1
|
Wu M, Wan Q, Dan X, Wang Y, Chen P, Chen C, Li Y, Yao X, He ML. Targeting Ser78 phosphorylation of Hsp27 achieves potent antiviral effects against enterovirus A71 infection. Emerg Microbes Infect 2024; 13:2368221. [PMID: 38932432 PMCID: PMC11212574 DOI: 10.1080/22221751.2024.2368221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024]
Abstract
A positive-sense (+) single-stranded RNA (ssRNA) virus (e.g. enterovirus A71, EV-A71) depends on viral polypeptide translation for initiation of virus replication after entry. We reported that EV-A71 hijacks Hsp27 to induce hnRNP A1 cytosol redistribution to initiate viral protein translation, but the underlying mechanism is still elusive. Here, we show that phosphorylation-deficient Hsp27-3A (Hsp27S15/78/82A) and Hsp27S78A fail to translocate into the nucleus and induce hnRNP A1 cytosol redistribution, while Hsp27S15A and Hsp27S82A display similar effects to the wild type Hsp27. Furthermore, we demonstrate that the viral 2A protease (2Apro) activity is a key factor in regulating Hsp27/hnRNP A1 relocalization. Hsp27S78A dramatically decreases the IRES activity and viral replication, which are partially reduced by Hsp27S82A. However, Hsp27S15A displays the same activity as the wild-type Hsp27. Peptide S78 potently suppresses EV-A71 protein translation and reproduction through blockage of EV-A71-induced Hsp27 phosphorylation and Hsp27/hnRNP A1 relocalization. A point mutation (S78A) on S78 impairs its inhibitory functions on Hsp27/hnRNP A1 relocalization and viral replication. Taken together, we demonstrate the importance of Ser78 phosphorylation of Hsp27 regulated by virus infection in nuclear translocation, hnRNP A1 cytosol relocation, and viral replication, suggesting a new path (such as peptide S78) for target-based antiviral strategy.
Collapse
Affiliation(s)
- Mandi Wu
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong Special Administrative Region, People’s Republic of China
| | - Qianya Wan
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong Special Administrative Region, People’s Republic of China
| | - Xuelian Dan
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong Special Administrative Region, People’s Republic of China
- Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Yiran Wang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong Special Administrative Region, People’s Republic of China
| | - Peiran Chen
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong Special Administrative Region, People’s Republic of China
| | - Cien Chen
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong Special Administrative Region, People’s Republic of China
| | - Yichen Li
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong Special Administrative Region, People’s Republic of China
| | - Xi Yao
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong Special Administrative Region, People’s Republic of China
| | - Ming-Liang He
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong Special Administrative Region, People’s Republic of China
- CityU Shenzhen Research Institute, Shenzhen, People’s Republic of China
| |
Collapse
|
2
|
Lim TYM, Jaladanki CK, Wong YH, Yogarajah T, Fan H, Chu JJH. Tanomastat exerts multi-targeted inhibitory effects on viral capsid dissociation and RNA replication in human enteroviruses. EBioMedicine 2024; 107:105277. [PMID: 39226680 PMCID: PMC11419895 DOI: 10.1016/j.ebiom.2024.105277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 07/23/2024] [Accepted: 07/28/2024] [Indexed: 09/05/2024] Open
Abstract
BACKGROUND Global cyclical outbreaks of human enterovirus infections has positioned human enterovirus A71 (EV-A71) as a neurotropic virus of clinical importance. However, there remains a scarcity of internationally approved antivirals and vaccines. METHODS In pursuit of repurposing drugs for combating human enteroviruses, we employed a comprehensive pharmacophore- and molecular docking-based virtual screen targeting EV-A71 capsid protein VP1-4, 3C protease, and 3D polymerase proteins. Among 15 shortlisted ligand candidates, we dissected the inhibitory mechanism of Tanomastat in cell-based studies and evaluated its in vivo efficacy in an EV-A71-infected murine model. FINDINGS We demonstrated that Tanomastat exerts dose-dependent inhibition on EV-A71 replication, with comparable efficacy profiles in enterovirus species A, B, C, and D in vitro. Time-course studies suggested that Tanomastat predominantly disrupts early process(es) of the EV-A71 replication cycle. Mechanistically, live virus particle tracking and docking predictions revealed that Tanomastat specifically impedes viral capsid dissociation, potentially via VP1 hydrophobic pocket binding. Bypassing its inhibition on entry stages, we utilized EV-A71 replication-competent, 3Dpol replication-defective, and bicistronic IRES reporter replicons to show that Tanomastat also inhibits viral RNA replication, but not viral IRES translation. We further showed that orally administered Tanomastat achieved 85% protective therapeutic effect and alleviated clinical symptoms in EV-A71-infected neonatal mice. INTERPRETATION Our study establishes Tanomastat as a broad-spectrum anti-enterovirus candidate with promising pre-clinical efficacy, warranting further testing for potential therapeutic application. FUNDING MOE Tier 2 grants (MOE-T2EP30221-0005, R571-000-068-592, R571-000-076-515, R571-000-074-733) and A∗STARBiomedical Research Council (BMRC).
Collapse
Affiliation(s)
- Therese Yien May Lim
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Chaitanya K Jaladanki
- Bioinformatics Institute, Agency for Science, Technology and Research (A∗STAR), 30 Biopolis Street, Matrix #07-01, 138671, Singapore
| | - Yi Hao Wong
- NUSMed Biosafety Level 3 Core Facility, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, 117599, Singapore
| | - Thinesshwary Yogarajah
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Infectious Disease Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore.
| | - Hao Fan
- Bioinformatics Institute, Agency for Science, Technology and Research (A∗STAR), 30 Biopolis Street, Matrix #07-01, 138671, Singapore; Synthetic Biology Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Drive, 117597, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, 117596, Singapore; Duke-NUS Medical School, 8 College Rd, 169857, Singapore.
| | - Justin Jang Hann Chu
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; NUSMed Biosafety Level 3 Core Facility, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, 117599, Singapore; Infectious Disease Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore; Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A∗STAR), 61 Biopolis Drive, Proteos #06-05, 138673, Singapore.
| |
Collapse
|
3
|
Kilich G, Perelygina L, Sullivan KE. Rubella virus chronic inflammatory disease and other unusual viral phenotypes in inborn errors of immunity. Immunol Rev 2024; 322:113-137. [PMID: 38009321 DOI: 10.1111/imr.13290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2023]
Abstract
Infectious susceptibility is a component of many inborn errors of immunity. Nevertheless, antibiotic use is often used as a surrogate in history taking for infectious susceptibility, thereby disadvantaging patients who present with viral infections as their phenotype. Further complicating clinical evaluations are unusual manifestations of viral infections which may be less familiar that the typical respiratory viral infections. This review covers several unusual viral phenotypes arising in patients with inborn errors of immunity and other settings of immune compromise. In some cases, chronic infections lead to oncogenesis or tumor-like growths and the conditions and mechanisms of viral-induced oncogenesis will be described. This review covers enterovirus, rubella, measles, papillomavirus, and parvovirus B19. It does not cover EBV and hemophagocytic lymphohistiocytosis nor lymphomagenesis related to EBV. EBV susceptibility has been recently reviewed. Our goal is to increase awareness of the unusual manifestations of viral infections in patients with IEI and to describe treatment modalities utilized in this setting. Coincidentally, each of the discussed viral infections can have a cutaneous component and figures will serve as a reminder of the physical features of these viruses. Given the high morbidity and mortality, early recognition can only improve outcomes.
Collapse
Affiliation(s)
- Gonench Kilich
- Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Ludmila Perelygina
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | | |
Collapse
|
4
|
Lee YP, Yu CK, Wong TW, Chen LC, Huang BM. Cordycepin Inhibits Enterovirus A71 Replication and Protects Host Cell from Virus-Induced Cytotoxicity through Adenosine Action Pathway. Viruses 2024; 16:352. [PMID: 38543718 PMCID: PMC10974990 DOI: 10.3390/v16030352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/23/2024] [Accepted: 02/23/2024] [Indexed: 05/23/2024] Open
Abstract
Enterovirus A71 (EV-A71) infection typically causes mild illnesses, such as hand-foot-and-mouth disease (HFMD), but occasionally leads to severe or fatal neurological complications in infants and young children. Currently, there is no specific antiviral treatment available for EV-A71 infection. Thus, the development of an effective anti-EV-A71 drug is required urgently. Cordycepin, a major bioactive compound found in Cordyceps fungus, has been reported to possess antiviral activity. However, its specific activity against EV-A71 is unknown. In this study, the potency and role of cordycepin treatment on EV-A71 infection were investigated. Results demonstrated that cordycepin treatment significantly reduced the viral load and viral ribonucleic acid (RNA) level in EV-A71-infected Vero cells. In addition, EV-A71-mediated cytotoxicity was significantly inhibited in the presence of cordycepin in a dose-dependent manner. The protective effect can also be extended to Caco-2 intestinal cells, as evidenced by the higher median tissue culture infectious dose (TCID50) values in the cordycepin-treated groups. Furthermore, cordycepin inhibited EV-A71 replication by acting on the adenosine pathway at the post-infection stage. Taken together, our findings reveal that cordycepin could be a potential antiviral candidate for the treatment of EV-A71 infection.
Collapse
Affiliation(s)
- Yi-Ping Lee
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan;
| | - Chun-Keung Yu
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan;
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
- Center of Infectious Disease and Signaling Research, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Tak-Wah Wong
- Department of Dermatology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan;
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
- Center of Applied Nanomedicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Li-Ching Chen
- Department of Biological Science & Technology, China Medical University, Taichung 406040, Taiwan
| | - Bu-Miin Huang
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan;
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan
| |
Collapse
|
5
|
Wang S, Pang Z, Fan H, Tong Y. Advances in anti-EV-A71 drug development research. J Adv Res 2024; 56:137-156. [PMID: 37001813 PMCID: PMC10834817 DOI: 10.1016/j.jare.2023.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/05/2023] [Accepted: 03/21/2023] [Indexed: 03/31/2023] Open
Abstract
BACKGROUND Enterovirus A71 (EV-A71) is capable of causing hand, foot and mouth disease (HFMD), which may lead to neurological sequelae and even death. As EV-A71 is resistant to environmental changes and mutates easily, there is still a lack of effective treatments or globally available vaccines. AIM OF REVIEW For more than 50 years since the HFMD epidemic, related drug research has been conducted. Progress in this area can promote the further application of existing potential drugs and develop more efficient and safe antiviral drugs, and provide useful reference for protecting the younger generation and maintaining public health security. KEY SCIENTIFIC CONCEPTS OF REVIEW At present, researchers have identified hundreds of EV-A71 inhibitors based on screening repurposed drugs, targeted structural design, and rational modification of previously effective drugs as the main development strategies. This review systematically introduces the current potential drugs to inhibit EV-A71 infection, including viral inhibitors targeting key sites such as the viral capsid, RNA-dependent RNA polymerase (RdRp), 2C protein, internal ribosome entry site (IRES), 3C proteinase (3Cpro), and 2A proteinase (2Apro), starting from each stage of the viral life cycle. Meanwhile, the progress of host-targeting antiviral drugs and their development are summarized in terms of regulating host immunity, inhibiting autophagy or apoptosis, and regulating the cellular redox environment. In addition, the current clinical methods for the prevention and treatment of HFMD are summarized and discussed with the aim of providing support and recommendations for the treatment of enterovirus infections including EV-A71.
Collapse
Affiliation(s)
- Shuqi Wang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Zehan Pang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Huahao Fan
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China.
| | - Yigang Tong
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China; Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, China.
| |
Collapse
|
6
|
Wei Y, Liu H, Hu D, He Q, Yao C, Li H, Hu K, Wang J. Recent Advances in Enterovirus A71 Infection and Antiviral Agents. J Transl Med 2024; 104:100298. [PMID: 38008182 DOI: 10.1016/j.labinv.2023.100298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 10/29/2023] [Accepted: 11/20/2023] [Indexed: 11/28/2023] Open
Abstract
Enterovirus A71 (EV-A71) is one of the major causative agents of hand, foot, and mouth disease (HFMD) that majorly affects children. Most of the time, HFMD is a mild disease but can progress to severe complications, such as meningitis, brain stem encephalitis, acute flaccid paralysis, and even death. HFMD caused by EV-A71 has emerged as an acutely infectious disease of highly pathogenic potential in the Asia-Pacific region. In this review, we introduced the properties and life cycle of EV-A71, and the pathogenesis and the pathophysiology of EV-A71 infection, including tissue tropism and host range of virus infection, the diseases caused by the virus, as well as the genes and host cell immune mechanisms of major diseases caused by enterovirus 71 (EV-A71) infection, such as encephalitis and neurologic pulmonary edema. At the same time, clinicopathologic characteristics of EV-A71 infection were introduced. There is currently no specific medication for EV-A71 infection, highlighting the urgency and significance of developing suitable anti-EV-A71 agents. This overview also summarizes the targets of existing anti-EV-A71 agents, including virus entry, translation, polyprotein processing, replication, assembly and release; interferons; interleukins; the mitogen-activated protein kinase, phosphatidylinositol 3-kinase, and protein kinase B signaling pathways; the oxidative stress pathway; the ubiquitin-proteasome system; and so on. Furthermore, it overviews the effects of natural products, monoclonal antibodies, and RNA interference against EV-A71. It also discusses issues limiting the research of antiviral drugs. This review is a systematic and comprehensive summary of the mechanism and pathological characteristics of EV-A71 infection, the latest progress of existing anti-EV-A71 agents. It would provide better understanding and guidance for the research and application of EV-A71 infection and antiviral inhibitors.
Collapse
Affiliation(s)
- Yanhong Wei
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Sino-German Biomedical Center, Hubei University of Technology, Wuhan, China
| | - Huihui Liu
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Sino-German Biomedical Center, Hubei University of Technology, Wuhan, China
| | - Da Hu
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Sino-German Biomedical Center, Hubei University of Technology, Wuhan, China
| | - Qun He
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Sino-German Biomedical Center, Hubei University of Technology, Wuhan, China
| | - Chenguang Yao
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Sino-German Biomedical Center, Hubei University of Technology, Wuhan, China
| | - Hanluo Li
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Sino-German Biomedical Center, Hubei University of Technology, Wuhan, China
| | - Kanghong Hu
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Sino-German Biomedical Center, Hubei University of Technology, Wuhan, China.
| | - Jun Wang
- Department of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
7
|
Song JH, Mun SH, Yang H, Kwon YS, Kim SR, Song MY, Ham Y, Choi HJ, Baek WJ, Cho S, Ko HJ. Antiviral Mechanisms of Saucerneol from Saururus chinensis against Enterovirus A71, Coxsackievirus A16, and Coxsackievirus B3: Role of Mitochondrial ROS and the STING/TKB-1/IRF3 Pathway. Viruses 2023; 16:16. [PMID: 38275951 PMCID: PMC10821076 DOI: 10.3390/v16010016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/16/2023] [Accepted: 12/19/2023] [Indexed: 01/27/2024] Open
Abstract
Enterovirus A71 (EV71), coxsackievirus A16 (CVA16), and coxsackievirus B3 (CVB3) are pathogenic members of the Picornaviridae family that cause a range of diseases, including severe central nervous system complications, myocarditis, and pancreatitis. Despite the considerable public health impact of these viruses, no approved antiviral treatments are currently available. In the present study, we confirmed the potential of saucerneol, a compound derived from Saururus chinensis, as an antiviral agent against EV71, CVA16, and CVB3. In the in vivo model, saucerneol effectively suppressed CVB3 replication in the pancreas and alleviated virus-induced pancreatitis. The antiviral activity of saucerneol is associated with increased mitochondrial ROS (mROS) production. In vitro inhibition of mROS generation diminishes the antiviral efficacy of saucerneol. Moreover, saucerneol treatment enhanced the phosphorylation of STING, TBK-1, and IRF3 in EV71- and CVA16-infected cells, indicating that its antiviral effects were mediated through the STING/TBK-1/IRF3 antiviral pathway, which was activated by increased mROS production. Saucerneol is a promising natural antiviral agent against EV71, CVA16, and CVB3 and has potential against virus-induced pancreatitis and myocarditis. Further studies are required to assess its safety and efficacy, which is essential for the development of effective antiviral strategies against these viruses.
Collapse
Affiliation(s)
- Jae-Hyoung Song
- Department of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea; (J.-H.S.); (S.-H.M.); (H.Y.); (M.-y.S.)
- Kangwon Institute of Inclusive Technology, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Seo-Hyeon Mun
- Department of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea; (J.-H.S.); (S.-H.M.); (H.Y.); (M.-y.S.)
| | - Heejung Yang
- Department of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea; (J.-H.S.); (S.-H.M.); (H.Y.); (M.-y.S.)
| | - Yong Soo Kwon
- Department of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea; (J.-H.S.); (S.-H.M.); (H.Y.); (M.-y.S.)
| | - Seong-Ryeol Kim
- Division of Acute Viral Diseases, Centers for Emerging Virus Research, National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju 28159, Republic of Korea;
| | - Min-young Song
- Department of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea; (J.-H.S.); (S.-H.M.); (H.Y.); (M.-y.S.)
| | - Youngwook Ham
- Nucleic Acid Therapeutics Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Republic of Korea;
- Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology (KUST), Daejeon 34113, Republic of Korea
| | - Hwa-Jung Choi
- Department of Beauty Art, Youngsan University, 142 Bansong Beltway, Busan 48015, Republic of Korea; (H.-J.C.); (W.-J.B.)
| | - Won-Jin Baek
- Department of Beauty Art, Youngsan University, 142 Bansong Beltway, Busan 48015, Republic of Korea; (H.-J.C.); (W.-J.B.)
| | - Sungchan Cho
- Nucleic Acid Therapeutics Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Republic of Korea;
- Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology (KUST), Daejeon 34113, Republic of Korea
| | - Hyun-Jeong Ko
- Department of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea; (J.-H.S.); (S.-H.M.); (H.Y.); (M.-y.S.)
- Kangwon Institute of Inclusive Technology, Kangwon National University, Chuncheon 24341, Republic of Korea
| |
Collapse
|
8
|
Feferbaum-Leite S, Santos IA, Grosche VR, da Silva GCD, Jardim ACG. Insights into enterovirus a-71 antiviral development: from natural sources to synthetic nanoparticles. Arch Microbiol 2023; 205:334. [PMID: 37730918 DOI: 10.1007/s00203-023-03660-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/02/2023] [Accepted: 08/14/2023] [Indexed: 09/22/2023]
Abstract
Enteroviruses are pathogens responsible for several diseases, being enterovirus A71 (EVA71) the second leading cause of hand, foot, and mouth disease (HFMD), especially in Asia-Pacific countries. HFMD is mostly common in infants and children, with mild symptoms. However, the disease can result in severe nervous system disorders in children as well as in immunosuppressed adults. The virus is highly contagious, and its transmission occurs via fecal-oral, oropharyngeal secretions, and fomites. The EVA71 burdens the healthy systems and economies around the world, however, up to date, there is no antiviral approved to treat infected individuals and the existent vaccines are not available or approved to be used worldwide. In this context, an extensive literature research was conducted to describe and summarize the recent advances in natural and/or synthetic compounds with antiviral activity against EVA71. The summarized data presented here might simply encourage the future studies in EVA71 antiviral development, by encouraging further research encompassing these compounds or even the application of the techniques and technologies to improve or produce new antiviral molecules.
Collapse
Affiliation(s)
- Shiraz Feferbaum-Leite
- Institute of Biomedical Science (ICBIM), Federal University of Uberlandia (UFU), Uberlandia, Minas Gerais, Brazil
| | - Igor Andrade Santos
- Institute of Biomedical Science (ICBIM), Federal University of Uberlandia (UFU), Uberlandia, Minas Gerais, Brazil
| | - Victória Riquena Grosche
- Institute of Biomedical Science (ICBIM), Federal University of Uberlandia (UFU), Uberlandia, Minas Gerais, Brazil
- Sao Paulo State University, Sao Jose do Rio Preto, Sao Paulo, Brazil
| | | | - Ana Carolina Gomes Jardim
- Institute of Biomedical Science (ICBIM), Federal University of Uberlandia (UFU), Uberlandia, Minas Gerais, Brazil.
- Sao Paulo State University, Sao Jose do Rio Preto, Sao Paulo, Brazil.
| |
Collapse
|
9
|
Onodera T, Sakudo A, Sugiura K, Haritani M, Furusaki K, Kirisawa R. Antiviral agents and disinfectants for foot‑and‑mouth disease (Review). Biomed Rep 2023; 19:57. [PMID: 37614986 PMCID: PMC10442741 DOI: 10.3892/br.2023.1639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 07/03/2023] [Indexed: 08/25/2023] Open
Abstract
Fluorouracil, 5-azacytidine, 6-azauridine, ribavirin, favipiravir (T-705) and its derivative (T-1105) exhibit anti-foot-and-mouth disease virus (FMDV) effects. In particular, T-1105 exhibits promising results when administered to guinea pigs orally, and pigs in their feed. FMDV is excreted in the early stages of infection in aerosols and oral or nasal droplets from animals. T-1105 along with the FMDV vaccine can be used to combat foot-and-mouth disease (FMD) epidemics. Several studies have shown that sodium hypochlorous solutions are widely used to inactivate viruses, including FMDV. However, these solutions must be stored under cool and dark conditions to maintain their virucidal effects. Interestingly, a study indicated that the virucidal activity of a calcium bicarbonate solution with a mesoscopic structure (CAC-717) did not decrease after storage at room temperature for at least four years outside direct sunlight. Numerous lessons acquired from the 2010 FMD outbreak in Japan are relevant for the control of COVID-19. However, the widespread use of chlorite can cause environmental issues. Chlorite can be combined with nitrogen to produce chloramine or N-nitrosodimethylamine, which plays a role in carcinogenesis. Therefore, risk assessments should be conducted in aquatic environments. Moreover, there is a need to develop nonchlorine disinfectants that can be used during epidemics, including FMD. The approach of 'One Health' should be shared between the public health and veterinary fields to improve the management of viral outbreaks, including those due to FMD.
Collapse
Affiliation(s)
- Takashi Onodera
- Laboratory of Environmental Science for Sustainable Development, Department of Veterinary Medical Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
- Research Center for Food Safety, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Akikazu Sakudo
- Department of Food Safety, Faculty of Veterinary Medicine, Okayama University of Science, Imabari, Ehime 794-8555, Japan
| | - Katsuaki Sugiura
- Laboratory of Environmental Science for Sustainable Development, Department of Veterinary Medical Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Makoto Haritani
- Laboratory of Environmental Science for Sustainable Development, Department of Veterinary Medical Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Koichi Furusaki
- Mineral Activation Research Institute, Kumamoto 865-0023, Japan
| | - Rikio Kirisawa
- Laboratory of Environmental Science for Sustainable Development, Department of Veterinary Medical Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
- Department of Pathobiology, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501, Japan
| |
Collapse
|
10
|
Lane TR, Fu J, Sherry B, Tarbet B, Hurst BL, Riabova O, Kazakova E, Egorova A, Clarke P, Leser JS, Frost J, Rudy M, Tyler KL, Klose T, Volobueva AS, Belyaevskaya SV, Zarubaev VV, Kuhn RJ, Makarov V, Ekins S. Efficacy of an isoxazole-3-carboxamide analog of pleconaril in mouse models of Enterovirus-D68 and Coxsackie B5. Antiviral Res 2023; 216:105654. [PMID: 37327878 PMCID: PMC10527014 DOI: 10.1016/j.antiviral.2023.105654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/05/2023] [Accepted: 06/13/2023] [Indexed: 06/18/2023]
Abstract
Enteroviruses (EV) cause a number of life-threatening infectious diseases. EV-D68 is known to cause respiratory illness in children that can lead to acute flaccid myelitis. Coxsackievirus B5 (CVB5) is commonly associated with hand-foot-mouth disease. There is no antiviral treatment available for either. We have developed an isoxazole-3-carboxamide analog of pleconaril (11526092) which displayed potent inhibition of EV-D68 (IC50 58 nM) as well as other enteroviruses including the pleconaril-resistant Coxsackievirus B3-Woodruff (IC50 6-20 nM) and CVB5 (EC50 1 nM). Cryo-electron microscopy structures of EV-D68 in complex with 11526092 and pleconaril demonstrate destabilization of the EV-D68 MO strain VP1 loop, and a strain-dependent effect. A mouse respiratory model of EV-D68 infection, showed 3-log decreased viremia, favorable cytokine response, as well as statistically significant 1-log reduction in lung titer reduction at day 5 after treatment with 11526092. An acute flaccid myelitis neurological infection model did not show efficacy. 11526092 was tested in a mouse model of CVB5 infection and showed a 4-log TCID50 reduction in the pancreas. In summary, 11526092 represents a potent in vitro inhibitor of EV with in vivo efficacy in EV-D68 and CVB5 animal models suggesting it is worthy of further evaluation as a potential broad-spectrum antiviral therapeutic against EV.
Collapse
Affiliation(s)
- Thomas R Lane
- Collaborations Pharmaceuticals Inc., Raleigh, NC, USA
| | - Jianing Fu
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Barbara Sherry
- Department of Molecular Biomedical Sciences, North Carolina State University, College of Veterinary Medicine, Raleigh, NC, USA
| | - Bart Tarbet
- Institute for Antiviral Research, Utah State University, Logan, UT, USA; Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT, USA
| | - Brett L Hurst
- Institute for Antiviral Research, Utah State University, Logan, UT, USA; Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT, USA
| | - Olga Riabova
- Research Center of Biotechnology RAS, 33-1 Leninsky prospect, 119071, Moscow, Russia
| | - Elena Kazakova
- Research Center of Biotechnology RAS, 33-1 Leninsky prospect, 119071, Moscow, Russia
| | - Anna Egorova
- Research Center of Biotechnology RAS, 33-1 Leninsky prospect, 119071, Moscow, Russia
| | - Penny Clarke
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - J Smith Leser
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Joshua Frost
- Department of Immunology and Microbiology, Infectious Disease, Medicine and Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | | | - Kenneth L Tyler
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Department of Veterans Affairs, Aurora, CO, USA
| | - Thomas Klose
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | | | | | - Vladimir V Zarubaev
- Saint Petersburg Pasteur Institute, 14 Mira Street, 197101, Saint Petersburg, Russia
| | - Richard J Kuhn
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Vadim Makarov
- Research Center of Biotechnology RAS, 33-1 Leninsky prospect, 119071, Moscow, Russia
| | - Sean Ekins
- Collaborations Pharmaceuticals Inc., Raleigh, NC, USA.
| |
Collapse
|
11
|
Liu X, Xu Z, Liang J, Yu L, Ren P, Zhou HB, Wu S, Lan K. Identification of a novel acylthiourea-based potent broad-spectrum inhibitor for enterovirus 3D polymerase in vitro and in vivo. Antiviral Res 2023; 213:105583. [PMID: 36965527 DOI: 10.1016/j.antiviral.2023.105583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/16/2023] [Accepted: 03/20/2023] [Indexed: 03/27/2023]
Abstract
Enterovirus infections have become a serious public health threat to young children, leading to hand-foot-and-mouth disease and more severe nervous system diseases. Due to the lack of licensed anti enterovirus drugs, we reported herein that a Tenovin-1 analog, acylthiourea-based 4-(tert-butyl)-N-((4-(4-(tert-butyl)benzamido)phenyl)carbamothioyl) benzamide (AcTU), displayed low nanomolar anti-EV-A71 activity with an EC50 of 1.0 nM in RD cells. Moreover, AcTU exhibited nanomolar to picomolar inhibitory activity against a series of enteroviruses including EV-D68, CV-A21, CV-A16 and CV-B1 (EC50 = 0.75-17.15 nM). Mechanistic studies indicated that AcTU inhibited enterovirus proliferation by targeting 3D polymerase. In addition, AcTU displayed moderate pharmacokinetic properties in rats (F = 7.4%, T1/2 = 3.26 h), and in vivo protection studies demonstrated that AcTU orally administered at 0.6 mg/kg/d was highly protective against lethal EV-A71 challenge in mice, potentially reducing mortality from 100% to 20% as well as alleviating symptoms. These results suggested that AcTU could be a potent clinical candidate for the treatment of enterovirus infections.
Collapse
Affiliation(s)
- Xinjin Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Zhichao Xu
- Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Frontier Science Center for Immunology and Metabolism, Wuhan University School of Pharmaceutical Sciences, Wuhan, 430071, China
| | - Jinsen Liang
- Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Frontier Science Center for Immunology and Metabolism, Wuhan University School of Pharmaceutical Sciences, Wuhan, 430071, China
| | - Lei Yu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Pengyu Ren
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Hai-Bing Zhou
- Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Frontier Science Center for Immunology and Metabolism, Wuhan University School of Pharmaceutical Sciences, Wuhan, 430071, China.
| | - Shuwen Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| | - Ke Lan
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China; Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, Hubei, China.
| |
Collapse
|
12
|
Hu K, Onintsoa Diarimalala R, Yao C, Li H, Wei Y. EV-A71 Mechanism of Entry: Receptors/Co-Receptors, Related Pathways and Inhibitors. Viruses 2023; 15:785. [PMID: 36992493 PMCID: PMC10051052 DOI: 10.3390/v15030785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/08/2023] [Accepted: 03/14/2023] [Indexed: 03/31/2023] Open
Abstract
Enterovirus A71, a non-enveloped single-stranded (+) RNA virus, enters host cells through three stages: attachment, endocytosis and uncoating. In recent years, receptors/co-receptors anchored on the host cell membrane and involved in this process have been continuously identified. Among these, hSCARB-2 was the first receptor revealed to specifically bind to a definite site of the EV-A71 viral capsid and plays an indispensable role during viral entry. It actually acts as the main receptor due to its ability to recognize all EV-A71 strains. In addition, PSGL-1 is the second EV-A71 receptor discovered. Unlike hSCARB-2, PSGL-1 binding is strain-specific; only 20% of EV-A71 strains isolated to date are able to recognize and bind it. Some other receptors, such as sialylated glycan, Anx 2, HS, HSP90, vimentin, nucleolin and fibronectin, were discovered successively and considered as "co-receptors" because, without hSCARB-2 or PSGL-1, they are not able to mediate entry. For cypA, prohibitin and hWARS, whether they belong to the category of receptors or of co-receptors still needs further investigation. In fact, they have shown to exhibit an hSCARB-2-independent entry. All this information has gradually enriched our knowledge of EV-A71's early stages of infection. In addition to the availability of receptors/co-receptors for EV-A71 on host cells, the complex interaction between the virus and host proteins and various intracellular signaling pathways that are intricately connected to each other is critical for a successful EV-A71 invasion and for escaping the attack of the immune system. However, a lot remains unknown about the EV-A71 entry process. Nevertheless, researchers have been continuously interested in developing EV-A71 entry inhibitors, as this study area offers a large number of targets. To date, important progress has been made toward the development of several inhibitors targeting: receptors/co-receptors, including their soluble forms and chemically designed compounds; virus capsids, such as capsid inhibitors designed on the VP1 capsid; compounds potentially interfering with related signaling pathways, such as MAPK-, IFN- and ATR-inhibitors; and other strategies, such as siRNA and monoclonal antibodies targeting entry. The present review summarizes these latest studies, which are undoubtedly of great significance in developing a novel therapeutic approach against EV-A71.
Collapse
Affiliation(s)
| | | | | | | | - Yanhong Wei
- Sino-German Biomedical Center, National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China; (K.H.); (R.O.D.); (C.Y.); (H.L.)
| |
Collapse
|
13
|
Peterson CJ, Hurst BL, Evans WJ, Van Wettere AJ, Gibson SA, Smee DF, Tarbet EB. Human IVIG treatment in a neurological disease model for Enterovirus A71 infection in 28-day-old AG129 mice. Virology 2023; 580:62-72. [PMID: 36780728 DOI: 10.1016/j.virol.2023.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/27/2023] [Accepted: 02/02/2023] [Indexed: 02/07/2023]
Abstract
Enterovirus A71 can cause serious neurological disease in young children. Animal models for EV-A71 are needed to evaluate potential antiviral therapies. Existing models have limitations, including lack of lethality or crucial disease signs. Here we report the development of an EV-A71 model in 28-day-old mice. Virus was serially passaged until it produced consistent lethality and rear-limb paralysis. Onset of disease occurred between days 6-9 post-infection, with mortality following weight loss and neurological signs on days 9-14. In addition, a single administration of human intravenous immunoglobulin at doses of 200, 400 and 800 mg/kg at 4h post-infection was evaluated in the model. Protection from weight loss, neurological signs, and mortality (between 50 and 89%) were observed at doses of 400 mg/kg or greater. Based on these results, IVIG was selected for use as a positive control in this acute model, and suggest that IVIG is a potential therapeutic for EV-A71 infections.
Collapse
Affiliation(s)
- Christopher J Peterson
- Institute for Antiviral Research, Department of Animal, Dairy, and Veterinary Sciences, 5600 Old Main Hill, Utah State University, Logan, UT, 84322, USA; Department of Animal, Dairy, and Veterinary Sciences, Utah State University, 5600 Old Main Hill, Logan, UT, 84322, USA; Carilion Clinic-Virginia Tech Carilion School of Medicine, 2 Riverside Circle, Roanoke, VA, 24016, USA
| | - Brett L Hurst
- Institute for Antiviral Research, Department of Animal, Dairy, and Veterinary Sciences, 5600 Old Main Hill, Utah State University, Logan, UT, 84322, USA; Department of Animal, Dairy, and Veterinary Sciences, Utah State University, 5600 Old Main Hill, Logan, UT, 84322, USA
| | - W Joseph Evans
- Institute for Antiviral Research, Department of Animal, Dairy, and Veterinary Sciences, 5600 Old Main Hill, Utah State University, Logan, UT, 84322, USA; Department of Animal, Dairy, and Veterinary Sciences, Utah State University, 5600 Old Main Hill, Logan, UT, 84322, USA
| | - Arnaud J Van Wettere
- Department of Animal, Dairy, and Veterinary Sciences, Utah State University, 5600 Old Main Hill, Logan, UT, 84322, USA; Utah Veterinary Diagnostic Laboratory, Department of Animal, Dairy, and Veterinary Sciences, 950 East 1400 North, Utah State University, Logan, UT, 84341, USA
| | - Scott A Gibson
- Institute for Antiviral Research, Department of Animal, Dairy, and Veterinary Sciences, 5600 Old Main Hill, Utah State University, Logan, UT, 84322, USA; Department of Animal, Dairy, and Veterinary Sciences, Utah State University, 5600 Old Main Hill, Logan, UT, 84322, USA
| | - Donald F Smee
- Institute for Antiviral Research, Department of Animal, Dairy, and Veterinary Sciences, 5600 Old Main Hill, Utah State University, Logan, UT, 84322, USA; Department of Animal, Dairy, and Veterinary Sciences, Utah State University, 5600 Old Main Hill, Logan, UT, 84322, USA
| | - E Bart Tarbet
- Institute for Antiviral Research, Department of Animal, Dairy, and Veterinary Sciences, 5600 Old Main Hill, Utah State University, Logan, UT, 84322, USA; Department of Animal, Dairy, and Veterinary Sciences, Utah State University, 5600 Old Main Hill, Logan, UT, 84322, USA; Utah Veterinary Diagnostic Laboratory, Department of Animal, Dairy, and Veterinary Sciences, 950 East 1400 North, Utah State University, Logan, UT, 84341, USA.
| |
Collapse
|
14
|
Jindal AK, Chaudhary H, Tyagi R, Rawat A, Suri D, Patra PK, Arora K, Chawla S, Vyas S, Arora M, Aggarwal R, Basu S, Bansal R, Sachdeva MUS, Gupta A, Pandiarajan V, Sankhyan N, Suthar R, Sahu JK, Singh M, Mani R, Sharma R, Saka R, Imai K, Ohara O, Nonoyama S, Hammarström L, Chan KW, Lau YL, Singh S. Meningoencephalitis in primary antibody deficiency: Our experience from northwest India. J Neuroimmunol 2022; 371:577952. [PMID: 36030644 DOI: 10.1016/j.jneuroim.2022.577952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 08/13/2022] [Indexed: 11/19/2022]
Abstract
BACKGROUND/OBJECTIVES Patients with primary antibody deficiency (PAD) are predisposed to develop meningoencephalitis, often considered to be enteroviral. However, there is a paucity of literature on this subject, and there are no studies from developing countries. METHODS We analyzed our cohort of children with PAD who developed meningoencephalitis. RESULTS This complication was observed in 13/135 (10.4%) patients with PAD - 5 patients had X-linked agammaglobulinemia (XLA), 7 had common variable immunodeficiency (CVID) and 1 had suspected nuclear factor kappa B essential modulator (NEMO) defect. Mean age at onset of neurological illness was 9.3 years. Presenting features included seizures (n=8), neurodevelopmental delay (n=2), regression of milestones (n=2), and acute flaccid paralysis (n=1). Trough IgG levels were found to be low in 12/13 patients at the time of development of neurological symptoms. Herpes simplex virus (HSV), cytomegalovirus (CMV), and Streptococcus pneumoniae were isolated in 1 each. Eight (72.7%) patients had altered signal hyperintensities in gray matter and deep white matter on magnetic resonance imaging (MRI), while 4 patients showed global cerebral atrophy. All patients were treated with high-dose intravenous immunoglobulin (IVIg). Fluoxetine was given to 3 patients. Eight patients in the present series have died, 3 have recovered with varying degrees of neurological sequelae and 2 patients are showing gradual recovery. CONCLUSIONS To conclude, meningoencephalitis is an uncommon complication in patients with PAD and is associated with high morbidity and mortality. Early diagnosis of immune deficiency and initiation of replacement immunoglobulin therapy may prevent the development of neurological complications.
Collapse
Affiliation(s)
- Ankur Kumar Jindal
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India.
| | - Himanshi Chaudhary
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Rahul Tyagi
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Amit Rawat
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Deepti Suri
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Pratap Kumar Patra
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Kanika Arora
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Sanchi Chawla
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Sameer Vyas
- Department of Radiodiagnosis and Imaging, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Munish Arora
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Ridhima Aggarwal
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Suprit Basu
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Reema Bansal
- Department of Ophthalmology, Advanced Eye Centre Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Man Updesh Singh Sachdeva
- Department of Hematology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Anju Gupta
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Vignesh Pandiarajan
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Naveen Sankhyan
- Pediatric Neurology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Renu Suthar
- Pediatric Neurology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Jitendra Kumar Sahu
- Pediatric Neurology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Mini Singh
- Department of Virology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Reeta Mani
- Department of Neurovirology, NIMHANS, Bangalore, India
| | - Rajni Sharma
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Ruchi Saka
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Kohsuke Imai
- Department of Community Pediatrics, Perinatal and Maternal Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Osamu Ohara
- Department of Applied Genomics, Kazusa DNA Research Institute, Kisarazu, Japan
| | - Shigeaki Nonoyama
- Department of Pediatrics, National Defense Medical College, Tokorozawa, Japan
| | - Lennart Hammarström
- Dept. of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Koon Wing Chan
- Department of Paediatrics and Adolescent Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yu Lung Lau
- Department of Paediatrics and Adolescent Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Surjit Singh
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
15
|
Wang J, Hu Y, Zheng M. Enterovirus A71 antivirals: Past, present, and future. Acta Pharm Sin B 2022; 12:1542-1566. [PMID: 35847514 PMCID: PMC9279511 DOI: 10.1016/j.apsb.2021.08.017] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/28/2021] [Accepted: 08/12/2021] [Indexed: 02/07/2023] Open
Abstract
Enterovirus A71 (EV-A71) is a significant human pathogen, especially in children. EV-A71 infection is one of the leading causes of hand, foot, and mouth diseases (HFMD), and can lead to neurological complications such as acute flaccid myelitis (AFM) in severe cases. Although three EV-A71 vaccines are available in China, they are not broadly protective and have reduced efficacy against emerging strains. There is currently no approved antiviral for EV-A71. Significant progress has been made in developing antivirals against EV-A71 by targeting both viral proteins and host factors. However, viral capsid inhibitors and protease inhibitors failed in clinical trials of human rhinovirus infection due to limited efficacy or side effects. This review discusses major discoveries in EV-A71 antiviral development, analyzes the advantages and limitations of each drug target, and highlights the knowledge gaps that need to be addressed to advance the field forward.
Collapse
Affiliation(s)
- Jun Wang
- Department of Pharmacology and Toxicology, College of Pharmacy, the University of Arizona, Tucson, AZ 85721, USA
| | - Yanmei Hu
- Department of Pharmacology and Toxicology, College of Pharmacy, the University of Arizona, Tucson, AZ 85721, USA
| | - Madeleine Zheng
- Department of Pharmacology and Toxicology, College of Pharmacy, the University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
16
|
Gao X, Qiu Y, Gao L, Zhang L, Li X, Liu Y, Zhao C. Fucosylated oligosaccharide Lacto-N-fucopentaose I ameliorates enterovirus 71 infection by inhibiting apoptosis. Food Chem X 2022; 13:100244. [PMID: 35499022 PMCID: PMC9040005 DOI: 10.1016/j.fochx.2022.100244] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 01/20/2022] [Accepted: 02/02/2022] [Indexed: 12/08/2022] Open
Abstract
LNFPI reduced capsid protein VP1 to block virus adsorption. LNFPI promoted CDK2 and reduced cyclin E to recover S phase block. LNFPI inhibited cell apoptosis via reduction of Sphingomonas and Stenotrophomonas.
Enterovirus 71 (EV71) is the main cause of hand, foot and mouth disease that results in high rates of severe diseases in small children. Lacto-N-fucopentaose I (LNFPI) can inhibit pathogen invasion and regulate intestinal flora. However, whether LNFPI inhibits EV71 infection remains unknown. In this study, we examined the effect and mechanism of LNFPI against EV71. LNFPI reduced capsid protein VP1 to block virus adsorption, inhibited cyclin E transcription and promoted CDK2 expression in EV71-induced human rhabdomyosarcoma cells, thereby causing virus-induced S phase arrest and inhibiting death receptor and mitochondria-induced apoptosis. The effects of LNFPI on apoptosis were further confirmed in Caenorhabditis elegans. The correlation analysis revealed that LNFPI inhibited cell apoptosis by reducing the abundance of Sphingomonas, Stenotrophomonas and Achromatic, which are associated with pro-apoptotic genes in C. elegans, and by increasing the abundance of Micromonospora, which is related to apoptotic inhibition. These findings lead to further recommendations for LNFPI supplementation in infant formula, as it could offer antiviral benefits to formula-fed infants.
Collapse
|
17
|
Nikunjkumar P, Tamil Selvan RP, Bhanuprakash V. Ribavirin as a curative and prophylactic agent against foot and mouth disease virus infection in C57BL/6 suckling and adult mice model. Virusdisease 2021; 32:737-747. [PMID: 34901324 DOI: 10.1007/s13337-021-00746-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 09/28/2021] [Indexed: 11/29/2022] Open
Abstract
Despite the availability of control measures for foot-and-mouth disease (FMD), the application of antiviral agents is imperative due to certain limitations in the prevention and control of FMD. This study pertains to systematic in vivo investigation of ribavirin as a prophylactic/curative agent, both in suckling and adult C57BL/6 mice against foot-and-mouth disease virus (FMDV) infection. In the adult mice, antiviral efficacy was assessed based on standard clinical score, body weight, and viral load. Only 13.33 to 33.33% of adult mice exhibited disease-specific symptoms following treatment and infection and vice versa, respectively, indicating the antiviral efficacy of the ribavirin. Further, the distribution of virus in different vital organs following ribavirin treatment and virus infection, and vice versa using SYBR green-based real-time PCR is reported. In the blood sample, the viral RNA was detected as early as two days post-infection and there was a significant reduction in virus titer (1000 to 10,000-folds) in the treatment groups compared to the infection control group. Animals receiving ribavirin had significantly lower organ virus titers at 2, 4, 6, 9, and 14 days post-challenge (dpc) than placebo-treated. In suckling mice, the treatment groups were 100% protected/cured compared to the control group. Thus, our data demonstrate that ribavirin may provide a feasible therapeutic approach to prevent as well as to treat FMDV infection. Supplementary Information The online version contains supplementary material available at 10.1007/s13337-021-00746-8.
Collapse
Affiliation(s)
- Patel Nikunjkumar
- FMD Vaccine Quality Control Laboratory, ICAR-Indian Veterinary Research Institute (ICAR-IVRI), HA Farm (P.O), Hebbal, Bengaluru, Karnataka 560 024 India
| | - Ramasamy Periyasamy Tamil Selvan
- FMD Vaccine Quality Control Laboratory, ICAR-Indian Veterinary Research Institute (ICAR-IVRI), HA Farm (P.O), Hebbal, Bengaluru, Karnataka 560 024 India
| | - Veerakyathappa Bhanuprakash
- FMD Vaccine Quality Control Laboratory, ICAR-Indian Veterinary Research Institute (ICAR-IVRI), HA Farm (P.O), Hebbal, Bengaluru, Karnataka 560 024 India
| |
Collapse
|
18
|
Dai K, Tan JK, Qian W, Lee RCH, Hann Chu JJ, Zhou GC. Discovery of 14S-(2'-chloro-4'-nitrophenoxy)-8R/S,17-epoxy andrographolide as EV-A71 infection inhibitor. Biochem Pharmacol 2021; 194:114820. [PMID: 34748818 DOI: 10.1016/j.bcp.2021.114820] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/18/2021] [Accepted: 11/02/2021] [Indexed: 01/23/2023]
Abstract
Human enterovirus A71 (EV-A71) is a major etiological agent of hand-foot-and-mouth disease (HFMD) and there is presently no internationally approved antiviral against EV-A71. In this study, it is disclosed that 14S-(2'-chloro-4'-nitrophenoxy)-8R/S,17-epoxy andrographolide (2) was discovered to be an effective inhibitor against EV-A71 infection showing significant reduction of viral titre. In addition to EV-A71, compound 2 exerts broad-spectrum antiviral effects against other enteroviruses. It is revealed that compound 2 inhibits the post-entry stages of EV-A71 viral replication cycle and significantly reduces viral protein expression of structural proteins such as VP0 and VP2 via inhibiting EV-A71 RNA replication. Moreover, the inhibitory property of compound 2 is specific to viral RNA replication. Furthermore, compound 2 is more likely to target a host factor in EV-A71 RNA replication. As a result, introduction of epoxide at positions 8 and 17 of andrographolide is effective for anti-EV-A71 infection and is a potential anti-EV-A71 strategy. Further work to discover more potent andrographolide derivatives and elucidate comprehensive SAR is under way.
Collapse
Affiliation(s)
- Kun Dai
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, Jiangsu, China
| | - Jie Kai Tan
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 117545 Singapore, Singapore
| | - Weiyi Qian
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, Jiangsu, China
| | - Regina Ching Hua Lee
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 117545 Singapore, Singapore
| | - Justin Jang Hann Chu
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 117545 Singapore, Singapore; Infectious Disease Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, 117597 Singapore, Singapore; Collaborative and Translation Unit for HFMD, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, 138673 Singapore, Singapore.
| | - Guo-Chun Zhou
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, Jiangsu, China.
| |
Collapse
|
19
|
Zarif F, Anasir MI, Koh JX, Chew MF, Poh CL. Stability and antiviral activity of SP40 peptide in human serum. Virus Res 2021; 303:198456. [PMID: 34314773 DOI: 10.1016/j.virusres.2021.198456] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 04/29/2021] [Accepted: 05/15/2021] [Indexed: 12/27/2022]
Abstract
Enterovirus A71 (EV-A71) is one of the main causative agents of hand, foot and mouth disease (HFMD). SP40 peptide was previously identified to inhibit EV-A71 strains from genotypes A, B and C. However, the stability and antiviral activity of SP40 peptide in human serum are yet to be established. To address this, we evaluated the stability and anti-EV-A71 activity of SP40 peptide after incubation in 25 % human serum. Reverse-phase high-performance liquid chromatography (RP-HPLC) and liquid chromatography-mass spectrometry (LC/MS) were utilized to evaluate serum stability and cleavage patterns of SP40 peptide after incubation in human serum. Cell protection assay was used to evaluate the anti-EV-A71 activity of SP40 peptide after incubation in human serum and to identify the minimal active sequence of SP40 peptide that retained antiviral activity. The results showed that the SP40 peptide was stable in human serum with 56 % of the full-length SP40 peptide being detected after 48 h incubation in human serum. The SP40 peptide was mainly cleaved by exopeptidases and no endoprotease recognition sites were identified within the SP40 peptide. Cell protection assays revealed that the SP40 peptide retained substantial activity after 24 and 48 h incubation in human serum. Furthermore, the data revealed that three amino acids at the N-terminus and one amino acid at the C-terminus of the SP40 peptide were dispensable for its antiviral activity. Importantly, the four truncated peptides displayed better potency than the full-length SP40 peptide. Overall, this study provided insights into the stability and activity of SP40 peptide in human serum and will facilitate the development of SP40 peptide as an anti-EV-A71 agent.
Collapse
Affiliation(s)
- Faisal Zarif
- Centre for Virus and Vaccine Research, Sunway University, Bandar Sunway, Malaysia; School of Medical and Life Sciences, Sunway University, Bandar Sunway, Malaysia
| | - Mohd Ishtiaq Anasir
- Centre for Virus and Vaccine Research, Sunway University, Bandar Sunway, Malaysia; School of Medical and Life Sciences, Sunway University, Bandar Sunway, Malaysia; Virology Unit, Infectious Disease Research Center, Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, Selangor, Malaysia
| | - Jia Xuen Koh
- Centre for Virus and Vaccine Research, Sunway University, Bandar Sunway, Malaysia; School of Medical and Life Sciences, Sunway University, Bandar Sunway, Malaysia
| | - Miaw-Fang Chew
- Centre for Virus and Vaccine Research, Sunway University, Bandar Sunway, Malaysia
| | - Chit Laa Poh
- Centre for Virus and Vaccine Research, Sunway University, Bandar Sunway, Malaysia; School of Medical and Life Sciences, Sunway University, Bandar Sunway, Malaysia.
| |
Collapse
|
20
|
Lindblom N, Lindquist L, Westman J, Åström M, Bullock R, Hendrix S, Wahlund LO. Potential Virus Involvement in Alzheimer's Disease: Results from a Phase IIa Trial Evaluating Apovir, an Antiviral Drug Combination. J Alzheimers Dis Rep 2021; 5:413-431. [PMID: 34189413 PMCID: PMC8203284 DOI: 10.3233/adr-210301] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Background: Accumulating data suggest infectious agents are involved in Alzheimer’s disease (AD). The two primary aims of this trial were to assess safety and efficacy of an antiviral drug combination on AD progression. Objective: The trial evaluated whether Apovir, a combination of two antiviral agents, pleconaril (active on enteroviruses) and ribavirin (active on several viruses), could slow AD progression. Methods: Sixty-nine patients 60–85 years were treated with Apovir or placebo for 9 months and followed until 12 months after end of treatment. Cognitive tests, safety, biomarkers, drug plasma, and cerebrospinal fluid concentrations were assessed. Results: The tolerability of Apovir was compromised as demonstrated by the large drop-out rate and increased frequency and severity of adverse events. The primary endpoint, demonstrating a difference in change from baseline to 9 months between groups in ADAS-cog total score, was not met (p = 0.1809). However, there were observations indicating potential effects on both ADAS-cog and CDR-SB but these effects need to be verified. Also, there was a decrease in cerebrospinal fluid amyloid-β in Apovir at 9 months (p = 0.0330) but no change in placebo. Conclusion: This was the first randomized, placebo controlled clinical trial exploring antiviral treatment on AD progression. The trial is considered inconclusive due to the large drop-out rate. New trials are needed to verify if the indications of effect observed can be confirmed and which component(s) in Apovir contributed to such effects. Pleconaril alone may be studied to improve the tolerability and to verify if enterovirus is involved in the disease process.
Collapse
Affiliation(s)
| | - Lars Lindquist
- Clinic for Infectious Diseases and Institution of Medicine, Karolinska University Hospital and Karolinska Institutet, Huddinge, Sweden
| | | | | | | | | | - Lars-Olof Wahlund
- NVS Department, Section of Clinical Geriatrics, Karolinska Institutet and Karolinska University Hospital, Huddinge, Sweden
| |
Collapse
|
21
|
Gunaseelan S, Wong KZ, Min N, Sun J, Ismail NKBM, Tan YJ, Lee RCH, Chu JJH. Prunin suppresses viral IRES activity and is a potential candidate for treating enterovirus A71 infection. Sci Transl Med 2020; 11:11/516/eaar5759. [PMID: 31666401 DOI: 10.1126/scitranslmed.aar5759] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 11/12/2018] [Accepted: 10/09/2019] [Indexed: 12/24/2022]
Abstract
Human enterovirus A71 (HEVA71) causes hand, foot, and mouth disease (HFMD) in young children and is considered a major neurotropic pathogen but lacks effective antivirals. To identify potential therapeutic agents against HFMD, we screened a 502-compound flavonoid library for compounds targeting the HEVA71 internal ribosome entry site (IRES) that facilitates translation of the HEVA71 genome and is vital for the production of HEVA71 viral particles. We validated hits using cell viability and viral plaque assays and found that prunin was the most potent inhibitor of HEVA71. Downstream assays affirmed that prunin disrupted viral protein and RNA synthesis and acted as a narrow-spectrum antiviral against enteroviruses A and B, but not enterovirus C, rhinovirus A, herpes simplex 1, or chikungunya virus. Continuous HEVA71 passaging with prunin yielded HEVA71-resistant mutants with five mutations that mapped to the viral IRES. Knockdown studies showed that the mutations allowed HEVA71 to overcome treatment-induced suppression by differentially regulating recruitment of the IRES trans-acting factors Sam68 and hnRNPK without affecting the hnRNPA1-IRES interaction required for IRES translation. Furthermore, prunin effectively reduced HEVA71-associated clinical symptoms and mortality in HEVA71-infected BALB/c mice and suppressed hepatitis C virus at higher concentrations, suggesting a similar mechanism of prunin-mediated IRES inhibition for both viruses. These studies establish prunin as a candidate for further development as a HEVA71 therapeutic agent.
Collapse
Affiliation(s)
- Saravanan Gunaseelan
- Department of Microbiology and Immunology, National University of Singapore, Singapore 117597, Singapore
| | - Kai Zhi Wong
- Department of Microbiology and Immunology, National University of Singapore, Singapore 117597, Singapore
| | - Nyo Min
- Department of Microbiology and Immunology, National University of Singapore, Singapore 117597, Singapore
| | - Jialei Sun
- Department of Microbiology and Immunology, National University of Singapore, Singapore 117597, Singapore
| | | | - Yee Joo Tan
- Department of Microbiology and Immunology, National University of Singapore, Singapore 117597, Singapore
| | - Regina Ching Hua Lee
- Department of Microbiology and Immunology, National University of Singapore, Singapore 117597, Singapore
| | - Justin Jang Hann Chu
- Department of Microbiology and Immunology, National University of Singapore, Singapore 117597, Singapore. .,Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore 138673, Singapore
| |
Collapse
|
22
|
Niklasson B, Klitz W, Lindquist L. Alzheimer’s Disease Patients Receiving Antiviral Therapy: Case Reports. J Alzheimers Dis Rep 2020. [DOI: 10.3233/adr-190163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Affiliation(s)
- Bo Niklasson
- Jordbro Primary Health Care Center, Stockholm, Sweden
| | - William Klitz
- Department of Integrative Biology, University of California, Berkeley, CA, USA
| | - Lars Lindquist
- Department of Medicine Huddinge, Division of Infectious Diseases, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
23
|
Soumajit S, Tamil Selvan RP, Bhanuprakash V. In vitro antiviral efficacy of pleconaril and ribavirin on foot-and-mouth disease virus replication. Virusdisease 2019; 30:562-570. [PMID: 31890754 PMCID: PMC6917675 DOI: 10.1007/s13337-019-00559-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Accepted: 11/26/2019] [Indexed: 10/25/2022] Open
Abstract
Antiviral therapy is a promising strategy to control acute viral infections. FMDV causes an acute infection and the vaccination provides a protective immunity 7 days post immunization. If the infection is uncontained, then it affects the entire herd. In such circumstances, if antiviral drug is administered the infection can be checked in a herd. Ribavirin is known to cure persistently infected BHK21 cells with FMD virus. However, there have been no systematic studies on antiviral activity of ribavirin against FMDV at different time points with the application of ELISA, PCR or real-time PCR. Pleconaril is known to inhibit enteroviruses and rhinoviruses but has not been explored on FMDV. Hence, the present study evaluates the in vitro antiviral efficacy of pleconaril and ribavirin on FMDV replication. The maximum non-toxic concentrations (MNTC) of pleconaril and ribavirin for BHK21 cells respectively were 7.81 μg/50 μL and 15.62 μg/50 μL. Thus, drug concentrations below MNTC were tested for their antiviral activity against serial tenfold diluted FMDV O, A and Asia 1 serotypes. Pleconaril did not inhibit FMDV serotype O replication at 7.5 μg/50 μL based on CPE inhibition assay and this was further confirmed using sandwich ELISA, PCR/real-time PCR. On the other hand, ribavirin at 15.62 μg/50 μL inhibited the in vitro replication of FMDV O, A and Asia 1 and the inhibition was confirmed by serotype specific sandwich ELISA, PCR and real-time PCR assays. The inhibition was directly proportional to the concentration of ribavirin. Therefore, ribavirin could be explored for its in vivo efficacy as a potential therapeutic in the prevention of early spread of FMDV infection in a herd.
Collapse
Affiliation(s)
- Sarkar Soumajit
- FMD Vaccine Quality Control Laboratory, ICAR-Indian Veterinary Research Institute, HA Farm (P.O), Hebbal, Bangalore, Karnataka 560 024 India
| | - Ramasamy Periyasamy Tamil Selvan
- FMD Vaccine Quality Control Laboratory, ICAR-Indian Veterinary Research Institute, HA Farm (P.O), Hebbal, Bangalore, Karnataka 560 024 India
| | - Veerakyathappa Bhanuprakash
- FMD Vaccine Quality Control Laboratory, ICAR-Indian Veterinary Research Institute, HA Farm (P.O), Hebbal, Bangalore, Karnataka 560 024 India
| |
Collapse
|
24
|
Lin JY, Kung YA, Shih SR. Antivirals and vaccines for Enterovirus A71. J Biomed Sci 2019; 26:65. [PMID: 31481071 PMCID: PMC6720414 DOI: 10.1186/s12929-019-0560-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 08/23/2019] [Indexed: 01/23/2023] Open
Abstract
Enterovirus A71 (EV-A71) is an important emerging virus posing a threat to children under five years old. EV-A71 infection in infants or young children can cause hand-foot-and-mouth disease, herpangina, or severe neurological complications. However, there are still no effective antivirals for treatment of these infections. In this review, we summarize the antiviral compounds developed to date based on various targets of the EV-A71 life cycle. Moreover, development of a vaccine would be the most effective approach to prevent EV-A71 infection. Therefore, we also summarize the development and clinical progress of various candidate EV-A71 vaccines, including inactivated whole virus, recombinant VP1 protein, synthetic peptides, viral-like particles, and live attenuated vaccines.
Collapse
Affiliation(s)
- Jing-Yi Lin
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei City, Taiwan
| | - Yu-An Kung
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Shin-Ru Shih
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, Taiwan. .,Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan. .,Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan. .,Research Center for Chinese Herbal Medicine, Research Center for Food and Cosmetic Safety, and Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan.
| |
Collapse
|
25
|
Lim ZQ, Ng QY, Ng JWQ, Mahendran V, Alonso S. Recent progress and challenges in drug development to fight hand, foot and mouth disease. Expert Opin Drug Discov 2019; 15:359-371. [DOI: 10.1080/17460441.2019.1659241] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Ze Qin Lim
- Department of Microbiology&Immunology, Yong Loo Lin School of Medicine, Immunology program, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Qing Yong Ng
- Department of Microbiology&Immunology, Yong Loo Lin School of Medicine, Immunology program, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Justin Wei Qing Ng
- Department of Microbiology&Immunology, Yong Loo Lin School of Medicine, Immunology program, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Vikneswari Mahendran
- Department of Microbiology&Immunology, Yong Loo Lin School of Medicine, Immunology program, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Sylvie Alonso
- Department of Microbiology&Immunology, Yong Loo Lin School of Medicine, Immunology program, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| |
Collapse
|
26
|
Antiviral Efficacy of Flavonoids against Enterovirus 71 Infection in Vitro and in Newborn Mice. Viruses 2019; 11:v11070625. [PMID: 31284698 PMCID: PMC6669683 DOI: 10.3390/v11070625] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 06/30/2019] [Accepted: 07/03/2019] [Indexed: 12/26/2022] Open
Abstract
Enterovirus 71 (EV71) infection is known to cause hand, foot, and mouth disease (HFMD), which is associated with neurological complications; however, there is currently no effective treatment for this infection. Flavonoids are a large group of naturally occurring compounds with multiple bioactivities, and the inhibitory effects of several flavonoids against EV71 have been studied in cell cultures; however, to date, there are no reported data on their effects in animal models. In this study, we confirmed the in vitro activities of eight flavonoids against EV71 infection, based on the inhibition of cytopathic effects. Moreover, these flavonoids were found to reduce viral genomic RNA replication and protein synthesis. We further demonstrated the protective efficacy of these flavonoids in newborn mice challenged with a lethal dose of EV71. Apigenin, luteolin, kaempferol, formononetin, and penduletin conferred survival protection of 88.89%, 91.67%, 88.89%, 75%, and 66.67%, respectively, from the lethal EV71 challenge. In addition, isorhamnetin provided the highest mice survival protection of 100% at a dose of 10 mg/kg. This study, to the best of our knowledge, is the first to evaluate the in vivo anti-EV7l activities of multiple flavonoids, and we accordingly identified flavonoids as potential leading compounds for anti-EV71 drug development.
Collapse
|
27
|
Gao E, Wu S, Xu Q, Zeng Y, Tan N, He S, Yang Y, Wei J. Enterovirus type 71-immunized chicken egg yolk immunoglobulin has cross antiviral activity against coxsackievirus A16 in vitro. Exp Ther Med 2019; 18:332-341. [PMID: 31258670 DOI: 10.3892/etm.2019.7529] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Accepted: 04/16/2019] [Indexed: 12/16/2022] Open
Abstract
To exploit a cross passive immunotherapy for enterovirus-induced hand-foot-and-mouth disease (HFMD), the cross antiviral activity of a neutralizing antibody against enterovirus 71 (EV71) and coxsackievirus A16 (CVA16) was investigated in vitro. White Leghorn specific-pathogen-free chickens were immunized with EV71 antigens and a specific isolated immunoglobulin (IgY) was prepared from the chicken egg yolk. IgY was further purified and characterized by SDS-PAGE, ELISA, western blotting and bidirectional immune agar diffusion testing. The antiviral activity and dose-response of the IgY were determined by assessing the cytopathic effect in rhabdomyosarcoma (RD) cells in vitro. It was indicated that the levels of IgY were increased at day 7, peaked at week 7 and were maintained at a higher level for 4 weeks following immunization when compared with the negative control. The results of western blotting and bidirectional immune agar diffusion testing revealed that the IgY had cross-binding properties in EV71 and CVA16 strains through targeting the envelope proteins (VP0, VP1 and VP3) of EV71 and CVA16. Neutralization assay results indicated that the infectivity of EV71 and CVA16 strains in RD cells was cross-blocked by IgY in a dose-dependent manner. To conclude, these findings indicate that IgY has cross antiviral activity against EV71 and CVA16 in vitro, and could potentially be developed as a passive immunotherapy for EV71- and CVA16-induced HFMD.
Collapse
Affiliation(s)
- Enyi Gao
- Department of Pharmacology, Guilin Medical University, Guilin, Guangxi 541000, P.R. China
| | - Shuwen Wu
- Department of State Key Laboratory of Virology, School of Life Sciences, Wuhan University, Wuhan, Hubei 430000, P.R. China
| | - Qing Xu
- Department of Pharmacology, Guilin Medical University, Guilin, Guangxi 541000, P.R. China
| | - Yonglian Zeng
- Department of Pharmacology, Guilin Medical University, Guilin, Guangxi 541000, P.R. China
| | - Ning Tan
- Department of Pharmacology, Guilin Medical University, Guilin, Guangxi 541000, P.R. China
| | - Songqing He
- Department of Pharmacology, Guilin Medical University, Guilin, Guangxi 541000, P.R. China
| | - Yang Yang
- Department of Pharmacology, Guilin Medical University, Guilin, Guangxi 541000, P.R. China
| | - Jingchen Wei
- Department of Pharmacology, Guilin Medical University, Guilin, Guangxi 541000, P.R. China
| |
Collapse
|
28
|
Automated cell-based luminescence assay for profiling antiviral compound activity against enteroviruses. Sci Rep 2019; 9:6023. [PMID: 30988314 PMCID: PMC6465263 DOI: 10.1038/s41598-019-42160-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 03/19/2019] [Indexed: 12/18/2022] Open
Abstract
We describe the development, optimisation, and validation of an automated, cell-based and high-throughput screening assay using existing luminescence-based ATPlite reagents for identifying antiviral compounds that inhibit enterovirus replication. Antiviral efficacy was determined by measuring the ATP levels in cells that were protected from the viral cytopathic effect (CPE) by the antiviral compounds pleconaril and rupintrivir. CPE-based assay conditions were optimised at a cell density of 5000 cells/well and a viral infection dose of 100 CCID50 in 384-well plates. The assay exhibited excellent robustness, with Z'-factor values between 0.75 and 0.82, coefficients of variation between 0.33% and 1.45%, and signal-to-background ratios ranging from 6.92 to 22.6 when testing three enterovirus A71 isolates circulating in China. The assay was also suitable for screening other picornaviruses, such as poliovirus, coxsackievirus, echovirus, and parechovirus.
Collapse
|
29
|
Yin Y, Xu Y, Ou Z, Yang X, Liu H. An antiviral drug screening system for enterovirus 71 based on an improved plaque assay: A potential high-throughput method. J Med Virol 2019; 91:1440-1447. [PMID: 30900754 DOI: 10.1002/jmv.25463] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 03/06/2019] [Accepted: 03/18/2019] [Indexed: 01/02/2023]
Abstract
Plaque assay plays an irreplaceable role in a variety of virological studies, including determining titers of viruses. Our previous study showed that a simple and highly repeatable plaque assay could be used for enterovirus 71 (EV-A71). Now, we show that using a subclone of a clinical EV-A71 isolate and a rhabdomyosarcoma cell line (RD), a plaque assay based on an EV-A71/RD model could exhibit the most rapid formation of plaques (<2 days), with much higher repeatability and consistency. Inspired by a plaque inhibitory test for testing ribavirin and interferon, as well as a plaque reduction neutralization test, this modified method has been used to establish a convenient system by using 96-well plates for screening anti-EV-A71 drugs from a 130-compound library containing multiple types of inhibitors. Nine candidate effective compounds for EV-A71 have been screened out, and among them, nobiletin (flavonoid) was found to be a novel effective compound at the concentration of 10 μM. Our findings imply that this improved method based on an EV-A71/RD model proved to be a potential high-throughput method in screening novel antiviral drugs for EV-A71. Undoubtedly, this method can also be applied to other viruses that can produce an obvious cytopathic effect.
Collapse
Affiliation(s)
- Yingxian Yin
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China.,Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China.,Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong, China
| | - Yi Xu
- Department of Infectious Diseases, Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong, China
| | - Zhiying Ou
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong, China
| | - Xiangling Yang
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China.,Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Huanliang Liu
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China.,Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China.,Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-Sen University, Guangzhou, Guangdong, China
| |
Collapse
|
30
|
Fatal Enteroviral Encephalitis in a Patient with Common Variable Immunodeficiency Harbouring a Novel Mutation in NFKB2. J Clin Immunol 2019; 39:324-335. [DOI: 10.1007/s10875-019-00602-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 02/18/2019] [Indexed: 02/06/2023]
|
31
|
Zeng S, Meng X, Huang Q, Lei N, Zeng L, Jiang X, Guo X. Spiramycin and azithromycin, safe for administration to children, exert antiviral activity against enterovirus A71 in vitro and in vivo. Int J Antimicrob Agents 2018; 53:362-369. [PMID: 30599241 DOI: 10.1016/j.ijantimicag.2018.12.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 12/16/2018] [Accepted: 12/22/2018] [Indexed: 01/30/2023]
Abstract
Hand-foot-mouth disease (HFMD) is a common viral disease in young children, mainly caused by enterovirus A71 (EV-A71) and coxsackievirus A16 (CV-A16). Specific antiviral agents are not commercially available yet. Here we report that the macrolide antibiotics spiramycin (SPM) and azithromycin (AZM) possess antiviral activities against EV-A71 and CV-A16. SPM significantly reduced EV-A71 RNA and protein levels, most likely through interfering with viral RNA replication. The SPM-resistant EV-A71 variants showed similar resistance to AZM, indicating a similar anti-EV-A71 mechanism by which these two drugs exert their functions. The mutations of these variants were reproducibly mapped to VP1 and 2A, which were confirmed to confer resistance to SPM. Animal experiments showed that AZM possesses stronger anti-infection efficacy than SPM, greatly alleviated the disease symptoms and increased the survival rate in a mouse model severely infected with EV-A71. In all, our work suggests that AZM is a potential treatment option for EV-A71-induced HFMD, whose proved safety for infants and children makes it even more promising.
Collapse
Affiliation(s)
- Shinuan Zeng
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China; Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou 510080, China
| | - Xiaobin Meng
- Meizhou People's Hospital, Meizhou 514031, China
| | | | - Nanfeng Lei
- Meizhou People's Hospital, Meizhou 514031, China
| | - Lingbin Zeng
- Meizhou People's Hospital, Meizhou 514031, China
| | - Xinying Jiang
- Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou 510080, China
| | - Xuemin Guo
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China; Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou 510080, China; Meizhou People's Hospital, Meizhou 514031, China.
| |
Collapse
|
32
|
Immunocompetent and Immunodeficient Mouse Models for Enterovirus 71 Pathogenesis and Therapy. Viruses 2018; 10:v10120674. [PMID: 30487421 PMCID: PMC6316343 DOI: 10.3390/v10120674] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 11/23/2018] [Accepted: 11/26/2018] [Indexed: 12/29/2022] Open
Abstract
Enterovirus 71 (EV71) is a global health threat. Children infected with EV71 could develop hand-foot-and-mouth disease (HFMD), encephalitis, paralysis, pulmonary edema, and death. At present, no effective treatment for EV71 is available. We reviewed here various mouse models for EV71 pathogenesis and therapy. Earlier studies relied on the use of mouse-adapted EV71 strains. To avoid artificial mutations arising de novo during the serial passages, recent studies used EV71 clinical isolates without adaptation. Several human receptors for EV71 were shown to facilitate viral entry in cell culture. However, in vivo infection with human SCARB2 receptor transgenic mice appeared to be more limited to certain strains and genotypes of EV71. Efficacy of oral infection in these transgenic models is extremely low. Intriguingly, despite the lack of human receptors, immunodeficient neonatal mouse models can still be infected with EV71 clinical isolates via oral or intraperitoneal routes. Crossbreeding between SCARB2 transgenic and stat1 knockout mice generated a more sensitive and user-friendly hybrid mouse model. Infected hybrid mice developed a higher incidence and earlier onset of CNS disease and death. Different pathogenesis profiles were observed in models deficient in various arms of innate or humoral immunity. These models are being actively used for antiviral research.
Collapse
|
33
|
Lin CJ, Liu CH, Wang JY, Lin CC, Li YF, Richardson CD, Lin LT. Small molecules targeting coxsackievirus A16 capsid inactivate viral particles and prevent viral binding. Emerg Microbes Infect 2018; 7:162. [PMID: 30254193 PMCID: PMC6156566 DOI: 10.1038/s41426-018-0165-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 08/29/2018] [Accepted: 08/29/2018] [Indexed: 01/13/2023]
Abstract
Coxsackievirus A16 (CVA16) is an etiologic agent of hand, foot, and mouth disease (HFMD) that affects young children, and although typically self-limited, severe complications, and fatal cases have been reported. Due to the lack of specific medication and vaccines against CVA16, there is currently a need to develop effective antivirals to better control CVA16 infections in epidemic areas. In this study, we identified the tannins chebulagic acid (CHLA) and punicalagin (PUG) as small molecules that can efficiently disrupt the CVA16 infection of human rhabdomyosarcoma cells. Both compounds significantly reduced CVA16 infectivity at micromolar concentrations without apparent cytotoxicity. A mechanistic analysis revealed that the tannins particularly targeted the CVA16 entry phase by inactivating cell-free viral particles and inhibiting viral binding. Further examination by molecular docking analysis pinpointed the targets of the tannins in the fivefold axis canyon region of the CVA16 capsid near the pocket entrance that functions in cell surface receptor binding. We suggest that CHLA and PUG are efficient antagonists of CVA16 entry and could be of value as antiviral candidates or as starting points for developing molecules to treat CVA16 infections.
Collapse
Affiliation(s)
- Chien-Ju Lin
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Ching-Hsuan Liu
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Jonathan Y Wang
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Chun-Ching Lin
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Yi-Fang Li
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Christopher D Richardson
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada
- Department of Pediatrics and Canadian Center for Vaccinology, Izaak Walton Killam Health Centre, Halifax, Nova Scotia, B3K 6R8, Canada
| | - Liang-Tzung Lin
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan.
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, , Taipei Medical University, Taipei, 11031, Taiwan.
| |
Collapse
|
34
|
Wang S, Wang W, Hao C, Yunjia Y, Qin L, He M, Mao W. Antiviral activity against enterovirus 71 of sulfated rhamnan isolated from the green alga Monostroma latissimum. Carbohydr Polym 2018; 200:43-53. [PMID: 30177184 DOI: 10.1016/j.carbpol.2018.07.067] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 07/20/2018] [Accepted: 07/23/2018] [Indexed: 02/07/2023]
Abstract
Polysaccharide from Monostroma latissimum PML is a sulfated rhamnan, which consists of →3)-α-L-Rhap-(1→ and →2)-α-L-Rhap-(1→ residues with partial branches and sulfate groups at C-2 of →3)-α-L-Rhap-(1→ and/or C-3 of →2)-α-L-Rhap-(1→. The anti-enterovirus 71 (EV71) activity in vitro of PML was assessed by cytopathic effect inhibition and plaque reduction assays, and the results showed that PML was non-cytotoxic and significantly inhibited EV71 infection. The mechanism analysis of anti-EV71 activity demonstrated that PML largely inhibited viral replication before or during viral adsorption, mainly by targeting the capsid protein VP1. PML may also inhibit some early steps of infection after viral adsorption by modulating signaling through the epidermal growth factor receptor (EGFR)/phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) pathway. Moreover, PML markedly improved survival and decreased viral titers in EV71-infected mice. The investigation revealed that PML has potential as a novel anti-EV71 agent targeting the viral capsid protein as well as cellular EGFR/PI3K/Akt pathway.
Collapse
Affiliation(s)
- Shuyao Wang
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Wei Wang
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| | - Cui Hao
- Institute of Cerebrovascular Diseases, Affiliated Hospital of Qingdao University Medical College, Qingdao, 266003, China
| | - Yu Yunjia
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Ling Qin
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Meijia He
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Wenjun Mao
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
35
|
Cox JA, Hiscox JA, Solomon T, Ooi MH, Ng LFP. Immunopathogenesis and Virus-Host Interactions of Enterovirus 71 in Patients with Hand, Foot and Mouth Disease. Front Microbiol 2017; 8:2249. [PMID: 29238324 PMCID: PMC5713468 DOI: 10.3389/fmicb.2017.02249] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 10/31/2017] [Indexed: 12/12/2022] Open
Abstract
Enterovirus 71 (EV71) is a global infectious disease that affects millions of people. The virus is the main etiological agent for hand, foot, and mouth disease with outbreaks and epidemics being reported globally. Infection can cause severe neurological, cardiac, and respiratory problems in children under the age of 5. Despite on-going efforts, little is known about the pathogenesis of EV71, how the host immune system responds to the virus and the molecular mechanisms behind these responses. Moreover, current animal models remain limited, because they do not recapitulate similar disease patterns and symptoms observed in humans. In this review the role of the host-viral interactions of EV71 are discussed together with the various models available to examine: how EV71 utilizes its proteins to cleave host factors and proteins, aiding virus replication; how EV71 uses its own viral proteins to disrupt host immune responses and aid in its immune evasion. These discoveries along with others, such as the EV71 crystal structure, have provided possible targets for treatment and drug interventions.
Collapse
Affiliation(s)
- Jonathan A. Cox
- Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
| | - Julian A. Hiscox
- Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, Liverpool, United Kingdom
| | - Tom Solomon
- Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, Liverpool, United Kingdom
- Walton Centre NHS Foundation Trust, Liverpool, United Kingdom
| | - Mong-How Ooi
- Institute of Health and Community Medicine, Universiti Malaysia Sarawak, Samarahan, Malaysia
- Department of Paediatrics, Sarawak General Hospital, Kuching, Malaysia
| | - Lisa F. P. Ng
- Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, Liverpool, United Kingdom
| |
Collapse
|
36
|
Chronic meningoencephalitis caused by Echo virus 6 in a patient with common variable immunodeficiency : Successful treatment with pleconaril. Wien Klin Wochenschr 2017; 130:70-72. [PMID: 29116409 DOI: 10.1007/s00508-017-1289-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 10/13/2017] [Indexed: 12/22/2022]
Abstract
Chronic enteroviral meningoencephalitis, most commonly caused by echoviruses, can particularly be seen in agammaglobulinemic patients. In spite of the fact that no specific treatment for enteroviral infections exists, pleconaril is an antiviral drug reported to be efficient against enteroviral infections in infants and adults. We present a case of a 42-year-old male, previously diagnosed with common variable immunodeficiency, who presented with severe chronic meningoencephalitis caused by Echo virus 6 and was successfully treated with pleconaril. Enteroviruses usually cause mild symptoms, but some strains can cause life-threatening conditions especially in immunocompromised patients. Although pleconaril production is unprofitable due to the rarity of severe disease, our effective treatment should encourage further availability of pleconaril.
Collapse
|
37
|
Antiviral effects of Retro-2 cycl and Retro-2.1 against Enterovirus 71 in vitro and in vivo. Antiviral Res 2017; 144:311-321. [PMID: 28688753 DOI: 10.1016/j.antiviral.2017.07.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 07/03/2017] [Accepted: 07/04/2017] [Indexed: 11/23/2022]
Abstract
Enterovirus 71 (EV71) is one of the causative pathogens of hand, foot and mouth disease (HFMD), especially the form associated with fatal neurological disorders. Sustained outbreaks of EV71 infections remain a serious health threat worldwide. However, no antiviral agent against EV71 for clinical therapy has been approved. Retro-2cycl and Retro-2.1 are inhibitors of several pathogens specifically targeting the intracellular vesicle transport, which also participates in the EV71 lifecycle processes including progeny virus release. Here, we reported that Retro-2cycl and Retro-2.1, respectively, could inhibit EV71 infection with 50% effective concentrations of 12.56 μM and 0.05 μM in a cytopathic effect inhibition assay and showed relatively low cytotoxicity with 50% cytotoxicity concentrations of more than 500 μM and 267.80 μM. Preliminary mechanism studies revealed that Retro-2cycl and Retro-2.1 did not inhibit EV71 protein synthesis or RNA replication but could block progeny EV71 release specifically. Furthermore, administration of Retro-2cycl at the dose of 10 mg/kg significantly protected 90% of newborn mice from lethal EV71 challenge. Consequently, our results for the first time identified Retro-2cycl and Retro-2.1 as effective inhibitors of EV71 as well as lead compounds, which would contribute to anti-EV71 drug development. We also identified progeny virus release and the intracellular vesicle transport as antiviral targets for EV71.
Collapse
|
38
|
Abstract
Infections with enteroviruses and human parechoviruses are highly prevalent, particularly in neonates, where they may cause substantial morbidity and mortality. Individuals with B-cell-related immunodeficiencies are at risk for severe enteroviral infections, usually a chronic and fatal meningoencephalitis. In transplant recipients and patients with malignancy, enterovirus infections typically involve the respiratory tract, but cases of severe, disseminated infection have been described. The mainstay of diagnosis for enterovirus and human parechovirus infections involves the use of molecular diagnostic techniques. However, routine nucleic acid-detection methods for enteroviruses will not detect human parechoviruses. Laboratory diagnosis of these viral infections is important in determining a patient's prognosis and guiding clinical management.
Collapse
|
39
|
Gunaseelan S, Chu JJH. Identifying novel antiviral targets against enterovirus 71: where are we? Future Virol 2017. [DOI: 10.2217/fvl-2016-0144] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Human enterovirus 71 (HEV71) has been considered as an essential human pathogen, which causes hand, foot and mouth disease in young children. Several HEV71 outbreaks have been observed in many Asia-Pacific countries for the past two decades with significant fatalities. However, there are no competent vaccines or antivirals against HEV71 infection to date. Thus, it is of critical priority to delve into the search for anti-HEV71 agents. Prior to this, there is a need to gain knowledge about the distinct targets of HEV71 that are available and that have been exploited for antiviral therapy. This review aims to provide a better understanding of HEV71 virology and feature potential antivirals for progressive clinical development with respect to their elucidated mechanistic actions.
Collapse
Affiliation(s)
- Saravanan Gunaseelan
- Laboratory of Molecular RNA Virology & Antiviral Strategies, Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University Health System, 5 Science Drive 2, National University of Singapore, 117597 Singapore
| | - Justin Jang Hann Chu
- Laboratory of Molecular RNA Virology & Antiviral Strategies, Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University Health System, 5 Science Drive 2, National University of Singapore, 117597 Singapore
- Institute of Molecular & Cell Biology, Agency for Science, Technology & Research (A*STAR), 61 Biopolis Drive, Proteos #06–05, Singapore 138673
| |
Collapse
|
40
|
Yi EJ, Shin YJ, Kim JH, Kim TG, Chang SY. Enterovirus 71 infection and vaccines. Clin Exp Vaccine Res 2017; 6:4-14. [PMID: 28168168 PMCID: PMC5292356 DOI: 10.7774/cevr.2017.6.1.4] [Citation(s) in RCA: 148] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 10/02/2016] [Accepted: 10/30/2016] [Indexed: 01/15/2023] Open
Abstract
Hand, foot and mouth disease (HFMD) is a highly contagious viral infection affecting young children during the spring to fall seasons. Recently, serious outbreaks of HFMD were reported frequently in the Asia-Pacific region, including China and Korea. The symptoms of HFMD are usually mild, comprising fever, loss of appetite, and a rash with blisters, which do not need specific treatment. However, there are uncommon neurological or cardiac complications such as meningitis and acute flaccid paralysis that can be fatal. HFMD is most commonly caused by infection with coxsackievirus A16, and secondly by enterovirus 71 (EV71). Many other strains of coxsackievirus and enterovirus can also cause HFMD. Importantly, HFMD caused by EV71 tends to be associated with fatal complications. Therefore, there is an urgent need to protect against EV71 infection. Development of vaccines against EV71 would be the most effective approach to prevent EV71 outbreaks. Here, we summarize EV71 infection and development of vaccines, focusing on current scientific and clinical progress.
Collapse
Affiliation(s)
- Eun-Je Yi
- Laboratory of Microbiology, College of Pharmacy, Ajou University, Suwon, Korea
| | - Yun-Ju Shin
- Laboratory of Microbiology, College of Pharmacy, Ajou University, Suwon, Korea
| | - Jeong-Hwan Kim
- Laboratory of Microbiology, College of Pharmacy, Ajou University, Suwon, Korea
| | - Tae-Gyun Kim
- Laboratory of Microbiology, College of Pharmacy, Ajou University, Suwon, Korea
| | - Sun-Young Chang
- Laboratory of Microbiology, College of Pharmacy, Ajou University, Suwon, Korea.; Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou University, Suwon, Korea
| |
Collapse
|
41
|
Bearden D, Collett M, Quan PL, Costa-Carvalho BT, Sullivan KE. Enteroviruses in X-Linked Agammaglobulinemia: Update on Epidemiology and Therapy∗. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2016; 4:1059-1065. [DOI: 10.1016/j.jaip.2015.12.015] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 12/02/2015] [Accepted: 12/30/2015] [Indexed: 10/22/2022]
|
42
|
Gofshteyn J, Cárdenas AM, Bearden D. Treatment of Chronic Enterovirus Encephalitis With Fluoxetine in a Patient With X-Linked Agammaglobulinemia. Pediatr Neurol 2016; 64:94-98. [PMID: 27640319 DOI: 10.1016/j.pediatrneurol.2016.06.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Revised: 06/17/2016] [Accepted: 06/19/2016] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Enterovirus may result in a devastating chronic encephalitis in immunocompromised patients, particularly in patients with X-linked agammaglobulinemia. Prognosis for patients with chronic enterovirus encephalitis is poor, almost invariably resulting in mortality without specific treatment. There are currently no approved antiviral agents for enterovirus, but the antidepressant drug fluoxetine has been identified through library-based compound screening as a potential anti-enteroviral agent in vitro. However, use of fluoxetine has not previously been studied in humans with enteroviral disease. PATIENT DESCRIPTION A five year old boy with X-linked agammaglobulinemia presented with progressive neurological deterioration and was found to have chronic enterovirus encephalitis by brain biopsy. He failed to respond to standard treatment with high dose intravenous immunoglobulin, but showed stabilization and improvement following treatment with fluoxetine. CONCLUSIONS This is the first report to describe the use of fluoxetine as a potential therapy for chronic enterovirus infection. Further investigation of fluoxetine as a treatment option for chronic enterovirus encephalitis is necessary.
Collapse
Affiliation(s)
- Jacqueline Gofshteyn
- Division of Neurology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.
| | - Ana María Cárdenas
- Division of Pathology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - David Bearden
- Division of Neurology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| |
Collapse
|
43
|
Kim C, Kang H, Kim DE, Song JH, Choi M, Kang M, Lee K, Kim HS, Shin JS, Jeong H, Jung S, Han SB, Kim JH, Ko HJ, Lee CK, Kim M, Cho S. Antiviral activity of micafungin against enterovirus 71. Virol J 2016; 13:99. [PMID: 27296985 PMCID: PMC4907259 DOI: 10.1186/s12985-016-0557-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 06/07/2016] [Indexed: 12/30/2022] Open
Abstract
Background Enterovirus 71 (EV71) is a major causative agent of hand-foot-mouth disease (HFMD) and also causes severe neurological complications, leading to fatality in young children. However, no effective therapy is currently available for the treatment of this infection. Methods We identified small-molecule inhibitors of EV71 from a screen of 968 Food and Drug Administration (FDA)-approved drugs, with which clinical application for EV71-associated diseases would be more feasible, using EV71 subgenomic replicon system. Primary hits were extensively evaluated for their antiviral activities in EV71-infected cells. Results We identified micafungin, an echinocandin antifungal drug, as a novel inhibitor of EV71. Micafungin potently inhibits the proliferation of EV71 as well as the replication of EV71 replicon in cells with a low micromolar IC50 (~5 μM). The strong antiviral effect of micafungin on EV71 replicon and the result from time-of-addition experiment demonstrated a targeting of micafungin on virion-independent intracellular process(es) during EV71 infection. Moreover, an extensive analysis excluded the involvement of 2C and 3A proteins, IRES-dependent translation, and also that of polyprotein processing in the antiviral effect of micafungin. Conclusions Our research revealed a new indication of micafungin as an effective inhibitor of EV71, which is the first case reporting antiviral activity of micafungin, an antifungal drug. Electronic supplementary material The online version of this article (doi:10.1186/s12985-016-0557-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chonsaeng Kim
- Virus Research and Testing Center, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114, South Korea
| | - Hyunju Kang
- Anticancer Agent Research Center, Korea Research Institute of Bioscience & Biotechnology, 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Cheongju-si, Chungcheongbuk-do, 28116, South Korea.,College of Pharmacy, Chungbuk National University, 1 Chungdae-ro Seowon-gu, Cheongju-si, Chungcheongbuk-do, 28644, South Korea
| | - Dong-Eun Kim
- Anticancer Agent Research Center, Korea Research Institute of Bioscience & Biotechnology, 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Cheongju-si, Chungcheongbuk-do, 28116, South Korea.,College of Pharmacy, Chungbuk National University, 1 Chungdae-ro Seowon-gu, Cheongju-si, Chungcheongbuk-do, 28644, South Korea
| | - Jae-Hyoung Song
- Laboratory of Microbiology and Immunology, College of Pharmacy, Kangwon National University, 1 Gangwondaehak-gil, Chuncheon-si, Gangwon-do, 24341, South Korea
| | - Miri Choi
- Anticancer Agent Research Center, Korea Research Institute of Bioscience & Biotechnology, 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Cheongju-si, Chungcheongbuk-do, 28116, South Korea
| | - Mingu Kang
- Anticancer Agent Research Center, Korea Research Institute of Bioscience & Biotechnology, 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Cheongju-si, Chungcheongbuk-do, 28116, South Korea
| | - Kyungjin Lee
- Virus Research and Testing Center, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114, South Korea
| | - Hae Soo Kim
- Virus Research and Testing Center, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114, South Korea
| | - Jin Soo Shin
- Virus Research and Testing Center, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114, South Korea
| | - Hyejeong Jeong
- Anticancer Agent Research Center, Korea Research Institute of Bioscience & Biotechnology, 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Cheongju-si, Chungcheongbuk-do, 28116, South Korea
| | - Sunhee Jung
- Anticancer Agent Research Center, Korea Research Institute of Bioscience & Biotechnology, 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Cheongju-si, Chungcheongbuk-do, 28116, South Korea
| | - Sang-Bae Han
- College of Pharmacy, Chungbuk National University, 1 Chungdae-ro Seowon-gu, Cheongju-si, Chungcheongbuk-do, 28644, South Korea
| | - Jong Heon Kim
- Cancer Cell and Molecular Biology Branch, Research Institute, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do, 10408, South Korea
| | - Hyun-Jeong Ko
- Laboratory of Microbiology and Immunology, College of Pharmacy, Kangwon National University, 1 Gangwondaehak-gil, Chuncheon-si, Gangwon-do, 24341, South Korea
| | - Chong-Kyo Lee
- Virus Research and Testing Center, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114, South Korea
| | - Meehyein Kim
- Virus Research and Testing Center, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114, South Korea
| | - Sungchan Cho
- Anticancer Agent Research Center, Korea Research Institute of Bioscience & Biotechnology, 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Cheongju-si, Chungcheongbuk-do, 28116, South Korea. .,Department of Biomolecular Science, Korea University of Science and Technology, 217 Gajeong-ro, Daejeon, 34113, South Korea.
| |
Collapse
|
44
|
Virus-inhibiting activity of dihydroquercetin, a flavonoid from Larix sibirica, against coxsackievirus B4 in a model of viral pancreatitis. Arch Virol 2016; 161:929-38. [PMID: 26780775 DOI: 10.1007/s00705-016-2749-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 12/30/2015] [Indexed: 01/06/2023]
Abstract
Members of the family Picornaviridae, in particular, enteroviruses, represent a serious threat to human health. They are responsible for numerous pathologies ranging from mild disease to fatal outcome. Due to the limited number of safe and effective antivirals against enteroviruses, there is a need for search and development of novel drugs with various mechanisms of activity against enteroviruses-induced pathologies. We studied the effect of dihydroquercetin (DHQ), a flavonoid from larch wood, on the course of pancreatitis of white mice caused by coxsackievirus B4 (CVB4). DHQ was applied intraperitoneally at doses of 75 or 150 mg/kg/day once a day for 5 days postinfection (p.i.) starting on day 1 p.i., and its effect was compared to that of the reference compound ribavirin. The application of DHQ resulted in a dose-dependent decrease in the virus titer in pancreatic tissue, reaching, at the highest dose, 2.4 logs on day 5 p.i. Also, the application of DHQ led to restoration of antioxidant activity of pancreatic tissue that was impaired in the course of pancreatitis. Morphologically, pancreatic tissue of DHQ-treated animals demonstrated less infiltration with inflammatory cells and no signs of tissue destruction compared to placebo-treated mice. Both ribavirin- and DHQ-treated animals developed fewer foci of pancreatic inflammation per mouse, and these foci contained fewer infiltrating cells than those in placebo-treated mice. The effect of DHQ was comparable to or exceeded that of ribavirin. Taken together, our results suggest high antiviral activity of DHQ and its promising potential in complex treatment of viral pancreatitis.
Collapse
|
45
|
Abstract
Viruses are major pathogenic agents causing a variety of serious diseases in humans, other animals, and plants. Drugs that combat viral infections are called antiviral drugs. There are no effective antiviral drugs for many viral infections. However, there are several drugs for influenza, a couple of drugs for herpesviruses, and some new antiviral drugs for treatment of HIV and hepatitis C infections. The arsenal of antivirals is complex. As of March 2014, it consists of approximately 50 drugs approved by the FDA, approximately half of which are directed against HIV. Antiviral drug creation strategies are focused on two different approaches: targeting the viruses themselves or targeting host cell factors. Direct virus-targeting antiviral drugs include attachment inhibitors, entry inhibitors, uncoating inhibitors, protease inhibitors, polymerase inhibitors, nucleoside and nucleotide reverse transcriptase inhibitors, nonnucleoside reverse-transcriptase inhibitors, and integrase inhibitors. Protease inhibitors (darunavir, atazanavir, and ritonavir), viral DNA polymerase inhibitors (acyclovir, valacyclovir, valganciclovir, and tenofovir), and an integrase inhibitor (raltegravir) are included in the list of Top 200 Drugs by sales for the 2010s.
Collapse
|
46
|
Kang H, Kim C, Kim DE, Song JH, Choi M, Choi K, Kang M, Lee K, Kim HS, Shin JS, Kim J, Han SB, Lee MY, Lee SU, Lee CK, Kim M, Ko HJ, van Kuppeveld FJM, Cho S. Synergistic antiviral activity of gemcitabine and ribavirin against enteroviruses. Antiviral Res 2015; 124:1-10. [PMID: 26526589 DOI: 10.1016/j.antiviral.2015.10.011] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 09/25/2015] [Accepted: 10/10/2015] [Indexed: 12/21/2022]
Abstract
Enteroviruses are major causative agents of various human diseases, and some of them are currently considered to be an enormous threat to public health. However, no effective therapy is currently available for the treatment of these infections. We identified gemcitabine, a nucleoside-analog drug used for cancer treatment, from a screen of bioactive chemicals as a novel inhibitor of coxsackievirus B3 (CVB3) and enterovirus 71 (EV71). Gemcitabine potently inhibited the proliferation of CVB3 and EV71, as well as the replication of CVB3 and EV71 replicons, in cells with a low micromolar IC50 (1-5 μM). Its strong inhibitory effect was also observed in cells infected with human rhinoviruses, demonstrating broad-spectrum antiviral effects on enteroviruses. Mechanistically, an extensive analysis excluded the involvement of 2C, 3A, IRES-dependent translation, and also that of polyprotein processing in the antiviral effects of gemcitabine. Importantly, gemcitabine in combination with ribavirin, an antiviral drug currently being used against a few RNA viruses, exhibited a synergistic antiviral effect on the replication of CVB3 and EV71 replicons. Consequently, our results clearly demonstrate a new indication for gemcitabine as an effective broad-spectrum inhibitor of enteroviruses and strongly suggest a new therapeutic strategy using gemcitabine alone or in combination with ribavirin for the treatment of various diseases associated with enterovirus infection.
Collapse
Affiliation(s)
- Hyunju Kang
- Incurable Diseases Therapeutics Research Center, Korea Research Institute of Bioscience & Biotechnology, Cheongju, South Korea; College of Pharmacy, Chungbuk National University, Cheongju, South Korea
| | - Chonsaeng Kim
- Virus Research and Testing Center, Korea Research Institute of Chemical Technology, Daejeon, South Korea
| | - Dong-eun Kim
- Incurable Diseases Therapeutics Research Center, Korea Research Institute of Bioscience & Biotechnology, Cheongju, South Korea; College of Pharmacy, Chungbuk National University, Cheongju, South Korea
| | - Jae-Hyoung Song
- Laboratory of Microbiology and Immunology, College of Pharmacy, Kangwon National University, Chuncheon, South Korea
| | - Miri Choi
- Incurable Diseases Therapeutics Research Center, Korea Research Institute of Bioscience & Biotechnology, Cheongju, South Korea; College of Pharmacy, Chungbuk National University, Cheongju, South Korea
| | - Kwangman Choi
- Incurable Diseases Therapeutics Research Center, Korea Research Institute of Bioscience & Biotechnology, Cheongju, South Korea; Department of Medical Science, Soonchunhyang University, Asan, South Korea
| | - Mingu Kang
- Incurable Diseases Therapeutics Research Center, Korea Research Institute of Bioscience & Biotechnology, Cheongju, South Korea
| | - Kyungjin Lee
- Virus Research and Testing Center, Korea Research Institute of Chemical Technology, Daejeon, South Korea
| | - Hae Soo Kim
- Virus Research and Testing Center, Korea Research Institute of Chemical Technology, Daejeon, South Korea
| | - Jin Soo Shin
- Virus Research and Testing Center, Korea Research Institute of Chemical Technology, Daejeon, South Korea
| | - Janghwan Kim
- Stem Cell Research Center, Korea Research Institute of Bioscience & Biotechnology, Daejeon, South Korea
| | - Sang-Bae Han
- College of Pharmacy, Chungbuk National University, Cheongju, South Korea
| | - Mi-Young Lee
- Department of Medical Science, Soonchunhyang University, Asan, South Korea
| | - Su Ui Lee
- Natural Medicine Research Center, Korea Research Institute of Bioscience & Biotechnology, Cheongju, South Korea
| | - Chong-Kyo Lee
- Virus Research and Testing Center, Korea Research Institute of Chemical Technology, Daejeon, South Korea
| | - Meehyein Kim
- Virus Research and Testing Center, Korea Research Institute of Chemical Technology, Daejeon, South Korea
| | - Hyun-Jeong Ko
- Laboratory of Microbiology and Immunology, College of Pharmacy, Kangwon National University, Chuncheon, South Korea
| | - Frank J M van Kuppeveld
- Section of Virology, Department Infectious Diseases & Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Sungchan Cho
- Incurable Diseases Therapeutics Research Center, Korea Research Institute of Bioscience & Biotechnology, Cheongju, South Korea; Department of Biomolecular Science, Korea University of Science and Technology, Daejeon, South Korea.
| |
Collapse
|
47
|
Antiviral Potential of a Novel Compound CW-33 against Enterovirus A71 via Inhibition of Viral 2A Protease. Viruses 2015; 7:3155-71. [PMID: 26090728 PMCID: PMC4488731 DOI: 10.3390/v7062764] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 06/04/2015] [Accepted: 06/10/2015] [Indexed: 12/31/2022] Open
Abstract
Enterovirus A71 (EV-A71) in the Picornaviridae family causes hand-foot-and-mouth disease, aseptic meningitis, severe central nervous system disease, even death. EV-A71 2A protease cleaves Type I interferon (IFN)-α/β receptor 1 (IFNAR1) to block IFN-induced Jak/STAT signaling. This study investigated anti-EV-A7l activity and synergistic mechanism(s) of a novel furoquinoline alkaloid compound CW-33 alone and in combination with IFN-β. Anti-EV-A71 activities of CW-33 alone and in combination with IFN-β were evaluated by inhibitory assays of virus-induced apoptosis, plaque formation, and virus yield. CW-33 showed antiviral activities with an IC50 of near 200 μM in EV-A71 plaque reduction and virus yield inhibition assays. While, anti-EV-A71 activities of CW-33 combined with 100 U/mL IFN-β exhibited a synergistic potency with an IC50 of approximate 1 μM in plaque reduction and virus yield inhibition assays. Molecular docking revealed CW-33 binding to EV-A71 2A protease active sites, correlating with an inhibitory effect of CW33 on in vitro enzymatic activity of recombinant 2A protease (IC50 = 53.1 μM). Western blotting demonstrated CW-33 specifically inhibiting 2A protease-mediated cleavage of IFNAR1. CW-33 also recovered Type I IFN-induced Tyk2 and STAT1 phosphorylation as well as 2′,5′-OAS upregulation in EV-A71 infected cells. The results demonstrated CW-33 inhibiting viral 2A protease activity to reduce Type I IFN antagonism of EV-A71. Therefore, CW-33 combined with a low-dose of Type I IFN could be applied in developing alternative approaches to treat EV-A71 infection.
Collapse
|
48
|
Wang H, Zhang D, Ge M, Li Z, Jiang J, Li Y. Formononetin inhibits enterovirus 71 replication by regulating COX- 2/PGE₂ expression. Virol J 2015; 12:35. [PMID: 25890183 PMCID: PMC4351682 DOI: 10.1186/s12985-015-0264-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 02/12/2015] [Indexed: 02/07/2023] Open
Abstract
Background The activation of ERK, p38 and JNK signal cascade in host cells has been demonstrated to up-regulate of enterovirus 71 (EV71)-induced cyclooxygenase-2 (COX-2)/ prostaglandins E2 (PGE2) expression which is essential for viral replication. So, we want to know whether a compound can inhibit EV71 infection by suppressing COX-2/PGE2 expression. Methods The antiviral effect of formononetin was determined by cytopathic effect (CPE) assay and the time course assays. The influence of formononetin for EV71 replication was determined by immunofluorescence assay, western blotting assay and qRT-PCR assay. The mechanism of the antiviral activity of formononetin was determined by western blotting assay and ELISA assay. Results Formononetin could reduce EV71 RNA and protein synthesis in a dose-dependent manner. The time course assays showed that formononetin displayed significant antiviral activity both before (24 or 12 h) and after (0–6 h) EV71 inoculation in SK-N-SH cells. Formononetin was also able to prevent EV71-induced cytopathic effect (CPE) and suppress the activation of ERK, p38 and JNK signal pathways. Furthermore, formononetin could suppress the EV71-induced COX-2/PGE2 expression. Also, formononetin exhibited similar antiviral activities against other members of Picornaviridae including coxsackievirus B2 (CVB2), coxsackievirus B3 (CVB3) and coxsackievirus B6 (CVB6). Conclusions Formononetin could inhibit EV71-induced COX-2 expression and PGE2 production via MAPKs pathway including ERK, p38 and JNK. Formononetin exhibited antiviral activities against some members of Picornaviridae. These findings suggest that formononetin could be a potential lead or supplement for the development of new anti-EV71 agents in the future.
Collapse
Affiliation(s)
- Huiqiang Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Dajun Zhang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Miao Ge
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Zhuorong Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Jiandong Jiang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China. .,Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Yuhuan Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
49
|
Resveratrol inhibits enterovirus 71 replication and pro-inflammatory cytokine secretion in rhabdosarcoma cells through blocking IKKs/NF-κB signaling pathway. PLoS One 2015; 10:e0116879. [PMID: 25692777 PMCID: PMC4333343 DOI: 10.1371/journal.pone.0116879] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 12/16/2014] [Indexed: 11/19/2022] Open
Abstract
Polydatin and resveratrol, as major active components in Polygonum cuspidatum, have anti-inflammatory, antioxidant and antitumor functions. However, the effect and mechanism of polydatin and resveratrol on enterovirus 71 (EV71) have not been reported. In this study, resveratrol revealed strong antiviral activity on EV71, while polydatin had weak effect. Neither polydatin nor resveratrol exhibited influence on viral attachment. Resveratrol could effectively inhibit the synthesis of EV71/VP1 and the phosphorylation of IKKα, IKKβ, IKKγ, IKBα, NF-κB p50 and NF-κB p65, respectively. Meanwhile, the remarkably increased secretion of IL-6 and TNF-α in EV71-infected rhabdosarcoma (RD) cells could be blocked by resveratrol. These results demonstrated that resveratrol inhibited EV71 replication and cytokine secretion in EV71-infected RD cells through blocking IKKs/NF-κB signaling pathway. Thus, resveratrol may have potent antiviral effect on EV71 infection.
Collapse
|
50
|
Development of antiviral agents toward enterovirus 71 infection. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2015; 48:1-8. [DOI: 10.1016/j.jmii.2013.11.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 11/16/2013] [Indexed: 01/20/2023]
|