aptamers HA68, HA7, HA2a, and HA2b against recombinant H3 protein were 7.1, 22.3, 16.0, and 3.7 nM, respectively. The binding site of HA68 to H3 was identified to be between nucleotide residues 8 and 40. All aptamers inhibited H3 hemagglutination. HA68 was highly specific to all four lineages within the North American H3N2 subtype. Further, the other three aptamers specifically identified live viruses belonging to the phylogenetic clusters I, II/III, and IV especially the virus that closely related to the recent H3N2 variant (H3N2v). Aptamer HA68 was also able to bind and detect H3N2v isolated from recent human cases. In conclusion, we provide subtype-specific aptamers against H3N2 IAVs of swine that can now be used in rapid detection and typing protocols for field applications.
Collapse
|