1
|
Banho CA, de Carvalho Marques B, Sacchetto L, Lima AKS, Parra MCP, Lima ARJ, Ribeiro G, Martins AJ, Barros CRDS, Elias MC, Sampaio SC, Slavov SN, Rodrigues ES, Santos EV, Covas DT, Kashima S, Brassaloti RA, Petry B, Clemente LG, Coutinho LL, Assato PA, da Silva da Costa FA, Grotto RMT, Poleti MD, Lesbon JCC, Mattos EC, Fukumasu H, Giovanetti M, Alcantara LCJ, Souza-Neto JA, Rahal P, Araújo JP, Spilki FR, Althouse BM, Vasilakis N, Nogueira ML. Dynamic clade transitions and the influence of vaccination on the spatiotemporal circulation of SARS-CoV-2 variants. NPJ Vaccines 2024; 9:145. [PMID: 39127725 DOI: 10.1038/s41541-024-00933-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 07/17/2024] [Indexed: 08/12/2024] Open
Abstract
Since 2021, the emergence of variants of concern (VOC) has led Brazil to experience record numbers of in COVID-19 cases and deaths. The expanded spread of the SARS-CoV-2 combined with a low vaccination rate has contributed to the emergence of new mutations that may enhance viral fitness, leading to the persistence of the disease. Due to limitations in the real-time genomic monitoring of new variants in some Brazilian states, we aimed to investigate whether genomic surveillance, coupled with epidemiological data and SARS-CoV-2 variants spatiotemporal spread in a smaller region, can reflect the pandemic progression at a national level. Our findings revealed three SARS-CoV-2 variant replacements from 2021 to early 2022, corresponding to the introduction and increase in the frequency of Gamma, Delta, and Omicron variants, as indicated by peaks of the Effective Reproductive Number (Reff). These distinct clade replacements triggered two waves of COVID-19 cases, influenced by the increasing vaccine uptake over time. Our results indicated that the effectiveness of vaccination in preventing new cases during the Delta and Omicron circulations was six and eleven times higher, respectively, than during the period when Gamma was predominant, and it was highly efficient in reducing the number of deaths. Furthermore, we demonstrated that genomic monitoring at a local level can reflect the national trends in the spread and evolution of SARS-CoV-2.
Collapse
Affiliation(s)
- Cecília Artico Banho
- Laboratório de Pesquisas em Virologia, Faculdade de Medicina de São José do Rio Preto; São José do Rio Preto, São Paulo, Brazil
| | - Beatriz de Carvalho Marques
- Laboratório de Pesquisas em Virologia, Faculdade de Medicina de São José do Rio Preto; São José do Rio Preto, São Paulo, Brazil
| | - Lívia Sacchetto
- Laboratório de Pesquisas em Virologia, Faculdade de Medicina de São José do Rio Preto; São José do Rio Preto, São Paulo, Brazil
| | - Ana Karoline Sepedro Lima
- Laboratório de Pesquisas em Virologia, Faculdade de Medicina de São José do Rio Preto; São José do Rio Preto, São Paulo, Brazil
| | - Maisa Carla Pereira Parra
- Laboratório de Pesquisas em Virologia, Faculdade de Medicina de São José do Rio Preto; São José do Rio Preto, São Paulo, Brazil
| | - Alex Ranieri Jeronimo Lima
- Center for Viral Surveillance and Serological Assessment (CeVIVAS), Butantan Institute, São Paulo, Brazil
| | - Gabriela Ribeiro
- Center for Viral Surveillance and Serological Assessment (CeVIVAS), Butantan Institute, São Paulo, Brazil
| | - Antonio Jorge Martins
- Center for Viral Surveillance and Serological Assessment (CeVIVAS), Butantan Institute, São Paulo, Brazil
| | | | - Maria Carolina Elias
- Center for Viral Surveillance and Serological Assessment (CeVIVAS), Butantan Institute, São Paulo, Brazil
| | - Sandra Coccuzzo Sampaio
- Center for Viral Surveillance and Serological Assessment (CeVIVAS), Butantan Institute, São Paulo, Brazil
| | - Svetoslav Nanev Slavov
- Center for Viral Surveillance and Serological Assessment (CeVIVAS), Butantan Institute, São Paulo, Brazil
- University of São Paulo, Ribeirão Preto Medical School, Blood Center of Ribeirão Preto, Ribeirão Preto, SP, Brazil
| | - Evandra Strazza Rodrigues
- University of São Paulo, Ribeirão Preto Medical School, Blood Center of Ribeirão Preto, Ribeirão Preto, SP, Brazil
| | - Elaine Vieira Santos
- University of São Paulo, Ribeirão Preto Medical School, Blood Center of Ribeirão Preto, Ribeirão Preto, SP, Brazil
| | - Dimas Tadeu Covas
- Center for Viral Surveillance and Serological Assessment (CeVIVAS), Butantan Institute, São Paulo, Brazil
- University of São Paulo, Ribeirão Preto Medical School, Blood Center of Ribeirão Preto, Ribeirão Preto, SP, Brazil
| | - Simone Kashima
- University of São Paulo, Ribeirão Preto Medical School, Blood Center of Ribeirão Preto, Ribeirão Preto, SP, Brazil
| | | | - Bruna Petry
- University of São Paulo, Centro de Genômica Funcional da ESALQ, Piracicaba, SP, Brazil
| | - Luan Gaspar Clemente
- University of São Paulo, Centro de Genômica Funcional da ESALQ, Piracicaba, SP, Brazil
| | - Luiz Lehmann Coutinho
- University of São Paulo, Centro de Genômica Funcional da ESALQ, Piracicaba, SP, Brazil
| | - Patricia Akemi Assato
- São Paulo State University (UNESP), School of Agricultural Sciences, Department of Bioprocesses and Biotechnology, Botucatu, Brazil
| | - Felipe Allan da Silva da Costa
- São Paulo State University (UNESP), School of Agricultural Sciences, Department of Bioprocesses and Biotechnology, Botucatu, Brazil
| | - Rejane Maria Tommasini Grotto
- São Paulo State University (UNESP), School of Agricultural Sciences, Botucatu, Brazil
- Molecular Biology Laboratory, Applied Biotechnology Laboratory, Clinical Hospital of the Botucatu Medical School, Botucatu, Brazil
| | - Mirele Daiana Poleti
- Department of Veterinary Medicine, School of Animal Science and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Jessika Cristina Chagas Lesbon
- Department of Veterinary Medicine, School of Animal Science and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Elisangela Chicaroni Mattos
- Department of Veterinary Medicine, School of Animal Science and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Heidge Fukumasu
- Department of Veterinary Medicine, School of Animal Science and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Marta Giovanetti
- Oswaldo Cruz Foundation, FIOCRUZ, Rio de Janeiro, Brazil
- Climate Amplified Diseases And Epidemics (CLIMADE), Rio de Janeiro, Brazil
- Sciences and Technologies for Sustainable Development and One Health, Universita Campus Bio-Medico di Roma, Selcetta, Italy
| | - Luiz Carlos Junior Alcantara
- Oswaldo Cruz Foundation, FIOCRUZ, Rio de Janeiro, Brazil
- Climate Amplified Diseases And Epidemics (CLIMADE), Rio de Janeiro, Brazil
| | - Jayme A Souza-Neto
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas StateUniversity, Manhattan, KS, USA
| | - Paula Rahal
- Laboratório de Estudos Genômicos, Departamento de Biologia, Instituto de Biociências Letras e Ciências Exatas (IBILCE), Universidade Estadual Paulista (Unesp), São José do Rio Preto, Brazil
| | - João Pessoa Araújo
- Instituto de Biotecnologia, Universidade Estadual Paulista (Unesp), Botucatu, Brazil
| | - Fernando Rosado Spilki
- Laboratório de Microbiologia Molecular, Instituto de Ciências da Saúde, Universidade Feevale, Novo Hamburgo, Brazil
| | - Benjamin M Althouse
- Department of Biology, New Mexico State University, Las Cruces, NM, USA
- Information School, University of Washington, Seattle, WA, USA
| | - Nikos Vasilakis
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
- Center for Vector-Borne and Zoonotic Diseases, University of Texas Medical Branch, Galveston, TX, USA
- Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| | - Maurício Lacerda Nogueira
- Laboratório de Pesquisas em Virologia, Faculdade de Medicina de São José do Rio Preto; São José do Rio Preto, São Paulo, Brazil.
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
2
|
Gularte JS, Sacchetto L, Demoliner M, Girardi V, da Silva MS, Filippi M, Pereira VMDAG, Hansen AW, da Silva LL, Fleck JD, de Almeida PR, Nogueira ML, Spilki FR. DENV-1 genotype V linked to the 2022 dengue epidemic in Southern Brazil. J Clin Virol 2023; 168:105599. [PMID: 37751628 DOI: 10.1016/j.jcv.2023.105599] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 08/31/2023] [Accepted: 09/20/2023] [Indexed: 09/28/2023]
Abstract
Even though Brazil is a country where the dengue virus (DENV) is endemic, until recently, Southern states did not have significant viral circulation, such as Rio Grande do Sul (RS), and some municipalities were even considered dengue-free. During 2022, these places have shown a sharp increase in the incidence of the disease, apparently following a worldwide growth pattern. Therefore, in this study, we monitor and characterize the genetic diversity of DENV circulating in southern Brazil through next-generation sequencing during an outbreak in 2022. We generated 70 DENV-1 genome sequences, all characterized as genotype V, divided into two clade clusters in the L1 lineage. Furthermore, unique mutations have been described in each clade of L1 lineage. Our results are essential in managing outbreaks since these data provide important information during the emergence of DENV circulation in RS. Since the south of Brazil has a lower viral circulation when compared to other Brazilian states, RS still lacks data that can help in understanding the transmission, dissemination, and evolution of the dengue virus. Hence, genomic surveillance efforts are essential to increase the accuracy of preventive actions and to control viral dissemination.
Collapse
Affiliation(s)
- Juliana Schons Gularte
- Universidade Feevale, Laboratório de Microbiologia Molecular, Rodovia ERS-239, n° 2755, Vila Nova, CEP 93525-075, Novo Hamburgo, RS, Brazil.
| | - Lívia Sacchetto
- Faculdade de Medicina de São José do Rio Preto, Departamento de Doenças Dermatológicas, Infecciosas e Parasitárias, Laboratório de Pesquisas em Virologia. Avenida Brigadeiro Faria Lima, 5416, Vila São José, CEP 15090000, São José do Rio Preto, SP, Brazil
| | - Meriane Demoliner
- Universidade Feevale, Laboratório de Microbiologia Molecular, Rodovia ERS-239, n° 2755, Vila Nova, CEP 93525-075, Novo Hamburgo, RS, Brazil
| | - Viviane Girardi
- Universidade Feevale, Laboratório de Microbiologia Molecular, Rodovia ERS-239, n° 2755, Vila Nova, CEP 93525-075, Novo Hamburgo, RS, Brazil
| | - Mariana Soares da Silva
- Universidade Feevale, Laboratório de Microbiologia Molecular, Rodovia ERS-239, n° 2755, Vila Nova, CEP 93525-075, Novo Hamburgo, RS, Brazil
| | - Micheli Filippi
- Universidade Feevale, Laboratório de Microbiologia Molecular, Rodovia ERS-239, n° 2755, Vila Nova, CEP 93525-075, Novo Hamburgo, RS, Brazil
| | | | - Alana Witt Hansen
- Universidade Feevale, Laboratório de Microbiologia Molecular, Rodovia ERS-239, n° 2755, Vila Nova, CEP 93525-075, Novo Hamburgo, RS, Brazil
| | | | - Juliane Deise Fleck
- Universidade Feevale, Laboratório de Microbiologia Molecular, Rodovia ERS-239, n° 2755, Vila Nova, CEP 93525-075, Novo Hamburgo, RS, Brazil
| | - Paula Rodrigues de Almeida
- Universidade Feevale, Laboratório de Microbiologia Molecular, Rodovia ERS-239, n° 2755, Vila Nova, CEP 93525-075, Novo Hamburgo, RS, Brazil
| | - Maurício Lacerda Nogueira
- Faculdade de Medicina de São José do Rio Preto, Departamento de Doenças Dermatológicas, Infecciosas e Parasitárias, Laboratório de Pesquisas em Virologia. Avenida Brigadeiro Faria Lima, 5416, Vila São José, CEP 15090000, São José do Rio Preto, SP, Brazil; Department of Pathology, The University of Texas Medical Branch, Galveston, TX, United States of America
| | - Fernando Rosado Spilki
- Universidade Feevale, Laboratório de Microbiologia Molecular, Rodovia ERS-239, n° 2755, Vila Nova, CEP 93525-075, Novo Hamburgo, RS, Brazil
| |
Collapse
|
3
|
de Souza UJB, Macedo YDSM, dos Santos RN, Cardoso FDP, Galvão JD, Gabev EE, Franco AC, Roehe PM, Spilki FR, Campos FS. Circulation of Dengue Virus Serotype 1 Genotype V and Dengue Virus Serotype 2 Genotype III in Tocantins State, Northern Brazil, 2021-2022. Viruses 2023; 15:2136. [PMID: 38005815 PMCID: PMC10674946 DOI: 10.3390/v15112136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/20/2023] [Accepted: 10/21/2023] [Indexed: 11/26/2023] Open
Abstract
In Brazil, the state of Tocantins, located in north-central Brazil, has experienced a significant number of cases of arboviral disease, particularly Dengue virus (DENV). This study aimed to deepen the knowledge on DENV circulation within that state by conducting full genome sequencing of viral genomes recovered from 61 patients between June 2021 and July 2022. There were a total of 8807 and 20,692 cases in 2021 and 2022, respectively, as reported by the state's Secretary of Health. Nucleotide sequencing confirmed the circulation of DENV serotype 1, genotype V and DENV serotype 2, genotype III in the State. Younger age groups (4 to 43 years old) were mostly affected; however, no significant differences were detected regarding the gender distribution of cases in humans. Phylogenetic analysis revealed that the circulating viruses belong to DENV-1 genotype V American and DENV-2 genotype III Southeast Asian/American. The Bayesian analysis of DENV-1 genotype V genomes sequenced here are closely related to genomes previously sequenced in the state of São Paulo. Regarding the DENV-2 genotype III genomes, these clustered in a distinct, well-supported subclade, along with previously reported isolates from the states of Goiás and São Paulo. The findings reported here suggest that multiple introductions of these genotypes occurred in the Tocantins state. This observation highlights the importance of major population centers in Brazil on virus dispersion, such as those observed in other Latin American and North American countries. In the SNP analysis, DENV-1 displayed 122 distinct missense mutations, while DENV-2 had 44, with significant mutations predominantly occurring in the envelope and NS5 proteins. The analyses performed here highlight the concomitant circulation of distinct DENV-1 and -2 genotypes in some Brazilian states, underscoring the dynamic evolution of DENV and the relevance of surveillance efforts in supporting public health policies.
Collapse
Affiliation(s)
- Ueric José Borges de Souza
- Bioinformatics and Biotechnology Laboratory, Campus of Gurupi, Federal University of Tocantins, Gurupi 77410-570, Brazil; (Y.d.S.M.M.); (R.N.d.S.)
| | - Ygor da Silva Miranda Macedo
- Bioinformatics and Biotechnology Laboratory, Campus of Gurupi, Federal University of Tocantins, Gurupi 77410-570, Brazil; (Y.d.S.M.M.); (R.N.d.S.)
| | - Raíssa Nunes dos Santos
- Bioinformatics and Biotechnology Laboratory, Campus of Gurupi, Federal University of Tocantins, Gurupi 77410-570, Brazil; (Y.d.S.M.M.); (R.N.d.S.)
| | | | - Jucimária Dantas Galvão
- Central Public Health Laboratory of the State of Tocantins, Palmas 77054-970, Brazil; (F.D.P.C.); (J.D.G.)
| | - Evgeni Evgeniev Gabev
- Department of Physiology and Pathophysiology, Medical University of Sofia, 1431 Sofia, Bulgaria;
| | - Ana Cláudia Franco
- Virology Laboratory, Department of Microbiology, Immunology, and Parasitology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre 90050-170, Brazil; (A.C.F.); (P.M.R.)
| | - Paulo Michel Roehe
- Virology Laboratory, Department of Microbiology, Immunology, and Parasitology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre 90050-170, Brazil; (A.C.F.); (P.M.R.)
| | | | - Fabrício Souza Campos
- Bioinformatics and Biotechnology Laboratory, Campus of Gurupi, Federal University of Tocantins, Gurupi 77410-570, Brazil; (Y.d.S.M.M.); (R.N.d.S.)
- Virology Laboratory, Department of Microbiology, Immunology, and Parasitology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre 90050-170, Brazil; (A.C.F.); (P.M.R.)
| |
Collapse
|
4
|
de França Cirilo MV, Pour SZ, de Fatima Benedetti V, Farias JP, Fogaça MMC, da Conceição Simões R, Vidal PO, Birbrair A, de Andrade Zanotto PM, Luiz WB, Amorim JH. Co-circulation of Chikungunya virus, Zika virus, and serotype 1 of Dengue virus in Western Bahia, Brazil. Front Microbiol 2023; 14:1240860. [PMID: 37680530 PMCID: PMC10482036 DOI: 10.3389/fmicb.2023.1240860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 08/03/2023] [Indexed: 09/09/2023] Open
Abstract
Chikungunya, mayaro, dengue, zika, and yellow fever are mosquito-borne viral diseases caused, respectively, by Chikungunya virus, Mayaro virus (CHIKV and MAYV, respectively: Togaviridae: Alphavirus), Dengue virus, Zika virus, and Yellow fever virus (DENV, ZIKV, and YFV, respectively: Flaviviridae: Flavivirus). These viruses have an important epidemiological impact worldwide, especially in Brazil. Western Bahia is one of the less studied regions in that country regarding the circulation of these pathogens. In this study, we aimed to apply molecular biology assays to better know the mosquito-borne viruses circulating in Barreiras and Luís Eduardo Magalhães, two main cities of Western Bahia. From March to June 2021, we enrolled 98 patients with the clinical diagnosis of dengue. Personal information (gender and age) were retrieved at the moment of enrollment. Serum samples were obtained from volunteers and used in molecular detection of CHIKV, MAYV, DENV, ZIKV, and YFV by reverse transcription followed by real-time polymerase chain reaction as well as in genome sequencing aiming phylogenetic analysis. As the main result, we found that from the 98 patients 45 were infected by CHIKV, 32 were infected by serotype 1 of DENV (DENV-1) and six were infected by ZIKV, while 15 were negative for all arboviruses tested. In addition, phylogenetic analysis revealed that all CHIKV-positive samples were of the East/Central/South African (ECSA) genotype, while all DENV-1-positive samples were of the V genotype. These results clearly show that epidemiological surveillance cannot be based only on clinical evaluations. Laboratory diagnosis is important in arbovirus infection that are prevalent in a particular area. These findings also demonstrate the co-circulation of many arboviruses in Western Bahia in 2021.
Collapse
Affiliation(s)
- Marcus Vinicius de França Cirilo
- Western Bahia Virology Institute, Center of Biological Sciences and Health, Federal University of Western Bahia, Barreiras, Brazil
| | - Shahab Zaki Pour
- Laboratory of Molecular Evolution and Bioinformatics, Department of Microbiology, University of Sao Paulo, Sao Paulo, Brazil
| | - Viviane de Fatima Benedetti
- Laboratory of Molecular Evolution and Bioinformatics, Department of Microbiology, University of Sao Paulo, Sao Paulo, Brazil
| | - Jéssica Pires Farias
- Western Bahia Virology Institute, Center of Biological Sciences and Health, Federal University of Western Bahia, Barreiras, Brazil
| | - Mayanna Moreira Costa Fogaça
- Western Bahia Virology Institute, Center of Biological Sciences and Health, Federal University of Western Bahia, Barreiras, Brazil
| | - Rafael da Conceição Simões
- Laboratory of Biochemistry and Plant Physiology, Center of Biological Sciences and Health, Federal University of Western Bahia, Barreiras, Brazil
| | - Paloma Oliveira Vidal
- Western Bahia Virology Institute, Center of Biological Sciences and Health, Federal University of Western Bahia, Barreiras, Brazil
| | - Alexander Birbrair
- Department of Dermatology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | | | - Wilson Barros Luiz
- Laboratory of Applied Pathology and Genetics, Department of Biological Sciences, State University of Santa Cruz, Ilhéus, Brazil
| | - Jaime Henrique Amorim
- Western Bahia Virology Institute, Center of Biological Sciences and Health, Federal University of Western Bahia, Barreiras, Brazil
- Laboratory of Molecular Evolution and Bioinformatics, Department of Microbiology, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
5
|
Milhim BHGA, da Rocha LC, Terzian ACB, Mazaro CCP, Augusto MT, Luchs A, Zini N, Sacchetto L, dos Santos BF, Garcia PHC, Rocha RS, Liso E, Brienze VMS, da Silva GCD, Vasilakis N, Estofolete CF, Nogueira ML. Arboviral Infections in Neurological Disorders in Hospitalized Patients in São José do Rio Preto, São Paulo, Brazil. Viruses 2022; 14:1488. [PMID: 35891468 PMCID: PMC9323204 DOI: 10.3390/v14071488] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 07/03/2022] [Accepted: 07/05/2022] [Indexed: 02/04/2023] Open
Abstract
Arbovirus infections are increasingly important causes of disease, whose spectrum of neurological manifestations are not fully known. This study sought to retrospectively assess the incidence of arboviruses in cerebrospinal fluid samples of patients with neurological symptoms to inform diagnosis of central and peripheral nervous system disorders. A total of 255 cerebrospinal fluid (CSF) samples collected from January 2016 to December 2017 were tested for dengue virus (DENV 1-4), Zika virus (ZIKV), and Chikungunya virus (CHIKV) in addition to other neurotropic arboviruses of interest, using genetic and serologic assays. Of the 255 CSF samples analyzed, 3.53% (09/255) were positive for arboviruses presenting mainly as meningitis, encephalitis, and cerebrovascular events, of which ZIKV was detected in 2.74% (7/255), DENV in 0.78% (2/255), in addition to an identified ILHV infection that was described previously. All the cases were detected in adults aged 18 to 74 years old. Our findings highlight the scientific and clinical importance of neurological syndromes associated with arboviruses and demonstrate the relevance of specific laboratory methods to achieve accurate diagnoses as well as highlight the true dimension of these diseases to ultimately improve public health planning and medical case management.
Collapse
Affiliation(s)
- Bruno H. G. A. Milhim
- Laboratório de Pesquisas em Virologia [LPV], Faculdade de Medicina de São José do Rio Preto [FAMERP], Avenida Brigadeiro Faria Lima, 5544, Vila São Jose, São José do Rio Preto 15090-000, SP, Brazil; (B.H.G.A.M.); (L.C.d.R.); (A.C.B.T.); (C.C.P.M.); (M.T.A.); (N.Z.); (L.S.); (B.F.d.S.); (P.H.C.G.); (R.S.R.); (G.C.D.d.S.); (C.F.E.)
| | - Leonardo C. da Rocha
- Laboratório de Pesquisas em Virologia [LPV], Faculdade de Medicina de São José do Rio Preto [FAMERP], Avenida Brigadeiro Faria Lima, 5544, Vila São Jose, São José do Rio Preto 15090-000, SP, Brazil; (B.H.G.A.M.); (L.C.d.R.); (A.C.B.T.); (C.C.P.M.); (M.T.A.); (N.Z.); (L.S.); (B.F.d.S.); (P.H.C.G.); (R.S.R.); (G.C.D.d.S.); (C.F.E.)
| | - Ana C. B. Terzian
- Laboratório de Pesquisas em Virologia [LPV], Faculdade de Medicina de São José do Rio Preto [FAMERP], Avenida Brigadeiro Faria Lima, 5544, Vila São Jose, São José do Rio Preto 15090-000, SP, Brazil; (B.H.G.A.M.); (L.C.d.R.); (A.C.B.T.); (C.C.P.M.); (M.T.A.); (N.Z.); (L.S.); (B.F.d.S.); (P.H.C.G.); (R.S.R.); (G.C.D.d.S.); (C.F.E.)
- Laboratório de Imunologia Celular e Molecular (LICM), Avenida Augusto de Lima, 1715, Centro, Belo Horizonte 30190-002, MG, Brazil
- Instituto René Rachou Fundação Oswaldo Cruz, Avenida Augusto de Lima, 1715, Centro, Belo Horizonte 30190-002, MG, Brazil
| | - Carolina C. P. Mazaro
- Laboratório de Pesquisas em Virologia [LPV], Faculdade de Medicina de São José do Rio Preto [FAMERP], Avenida Brigadeiro Faria Lima, 5544, Vila São Jose, São José do Rio Preto 15090-000, SP, Brazil; (B.H.G.A.M.); (L.C.d.R.); (A.C.B.T.); (C.C.P.M.); (M.T.A.); (N.Z.); (L.S.); (B.F.d.S.); (P.H.C.G.); (R.S.R.); (G.C.D.d.S.); (C.F.E.)
| | - Marcos T. Augusto
- Laboratório de Pesquisas em Virologia [LPV], Faculdade de Medicina de São José do Rio Preto [FAMERP], Avenida Brigadeiro Faria Lima, 5544, Vila São Jose, São José do Rio Preto 15090-000, SP, Brazil; (B.H.G.A.M.); (L.C.d.R.); (A.C.B.T.); (C.C.P.M.); (M.T.A.); (N.Z.); (L.S.); (B.F.d.S.); (P.H.C.G.); (R.S.R.); (G.C.D.d.S.); (C.F.E.)
| | - Adriana Luchs
- Enteric Disease Laboratory, Department of Virology, Adolfo Lutz Institute, Avenida Dr. Arnaldo, 355, São Paulo 01246-902, SP, Brazil;
| | - Nathalia Zini
- Laboratório de Pesquisas em Virologia [LPV], Faculdade de Medicina de São José do Rio Preto [FAMERP], Avenida Brigadeiro Faria Lima, 5544, Vila São Jose, São José do Rio Preto 15090-000, SP, Brazil; (B.H.G.A.M.); (L.C.d.R.); (A.C.B.T.); (C.C.P.M.); (M.T.A.); (N.Z.); (L.S.); (B.F.d.S.); (P.H.C.G.); (R.S.R.); (G.C.D.d.S.); (C.F.E.)
| | - Livia Sacchetto
- Laboratório de Pesquisas em Virologia [LPV], Faculdade de Medicina de São José do Rio Preto [FAMERP], Avenida Brigadeiro Faria Lima, 5544, Vila São Jose, São José do Rio Preto 15090-000, SP, Brazil; (B.H.G.A.M.); (L.C.d.R.); (A.C.B.T.); (C.C.P.M.); (M.T.A.); (N.Z.); (L.S.); (B.F.d.S.); (P.H.C.G.); (R.S.R.); (G.C.D.d.S.); (C.F.E.)
| | - Barbara F. dos Santos
- Laboratório de Pesquisas em Virologia [LPV], Faculdade de Medicina de São José do Rio Preto [FAMERP], Avenida Brigadeiro Faria Lima, 5544, Vila São Jose, São José do Rio Preto 15090-000, SP, Brazil; (B.H.G.A.M.); (L.C.d.R.); (A.C.B.T.); (C.C.P.M.); (M.T.A.); (N.Z.); (L.S.); (B.F.d.S.); (P.H.C.G.); (R.S.R.); (G.C.D.d.S.); (C.F.E.)
| | - Pedro H. C. Garcia
- Laboratório de Pesquisas em Virologia [LPV], Faculdade de Medicina de São José do Rio Preto [FAMERP], Avenida Brigadeiro Faria Lima, 5544, Vila São Jose, São José do Rio Preto 15090-000, SP, Brazil; (B.H.G.A.M.); (L.C.d.R.); (A.C.B.T.); (C.C.P.M.); (M.T.A.); (N.Z.); (L.S.); (B.F.d.S.); (P.H.C.G.); (R.S.R.); (G.C.D.d.S.); (C.F.E.)
| | - Rodrigo S. Rocha
- Laboratório de Pesquisas em Virologia [LPV], Faculdade de Medicina de São José do Rio Preto [FAMERP], Avenida Brigadeiro Faria Lima, 5544, Vila São Jose, São José do Rio Preto 15090-000, SP, Brazil; (B.H.G.A.M.); (L.C.d.R.); (A.C.B.T.); (C.C.P.M.); (M.T.A.); (N.Z.); (L.S.); (B.F.d.S.); (P.H.C.G.); (R.S.R.); (G.C.D.d.S.); (C.F.E.)
| | - Elisabete Liso
- Hospital de Base, Avenida Brigadeiro Faria Lima, 5544-Vila São Jose, São José do Rio Preto 15090-000, SP, Brazil; (E.L.); (V.M.S.B.)
| | - Vânia M. S. Brienze
- Hospital de Base, Avenida Brigadeiro Faria Lima, 5544-Vila São Jose, São José do Rio Preto 15090-000, SP, Brazil; (E.L.); (V.M.S.B.)
| | - Gislaine C. D. da Silva
- Laboratório de Pesquisas em Virologia [LPV], Faculdade de Medicina de São José do Rio Preto [FAMERP], Avenida Brigadeiro Faria Lima, 5544, Vila São Jose, São José do Rio Preto 15090-000, SP, Brazil; (B.H.G.A.M.); (L.C.d.R.); (A.C.B.T.); (C.C.P.M.); (M.T.A.); (N.Z.); (L.S.); (B.F.d.S.); (P.H.C.G.); (R.S.R.); (G.C.D.d.S.); (C.F.E.)
| | - Nikos Vasilakis
- Department of Pathology, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555-0609, USA;
- Department of Preventive Medicine and Population Health, The University of Texas Medical Branch, Galveston, TX 77555-1150, USA
- Center for Vector-Borne and Zoonotic Diseases, The University of Texas Medical Branch, Galveston, TX 77555-0609, USA
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555-0609, USA
- Center for Tropical Diseases, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555-0609, USA
- Institute for Human Infection and Immunity, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555-0610, USA
| | - Cássia F. Estofolete
- Laboratório de Pesquisas em Virologia [LPV], Faculdade de Medicina de São José do Rio Preto [FAMERP], Avenida Brigadeiro Faria Lima, 5544, Vila São Jose, São José do Rio Preto 15090-000, SP, Brazil; (B.H.G.A.M.); (L.C.d.R.); (A.C.B.T.); (C.C.P.M.); (M.T.A.); (N.Z.); (L.S.); (B.F.d.S.); (P.H.C.G.); (R.S.R.); (G.C.D.d.S.); (C.F.E.)
| | - Maurício L. Nogueira
- Laboratório de Pesquisas em Virologia [LPV], Faculdade de Medicina de São José do Rio Preto [FAMERP], Avenida Brigadeiro Faria Lima, 5544, Vila São Jose, São José do Rio Preto 15090-000, SP, Brazil; (B.H.G.A.M.); (L.C.d.R.); (A.C.B.T.); (C.C.P.M.); (M.T.A.); (N.Z.); (L.S.); (B.F.d.S.); (P.H.C.G.); (R.S.R.); (G.C.D.d.S.); (C.F.E.)
- Department of Pathology, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555-0609, USA;
| |
Collapse
|
6
|
Banho CA, Sacchetto L, Campos GRF, Bittar C, Possebon FS, Ullmann LS, Marques BDC, da Silva GCD, Moraes MM, Parra MCP, Negri AF, Boldrin AC, Barcelos MD, dos Santos TMIL, Milhim BHGA, Rocha LC, Dourado FS, dos Santos AL, Ciconi VB, Patuto C, Versiani AF, da Silva RA, de Oliveira Lobl EE, Hernandes VM, Zini N, Pacca CC, Estofolete CF, Ferreira HL, Rahal P, Araújo JP, Cohen JA, Kerr CC, Althouse BM, Vasilakis N, Nogueira ML. Impact of SARS-CoV-2 Gamma lineage introduction and COVID-19 vaccination on the epidemiological landscape of a Brazilian city. COMMUNICATIONS MEDICINE 2022; 2:41. [PMID: 35603276 PMCID: PMC9053258 DOI: 10.1038/s43856-022-00108-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 03/24/2022] [Indexed: 12/20/2022] Open
Abstract
Background The emergence of the Brazilian variant of concern, Gamma lineage (P.1), impacted the epidemiological profile of COVID-19 cases due to its higher transmissibility rate and immune evasion ability. Methods We sequenced 305 SARS-CoV-2 whole-genomes and performed phylogenetic analyses to identify introduction events and the circulating lineages. Additionally, we use epidemiological data of COVID-19 cases, severe cases, and deaths to measure the impact of vaccination coverage and mortality risk. Results Here we show that Gamma introduction in São José do Rio Preto, São Paulo, Brazil, was followed by the displacement of seven circulating SARS-CoV-2 variants and a rapid increase in prevalence two months after its first detection in January 2021. Moreover, Gamma variant is associated with increased mortality risk and severity of COVID-19 cases in younger age groups, which corresponds to the unvaccinated population at the time. Conclusions Our findings highlight the beneficial effects of vaccination indicated by a pronounced reduction of severe cases and deaths in immunized individuals, reinforcing the need for rapid and massive vaccination.
Collapse
Affiliation(s)
- Cecília Artico Banho
- Laboratório de Pesquisas em Virologia, Departamento de Doenças Dermatológicas, Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto, São Paulo Brazil
| | - Lívia Sacchetto
- Laboratório de Pesquisas em Virologia, Departamento de Doenças Dermatológicas, Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto, São Paulo Brazil
| | - Guilherme Rodrigues Fernandes Campos
- Laboratório de Pesquisas em Virologia, Departamento de Doenças Dermatológicas, Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto, São Paulo Brazil
| | - Cíntia Bittar
- Laboratório de Estudos Genômicos, Departamento de Biologia, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista, São José do Rio Preto, São Paulo Brazil
| | - Fábio Sossai Possebon
- Instituto de Biotecnologia, Universidade Estadual Paulista, Botucatu, São Paulo Brazil
| | - Leila Sabrina Ullmann
- Instituto de Biotecnologia, Universidade Estadual Paulista, Botucatu, São Paulo Brazil
| | - Beatriz de Carvalho Marques
- Laboratório de Pesquisas em Virologia, Departamento de Doenças Dermatológicas, Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto, São Paulo Brazil
| | - Gislaine Ceslestino Dutra da Silva
- Laboratório de Pesquisas em Virologia, Departamento de Doenças Dermatológicas, Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto, São Paulo Brazil
| | - Marília Mazzi Moraes
- Laboratório de Pesquisas em Virologia, Departamento de Doenças Dermatológicas, Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto, São Paulo Brazil
| | - Maisa Carla Pereira Parra
- Laboratório de Pesquisas em Virologia, Departamento de Doenças Dermatológicas, Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto, São Paulo Brazil
| | | | - Ana Carolina Boldrin
- Departamento de Vigilância Epidemiológica, São José do Rio Preto, São Paulo Brazil
| | | | - Thayza M. I. L. dos Santos
- Laboratório de Pesquisas em Virologia, Departamento de Doenças Dermatológicas, Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto, São Paulo Brazil
| | - Bruno H. G. A. Milhim
- Laboratório de Pesquisas em Virologia, Departamento de Doenças Dermatológicas, Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto, São Paulo Brazil
| | - Leonardo Cecílio Rocha
- Laboratório de Pesquisas em Virologia, Departamento de Doenças Dermatológicas, Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto, São Paulo Brazil
| | - Fernanda Simões Dourado
- Laboratório de Pesquisas em Virologia, Departamento de Doenças Dermatológicas, Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto, São Paulo Brazil
| | - Andresa Lopes dos Santos
- Laboratório de Pesquisas em Virologia, Departamento de Doenças Dermatológicas, Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto, São Paulo Brazil
| | - Victoria Bernardi Ciconi
- Laboratório de Pesquisas em Virologia, Departamento de Doenças Dermatológicas, Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto, São Paulo Brazil
| | - Caio Patuto
- Laboratório de Pesquisas em Virologia, Departamento de Doenças Dermatológicas, Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto, São Paulo Brazil
| | - Alice Freitas Versiani
- Laboratório de Pesquisas em Virologia, Departamento de Doenças Dermatológicas, Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto, São Paulo Brazil
| | - Rafael Alves da Silva
- Laboratório de Pesquisas em Virologia, Departamento de Doenças Dermatológicas, Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto, São Paulo Brazil
| | - Edoardo Estevam de Oliveira Lobl
- Laboratório de Pesquisas em Virologia, Departamento de Doenças Dermatológicas, Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto, São Paulo Brazil
| | - Victor Miranda Hernandes
- Laboratório de Pesquisas em Virologia, Departamento de Doenças Dermatológicas, Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto, São Paulo Brazil
| | - Nathalia Zini
- Laboratório de Pesquisas em Virologia, Departamento de Doenças Dermatológicas, Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto, São Paulo Brazil
| | - Carolina Colombelli Pacca
- Laboratório de Pesquisas em Virologia, Departamento de Doenças Dermatológicas, Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto, São Paulo Brazil
- Faculdade Ceres (FACERES), São José do Rio Preto, São Paulo Brazil
| | - Cássia Fernanda Estofolete
- Laboratório de Pesquisas em Virologia, Departamento de Doenças Dermatológicas, Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto, São Paulo Brazil
| | - Helena Lage Ferreira
- Laboratório de Medicina Veterinária Preventiva Aplicada, Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, São Paulo, São Paulo Brazil
| | - Paula Rahal
- Laboratório de Estudos Genômicos, Departamento de Biologia, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista, São José do Rio Preto, São Paulo Brazil
| | - João Pessoa Araújo
- Instituto de Biotecnologia, Universidade Estadual Paulista, Botucatu, São Paulo Brazil
| | - Jamie A. Cohen
- Institute for Disease Modeling, Global Health Division, Bill & Melinda Gates Foundation, Seattle, WA USA
| | - Cliff C. Kerr
- Institute for Disease Modeling, Global Health Division, Bill & Melinda Gates Foundation, Seattle, WA USA
| | - Benjamin M. Althouse
- Institute for Disease Modeling, Global Health Division, Bill & Melinda Gates Foundation, Seattle, WA USA
- University of Washington, Seattle, WA USA
- New Mexico State University, Las Cruces, NM USA
| | - Nikos Vasilakis
- Department of Pathology, University of Texas Medical Branch, Galveston, TX USA
- Center for Vector-Borne and Zoonotic Diseases, University of Texas Medical Branch, Galveston, TX USA
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX USA
- Center for Tropical Diseases, University of Texas Medical Branch, Galveston, TX USA
- Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, TX USA
| | - Mauricio Lacerda Nogueira
- Laboratório de Pesquisas em Virologia, Departamento de Doenças Dermatológicas, Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto, São Paulo Brazil
- Department of Pathology, University of Texas Medical Branch, Galveston, TX USA
| |
Collapse
|
7
|
Muthanje EM, Kimita G, Nyataya J, Njue W, Mulili C, Mugweru J, Mutai B, Kituyi SN, Waitumbi J. March 2019 dengue fever outbreak at the Kenyan south coast involving dengue virus serotype 3, genotypes III and V. PLOS GLOBAL PUBLIC HEALTH 2022; 2:e0000122. [PMID: 36962260 PMCID: PMC10021577 DOI: 10.1371/journal.pgph.0000122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 01/09/2022] [Indexed: 11/18/2022]
Abstract
The first description of a disease resembling dengue fever (DF) was in the 15th century slave trade era by Spanish sailors visiting the Tanzania coast. The disease, then associated with evil spirits is now known to be caused by four serotypes of dengue virus (DENV1-4) that are transmitted by Aedes mosquitoes. Kenya has experienced multiple outbreaks, mostly associated with DENV-2. In this study, plasma samples obtained from 37 febrile patients during a DF outbreak at Kenya's south coast in March 2019 were screened for DENV. Total RNA was extracted and screened for the alpha- and flavi-viruses by real-time polymerase chain reaction (qPCR). DENV-3 was the only virus detected. Shotgun metagenomics and targeted sequencing were used to obtain DENV whole genomes and the complete envelope genes (E gene) respectively. Sequences were used to infer phylogenies and time-scaled genealogies. Following Maximum likelihood and Bayesian phylogenetic analysis, two DENV-3 genotypes (III, n = 15 and V, n = 2) were found. We determined that the two genotypes had been in circulation since 2015, and that both had been introduced independently. Genotype III's origin was estimated to have been from Pakistan. Although the origin of genotype V could not be ascertained due to rarity of these sequences globally, it was most related to a 2006 Brazilian isolate. Unlike genotype III that has been described in East and West Africa multiple times, this was the second description of genotype V in Kenya. Of note, there was marked amino acid variances in the E gene between study samples and the Thailand DENV-3 strain used in the approved Dengvaxia vaccine. It remains to be seen whether these variances negatively impact the efficacy of the Dengvaxia or future vaccines.
Collapse
Affiliation(s)
- Eric M. Muthanje
- Department of Biological Sciences, University of Embu, Embu, Kenya
- United States Army Medical Research Directorate-Africa, Basic Science Laboratory, Kisumu, Kenya
| | - Gathii Kimita
- United States Army Medical Research Directorate-Africa, Basic Science Laboratory, Kisumu, Kenya
| | - Josphat Nyataya
- United States Army Medical Research Directorate-Africa, Basic Science Laboratory, Kisumu, Kenya
| | - Winrose Njue
- United States Army Medical Research Directorate-Africa, Basic Science Laboratory, Kisumu, Kenya
| | - Cyrus Mulili
- United States Army Medical Research Directorate-Africa, Basic Science Laboratory, Kisumu, Kenya
| | - Julius Mugweru
- Department of Biological Sciences, University of Embu, Embu, Kenya
| | - Beth Mutai
- United States Army Medical Research Directorate-Africa, Basic Science Laboratory, Kisumu, Kenya
| | - Sarah N. Kituyi
- Department of Biological Sciences, University of Embu, Embu, Kenya
| | - John Waitumbi
- United States Army Medical Research Directorate-Africa, Basic Science Laboratory, Kisumu, Kenya
| |
Collapse
|
8
|
Adelino TÉR, Giovanetti M, Fonseca V, Xavier J, de Abreu ÁS, do Nascimento VA, Demarchi LHF, Oliveira MAA, da Silva VL, de Mello ALES, Cunha GM, Santos RH, de Oliveira EC, Júnior JAC, de Melo Iani FC, de Filippis AMB, de Abreu AL, de Jesus R, de Albuquerque CFC, Rico JM, do Carmo Said RF, Silva JA, de Moura NFO, Leite P, Frutuoso LCV, Haddad SK, Martínez A, Barreto FK, Vazquez CC, da Cunha RV, Araújo ELL, de Oliveira Tosta SF, de Araújo Fabri A, Chalhoub FLL, da Silva Lemos P, de Bruycker-Nogueira F, de Castro Lichs GG, Zardin MCSU, Segovia FMC, Gonçalves CCM, Grillo ZDCF, Slavov SN, Pereira LA, Mendonça AF, Pereira FM, de Magalhães JJF, Dos Santos Júnior ADCM, de Lima MM, Nogueira RMR, Góes-Neto A, de Carvalho Azevedo VA, Ramalho DB, Oliveira WK, Macario EM, de Medeiros AC, Pimentel V, Holmes EC, de Oliveira T, Lourenço J, Alcantara LCJ. Field and classroom initiatives for portable sequence-based monitoring of dengue virus in Brazil. Nat Commun 2021; 12:2296. [PMID: 33863880 PMCID: PMC8052316 DOI: 10.1038/s41467-021-22607-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 03/17/2021] [Indexed: 12/17/2022] Open
Abstract
Brazil experienced a large dengue virus (DENV) epidemic in 2019, highlighting a continuous struggle with effective control and public health preparedness. Using Oxford Nanopore sequencing, we led field and classroom initiatives for the monitoring of DENV in Brazil, generating 227 novel genome sequences of DENV1-2 from 85 municipalities (2015-2019). This equated to an over 50% increase in the number of DENV genomes from Brazil available in public databases. Using both phylogenetic and epidemiological models we retrospectively reconstructed the recent transmission history of DENV1-2. Phylogenetic analysis revealed complex patterns of transmission, with both lineage co-circulation and replacement. We identified two lineages within the DENV2 BR-4 clade, for which we estimated the effective reproduction number and pattern of seasonality. Overall, the surveillance outputs and training initiative described here serve as a proof-of-concept for the utility of real-time portable sequencing for research and local capacity building in the genomic surveillance of emerging viruses.
Collapse
Affiliation(s)
- Talita Émile Ribeiro Adelino
- Laboratório Central de Saúde Pública do Estado de Minas Gerais, Fundação Ezequiel Dias, Belo Horizonte, Minas Gerais, Brazil
| | - Marta Giovanetti
- Laboratório de Flavivírus, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Vagner Fonseca
- Laboratório de Flavivírus, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Joilson Xavier
- Laboratório de Flavivírus, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Álvaro Salgado de Abreu
- Laboratório de Flavivírus, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Valdinete Alves do Nascimento
- Laboratório de Ecologia de Doenças Transmissíveis na Amazônia, Instituto Leônidas e Maria Deane, Fiocruz, Manaus, Amazonas, Brazil
| | | | | | | | | | | | - Roselene Hans Santos
- Laboratório Central de Saúde Pública Dr. Milton Bezerra Sobral, Recife, Pernambuco, Brazil
| | | | | | - Felipe Campos de Melo Iani
- Laboratório Central de Saúde Pública do Estado de Minas Gerais, Fundação Ezequiel Dias, Belo Horizonte, Minas Gerais, Brazil
| | - Ana Maria Bispo de Filippis
- Laboratório de Flavivírus, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - André Luiz de Abreu
- Coordenação Geral dos Laboratórios de Saúde Pública, Secretaria de Vigilância em Saúde, Ministério da Saúde, Brasília, Distrito Federal, Brazil
| | - Ronaldo de Jesus
- Coordenação Geral dos Laboratórios de Saúde Pública, Secretaria de Vigilância em Saúde, Ministério da Saúde, Brasília, Distrito Federal, Brazil
| | | | - Jairo Mendez Rico
- Organização Pan-Americana da Saúde/Organização Mundial da Saúde, Brasília, Distrito Federal, Brazil
| | | | - Joscélio Aguiar Silva
- Coordenação Geral das Arboviroses, Secretaria de Vigilância em Saúde/Ministério da Saúde, Brasília, Distrito Federal, Brazil
| | - Noely Fabiana Oliveira de Moura
- Coordenação Geral das Arboviroses, Secretaria de Vigilância em Saúde/Ministério da Saúde, Brasília, Distrito Federal, Brazil
| | - Priscila Leite
- Coordenação Geral das Arboviroses, Secretaria de Vigilância em Saúde/Ministério da Saúde, Brasília, Distrito Federal, Brazil
| | - Lívia Carla Vinhal Frutuoso
- Coordenação Geral das Arboviroses, Secretaria de Vigilância em Saúde/Ministério da Saúde, Brasília, Distrito Federal, Brazil
| | | | | | | | | | | | - Emerson Luiz Lima Araújo
- Coordenação Geral dos Laboratórios de Saúde Pública, Secretaria de Vigilância em Saúde, Ministério da Saúde, Brasília, Distrito Federal, Brazil
| | | | - Allison de Araújo Fabri
- Laboratório de Flavivírus, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Flávia Löwen Levy Chalhoub
- Laboratório de Flavivírus, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | | | | | | | | | | | | - Luiz Augusto Pereira
- Laboratório Central de Saúde Pública Dr. Giovanni Cysneiros, Goiânia, Goiás, Brazil
| | - Ana Flávia Mendonça
- Laboratório Central de Saúde Pública Dr. Giovanni Cysneiros, Goiânia, Goiás, Brazil
| | | | | | | | | | - Rita Maria Ribeiro Nogueira
- Laboratório de Flavivírus, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Aristóteles Góes-Neto
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - Dario Brock Ramalho
- Secretaria de Saúde do Estado de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | | | | | - Victor Pimentel
- Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Edward C Holmes
- Marie Bashir Institute for Infectious Diseases and Biosecurity, School of Life and Environmental Sciences and School of Medical Sciences, University of Sydney, Sydney, NSW, Australia
| | - Tulio de Oliveira
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - José Lourenço
- Department of Zoology, Peter Medawar Building, University of Oxford, Oxford, UK.
| | - Luiz Carlos Junior Alcantara
- Laboratório de Flavivírus, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
9
|
Milhim BHGA, Estofolete CF, da Rocha LC, Liso E, Brienze VMS, Vasilakis N, Terzian ACB, Nogueira ML. Fatal Outcome of Ilheus Virus in the Cerebrospinal Fluid of a Patient Diagnosed with Encephalitis. Viruses 2020; 12:v12090957. [PMID: 32872425 PMCID: PMC7552055 DOI: 10.3390/v12090957] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 01/06/2023] Open
Abstract
Ilheus virus is an arbovirus with the potential for central nervous system involvement. Accurate diagnosis is a challenge due to similar clinical symptoms and serologic cross-reactivity with other flaviviruses. Here, we describe the first documented case of a fatal outcome following the identification of Ilheus virus in the cerebrospinal fluid (CSF) of a patient with cerebral encephalitis in Brazil.
Collapse
Affiliation(s)
- Bruno H. G. A. Milhim
- Laboratório de Pesquisas em Virologia (LPV), Faculdade de Medicina de São José do Rio Preto (FAMERP), Avenida Brigadeiro Faria Lima, 5544 - Vila Sao Jose, 15090-000 São José do Rio Preto, Brazil; (B.H.G.A.M.); (C.F.E.); (L.C.d.R.); (A.C.B.T.)
| | - Cássia F. Estofolete
- Laboratório de Pesquisas em Virologia (LPV), Faculdade de Medicina de São José do Rio Preto (FAMERP), Avenida Brigadeiro Faria Lima, 5544 - Vila Sao Jose, 15090-000 São José do Rio Preto, Brazil; (B.H.G.A.M.); (C.F.E.); (L.C.d.R.); (A.C.B.T.)
| | - Leonardo C. da Rocha
- Laboratório de Pesquisas em Virologia (LPV), Faculdade de Medicina de São José do Rio Preto (FAMERP), Avenida Brigadeiro Faria Lima, 5544 - Vila Sao Jose, 15090-000 São José do Rio Preto, Brazil; (B.H.G.A.M.); (C.F.E.); (L.C.d.R.); (A.C.B.T.)
| | - Elisabete Liso
- Hospital de Base, Avenida Brigadeiro Faria Lima, 5544 - Vila Sao Jose, SP 15090-000 São José do Rio Preto, Brazil; (E.L.); (V.M.S.B.)
| | - Vânia M. S. Brienze
- Hospital de Base, Avenida Brigadeiro Faria Lima, 5544 - Vila Sao Jose, SP 15090-000 São José do Rio Preto, Brazil; (E.L.); (V.M.S.B.)
| | - Nikos Vasilakis
- Department of Pathology, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555-0609, USA;
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555-0609, USA
- Center for Tropical Diseases, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555-0609, USA
- Institute for Human Infection and Immunity, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555-0610, USA
| | - Ana C. B. Terzian
- Laboratório de Pesquisas em Virologia (LPV), Faculdade de Medicina de São José do Rio Preto (FAMERP), Avenida Brigadeiro Faria Lima, 5544 - Vila Sao Jose, 15090-000 São José do Rio Preto, Brazil; (B.H.G.A.M.); (C.F.E.); (L.C.d.R.); (A.C.B.T.)
| | - Maurício L. Nogueira
- Laboratório de Pesquisas em Virologia (LPV), Faculdade de Medicina de São José do Rio Preto (FAMERP), Avenida Brigadeiro Faria Lima, 5544 - Vila Sao Jose, 15090-000 São José do Rio Preto, Brazil; (B.H.G.A.M.); (C.F.E.); (L.C.d.R.); (A.C.B.T.)
- Correspondence: ; Tel.: +55-1798811-0550
| |
Collapse
|
10
|
Estofolete CF, Milhim BHGA, Zini N, Scamardi SN, Selvante JD, Vasilakis N, Nogueira ML. Flavivirus Infection Associated with Cerebrovascular Events. Viruses 2020; 12:v12060671. [PMID: 32580374 PMCID: PMC7354470 DOI: 10.3390/v12060671] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/15/2020] [Accepted: 06/18/2020] [Indexed: 12/14/2022] Open
Abstract
Arthropod-borne viruses (arboviruses) of the genus Flavivirus are distributed globally and cause significant human disease and mortality annually. Flavivirus infections present a spectrum of clinical manifestations, ranging from asymptomatic to severe manifestations, including hemorrhage, encephalitis and death. Herein, we describe 3 case reports of cerebrovascular involvement in patients infected by dengue and Zika viruses in Sao Jose do Rio Preto, São Paulo State, Brazil, a hyperendemic area for arbovirus circulation, including dengue, yellow fever, chikungunya and Saint Louis encephalitis viruses. Our findings highlight the potential threat that unusual clinical manifestations may pose to arbovirus disease management and recovery.
Collapse
Affiliation(s)
- Cássia F Estofolete
- Department of Infectious, Dermatological and Parasitic Infections, Sao Jose do Rio Preto Medical School, Sao Jose do Rio Preto 15090-000, Brazil
| | - Bruno H G A Milhim
- Department of Infectious, Dermatological and Parasitic Infections, Sao Jose do Rio Preto Medical School, Sao Jose do Rio Preto 15090-000, Brazil
| | - Nathalia Zini
- Department of Infectious, Dermatological and Parasitic Infections, Sao Jose do Rio Preto Medical School, Sao Jose do Rio Preto 15090-000, Brazil
| | - Samuel N Scamardi
- Department of Infectious, Dermatological and Parasitic Infections, Sao Jose do Rio Preto Medical School, Sao Jose do Rio Preto 15090-000, Brazil
| | - Joana D'Arc Selvante
- Department of Infectious, Dermatological and Parasitic Infections, Sao Jose do Rio Preto Medical School, Sao Jose do Rio Preto 15090-000, Brazil
| | - Nikos Vasilakis
- Department of Pathology, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555-0609, USA
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555-0609, USA
- Center for Tropical Diseases, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555-0609, USA
- Institute for Human Infection and Immunity, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555-0610, USA
| | - Maurício L Nogueira
- Department of Infectious, Dermatological and Parasitic Infections, Sao Jose do Rio Preto Medical School, Sao Jose do Rio Preto 15090-000, Brazil
| |
Collapse
|
11
|
de Jesus JG, Dutra KR, Sales FCDS, Claro IM, Terzian AC, Candido DDS, Hill SC, Thézé J, Torres C, D'Agostini TL, Felix AC, Reis AFN, Alcantara LCJ, de Abreu AL, Croda JH, de Oliveira WK, de Filipis AMB, Camis MDCRDS, Romano CM. Genomic detection of a virus lineage replacement event of dengue virus serotype 2 in Brazil, 2019. Mem Inst Oswaldo Cruz 2020; 115:e190423. [PMID: 32428189 PMCID: PMC7227788 DOI: 10.1590/0074-02760190423] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 04/06/2020] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Despite efforts to mitigate the impact of dengue virus (DENV) epidemics, the virus remains a public health problem in tropical and subtropical regions around the world. Most DENV cases in the Americas between January and July 2019 were reported in Brazil. São Paulo State in the southeast of Brazil has reported nearly half of all DENV infections in the country. OBJECTIVES To understand the origin and dynamics of the 2019 DENV outbreak. METHODS Here using portable nanopore sequencing we generated20 new DENV genome sequences from viremic patients with suspected dengue infection residing in two of the most-affected municipalities of São Paulo State, Araraquara and São José do Rio Preto. We conducted a comprehensive phylogenetic analysis with 1,630 global DENV strains to better understand the evolutionary history of the DENV lineages that currently circulate in the region. FINDINGS The new outbreak strains were classified as DENV2 genotype III (American/Asian genotype). Our analysis shows that the 2019 outbreak is the result of a novel DENV lineage that was recently introduced to Brazil from the Caribbean region. Dating phylogeographic analysis suggests that DENV2-III BR-4 was introduced to Brazil in or around early 2014, possibly from the Caribbean region. MAIN CONCLUSIONS Our study describes the early detection of a newly introduced and rapidly-expanding DENV2 virus lineage in Brazil.
Collapse
Affiliation(s)
| | - Karina Rocha Dutra
- Laboratório de Pesquisa em Virologia, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto, SP, Brazil
| | | | - Ingra Morales Claro
- Instituto de Medicina Tropical, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Ana Carolina Terzian
- Laboratório de Pesquisa em Virologia, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto, SP, Brazil
| | | | - Sarah C Hill
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Julien Thézé
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Celeste Torres
- Laboratório de Flavivírus, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz-Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Tatiana Lang D'Agostini
- Coordenadoria de Controle de Doenças, Centro de Vigilância Epidemiológica Professor Alexandre Vranjac, Secretaria de Estado da Saúde, São Paulo, SP, Brasil
| | - Alvina Clara Felix
- Instituto de Medicina Tropical, Universidade de São Paulo, São Paulo, SP, Brazil
| | | | | | - André L de Abreu
- Coordenação Geral de Laboratórios de Saúde Pública, Secretaria de Vigilância em Saúde, Ministério da Saúde, Brasília, DF, Brazil
| | - Júlio Hr Croda
- Coordenação Geral de Laboratórios de Saúde Pública, Secretaria de Vigilância em Saúde, Ministério da Saúde, Brasília, DF, Brazil
| | - Wanderson K de Oliveira
- Coordenação Geral de Laboratórios de Saúde Pública, Secretaria de Vigilância em Saúde, Ministério da Saúde, Brasília, DF, Brazil
| | - Ana Maria Bispo de Filipis
- Laboratório de Flavivírus, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz-Fiocruz, Rio de Janeiro, RJ, Brazil
| | | | - Camila Malta Romano
- Instituto de Medicina Tropical, Universidade de São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
12
|
Colombo TE, Versiani AF, Dutra KR, Rubiato JGD, Galvão TM, Negri Reis AF, Nogueira ML. Performance of CDC Trioplex qPCR during a dengue outbreak in Brazil. J Clin Virol 2019; 121:104208. [PMID: 31707203 DOI: 10.1016/j.jcv.2019.104208] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/25/2019] [Accepted: 10/31/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND In recent years real‑time reverse transcription polymerase chain reaction (real-time RT-PCR) has become a leading technique for nucleic acid detection and quantification of flaviviruses, including Dengue virus (DENV). Trioplex real-time RT-PCR has the advantages of providing the concurrent detection of Zika virus (ZIKV), DENV, and Chikungunya virus (CHIKV) RNA in human serum. OBJECTIVE This study sought to compare the sensitivity and specificity of the Trioplex real-time RT-PCR assay to those provided by CDC DENV TaqMan® RT-qPCR assay and conventional PCR when used for DENV detection in the context of a dengue epidemic. STUDY DESIGN We analyzed 1656 serum samples from symptomatic patients with acute febrile disease for 5 days less between December 2018 and May 2019. The samples were tested using the various PCR-based assays. RESULTS Of the 1656 serum samples analyzed, 713 (43%) were laboratory-confirmed as arboviruses: 99.86% (712/713) were confirmed as DENV and 0.14% (1/713) were confirmed as ZIKV. Next, 590 samples were selected, and of these, 331 samples (56.1%) were determined to be positive (Ct < 38) and 259 samples (43.9%) were determined to be negative (Ct > 38) using the Trioplex real-time RT-PCR assay. The multiplex method found that the test exhibits 95% sensitivity and 100% specificity. CONCLUSION This evaluation demonstrates the capacity of the Trioplex real-time RT-PCR assay to detect DENV at a high sensitivity and specificity in a geographic area with a current dengue outbreak and a lower co-circulation of other arboviruses - such as ZIKV and CHIKV, and the results prove it´s applicability as clinical screening test that can serve as a confirmatory test.
Collapse
Affiliation(s)
- Tatiana Elias Colombo
- Faculdade de Medicina de São José do Rio Preto (FAMERP), São José do Rio Preto, SP, Brazil; Universidade Paulista (UNIP), São José do Rio Preto, SP, Brazil
| | - Alice Freitas Versiani
- Faculdade de Medicina de São José do Rio Preto (FAMERP), São José do Rio Preto, SP, Brazil
| | - Karina Rocha Dutra
- Faculdade de Medicina de São José do Rio Preto (FAMERP), São José do Rio Preto, SP, Brazil
| | | | | | | | | |
Collapse
|
13
|
Dengue Virus M Protein Promotes NLRP3 Inflammasome Activation To Induce Vascular Leakage in Mice. J Virol 2019; 93:JVI.00996-19. [PMID: 31413130 DOI: 10.1128/jvi.00996-19] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 08/08/2019] [Indexed: 12/26/2022] Open
Abstract
Dengue virus (DENV) infection causes serious clinical symptoms, including dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS). Vascular permeability change is the main feature of the diseases, and the abnormal expression of proinflammatory cytokines is the important cause of vascular permeability change. However, the mechanism underlying vascular permeability induced by DENV has not been fully elucidated. Here, we reveal a distinct mechanism by which DENV infection promotes NLRP3 inflammasome activation and interleukin-1 beta (IL-1β) release to induce endothelial permeability and vascular leakage in mice. DENV M protein interacts with NLRP3 to facilitate NLRP3 inflammasome assembly and activation, which induce proinflammatory cytokine IL-1β activation and release. Notably, M can induce vascular leakage in mouse tissues by activating the NLRP3 inflammasome and IL-1β. More importantly, inflammatory cell infiltration and tissue injuries are induced by M in wild-type (WT) mouse tissues, but they are not affected by M in NLRP3 knockout (NLRP3-/-) mouse tissues. Evans blue intensities in WT mouse tissues are significantly higher than in NLRP3-/- mouse tissues, demonstrating an essential role of NLRP3 in M-induced vascular leakages in mice. Therefore, we propose that upon DENV infection, M interacts with NLRP3 to facilitate inflammasome activation and IL-1β secretion, which lead to the induction of endothelial permeability and vascular leakage in mouse tissues. The important role of the DENV-M-NLRP3-IL-1β axis in the induction of vascular leakage provides new insights into the mechanisms underlying DENV pathogenesis and DENV-associated DHF and DSS development.IMPORTANCE Dengue virus (DENV) is a mosquito-borne pathogen, and infections by this virus are prevalent in over 100 tropical and subtropical countries or regions, with approximately 2.5 billion people at risk. DENV infection induces a spectrum of clinical symptoms, ranging from classical dengue fever (DF) to severe dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS). Therefore, it is important to understand the mechanisms underlying DENV pathogenesis. In this study, we reveal that the DENV membrane protein (M) interacts with the host NLRP3 protein to promote NLRP3 inflammasome activation, which leads to the activation and release of a proinflammatory cytokine, interleukin-1 beta (IL-1β). More importantly, we demonstrate that M protein can induce vascular permeability and vascular leakage and that NLRP3 is required for M-induced vascular leakage in mouse tissues. Collectively, this study reveals a distinct mechanism underlying DENV pathogeneses and provides new insights into the development of therapeutic agents for DENV-associated diseases.
Collapse
|
14
|
Yu J, Li X, He X, Liu X, Zhong Z, Xie Q, Zhu L, Jia F, Mao Y, Chen Z, Wen Y, Ma D, Yu L, Zhang B, Zhao W, Xiao W. Epidemiological and Evolutionary Analysis of Dengue-1 Virus Detected in Guangdong during 2014: Recycling of Old and Formation of New Lineages. Am J Trop Med Hyg 2019; 101:870-883. [PMID: 31392945 PMCID: PMC6779206 DOI: 10.4269/ajtmh.18-0951] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 06/26/2019] [Indexed: 01/05/2023] Open
Abstract
The incidence of dengue is increasing in Guangdong, China, with the largest outbreak to date in 2014. Widespread awareness of epidemiological and molecular characteristics of the dengue virus (DENV) is required. In 2014, we isolated the virus from patients and sequenced its genome. The sequences of DENV isolated from Guangdong and other countries screened since 2005 were studied to establish molecular evolutionary databases along with epidemiological data to explore its epidemiological, phylogenetic, and molecular characteristics. Causes underlying the occurrence of the dengue epidemic included importation and localization of the virus. The number of indigenous cases significantly exceeded that of imported cases. Dengue virus 1 is the most important serotype and caused the long-term epidemic locally. Based on the data available since 2005, DENV1 was divided into three genotypes (I, IV, and V). Only genotypes I and V were detected in 2014. In 2014, an epidemic involving old lineages of DENV1 genotype V occurred after 2 years of silence. The genotype was previously detected from 2009 to 2011. Genotype I, which caused recent epidemics, demonstrated a continuation of new lineages, and a predictive pattern of molecular evolution since 2005 among the four lineages was present. The DENV isolated from Guangdong was closely related to those causing large-scale epidemics in neighboring countries, suggesting the possibility of its import from these countries. The lack of sufficient epidemiological data and evidence on the local mosquito-borne DENV emphasizes the importance of studying the molecular evolutionary features and establishing a well-established phylogenetic tree for dengue prevention and control in Guangdong.
Collapse
Affiliation(s)
- Jianhai Yu
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Xujuan Li
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Xiaoen He
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Xuling Liu
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Zhicheng Zhong
- Guangdong Women and Children’s Hospital, Guangzhou Medical University, Guangzhou, China
| | - Qian Xie
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Li Zhu
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Fengyun Jia
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Yingxue Mao
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Zongqiu Chen
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Ying Wen
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Danjuan Ma
- Guangdong Women and Children’s Hospital, Guangzhou Medical University, Guangzhou, China
| | - Linzhong Yu
- Department of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Bao Zhang
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Wei Zhao
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
- Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmacy, Southern Medical University, Guangzhou, China
| | - Weiwei Xiao
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
- School of Public Health, Guangdong Medical University, Dongguan, China
| |
Collapse
|
15
|
Nunes PCG, Daumas RP, Sánchez-Arcila JC, Nogueira RMR, Horta MAP, Dos Santos FB. 30 years of fatal dengue cases in Brazil: a review. BMC Public Health 2019; 19:329. [PMID: 30898104 PMCID: PMC6429821 DOI: 10.1186/s12889-019-6641-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 03/10/2019] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Over the last 30 years, extensive dengue epidemics have occurred in Brazil, characterized by emergences and re-emergences of different serotypes, a change in the epidemiological profile and an increase in the number of severe and fatal cases. Here, we present a review on the dengue fatal cases that occurred in Brazil in 30 years (1986-2015). METHODS We performed an ecological study by using secondary data on dengue fatal cases obtained in the National System of Reported Diseases (Sistema de Informação de Agravos de Notificação -SINAN) and in the Mortality Information System (SIM), both maintained by the Brazilian Ministry of Health. Cases were analyzed by region, demographic variables, clinical classification and complications based on the data available. RESULTS In 30 years (1986-2015), the Southeast region reported 43% (n = 2225) of all dengue deaths in the country. The Midwest region was responsible for 18% of the fatal cases. After 2000, deaths occurred in almost all states, with the exception of Santa Catarina and Rio Grande do Sul, South region. From 2006 to 2010, the number of deaths increased, with higher rates of mortality, especially in Goiás and Mato Grosso. From 2011 to 2015, Goiás became the state with the highest mortality rate in the country, and Rio Grande do Sul reported its first dengue deaths. In 30 years, a total of 2682 dengue deaths occurred in males and 2455 in females, and an equal distribution between the sexes was observed. From 1986 to 2006, dengue deaths occurred predominantly in individuals over 15 years old, but this scenario changed in 2007-2008. After 2009, fatal cases on individuals above 15 years old became more frequent, with peaks in the years of 2010, 2013 and 2015. CONCLUSIONS The Brazil is experiencing a hyperendemic scenario, which has resulted in the co-circulation of the four DENV serotypes and with the increasing occurrence of severe and fatal cases. The disease surveillance and studies characterizing what has been reported overtime, are still important tools to better understand the factors involved in the disease outcome.
Collapse
Affiliation(s)
- Priscila Conrado Guerra Nunes
- Viral Immunology Laboratory, Oswaldo Cruz Institute, IOC, Oswaldo Cruz Foundation, FIOCRUZ, Avenida Brasil, 4365. Manguinhos, Rio de Janeiro, Brazil
| | - Regina Paiva Daumas
- Clinical Epidemiology Laboratory, Evandro Chagas Clinical Research Institute-FIOCRUZ, Avenida Brasil, 4365. Manguinhos, Rio de Janeiro, Brazil
| | - Juan Camilo Sánchez-Arcila
- Viral Immunology Laboratory, Oswaldo Cruz Institute, IOC, Oswaldo Cruz Foundation, FIOCRUZ, Avenida Brasil, 4365. Manguinhos, Rio de Janeiro, Brazil
| | - Rita Maria Ribeiro Nogueira
- Flavivirus Laboratory (LABFLA), Oswaldo Cruz Institute - FIOCRUZ, Avenida Brasil, 4365. Manguinhos, Rio de Janeiro, Brazil
| | - Marco Aurélio Pereira Horta
- Flavivirus Laboratory (LABFLA), Oswaldo Cruz Institute - FIOCRUZ, Avenida Brasil, 4365. Manguinhos, Rio de Janeiro, Brazil
| | - Flávia Barreto Dos Santos
- Viral Immunology Laboratory, Oswaldo Cruz Institute, IOC, Oswaldo Cruz Foundation, FIOCRUZ, Avenida Brasil, 4365. Manguinhos, Rio de Janeiro, Brazil.
| |
Collapse
|
16
|
de Bruycker-Nogueira F, Souza TMA, Chouin-Carneiro T, da Costa Faria NR, Santos JB, Torres MC, Ramalho ILC, de Aguiar SF, Nogueira RMR, de Filippis AMB, Dos Santos FB. DENV-1 Genotype V in Brazil: Spatiotemporal dispersion pattern reveals continuous co-circulation of distinct lineages until 2016. Sci Rep 2018; 8:17160. [PMID: 30464188 PMCID: PMC6249214 DOI: 10.1038/s41598-018-35622-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 11/08/2018] [Indexed: 02/03/2023] Open
Abstract
In Brazil, DENV-1 introduced in the 80’s, remained the prevalent serotype from 2012 to 2016. After its re-emergence in the country in 2009, the co-circulation of different viral lineages was identified, however, its transmission dynamics afterwards, was not fully characterized. In this study, we performed the continuous molecular surveillance after the reemergence period (2012 to 2016), covering the 30 years of circulation of DENV-1 in Brazil. Phylogenetic analysis allowed confirmation of the continued presence of genotype V, as well as three distinct co-circulating lineages. The molecular characterization of the E gene presented two new amino acid substitutions previously unidentified in the country. Phylogeographic analysis has shown that a large flow of migrations has occurred between Brazil and Argentina in the last 10 years.
Collapse
Affiliation(s)
| | | | - Thaís Chouin-Carneiro
- Viral Immunology Laboratory, Oswaldo Cruz Institute - FIOCRUZ, Rio de Janeiro, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Viral immunogenicity determines epidemiological fitness in a cohort of DENV-1 infection in Brazil. PLoS Negl Trop Dis 2018; 12:e0006525. [PMID: 29813061 PMCID: PMC5993327 DOI: 10.1371/journal.pntd.0006525] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 06/08/2018] [Accepted: 05/14/2018] [Indexed: 01/17/2023] Open
Abstract
The dynamics of dengue virus (DENV) circulation depends on serotype, genotype and lineage replacement and turnover. In São José do Rio Preto, Brazil, we observed that the L6 lineage of DENV-1 (genotype V) remained the dominant circulating lineage even after the introduction of the L1 lineage. We investigated viral fitness and immunogenicity of the L1 and L6 lineages and which factors interfered with the dynamics of DENV epidemics. The results showed a more efficient replicative fitness of L1 over L6 in mosquitoes and in human and non-human primate cell lines. Infections by the L6 lineage were associated with reduced antigenicity, weak B and T cell stimulation and weak host immune system interactions, which were associated with higher viremia. Our data, therefore, demonstrate that reduced viral immunogenicity and consequent greater viremia determined the increased epidemiological fitness of DENV-1 L6 lineage in São José do Rio Preto.
Collapse
|
18
|
Tittarelli E, Lusso SB, Goya S, Rojo GL, Natale MI, Viegas M, Mistchenko AS, Valinotto LE. Dengue Virus 1 Outbreak in Buenos Aires, Argentina, 2016. Emerg Infect Dis 2018; 23:1684-1685. [PMID: 28930012 PMCID: PMC5621538 DOI: 10.3201/eid2310.161718] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The largest outbreak of dengue in Buenos Aires, Argentina, occurred during 2016. Phylogenetic, phylodynamic, and phylogeographic analyses of 82 samples from dengue patients revealed co-circulation of 2 genotype V dengue virus lineages, suggesting that this virus has become endemic to the Buenos Aires metropolitan area.
Collapse
|
19
|
Low socioeconomic condition and the risk of dengue fever: A direct relationship. Acta Trop 2018; 180:47-57. [PMID: 29352990 DOI: 10.1016/j.actatropica.2018.01.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 01/11/2018] [Accepted: 01/15/2018] [Indexed: 02/05/2023]
Abstract
This study aimed to characterize the first dengue fever epidemic in Várzea Paulista, São Paulo, Brazil, and its spatial and spatio-temporal distribution in order to assess the association of socioeconomic factors with dengue occurrence. We used autochthonous dengue cases confirmed in a 2007 epidemic, the first reported in the city, available in the Information System on Diseases of Compulsory Declaration database. These cases where geocoded by address. We identified spatial and spatio-temporal clusters of high- and low-risk dengue areas using scan statistics. To access the risk of dengue occurrence and to evaluate its relationship with socioeconomic level we used a population-based case-control design. Firstly, we fitted a generalized additive model (GAM) to dengue cases and controls without considering the non-spatial covariates to estimate the odds ratios of the occurrence of the disease. The controls were drawn considering the spatial distribution of the household of the study area and represented the source population of the dengue cases. After that, we assessed the relationship between socioeconomic variables and dengue using the GAM and obtained the effect of these covariates in the occurrence of dengue adjusted by the spatial localization of the cases and controls. Cluster analysis and GAM indicated that northeastern area of Várzea Paulista was the most affected area during the epidemic. The study showed a positive relationship between low socioeconomic condition and increased risk of dengue. We studied the first dengue epidemic in a highly susceptible population at the beginning of the outbreak and therefore it may have allowed to identify an association between low socioeconomic conditions and increased risk of dengue. These results may be useful to predict the occurrence and to identify priority areas to develop control measures for dengue, and also for Zika and Chikungunya; diseases that recently reached Latin America, especially Brazil.
Collapse
|
20
|
Li G, Pan P, He Q, Kong X, Wu K, Zhang W, Liu Y, Huang H, Liu J, Zhang Z, Wu D, Lai X, Liu X, Wu J. Molecular epidemiology demonstrates that imported and local strains circulated during the 2014 dengue outbreak in Guangzhou, China. Virol Sin 2017; 32:63-72. [PMID: 28120220 PMCID: PMC6702253 DOI: 10.1007/s12250-016-3872-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Accepted: 11/15/2016] [Indexed: 11/28/2022] Open
Abstract
The dengue virus (DENV) is a vital global public health issue. The 2014 dengue
epidemic in Guangzhou, China, caused approximately 40,000 cases of infection and
five deaths. We carried out a comprehensive investigation aimed at identifying the
transmission sources in this dengue epidemic. To analyze the phylogenetics of the
2014 dengue strains, the envelope (E) gene
sequences from 17 viral strains isolated from 168 dengue patient serum samples were
sequenced and a phylogenetic tree was reconstructed. All 17 strains were serotype I
strains, including 8 genotype I and 9 genotype V strains. Additionally, 6 genotype I
strains that were probably introduced to China from Thailand before 2009 were widely
transmitted in the 2013 and 2014 epidemics, and they continued to circulate until
2015, with one affinis strain being found in Singapore. The other 2 genotype I
strains were introduced from the Malaya Peninsula in 2014. The transmission source
of the 9 genotype V strains was from Malaysia in 2014. DENVs of different serotypes
and genotypes co-circulated in the 2014 dengue outbreak in Guangzhou. Moreover, not
only had DENV been imported to Guangzhou, but it had also been gradually exported,
as the viruses exhibited an enzootic transmission cycle in Guangzhou. ![]()
Collapse
Affiliation(s)
- Geng Li
- School of Chinese Meterla Medica, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.,State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Pan Pan
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Qiuyan He
- School of Chinese Meterla Medica, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Xiujuan Kong
- School of Chinese Meterla Medica, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Kailang Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Wei Zhang
- School of Chinese Meterla Medica, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.,State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Yuntao Liu
- Guangdong Province Traditional Chinese Medical Hospital, Guangzhou, 510120, China
| | - Huiting Huang
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
| | - Jianbo Liu
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
| | - Zhongde Zhang
- Guangdong Province Traditional Chinese Medical Hospital, Guangzhou, 510120, China
| | - De Wu
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, 511430, China
| | - Xiaoping Lai
- School of Chinese Meterla Medica, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Xiaohong Liu
- School of Chinese Meterla Medica, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.,The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
| | - Jianguo Wu
- School of Chinese Meterla Medica, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China. .,State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
21
|
Ramos-Castañeda J, Barreto dos Santos F, Martínez-Vega R, Galvão de Araujo JM, Joint G, Sarti E. Dengue in Latin America: Systematic Review of Molecular Epidemiological Trends. PLoS Negl Trop Dis 2017; 11:e0005224. [PMID: 28068335 PMCID: PMC5221820 DOI: 10.1371/journal.pntd.0005224] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 12/01/2016] [Indexed: 01/02/2023] Open
Abstract
Dengue, the predominant arthropod-borne viral disease affecting humans, is caused by one of four distinct serotypes (DENV-1, -2, -3 or -4). A literature analysis and review was undertaken to describe the molecular epidemiological trends in dengue disease and the knowledge generated in specific molecular topics in Latin America, including the Caribbean islands, from 2000 to 2013 in the context of regional trends in order to identify gaps in molecular epidemiological knowledge and future research needs. Searches of literature published between 1 January 2000 and 30 November 2013 were conducted using specific search strategies for each electronic database that was reviewed. A total of 396 relevant citations were identified, 57 of which fulfilled the inclusion criteria. All four dengue virus serotypes were present and co-circulated in many countries over the review period (with the predominance of individual serotypes varying by country and year). The number of countries in which more than one serotype circulated steadily increased during the period under review. Molecular epidemiology data were found for Argentina, Bolivia, Brazil, the Caribbean region, Colombia, Ecuador, Mexico and Central America, Paraguay, Peru and Venezuela. Distinct lineages with different dynamics were found in each country, with co-existence, extinction and replacement of lineages occurring over the review period. Despite some gaps in the literature limiting the possibility for comparison, our review has described the molecular epidemiological trends of dengue infection. However, several gaps in molecular epidemiological information across Latin America and the Caribbean were identified that provide avenues for future research; in particular, sequence determination of the dengue virus genome is important for more precise phylogenetic classification and correlation with clinical outcome and disease severity. The wide distribution of the mosquito vector and the co-circulation of multiple dengue virus serotypes has led to increases in the incidence of dengue in the Americas, where it is a major public health concern. Identifying molecular epidemiological trends may help to identify the reasons for the re-emergence of dengue across Latin America and the Caribbean, and, in turn, enable disease control and management. We conducted this review using well defined methods to search for and identify relevant research according to predetermined inclusion criteria. The objective was to obtain a clearer understanding of changes occurring within dengue serotypes that have resulted in substantial genetic diversity and the emergence of endemic and epidemic strains in different parts of the region. There remain fundamental gaps in our understanding of the epidemiological and evolutionary dynamics of dengue and its relation with disease, and it is not possible to correlate accurately spatial or temporal trends in disease epidemiology, disease severity, or the genetic diversity of DENV. It is important to maintain comprehensive epidemiological surveillance throughout the region (including sequencing of viral strains) to detect new DENV lineages and to understand the regional patterns of DENV dissemination.
Collapse
Affiliation(s)
- José Ramos-Castañeda
- Instituto Nacional de Salud Publica, Centro de Investigaciones sobre Enfermedades Infecciosas, Morelos, Mexico
| | - Flavia Barreto dos Santos
- Laboratório de Imunologia Viral, Instituto Oswaldo Cruz/ Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | | | - Josélio Maria Galvão de Araujo
- Laboratório de Biologia Molecular de Doenças Infecciosas e do Câncer, Departamento de Microbiologia e Parasitologia; Instituto de Medicina Tropical do Rio Grande do Norte; Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | - Graham Joint
- Synercom Ltd, Macclesfield, Cheshire, United Kingdom
| | | |
Collapse
|
22
|
Dutra KR, Drumond BP, de Rezende IM, Nogueira ML, de Oliveira Lopes D, Calzavara Silva CE, Siqueira Ferreira JM, Dos Santos LL. Molecular surveillance of dengue in Minas Gerais provides insights on dengue virus 1 and 4 circulation in Brazil. J Med Virol 2016; 89:966-973. [PMID: 27926790 DOI: 10.1002/jmv.24729] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2016] [Indexed: 11/11/2022]
Abstract
Dengue, caused by any of the four types of Dengue virus (DENV) is the most important arbovirus in the world. In this study we performed a molecular surveillance of dengue during the greatest dengue outbreak that took place in Divinópolis, Minas Gerais state, Southeast Brazil, in 2013. Samples from 100 patients with clinical symptoms of dengue were studied and 26 were positive. The capsid/premembrane (CprM) and envelope gene sequences of some samples were amplified and sequenced. Molecular analyses demonstrated that two DENV-1 lineages, belonging to genotype V were introduced and co-circulated in Divinópolis. When compared to each other, those lineages presented high genetic diversity and showed unique amino acids substitutions in the envelope protein, including in domains I, II, and III. DENV-4 strains from Divinópolis clustered within genotype IIb and the most recent common ancestor was probably introduced into the city three years before the 2013 epidemic. Here we demonstrated for the first time the circulation of DENV-4 and the co-circulation of two DENV-1 lineages in Midwest region of Minas Gerais, Brazil. Moreover our analysis indicated the introduction of five DENV-1 lineages, genotype V into Brazil, in different times. J. Med. Virol. 89:966-973, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Karina Rocha Dutra
- Campus Centro-Oeste Dona Lindu, Universidade Federal de São João Del Rei (UFSJ), Divinópolis, Minas Gerais, Brazil
| | - Betânia Paiva Drumond
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil.,Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora (UFJF), Juiz de Fora, Minas Gerais, Brazil
| | - Izabela Maurício de Rezende
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil.,Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora (UFJF), Juiz de Fora, Minas Gerais, Brazil
| | | | - Débora de Oliveira Lopes
- Campus Centro-Oeste Dona Lindu, Universidade Federal de São João Del Rei (UFSJ), Divinópolis, Minas Gerais, Brazil
| | | | | | - Luciana Lara Dos Santos
- Campus Centro-Oeste Dona Lindu, Universidade Federal de São João Del Rei (UFSJ), Divinópolis, Minas Gerais, Brazil
| |
Collapse
|
23
|
Colombo TE, Vedovello D, Pacca-Mazaro CC, Mondini A, Araújo JP, Cabrera E, Lopes JC, Penha dos Santos IN, Negri Reis AF, Costa FR, Antônio Cruz LEA, Ferreira J, de Oliveira Rocha ES, Kroon EG, de Morais Bronzoni RV, Vasilakis N, Nogueira ML. Dengue virus surveillance: Detection of DENV-4 in the city of São José do Rio Preto, SP, Brazil. Acta Trop 2016; 164:84-89. [PMID: 27609639 DOI: 10.1016/j.actatropica.2016.09.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Revised: 08/31/2016] [Accepted: 09/04/2016] [Indexed: 12/14/2022]
Abstract
Dengue viruses are the most common arbovirus infection worldwide and are caused by four distinct serotypes of the dengue virus (DENV). In the present study, we assessed DENV transmission in São José do Rio Preto (SJRP) from 2010 to 2014. We analyzed blood samples from febrile patients who were attended at health care centers in SJRP. DENV detection was performed using multiplex RT-PCR, using flavivirus generic primers, based on the genes of the non-structural protein (NS5), followed by nested-PCR assay with species-specific primers. We analyzed 1549 samples, of which 1389 were positive for NS1 by rapid test. One thousand and eight-seven samples (78%) were confirmed as positive by multiplex RT-PCR: DENV-4, 48.5% (528/1087); DENV-1, 41.5% (449/1087); DENV-2, 9.5% (104/1087); and co-infection (5 DENV-1/DENV-4, 1 DENV-1/DENV-2), 0.5% (6/1087). Phylogenetic analysis of the DENV-4 grouped the isolates identified in this study with the American genotype and the showed a relationship between isolates from SJRP and isolates from the northern region of South America. Taken together, our data shows the detection and emergence of new dengue genotype in a new region and reiterate the importance of surveillance programs to detect and trace the evolution of DENV.
Collapse
|
24
|
Mota MTDO, Terzian AC, Silva MLCR, Estofolete C, Nogueira ML. Mosquito-transmitted viruses - the great Brazilian challenge. Braz J Microbiol 2016; 47 Suppl 1:38-50. [PMID: 27818091 PMCID: PMC5156505 DOI: 10.1016/j.bjm.2016.10.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 10/07/2016] [Indexed: 12/20/2022] Open
Abstract
Arboviruses pose a serious threat to public health worldwide, overloading the healthcare system and causing economic losses. These viruses form a very diverse group, and in Brazil, arboviruses belonging to the families Flaviviridae and Togaviridae are predominant. Unfortunately, the number of arboviruses increases in proportion with factors such as deforestation, poor sanitation, climate changes, and introduction of new viruses like Chikungunya virus and Zika virus. In Brazil, dengue is endemic, along with the presence of other arboviruses. The situation is complicated by the scarcity of diagnostic infrastructure and the absence of approved vaccines for these diseases. Disease control, thus, relies solely on vector control. Therefore, enhanced clinical knowledge and improved general awareness about these arboviruses are indispensable to tackle diagnostic inadequacies.
Collapse
Affiliation(s)
| | - Ana Carolina Terzian
- Faculdade de Medicina de São José do Rio Preto (FAMERP), São José do Rio Preto, SP, Brazil
| | | | - Cássia Estofolete
- Faculdade de Medicina de São José do Rio Preto (FAMERP), São José do Rio Preto, SP, Brazil
| | | |
Collapse
|
25
|
Complete Genome Sequences of Two Dengue Virus Serotype 1 Genotype V Strains from Different Lineages. GENOME ANNOUNCEMENTS 2016; 4:4/5/e01064-16. [PMID: 27688321 PMCID: PMC5043569 DOI: 10.1128/genomea.01064-16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Previous phylogenetic studies involving dengue virus serotype 1 (DENV1) have shown several lineages of genotype V circulating worldwide. After sequencing the complete genome of strains from São José do Rio Preto, São Paulo, Brazil, we identified a list of 50 different amino acids that differ between the two lineages, announced here.
Collapse
|
26
|
de Bruycker-Nogueira F, Mir D, Dos Santos FB, Bello G. Evolutionary history and spatiotemporal dynamics of DENV-1 genotype V in the Americas. INFECTION GENETICS AND EVOLUTION 2016; 45:454-460. [PMID: 27713055 DOI: 10.1016/j.meegid.2016.09.025] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 09/20/2016] [Accepted: 09/30/2016] [Indexed: 01/05/2023]
Abstract
The genotype V has been the most prevalent dengue virus type 1 (DENV-1) clade circulating in the Americas over the last 40years. In this study, we investigate the spatiotemporal pattern of emergence and dissemination of DENV-1 lineages in the continent. We applied phylogenetic and phylogeographic approaches to a comprehensive data set of 836 DENV-1 E gene sequences of the genotype V isolated from 46 different countries around the world over a period of 50years (1962 to 2014). Our study reveals that genetic diversity of DENV-1 genotype V in the Americas resulted from two independent introductions of this genotype from India. The first genotype V strain was most probably introduced into the Lesser Antilles at around the early 1970s and this Caribbean region becomes the source population of several DENV-1 lineages that spread in the Americas during the 1970s and 1980s. Most of those lineages appear to become extinct during the 1990s, except one that persisted in Venezuela and later spread to other American countries, dominating the DENV-1 epidemics in the region from the early 2000s onwards. The second genotype V strain of Indian origin was also most probably introduced into the Lesser Antilles at around the early 1980s. This lineage remained almost undetected for nearly 15years, until it was introduced in Northern Brazil around the middle 1990s and later spread to other country regions. These results demonstrate that different geographic regions have played a role in maintaining and spreading the DENV-1 genotype V in the Americas over time. DENV-1 genotype V lineages have originated, spread and died out in the Americas with very different dynamics and the phenomenon of lineage replacement across successive DENV-1 epidemic outbreaks was a common characteristic in most American countries.
Collapse
Affiliation(s)
- Fernanda de Bruycker-Nogueira
- Laboratory of Viral Immunology, Oswaldo Cruz Institute-FIOCRUZ, Av. Brasil 4365, 21045-900 Rio de Janeiro, RJ, Brazil
| | - Daiana Mir
- Laboratory of AIDS & Molecular Immunology, Oswaldo Cruz Institute-FIOCRUZ, Av. Brasil 4365, 21045-900 Rio de Janeiro, RJ, Brazil
| | - Flavia Barreto Dos Santos
- Laboratory of Viral Immunology, Oswaldo Cruz Institute-FIOCRUZ, Av. Brasil 4365, 21045-900 Rio de Janeiro, RJ, Brazil.
| | - Gonzalo Bello
- Laboratory of AIDS & Molecular Immunology, Oswaldo Cruz Institute-FIOCRUZ, Av. Brasil 4365, 21045-900 Rio de Janeiro, RJ, Brazil
| |
Collapse
|
27
|
Andrade CC, Young KI, Johnson WL, Villa ME, Buraczyk CA, Messer WB, Hanley KA. Rise and fall of vector infectivity during sequential strain displacements by mosquito-borne dengue virus. J Evol Biol 2016; 29:2205-2218. [PMID: 27500505 DOI: 10.1111/jeb.12939] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Revised: 06/10/2016] [Accepted: 06/15/2016] [Indexed: 12/31/2022]
Abstract
Each of the four serotypes of mosquito-borne dengue virus (DENV-1-4) comprises multiple, genetically distinct strains. Competitive displacement between strains within a serotype is a common feature of DENV epidemiology and can trigger outbreaks of dengue disease. We investigated the mechanisms underlying two sequential displacements by DENV-3 strains in Sri Lanka that each coincided with abrupt increases in dengue haemorrhagic fever (DHF) incidence. First, the post-DHF strain displaced the pre-DHF strain in the 1980s. We have previously shown that post-DHF is more infectious than pre-DHF for the major DENV vector, Aedes aegypti. Then, the ultra-DHF strain evolved in situ from post-DHF and displaced its ancestor in the 2000s. We predicted that ultra-DHF would be more infectious for Ae. aegypti than post-DHF but found that ultra-DHF infected a significantly lower percentage of mosquitoes than post-DHF. We therefore hypothesized that ultra-DHF had effected displacement by disseminating in Ae. aegypti more rapidly than post-DHF, but this was not borne out by a time course of mosquito infection. To elucidate the mechanisms that shape these virus-vector interactions, we tested the impact of RNA interference (RNAi), the principal mosquito defence against DENV, on replication of each of the three DENV strains. Replication of all strains was similar in mosquito cells with dysfunctional RNAi, but in cells with functional RNAi, replication of pre-DHF was significantly suppressed relative to the other two strains. Thus, differences in susceptibility to RNAi may account for the differences in mosquito infectivity between pre-DHF and post-DHF, but other mechanisms underlie the difference between post-DHF and ultra-DHF.
Collapse
Affiliation(s)
- C C Andrade
- Department of Biology, New Mexico State University, Las Cruces, NM, USA.
| | - K I Young
- Department of Biology, New Mexico State University, Las Cruces, NM, USA
| | - W L Johnson
- Department of Biology, New Mexico State University, Las Cruces, NM, USA
| | - M E Villa
- Department of Biology, New Mexico State University, Las Cruces, NM, USA
| | - C A Buraczyk
- Department of Biology, New Mexico State University, Las Cruces, NM, USA
| | - W B Messer
- Department of Molecular Microbiology and Immunology, Oregon Health and Sciences University, Portland, OR, USA.,Division of Infectious Diseases, Department of Medicine, Oregon Health and Sciences University, Portland, OR, USA
| | - K A Hanley
- Department of Biology, New Mexico State University, Las Cruces, NM, USA
| |
Collapse
|
28
|
Cunha MDP, Guimarães VN, Souza M, de Paula Cardoso DDD, de Almeida TNV, de Oliveira TS, Fiaccadori FS. Phylodynamics of DENV-1 reveals the spatiotemporal co-circulation of two distinct lineages in 2013 and multiple introductions of dengue virus in Goiás, Brazil. INFECTION GENETICS AND EVOLUTION 2016; 43:130-4. [PMID: 27223633 DOI: 10.1016/j.meegid.2016.05.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 05/12/2016] [Accepted: 05/16/2016] [Indexed: 01/02/2023]
Abstract
Dengue virus type 1 (DENV-1) was the first serotype introduced in Brazil, during in the 1980s. Since then, this virus has spread in the Brazilian territory, causing several outbreaks. In 2013 the highest number of dengue cases was notified, when compared to the previous years in Brazil, and the state of Goiás reported over 160 thousand cases. In this study, we aimed to present the Phylodynamics of DENV-1 isolates from the state of Goiás, Brazil, during 2013 outbreak, based on the envelope gene (E) sequences. Phylogenetic analysis revealed that Brazilian DENV-1 isolates are grouped together with viruses from genotype V in two distinct lineages (lineage I and lineage II) reflecting co-circulation. Phylogeographic analyses showed that these lineages were introduced in different moments in Goiás, Brazil, using distinct routes, likely originated from the Caribbean. Lineage I was first introduced coming from Rio de Janeiro (2007-2012), followed by the introduction from Argentina (2010-2013). Lineage II was introduced in a single moment from Rio de Janeiro and this clade has existed since 2007-2010. The different viral introduction events demonstrate the viral dispersion process with neighboring regions, which is essential for the maintenance of outbreaks and introduction of new emerging viruses. In conclusion, obtained data reveals the importance of continuous molecular surveillance of this virus in different regions, providing a better understanding of DENV-1 circulation, considering the evolutionary and virus spread patterns.
Collapse
Affiliation(s)
| | | | - Menira Souza
- Federal University of Goiás, Goiânia, Goiás, Brazil
| | | | | | | | | |
Collapse
|
29
|
Poloni TR, Dornas FP, Dos Santos NN, Soares AM, Amarilla AA, Alfonso HL, Trigueiro S, Lavrador MAS, Yamamoto AY, Aquino VH. High prevalence of clinically unsuspected dengue disease among children in Ribeirao Preto city, Brazil. J Med Virol 2016; 88:1711-9. [PMID: 27004990 DOI: 10.1002/jmv.24533] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/20/2016] [Indexed: 11/12/2022]
Abstract
The aim of this study was to analyze the characteristics of Dengue virus (DENV)-infected children and the accuracy of dengue diagnosis based on clinical presentations. The inclusion criteria were children ≥1-year-old presenting febrile illness with 1-7 days of onset. Children (n = 110) aged 2-15 years were included in this study. DENV infection was confirmed with virological tests using serum, salvia, and/or urine samples. The attending pediatricians classified 56/110 (50.91%) of the children as suspected dengue cases. The DENV infection was confirmed by specific laboratory tests in 52/56 (92.9%) of the suspected dengue cases but also in 44/54 (81.5%) of the unsuspected dengue cases; total of 96/110 (87.27%) confirmed dengue cases. The clinical diagnosis gave an overall sensitivity of 54.2% (52/96) and a specificity of 71.4% (10/14). The positive predictive value of the clinical diagnosis was 92.8% and negative predictive value was 18.5%. After the third day of onset of symptoms, the DENV genome detection rate was similar in serum and saliva samples, suggesting that saliva samples represent an alternative to blood samples for early dengue diagnosis. Vaccination against Yellow fever virus did not influence the antibody response against DENV-1, DENV-2, and DENV-3, which circulated during the study period. Although the signs and symptoms were compatible with dengue, the attending pediatricians did not suspect the disease in several children. Therefore, the inclusion of virological tests for early diagnosis in the protocols for dengue surveillance would help in the implementation of prompt treatment of patients and epidemic containment strategies. J. Med. Virol. 88:1711-1719, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Telma Regina Poloni
- Laboratory of Virology, Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Fabio Pio Dornas
- Laboratory of Virology, Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Nilton Nascimento Dos Santos
- Laboratory of Virology, Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Adriana Moreira Soares
- Laboratory of Virology, Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Alberto Anastacio Amarilla
- Laboratory of Virology, Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Helda Liz Alfonso
- Laboratory of Virology, Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Sabrina Trigueiro
- Laboratory of Virology, Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Marco Aurélio Sicchiroli Lavrador
- Laboratory of Bioinformatics and Biostatistics, Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Aparecida Yulie Yamamoto
- Department of Pediatrics, School of Medicine of Ribeirao Preto, University of São Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Victor Hugo Aquino
- Laboratory of Virology, Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| |
Collapse
|
30
|
Drumond BP, Fagundes LGDS, Rocha RP, Fumagalli MJ, Araki CS, Colombo TE, Nogueira ML, Castilho TE, da Silveira NJF, Malaquias LCC, Coelho LFL. Phylogenetic analysis of Dengue virus 1 isolated from South Minas Gerais, Brazil. Braz J Microbiol 2016; 47:251-8. [PMID: 26887252 PMCID: PMC4827697 DOI: 10.1016/j.bjm.2015.11.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 07/24/2015] [Indexed: 11/24/2022] Open
Abstract
Dengue is a major worldwide public health problem, especially in the tropical and subtropical regions of the world. Primary infection with a single Dengue virus serotype causes a mild, self-limiting febrile illness called dengue fever. However, a subset of patients who experience secondary infection with a different serotype can progress to a more severe form of the disease, called dengue hemorrhagic fever. The four Dengue virus serotypes (1–4) are antigenically and genetically distinct and each serotype is composed of multiple genotypes. In this study we isolated one Dengue virus 1 serotype, named BR/Alfenas/2012, from a patient with dengue hemorrhagic fever in Alfenas, South Minas Gerais, Brazil and molecular identification was performed based on the analysis of NS5 gene. Swiss mice were infected with this isolate to verify its potential to induce histopathological alterations characteristic of dengue. Liver histopathological analysis of infected animals showed the presence of inflammatory infiltrates, hepatic steatosis, as well as edema, hemorrhage and necrosis focal points. Phylogenetic and evolutionary analyses based on the envelope gene provided evidence that the isolate BR/Alfenas/2012 belongs to genotype V, lineage I and it is probably derived from isolates of Rio de Janeiro, Brazil. The isolate BR/Alfenas/2012 showed two unique amino acids substitutions (SER222THRE and PHE306SER) when compared to other Brazilian isolates from the same genotype/lineage. Molecular models were generated for the envelope protein indicating that the amino acid alteration PHE 306 SER could contribute to a different folding in this region located within the domain III. Further genetic and animal model studies using BR/Alfenas/2012 and other isolates belonging to the same lineage/genotype could help determine the relation of these genetic alterations and dengue hemorrhagic fever in a susceptible population.
Collapse
Affiliation(s)
- Betania Paiva Drumond
- Laboratório de Virologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Luiz Gustavo da Silva Fagundes
- Laboratório de Vacinas, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Alfenas, Minas Gerais, Brazil
| | - Raissa Prado Rocha
- Laboratório de Vacinas, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Alfenas, Minas Gerais, Brazil
| | - Marcilio Jorge Fumagalli
- Laboratório de Vacinas, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Alfenas, Minas Gerais, Brazil
| | - Carlos Shigueru Araki
- Laboratório de Pesquisas Em Virologia, Departamento de Doenças Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto, São Paulo, Brazil
| | - Tatiana Elisa Colombo
- Laboratório de Pesquisas Em Virologia, Departamento de Doenças Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto, São Paulo, Brazil
| | - Mauricio Lacerda Nogueira
- Laboratório de Pesquisas Em Virologia, Departamento de Doenças Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto, São Paulo, Brazil
| | - Thiago Elias Castilho
- Laboratório de Bioinformática, Universidade Federal de Alfenas, Alfenas, Minas Gerais, Brazil
| | | | - Luiz Cosme Cotta Malaquias
- Laboratório de Virologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Luiz Felipe Leomil Coelho
- Laboratório de Virologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil.
| |
Collapse
|
31
|
de Bruycker-Nogueira F, Nogueira RMR, Faria NRDC, Simões JBS, Nunes PCG, de Filippis AMB, dos Santos FB. Insights of the genetic diversity of DENV-1 detected in Brazil in 25 years: Analysis of the envelope domain III allows lineages characterization. INFECTION GENETICS AND EVOLUTION 2015; 34:126-36. [PMID: 26160541 DOI: 10.1016/j.meegid.2015.07.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 07/03/2015] [Accepted: 07/04/2015] [Indexed: 01/03/2023]
Abstract
Dengue virus type 1 (DENV-1) was first isolated in Brazil in 1986 in the state of Rio de Janeiro (RJ) and during 25years, this serotype emerged and re-emerged causing explosive epidemics in the country. Here, we aimed to present the phylogeny and molecular characterization based on the envelope gene (E) of DENV-1 (n=48) isolated during epidemics occurred from 1986 to 2011. Six full coding region genomes of DENV-1 were fully sequenced and possible genomic recombination events were analyzed. The results showed that the Brazilian DENV-1 isolates analyzed belong to genotype V (Americas/Africa), but grouping into distinct clades. Three groups were identified, one dating from 1986 to 2002 (lineage 1a), a second group isolated from 2009 to 2011 and a representative strain isolated in 2002 (lineage 2), and a group of strains isolated from 2010 to 2011 (lineage 1b). The lineages 1a and 1b were more closely related to the American strains, while lineage 2 to the Asian strains. Amino acids (aa) substitutions were observed in the domains I and III of the E protein and were associated to the lineages segregation. A substitution on E297 differentiated the lineage 1a from the lineages 1b and 2. Substitutions on E338, E394 (domain III), E428 and E436 (stem region) differentiated lineages 1a, 1b and 2. With the exception of the C gene, all the others genes analyzed allowed the DENV-1 classification into the distinct genotypes. Interestingly, the E gene's domain III and stem regions alone were able to characterize the distinct lineages, as observed by the analysis of the entire E gene and the complete coding region. No recombinant events were detected, but a strain belonging to lineage 1a was closely related to a known recombinant strain (AF513110/BR/2001).
Collapse
Affiliation(s)
| | - Rita Maria Ribeiro Nogueira
- Laboratory of Flavivirus, Oswaldo Cruz Institute-FIOCRUZ, Av. Brasil 4365, 21045-900 Rio de Janeiro, RJ, Brazil
| | | | | | | | - Ana Maria Bispo de Filippis
- Laboratory of Flavivirus, Oswaldo Cruz Institute-FIOCRUZ, Av. Brasil 4365, 21045-900 Rio de Janeiro, RJ, Brazil
| | - Flávia Barreto dos Santos
- Laboratory of Flavivirus, Oswaldo Cruz Institute-FIOCRUZ, Av. Brasil 4365, 21045-900 Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
32
|
Chiaravalloti-Neto F, Pereira M, Fávaro EA, Dibo MR, Mondini A, Rodrigues-Junior AL, Chierotti AP, Nogueira ML. Assessment of the relationship between entomologic indicators of Aedes aegypti and the epidemic occurrence of dengue virus 3 in a susceptible population, São José do Rio Preto, São Paulo, Brazil. Acta Trop 2015; 142:167-77. [PMID: 25484110 DOI: 10.1016/j.actatropica.2014.11.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Revised: 11/24/2014] [Accepted: 11/27/2014] [Indexed: 11/26/2022]
Abstract
The aims of this study were to describe the occurrence of dengue in space and time and to assess the relationships between dengue incidence and entomologic indicators. We selected the dengue autochthonous cases that occurred between September 2005 and August 2007 in São José do Rio Preto to calculate incidence rates by month, year and census tracts. The monthly incidence rates of the city were compared to the monthly Breteau indices (BI) of the São José do Rio Region. Between December 2006 and February 2007, an entomological survey was conducted to collect immature forms of Aedes aegypti in Jaguaré, a São José do Rio Preto neighborhood, and to obtain entomological indices. These indices were represented using statistical interpolation. To represent the occurrence of dengue in the Jaguaré neighborhood in 2006 and 2007, we used the Kernel ratio and to evaluate the relationship between dengue and the entomological indices, we used a generalized additive model in a spatial case-control design. Between September 2005 and August 2007, the occurrence of dengue in São José do Rio Preto was almost entirely caused by DENV3, and the monthly incidence rates presented high correlation coefficients with the monthly BI. In Jaguaré neighborhood, the entomological indices calculated by hectare were better predictors of the spatial distribution of dengue than the indices calculated by properties, but the pupae quantification did not show better prediction qualities than the indices based on the container positivity, in relation to the risk of dengue occurrence. The fact that the municipality's population had a high susceptibility to the serotype DENV3 before the development of this research, along with the almost total predominance of the occurrence of this serotype between 2005 and 2007, facilitated the analysis of the epidemiological situation of the disease and allowed us to connect it to the entomological indicators.
Collapse
|
33
|
Tittarelli E, Mistchenko AS, Barrero PR. Dengue virus 1 in Buenos Aires from 1999 to 2010: towards local spread. PLoS One 2014; 9:e111017. [PMID: 25343372 PMCID: PMC4208802 DOI: 10.1371/journal.pone.0111017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 09/19/2014] [Indexed: 01/07/2023] Open
Abstract
Dengue virus (DENV) is a public health problem representing the most important arthropod-borne viral disease in humans. In Argentina, Northern provinces have reported autochthonous cases since 1997, though these outbreaks have originated in bordering countries, where co-circulation of more than one serotype has been reported. In the last decade, imported dengue cases have been reported in Buenos Aires, the urban area of Argentina with the highest population density. In 2009, a dengue outbreak affected Buenos Aires and, for the first time, local transmission was detected. All cases of this outbreak were caused by DENV-1. In this report, we present the full-length sequences of 27 DENV-1 isolates, corresponding to imported cases of 1999–2000, as well as local and imported cases of the 2009 and 2010 outbreaks. We analyzed their phylogenetic and phylodynamic relationships and their global and local spread. Additionally, we characterized their genomic and phenotypic features. All cases belonged to DENV-1 genotype V. The most recent ancestor for this genotype was dated ∼1934, whereas that for the 2009 outbreak was dated ∼2007. The mean rates of nucleotide substitution were 4.98E-4 and 8.53E-4 subs./site/yr, respectively. We inferred an introduction from Paraguay in 1999–2000 and mainly from Venezuela during 2009–2010. Overall, the number of synonymous substitutions per synonymous site significantly exceeded the number of non-synonymous substitutions per site and 12 positively selected sites were detected. These analyses could contribute to a better understanding regarding spread and evolution of this pathogen in the Southern Cone of South America.
Collapse
Affiliation(s)
- Estefanía Tittarelli
- Laboratorio de Virología, Hospital de Niños “Ricardo Gutiérrez”, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- * E-mail:
| | - Alicia S. Mistchenko
- Laboratorio de Virología, Hospital de Niños “Ricardo Gutiérrez”, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
- Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIC), Buenos Aires, Argentina
| | - Paola R. Barrero
- Laboratorio de Virología, Hospital de Niños “Ricardo Gutiérrez”, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
34
|
Martins VDCA, Bastos MDS, Ramasawmy R, de Figueiredo RP, Gimaque JBL, Braga WSM, Nogueira ML, Nozawa S, Naveca FG, Figueiredo LTM, Mourão MPG. Clinical and virological descriptive study in the 2011 outbreak of dengue in the Amazonas, Brazil. PLoS One 2014; 9:e100535. [PMID: 24978469 PMCID: PMC4076277 DOI: 10.1371/journal.pone.0100535] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 05/23/2014] [Indexed: 11/24/2022] Open
Abstract
Background Dengue is a vector-borne disease in the tropical and subtropical region of the world and is transmitted by the mosquito Aedes aegypti. In the state of Amazonas, Brazil during the 2011 outbreak of dengue all the four Dengue virus (DENV) serotypes circulating simultaneously were observed. The aim of the study was to describe the clinical epidemiology of dengue in Manaus, the capital city of the state of the Amazonas, where all the four DENV serotypes were co-circulating simultaneously. Methodology Patients with acute febrile illness during the 2011 outbreak of dengue, enrolled at the Fundação de Medicina Tropical Dr. Heitor Viera Dourado (FMT-HVD), a referral centre for tropical and infectious diseases in Manaus, were invited to participate in a clinical and virological descriptive study. Sera from 677 patients were analyzed by RT-nested-PCRs for flaviviruses (DENV 1–4, Saint Louis encephalitis virus-SLEV, Bussuquara virus-BSQV and Ilheus virus-ILHV), alphavirus (Mayaro virus-MAYV) and orthobunyavirus (Oropouche virus-OROV). Principal Findings Only dengue viruses were detected in 260 patients (38.4%). Thirteen patients were co-infected with more than one DENV serotype and six (46.1%) of them had a more severe clinical presentation of the disease. Nucleotide sequencing showed that DENV-1 belonged to genotype V, DENV-2 to the Asian/American genotype, DENV-3 to genotype III and DENV-4 to genotype II. Conclusions Co-infection with more than one DENV serotype was observed. This finding should be warning signs to health authorities in situations of the large dispersal of serotypes that are occurring in the world.
Collapse
Affiliation(s)
| | - Michele de Souza Bastos
- Fundação de Medicina Tropical Dr. Heitor Viera Dourado (FMT-HVD), Manaus, Amazonas, Brazil
- Universidade do Estado do Amazonas (UEA), Manaus, Amazonas, Brazil
| | - Rajendranath Ramasawmy
- Fundação de Medicina Tropical Dr. Heitor Viera Dourado (FMT-HVD), Manaus, Amazonas, Brazil
- Universidade do Estado do Amazonas (UEA), Manaus, Amazonas, Brazil
- Universidade Nilton Lins, Manaus, Amazonas, Brazil
| | | | | | - Wornei Silva Miranda Braga
- Fundação de Medicina Tropical Dr. Heitor Viera Dourado (FMT-HVD), Manaus, Amazonas, Brazil
- Universidade do Estado do Amazonas (UEA), Manaus, Amazonas, Brazil
| | - Mauricio Lacerda Nogueira
- Fundação de Medicina Tropical Dr. Heitor Viera Dourado (FMT-HVD), Manaus, Amazonas, Brazil
- Faculdade de Medicina de São Jose do Rio Preto (FAMERP), São Jose do Rio Preto, São Paulo, Brazil
| | | | - Felipe Gomes Naveca
- Instituto Leônidas & Maria Deane (ILMD), Fundação Oswaldo Cruz (FIOCRUZ), Manaus, Amazonas, Brazil
| | - Luiz Tadeu Moraes Figueiredo
- Fundação de Medicina Tropical Dr. Heitor Viera Dourado (FMT-HVD), Manaus, Amazonas, Brazil
- Centro de Pesquisas em Virologia, Faculdade de Medicina de Ribeirão Preto (FMRP-USP), Ribeirão Preto, São Paulo, Brazil
| | - Maria Paula Gomes Mourão
- Fundação de Medicina Tropical Dr. Heitor Viera Dourado (FMT-HVD), Manaus, Amazonas, Brazil
- Universidade do Estado do Amazonas (UEA), Manaus, Amazonas, Brazil
- Universidade Nilton Lins, Manaus, Amazonas, Brazil
- * E-mail: (VdCAM); (MPGM)
| |
Collapse
|
35
|
Walimbe AM, Lotankar M, Cecilia D, Cherian SS. Global phylogeography of Dengue type 1 and 2 viruses reveals the role of India. INFECTION GENETICS AND EVOLUTION 2014; 22:30-9. [PMID: 24418211 DOI: 10.1016/j.meegid.2014.01.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 01/02/2014] [Accepted: 01/02/2014] [Indexed: 01/02/2023]
Abstract
Patterns in virus dispersal and epidemiology of viral diseases can be revealed by phylogeographic studies. Currently knowledge about phylogeography of Dengue virus (DENV) Types 1 and 2 is limited. We carried out the phylogeographic analyses for DENV-1 and DENV-2, by the Bayesian Markov Chain Monte Carlo (MCMC) approach, with emphasis on Indian isolates in relation to the global evolutionary dynamics of the viruses. More than 250 E-gene sequences of each virus, available in GenBank, were used for the analyses. The study was focused on understanding the most likely geographical origin for the major genotypes and sub-lineages of DENV-1/DENV-2 and also the possible pathways in the dispersal of the virus. The results showed that for DENV-1, Southeast Asia was the most likely geographical origin and India was determined to be the ancestral location of the Cosmopolitan genotype circulating in India, Sri Lanka, West and East Africa, Caribbean region, East and Southeast Asia. For DENV-2, the ancestral source could not be precisely inferred. Further, in spite of the earliest isolate from Trinidad-1953 of the American genotype, it was depicted that India may have been the probable ancestor of this genotype. India was also determined to be the ancestral location of a subgroup of the Cosmopolitan genotype. It was noted that DENV-1 and DENV-2 were introduced into India during 1940s and 1910s respectively. Subsequently, dispersal of both the viruses between India and different regions including West, East and Central Africa, Southeast and East Asia and Caribbean was inferred. Overall, the current study provides insight into the spatial as well as temporal dynamics of dengue virus serotypes 1 and 2.
Collapse
Affiliation(s)
- Atul M Walimbe
- Bioinformatics and Data Management Group, National Institute of Virology, 20-A, Dr. Ambedkar Road, Post Box No. 11, Pune 411001, Maharashtra, India.
| | - Mrunalini Lotankar
- Bioinformatics and Data Management Group, National Institute of Virology, 20-A, Dr. Ambedkar Road, Post Box No. 11, Pune 411001, Maharashtra, India.
| | - D Cecilia
- Dengue Group, National Institute of Virology, 20-A, Dr. Ambedkar Road, Post Box No. 11, Pune 411001, Maharashtra, India.
| | - Sarah S Cherian
- Bioinformatics and Data Management Group, National Institute of Virology, 20-A, Dr. Ambedkar Road, Post Box No. 11, Pune 411001, Maharashtra, India.
| |
Collapse
|
36
|
Yamashita A, Sasaki T, Kurosu T, Yasunaga T, Ikuta K. Origin and distribution of divergent dengue virus: novel database construction and phylogenetic analyses. Future Virol 2013. [DOI: 10.2217/fvl.13.99] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Dengue virus (DENV), a mosquito-borne agent that exists as four serotypes (DENV-1–4), induces dengue illness. DENV has a positive-sense, ssRNA genome of approximately 11 kb that encodes a capsid protein, a premembrane protein and an envelope glycoprotein, in addition to seven nonstructural proteins. These individual genes show sequence variations that can be analyzed phylogenetically to yield several genotypes within each serotype. Here, the sequences of individual DENV genes were collected and used to construct a novel DENV database. This database was then used to characterize the evolution of individual genotypes in several countries. Interestingly, the database provided evidence for recombination between two or three different genotypes to yield new genotypes. This novel database will be available on the internet and is expected to be highly useful for dengue genetic studies, including phylogenetic analyses.
Collapse
Affiliation(s)
- Akifumi Yamashita
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
- National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Tadahiro Sasaki
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Takeshi Kurosu
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Teruo Yasunaga
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Kazuyoshi Ikuta
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
37
|
Chu PY, Ke GM, Chen PC, Liu LT, Tsai YC, Tsai JJ. Spatiotemporal dynamics and epistatic interaction sites in dengue virus type 1: a comprehensive sequence-based analysis. PLoS One 2013; 8:e74165. [PMID: 24040199 PMCID: PMC3767619 DOI: 10.1371/journal.pone.0074165] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 07/29/2013] [Indexed: 12/26/2022] Open
Abstract
The continuing threat of dengue fever necessitates a comprehensive characterisation of its epidemiological trends. Phylogenetic and recombination events were reconstructed based on 100 worldwide dengue virus (DENV) type 1 genome sequences with an outgroup (prototypes of DENV2-4). The phylodynamic characteristics and site-specific variation were then analysed using data without the outgroup. Five genotypes (GI-GV) and a ladder-like structure with short terminal branch topology were observed in this study. Apparently, the transmission of DENV1 was geographically random before gradual localising with human activity as GI-GIII in South Asia, GIV in the South Pacific, and GV in the Americas. Genotypes IV and V have recently shown higher population densities compared to older genotypes. All codon regions and all tree branches were skewed toward a negative selection, which indicated that their variation was restricted by protein function. Notably, multi-epistatic interaction sites were found in both PrM 221 and NS3 1730. Recombination events accumulated in regions E, NS3-NS4A, and particularly in region NS5. The estimated coevolution pattern also highlights the need for further study of the biological role of protein PrM 221 and NS3 1730. The recent transmission of emergent GV sublineages into Central America and Europe mandates closely monitoring of genotype interaction and succession.
Collapse
Affiliation(s)
- Pei-Yu Chu
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Laboratory Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Guan-Ming Ke
- Graduate Institute of Animal Vaccine Technology, National Pingtung University of Science and Technology, Neipu, Pingtung, Taiwan
| | - Po-Chih Chen
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Laboratory Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Tropical Medicine Center, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Li-Teh Liu
- Department of Medical Laboratory Science and Biotechnology, College of Medicine and Life Science, Chung-Hwa University of Medical Technology, Tainan, Taiwan
| | - Yen-Chun Tsai
- Tropical Medicine Center, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Jih-Jin Tsai
- Tropical Medicine Center, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Department of Internal Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- * E-mail:
| |
Collapse
|
38
|
Colombo TE, Vedovello D, Mondini A, Reis AFN, Cury AAF, Oliveira FHD, Cruz LEAA, Bronzoni RVDM, Nogueira ML. CO-INFECTION OF DENGUE VIRUS BY SEROTYPES 1 AND 4 IN PATIENT FROM MEDIUM SIZED CITY FROM BRAZIL. Rev Inst Med Trop Sao Paulo 2013. [DOI: 10.1590/s0036-46652013000400009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
SUMMARY The natural co-infection with dengue virus can occur in highly endemic areas where different serotypes have been observed for many years. We report one case of DENV-1/DENV-4 co-infection in human serum detected by molecular tests. Phylogenetic analysis of the sequences obtained indicated the presence of genotype V and II for DENV-1 and DENV-4, respectively.
Collapse
Affiliation(s)
- Tatiana Elias Colombo
- Faculdade de Medicina de Sao Jose do Rio Preto (FAMERP), Brazil; Universidade Estadual Paulista Julio de Mesquita Filho (IBILCE/UNESP), Brazil
| | | | - Adriano Mondini
- Universidade Estadual Paulista Julio de Mesquita Filho (FCFAR/UNESP), Brazil
| | | | | | | | | | | | | |
Collapse
|
39
|
Drumond BP, Mondini A, Schmidt DJ, Bronzoni RVDM, Bosch I, Nogueira ML. Circulation of different lineages of Dengue virus 2, genotype American/Asian in Brazil: dynamics and molecular and phylogenetic characterization. PLoS One 2013; 8:e59422. [PMID: 23533624 PMCID: PMC3606110 DOI: 10.1371/journal.pone.0059422] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 02/14/2013] [Indexed: 01/05/2023] Open
Abstract
The American/Asian genotype of Dengue virus type 2 (DENV-2) was introduced into the Americas in the 80′s. Although there is no data showing when this genotype was first introduced into Brazil, it was first detected in Brazil in 1990. After which the virus spread throughout the country and major epidemics occurred in 1998, 2007/08 and 2010. In this study we sequenced 12 DENV-2 genomes obtained from serum samples of patients with dengue fever residing in São José do Rio Preto, São Paulo (SJRP/SP), Brazil, in 2008. The whole open reading frame or envelope sequences were used to perform phylogenetic, phylogeographic and evolutionary analyses. Isolates from SJRP/SP were grouped within one lineage (BR3) close to isolates from Rio de Janeiro, Brazil. Isolates from SJRP were probably introduced there at least in 2007, prior to its detection in the 2008 outbreak. DENV-2 circulation in Brazil is characterized by the introduction, displacement and circulation of three well-defined lineages in different times, most probably from the Caribbean. Thirty-seven unique amino acid substitutions were observed among the lineages, including seven amino acid differences in domains I to III of the envelope protein. Moreover, we dated here, for the first time, the introduction of American/Asian genotype into Brazil (lineage BR1) to 1988/89, followed by the introduction of lineages BR2 (1998–2000) and BR3 (2003–05). Our results show a delay between the introduction and detection of DENV-2 lineages in Brazil, reinforcing the importance and need for surveillance programs to detect and trace the evolution of these viruses. Additionally, Brazilian DENV-2 differed in genetic diversity, date of introduction and geographic origin and distribution in Brazil, and these are important factors for the evolution, dynamics and control of dengue.
Collapse
Affiliation(s)
- Betânia Paiva Drumond
- Laboratório de Virologia, Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
- * E-mail: (BPD); (MLN)
| | - Adriano Mondini
- Laboratório de Saúde Pública, Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista, Araraquara, São Paulo, Brazil
| | - Diane J. Schmidt
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, Massachusetts, United States of America
| | | | - Irene Bosch
- Genome Resources in Dengue Consortium, Massachusetts Institute of Technology. Cambridge, Massachusetts, United States of America
| | - Maurício Lacerda Nogueira
- Laboratório de Pesquisa em Virologia, Faculdade de Medicina de São José do Rio Preto (FAMERP), São José do Rio Preto, São Paulo, Brazil
- * E-mail: (BPD); (MLN)
| |
Collapse
|
40
|
Sabchareon A, Wallace D, Sirivichayakul C, Limkittikul K, Chanthavanich P, Suvannadabba S, Jiwariyavej V, Dulyachai W, Pengsaa K, Wartel TA, Moureau A, Saville M, Bouckenooghe A, Viviani S, Tornieporth NG, Lang J. Protective efficacy of the recombinant, live-attenuated, CYD tetravalent dengue vaccine in Thai schoolchildren: a randomised, controlled phase 2b trial. Lancet 2012; 380:1559-67. [PMID: 22975340 DOI: 10.1016/s0140-6736(12)61428-7] [Citation(s) in RCA: 645] [Impact Index Per Article: 53.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
BACKGROUND Roughly half the world's population live in dengue-endemic countries, but no vaccine is licensed. We investigated the efficacy of a recombinant, live, attenuated tetravalent dengue vaccine. METHODS In this observer-masked, randomised, controlled, monocentre, phase 2b, proof-of-concept trial, healthy Thai schoolchildren aged 4-11 years were randomly assigned (2:1) to receive three injections of dengue vaccine or control (rabies vaccine or placebo) at months 0, 6, and 12. Randomisation was by computer-generated permuted blocks of six and participants were assigned with an interactive response system. Participants were actively followed up until month 25. All acute febrile illnesses were investigated. Dengue viraemia was confirmed by serotype-specific RT-PCR and non-structural protein 1 ELISA. The primary objective was to assess protective efficacy against virologically confirmed, symptomatic dengue, irrespective of severity or serotype, occurring 1 month or longer after the third injection (per-protocol analysis). This trial is registered at ClinicalTrials.gov, NCT00842530. FINDINGS 4002 participants were assigned to vaccine (n=2669) or control (n=1333). 3673 were included in the primary analysis (2452 vaccine, 1221 control). 134 cases of virologically confirmed dengue occurred during the study. Efficacy was 30·2% (95% CI -13·4 to 56·6), and differed by serotype. Dengue vaccine was well tolerated, with no safety signals after 2 years of follow-up after the first dose. INTERPRETATION These data show for the first time that a safe vaccine against dengue is possible. Ongoing large-scale phase 3 studies in various epidemiological settings will provide pivotal data for the CYD dengue vaccine candidate. FUNDING Sanofi Pasteur.
Collapse
Affiliation(s)
- Arunee Sabchareon
- Department of Tropical Pediatrics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|