1
|
Intaruck K, Tabata K, Itakura Y, Kawaguchi N, Kishimoto M, Setiyono A, Handharyani E, Harima H, Kimura T, Hall WW, Orba Y, Sawa H, Sasaki M. Characterization of a mammalian orthoreovirus isolated from the large flying fox, Pteropus vampyrus, in Indonesia. J Gen Virol 2024; 105. [PMID: 39319430 DOI: 10.1099/jgv.0.002028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024] Open
Abstract
Fruit bats serve as an important reservoir for many zoonotic pathogens, including Nipah virus, Hendra virus, Marburg virus and Lyssavirus. To gain a deeper insight into the virological characteristics, pathogenicity and zoonotic potential of bat-borne viruses, recovery of infectious viruses from field samples is important. Here, we report the isolation and characterization of a mammalian orthoreovirus (MRV) from a large flying fox (Pteropus vampyrus) in Indonesia, which is the first detection of MRV in Southeast Asia. MRV was recovered from faecal samples of three different P. vampyrus in Central Java. Nucleotide sequence analysis revealed that the genome of the three MRV isolates shared more than 99% nucleotide sequence identity. We tentatively named one isolated strain as MRV12-52 for further analysis and characterization. Among 10 genome segments, MRV12-52 S1 and S4, which encode the cell-attachment protein and outer capsid protein, had 93.6 and 95.1% nucleotide sequence identities with known MRV strains, respectively. Meanwhile, the remaining genome segments of MRV12-52 were divergent with 72.9-80.7 % nucleotide sequence identities. Based on the nucleotide sequence of the S1 segment, MRV12-52 was grouped into serotype 2, and phylogenetic analysis demonstrated evidence of past reassortment events. In vitro characterization of MRV12-52 showed that the virus efficiently replicated in BHK-21, HEK293T and A549 cells. In addition, experimental infection of laboratory mice with MRV12-52 caused severe pneumonia with 75% mortality. This study highlights the presence of pathogenic MRV in Indonesia, which could serve as a potential animal and public health concern.
Collapse
Affiliation(s)
- Kittiya Intaruck
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Koshiro Tabata
- Institute for Vaccine Research and Development, Hokkaido University, Sapporo, Japan
| | - Yukari Itakura
- Institute for Vaccine Research and Development, Hokkaido University, Sapporo, Japan
| | - Nijiho Kawaguchi
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Mai Kishimoto
- Laboratory of Veterinary Microbiology, Graduate School of Veterinary Science, Osaka Metropolitan University, Izumisano, Japan
| | - Agus Setiyono
- Division of Pathology, School of Veterinary Medicine and Biomedical Sciences, IPB University, Bogor, Indonesia
| | - Ekowati Handharyani
- Division of Pathology, School of Veterinary Medicine and Biomedical Sciences, IPB University, Bogor, Indonesia
| | - Hayato Harima
- Laboratory of Veterinary Public Health, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Takashi Kimura
- Laboratory of Comparative Pathology, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - William W Hall
- Institute for Vaccine Research and Development, Hokkaido University, Sapporo, Japan
- National Virus Reference Laboratory, School of Medicine, University College of Dublin, Dublin, Ireland
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Global Virus Network, Baltimore, MD, USA
| | - Yasuko Orba
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- One Health Research Center, Hokkaido University, Sapporo, Japan
- Institute for Vaccine Research and Development, Hokkaido University, Sapporo, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Hirofumi Sawa
- One Health Research Center, Hokkaido University, Sapporo, Japan
- Institute for Vaccine Research and Development, Hokkaido University, Sapporo, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Global Virus Network, Baltimore, MD, USA
| | - Michihito Sasaki
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Institute for Vaccine Research and Development, Hokkaido University, Sapporo, Japan
| |
Collapse
|
2
|
Surján A, Gonzalez G, Gellért Á, Boldogh S, Carr MJ, Harrach B, Vidovszky MZ. First detection and genome analysis of simple nosed bat polyomaviruses in Central Europe. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2023; 112:105439. [PMID: 37105345 DOI: 10.1016/j.meegid.2023.105439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/19/2023] [Accepted: 04/22/2023] [Indexed: 04/29/2023]
Abstract
Polyomaviruses (PyVs) are known to infect a diverse range of vertebrate host species. We report the discovery of PyVs in vesper bats (family Vespertilionidae) from sampling in Central Europe. Seven partial VP1 sequences from different PyVs were detected in samples originating from six distinct vesper bat species. Using a methodology based on conserved segments within the major capsid virus protein 1 (VP1) among known PyVs, the complete genomes of two different novel bat PyVs were determined. The genetic distances of the large T antigen coding sequences from these PyVs compared to previously-described bat PyVs exceeded 15% meriting classification as representatives of two novel PyV species: Alphapolyomavirus epserotinus and Alphapolyomavirus myodaubentonii. Phylogenetic analysis revealed that both belong to the genus Alphapolyomavirus and clustered together with high confidence in clades including other bat alphapolyomaviruses reported from China, South America and Africa. In silico protein modeling of the VP1 subunits and capsid pentamers, and electrostatic surface potential comparison of the pentamers showed significant differences between the reference template (murine polyomavirus) and the novel bat PyVs. An electrostatic potential difference pattern between the two bat VP1 pentamers was also revealed. Disaccharide molecular docking studies showed that the reference template and both bat PyVs possess the typical shallow sialic acid-binding site located between two VP1 subunits, with relevant oligosaccharide-binding affinities. The characterisation of these novel bat PyVs and the reported properties of their capsid proteins will potentially contribute in the elucidation of the conditions creating the host-pathogen restrictions associated with these viruses.
Collapse
Affiliation(s)
- András Surján
- Veterinary Medical Research Institute, Eötvös Lóránd Research Network (ELKH), Hungária krt. 21, H-1143 Budapest, Hungary.
| | - Gabriel Gonzalez
- UCD National Virus Reference Laboratory, University College Dublin, Belfield, Dublin 4, Ireland; Japan Initiative for World-leading Vaccine Research and Development Centers, Hokkaido University, Institute for Vaccine Research and Development, Hokkaido, Japan
| | - Ákos Gellért
- Veterinary Medical Research Institute, Eötvös Lóránd Research Network (ELKH), Hungária krt. 21, H-1143 Budapest, Hungary
| | | | - Michael J Carr
- UCD National Virus Reference Laboratory, University College Dublin, Belfield, Dublin 4, Ireland; International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido 001-0020, Japan
| | - Balázs Harrach
- Veterinary Medical Research Institute, Eötvös Lóránd Research Network (ELKH), Hungária krt. 21, H-1143 Budapest, Hungary
| | - Márton Z Vidovszky
- Veterinary Medical Research Institute, Eötvös Lóránd Research Network (ELKH), Hungária krt. 21, H-1143 Budapest, Hungary
| |
Collapse
|
3
|
Intaruck K, Itakura Y, Kishimoto M, Chambaro HM, Setiyono A, Handharyani E, Uemura K, Harima H, Taniguchi S, Saijo M, Kimura T, Orba Y, Sawa H, Sasaki M. Isolation and characterization of an orthoreovirus from Indonesian fruit bats. Virology 2022; 575:10-19. [PMID: 35987079 DOI: 10.1016/j.virol.2022.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 08/01/2022] [Accepted: 08/05/2022] [Indexed: 11/30/2022]
Abstract
Nelson Bay orthoreovirus (NBV) is an emerging bat-borne virus and causes respiratory tract infections in humans sporadically. Over the last two decades, several strains genetically related to NBV were isolated from humans and various bat species, predominantly in Southeast Asia (SEA), suggesting a high prevalence of the NBV species in this region. In this study, an orthoreovirus (ORV) belonging to the NBV species was isolated from Indonesian fruit bats' feces, tentatively named Paguyaman orthoreovirus (PgORV). Serological studies revealed that 81.2% (108/133) of Indonesian fruit bats sera had neutralizing antibodies against PgORV. Whole-genome sequencing and phylogenetic analysis of PgORV suggested the occurrence of past reassortments with other NBV strains isolated in SEA, indicating the dispersal and circulation of NBV species among bats in this region. Intranasal PgORV inoculation of laboratory mice caused severe pneumonia. Our study characterized PgORV's unique genetic background and highlighted the potential risk of PgORV-related diseases in Indonesia.
Collapse
Affiliation(s)
- Kittiya Intaruck
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Yukari Itakura
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Mai Kishimoto
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Herman M Chambaro
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Agus Setiyono
- Department of Veterinary Clinic, Reproduction and Pathology, Faculty of Veterinary Medicine, IPB University, Bogor, Indonesia
| | - Ekowati Handharyani
- Department of Veterinary Clinic, Reproduction and Pathology, Faculty of Veterinary Medicine, IPB University, Bogor, Indonesia
| | - Kentaro Uemura
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan; Drug Discovery and Disease Research Laboratory, Shionogi & Co., Ltd., Osaka, Japan; Laboratory of Biomolecular Science, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Hayato Harima
- Division of International Research Promotion, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Satoshi Taniguchi
- Department of Virology 1, National Institute of Infectious Diseases, Tokyo, Japan
| | - Masayuki Saijo
- Department of Virology 1, National Institute of Infectious Diseases, Tokyo, Japan
| | - Takashi Kimura
- Laboratory of Comparative Pathology, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Yasuko Orba
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan; International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Hirofumi Sawa
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan; Division of International Research Promotion, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan; International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan; One Health Research Center, Hokkaido University, Sapporo, Japan; Global Virus Network, Baltimore, MD, USA
| | - Michihito Sasaki
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan.
| |
Collapse
|
4
|
Koba R, Suzuki S, Sato G, Sato S, Suzuki K, Maruyama S, Tohya Y. Identification and characterization of a novel bat polyomavirus in Japan. Virus Genes 2020; 56:772-776. [PMID: 32816186 PMCID: PMC7439235 DOI: 10.1007/s11262-020-01789-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 08/13/2020] [Indexed: 11/28/2022]
Abstract
A novel polyomavirus (PyV) was identified in the intestinal contents of Japanese eastern bent-wing bats (Miniopterus fuliginosus) via metagenomic analysis. We subsequently sequenced the full genome of the virus, which has been tentatively named Miniopterus fuliginosus polyomavirus (MfPyV). The nucleotide sequence identity of the genome with those of other bat PyVs was less than 80%. Phylogenetic analysis revealed that MfPyV belonged to the same cluster as PyVs detected in Miniopterus schreibersii. This study has identified the presence of a novel PyV in Japanese bats and provided genetic information about the virus.
Collapse
Affiliation(s)
- Ryota Koba
- Laboratory of Veterinary Microbiology, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa, 252-0880, Japan
| | - Satori Suzuki
- Laboratory of Veterinary Microbiology, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa, 252-0880, Japan
| | - Go Sato
- Laboratory of Veterinary Microbiology, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa, 252-0880, Japan
| | - Shingo Sato
- Laboratory of Veterinary Public Health, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa, 252-0880, Japan
| | - Kazuo Suzuki
- Hikiiwa Park Center, 1629 Inari-cho, Tanabe, Wakayama, 646-0051, Japan
| | - Soichi Maruyama
- Laboratory of Veterinary Public Health, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa, 252-0880, Japan
| | - Yukinobu Tohya
- Laboratory of Veterinary Microbiology, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa, 252-0880, Japan.
| |
Collapse
|
5
|
Vidovszky MZ, Tan Z, Carr MJ, Boldogh S, Harrach B, Gonzalez G. Bat-borne polyomaviruses in Europe reveal an evolutionary history of intrahost divergence with horseshoe bats distributed across the African and Eurasian continents. J Gen Virol 2020; 101:1119-1130. [PMID: 32644038 DOI: 10.1099/jgv.0.001467] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Polyomaviruses (PyVs) are small, circular dsDNA viruses carried by diverse vertebrates, including bats. Although previous studies have reported several horseshoe bat PyVs collected in Zambia and China, it is still unclear how PyVs evolved in this group of widely dispersed mammals. Horseshoe bats (genus Rhinolophus) are distributed across the Old World and are natural reservoirs of numerous pathogenic viruses. Herein, non-invasive bat samples from European horseshoe bat species were collected in Hungary for PyV identification and novel PyVs with complete genomes were successfully recovered from two different European horseshoe bat species. Genomic and phylogenetic analysis of the Hungarian horseshoe bat PyVs supported their classification into the genera Alphapolyomavirus and Betapolyomavirus. Notably, despite the significant geographical distances between the corresponding sampling locations, Hungarian PyVs exhibited high genetic relatedness with previously described Zambian and Chinese horseshoe bat PyVs, and phylogenetically clustered with these viruses in each PyV genus. Correlation and virus-host relationship analysis suggested that these PyVs co-diverged with their European, African and Asian horseshoe bat hosts distributed on different continents during their evolutionary history. Additionally, assessment of selective pressures over the major capsid protein (VP1) of horseshoe bat PyVs showed sites under positive selection located in motifs exposed to the exterior of the capsid. In summary, our findings revealed a pattern of stable intrahost divergence of horseshoe bat PyVs with their mammalian hosts on the African and Eurasian continents over evolutionary time.
Collapse
Affiliation(s)
- Márton Z Vidovszky
- Institute for Veterinary Medical Research, Centre for Agricultural Research, H-1143 Budapest, Hungary
| | - Zhizhou Tan
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, PR China
| | - Michael J Carr
- Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, N20, W10, Kita-ku, Sapporo 001-0020, Japan
- National Virus Reference Laboratory, School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | | | - Balázs Harrach
- Institute for Veterinary Medical Research, Centre for Agricultural Research, H-1143 Budapest, Hungary
| | - Gabriel Gonzalez
- National Virus Reference Laboratory, School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
- Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, N20, W10, Kita-ku, Sapporo 001-0020, Japan
| |
Collapse
|
6
|
Extensive Genetic Diversity of Polyomaviruses in Sympatric Bat Communities: Host Switching versus Coevolution. J Virol 2020; 94:JVI.02101-19. [PMID: 32075934 DOI: 10.1128/jvi.02101-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 02/11/2020] [Indexed: 01/17/2023] Open
Abstract
Polyomaviruses (PyVs) are small DNA viruses carried by diverse vertebrates. The evolutionary relationships of viruses and hosts remain largely unclear due to very limited surveillance in sympatric communities. In order to investigate whether PyVs can transmit among different mammalian species and to identify host-switching events in the field, we conducted a systematic study of a large collection of bats (n = 1,083) from 29 sympatric communities across China which contained multiple species with frequent contact. PyVs were detected in 21 bat communities, with 192 PyVs identified in 186 bats from 15 species within 6 families representing at least 28 newly described PyVs. Surveillance results and phylogenetic analyses surprisingly revealed three interfamily PyV host-switching events in these sympatric bat communities: two distinct PyVs were identified in two bat species in restricted geographical locations, while another PyV clustered phylogenetically with PyVs carried by bats from a different host family. Virus-host relationships of all discovered PyVs were also evaluated, and no additional host-switching events were found. PyVs were identified in different horseshoe bat species in sympatric communities without observation of host-switching events, showed high genomic identities, and clustered with each other. This suggested that even for PyVs with high genomic identities in closely related host species, the potential for host switching is low. In summary, our findings revealed that PyV host switching in sympatric bat communities can occur but is limited and that host switching of bat-borne PyVs is relatively rare on the predominantly evolutionary background of codivergence with their hosts.IMPORTANCE Since the discovery of murine polyomavirus in the 1950s, polyomaviruses (PyVs) have been considered highly host restricted in mammals. Sympatric bat communities commonly contain several different bat species in an ecological niche facilitating viral transmission, and they therefore represent a model to identify host-switching events of PyVs. In this study, we screened PyVs in a large number of bats in sympatric communities from diverse habitats across China. We provide evidence that cross-species bat-borne PyV transmission exists, though is limited, and that host-switching events appear relatively rare during the evolutionary history of these viruses. PyVs with close genomic identities were also identified in different bat species without host-switching events. Based on these findings, we propose an evolutionary scheme for bat-borne PyVs in which limited host-switching events occur on the background of codivergence and lineage duplication, generating the viral genetic diversity in bats.
Collapse
|
7
|
Cho M, Kim H, Son HS. Codon usage patterns of LT-Ag genes in polyomaviruses from different host species. Virol J 2019; 16:137. [PMID: 31727090 PMCID: PMC6854729 DOI: 10.1186/s12985-019-1245-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 10/17/2019] [Indexed: 11/10/2022] Open
Abstract
Background Polyomaviruses (PyVs) have a wide range of hosts, from humans to fish, and their effects on hosts vary. The differences in the infection characteristics of PyV with respect to the host are assumed to be influenced by the biochemical function of the LT-Ag protein, which is related to the cytopathic effect and tumorigenesis mechanism via interaction with the host protein. Methods We carried out a comparative analysis of codon usage patterns of large T-antigens (LT-Ags) of PyVs isolated from various host species and their functional domains and sequence motifs. Parity rule 2 (PR2) and neutrality analysis were applied to evaluate the effects of mutation and selection pressure on codon usage bias. To investigate evolutionary relationships among PyVs, we carried out a phylogenetic analysis, and a correspondence analysis of relative synonymous codon usage (RSCU) values was performed. Results Nucleotide composition analysis using LT-Ag gene sequences showed that the GC and GC3 values of avian PyVs were higher than those of mammalian PyVs. The effective number of codon (ENC) analysis showed host-specific ENC distribution characteristics in both the LT-Ag gene and the coding sequences of its domain regions. In the avian and fish PyVs, the codon diversity was significant, whereas the mammalian PyVs tended to exhibit conservative and host-specific evolution of codon usage bias. The results of our PR2 and neutrality analysis revealed mutation bias or highly variable GC contents by showing a narrow GC12 distribution and wide GC3 distribution in all sequences. Furthermore, the calculated RSCU values revealed differences in the codon usage preference of the LT-AG gene according to the host group. A similar tendency was observed in the two functional domains used in the analysis. Conclusions Our study showed that specific domains or sequence motifs of various PyV LT-Ags have evolved so that each virus protein interacts with host cell targets. They have also adapted to thrive in specific host species and cell types. Functional domains of LT-Ag, which are known to interact with host proteins involved in cell proliferation and gene expression regulation, may provide important information, as they are significantly related to the host specificity of PyVs.
Collapse
Affiliation(s)
- Myeongji Cho
- Laboratory of Computational Biology & Bioinformatics, Institute of Public Health and Environment, Graduate School of Public Health, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Hayeon Kim
- Department of Biomedical Laboratory Science, Kyungdong University, 815 Gyeonhwon-ro, Munmak, Wonju, Gangwondo, 24695, South Korea
| | - Hyeon S Son
- Laboratory of Computational Biology & Bioinformatics, Institute of Public Health and Environment, Graduate School of Public Health, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea. .,SNU Bioinformatics Institute, Interdisciplinary Graduate Program in Bioinformatics, College of Natural Science, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea.
| |
Collapse
|
8
|
Hanadhita D, Rahma A, Prawira AY, Mayasari NLPI, Satyaningtijas AS, Hondo E, Agungpriyono S. The spleen morphophysiology of fruit bats. Anat Histol Embryol 2019; 48:315-324. [PMID: 30968443 PMCID: PMC7159459 DOI: 10.1111/ahe.12442] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 02/12/2019] [Accepted: 03/16/2019] [Indexed: 11/29/2022]
Abstract
Spleen is one of the important lymphoid organs with wide variations of morphological and physiological functions according to species. Morphology and function of the spleen in bats, which are hosts to several viral strains without exhibiting clinical symptoms, remain to be fully elucidated. This study aims to examine the spleen morphology of fruit bats associated with their physiological functions. Spleen histological observations were performed in three fruit bats species: Cynopterus titthaecheilus (n = 9), Rousettus leschenaultii (n = 3) and Pteropus vampyrus (n = 3). The spleens of these fruit bats were surrounded by a thin capsule. Red pulp consisted of splenic cord and wide vascular space filled with blood. Ellipsoids in all three studied species were found numerously and adjacent to one another forming macrophages aggregates. White pulp consisted of periarteriolar lymphoid sheaths (PALS), lymphoid follicles and marginal zone. The lymphoid follicle contained a germinal centre and a tingible body macrophage that might reflect an active immune system. The marginal zone was prominent and well developed. This study reports some differences in spleen structure of fruit bats compared to other bat species previously reported and discusses possible physiological implications of the spleen based on its morphology.
Collapse
Affiliation(s)
- Desrayni Hanadhita
- Department of Anatomy Physiology and Pharmacology, Faculty of Veterinary MedicineBogor Agricultural University (IPB)BogorIndonesia
| | - Anisa Rahma
- Department of Anatomy Physiology and Pharmacology, Faculty of Veterinary MedicineBogor Agricultural University (IPB)BogorIndonesia
| | - Andhika Yudha Prawira
- Department of Anatomy Physiology and Pharmacology, Faculty of Veterinary MedicineBogor Agricultural University (IPB)BogorIndonesia
| | - Ni Luh Putu Ika Mayasari
- Department of Animal Disease and Veterinary Public Health, Faculty of Veterinary MedicineBogor Agricultural University (IPB)BogorIndonesia
| | - Aryani Sismin Satyaningtijas
- Department of Anatomy Physiology and Pharmacology, Faculty of Veterinary MedicineBogor Agricultural University (IPB)BogorIndonesia
| | - Eiichi Hondo
- Laboratory of Animal Morphology, Graduate School of Bioagricultural SciencesNagoya UniversityNagoyaJapan
| | - Srihadi Agungpriyono
- Department of Anatomy Physiology and Pharmacology, Faculty of Veterinary MedicineBogor Agricultural University (IPB)BogorIndonesia
| |
Collapse
|
9
|
Abstract
Cancer is ubiquitous in wildlife, affecting animals from bivalves to pachyderms and cetaceans. Reports of increasing frequency demonstrate that neoplasia is associated with substantial mortality in wildlife species. Anthropogenic activities and global weather changes are shaping new geographical limitations for many species, and alterations in living niches are associated with visible examples of genetic bottlenecks, toxin exposures, oncogenic pathogens, stress and immunosuppression, which can all contribute to cancers in wild species. Nations that devote resources to monitoring the health of wildlife often do so for human-centric reasons, including for the prediction of the potential for zoonotic disease, shared contaminants, chemicals and medications, and for observing the effect of exposure from crowding and loss of habitat. Given the increasing human footprint on land and in the sea, wildlife conservation should also become a more important motivating factor. Greater attention to the patterns of the emergence of wildlife cancer is imperative because growing numbers of species are existing at the interface between humans and the environment, making wildlife sentinels for both animal and human health. Therefore, monitoring wildlife cancers could offer interesting and novel insights into potentially unique non-age-related mechanisms of carcinogenesis across species.
Collapse
Affiliation(s)
- Patricia A Pesavento
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA, USA.
| | - Dalen Agnew
- Veterinary Diagnostic Laboratory, Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA
| | - Michael K Keel
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Kevin D Woolard
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA, USA
| |
Collapse
|
10
|
Wada Y, Sasaki M, Setiyono A, Handharyani E, Rahmadani I, Taha S, Adiani S, Latief M, Kholilullah ZA, Subangkit M, Kobayashi S, Nakamura I, Kimura T, Orba Y, Sawa H. Detection of novel gammaherpesviruses from fruit bats in Indonesia. J Med Microbiol 2018; 67:415-422. [PMID: 29458559 DOI: 10.1099/jmm.0.000689] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bats are an important natural reservoir of zoonotic viral pathogens. We previously isolated an alphaherpesvirus in fruit bats in Indonesia, and here establish the presence of viruses belonging to other taxa of the family Herpesviridae. We screened the same fruit bat population with pan-herpesvirus PCR and discovered 68 sequences of novel gammaherpesvirus, designated 'megabat gammaherpesvirus' (MgGHV). A phylogenetic analysis of approximately 3.4 kbp of continuous MgGHV sequences encompassing the glycoprotein B gene and DNA polymerase gene revealed that the MgGHV sequences are distinct from those of other reported gammaherpesviruses. Further analysis suggested the existence of co-infections of herpesviruses in Indonesian fruit bats. Our findings extend our understanding of the infectious cycles of herpesviruses in bats in Indonesia and the phylogenetic diversity of the gammaherpesviruses.
Collapse
Affiliation(s)
- Yuji Wada
- Division of Molecular Pathobiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Michihito Sasaki
- Division of Molecular Pathobiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Agus Setiyono
- Laboratory of Veterinary Pathology, Faculty of Veterinary Medicine, Bogor Agricultural University, Bogor, Indonesia
| | - Ekowati Handharyani
- Laboratory of Veterinary Pathology, Faculty of Veterinary Medicine, Bogor Agricultural University, Bogor, Indonesia
| | - Ibenu Rahmadani
- Veterinary Investigation and Diagnostic Center, Bukittinggi, Indonesia
| | - Siswatiana Taha
- Faculty of Agriculture, Gorontalo State University, Gorontalo, Indonesia
| | - Sri Adiani
- Faculty of Animal Husbandry, Sam Ratulangi University, Manado, Indonesia
| | - Munira Latief
- Office of Animal Husbandry and Fisheries, Soppeng, Indonesia
| | | | - Mawar Subangkit
- Laboratory of Veterinary Pathology, Faculty of Veterinary Medicine, Bogor Agricultural University, Bogor, Indonesia
| | - Shintaro Kobayashi
- Division of Molecular Pathobiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido, Japan.,Present address: Laboratory of Public Health, Department of Preventive Veterinary Medicine, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Ichiro Nakamura
- Unit of International Cooperation, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Takashi Kimura
- Division of Molecular Pathobiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido, Japan.,Present address: Laboratory of Comparative Pathology, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Yasuko Orba
- Division of Molecular Pathobiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Hirofumi Sawa
- Division of Molecular Pathobiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido, Japan.,Global Virus Network, Baltimore, MD 21201, USA.,Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Hokkaido, Japan
| |
Collapse
|
11
|
Carr M, Gonzalez G, Sasaki M, Dool SE, Ito K, Ishii A, Hang'ombe BM, Mweene AS, Teeling EC, Hall WW, Orba Y, Sawa H. Identification of the same polyomavirus species in different African horseshoe bat species is indicative of short-range host-switching events. J Gen Virol 2017; 98:2771-2785. [PMID: 28984241 DOI: 10.1099/jgv.0.000935] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Polyomaviruses (PyVs) are considered to be highly host-specific in different mammalian species, with no well-supported evidence for host-switching events. We examined the species diversity and host specificity of PyVs in horseshoe bats (Rhinolophus spp.), a broadly distributed and highly speciose mammalian genus. We annotated six PyV genomes, comprising four new PyV species, based on pairwise identity within the large T antigen (LTAg) coding region. Phylogenetic comparisons revealed two instances of highly related PyV species, one in each of the Alphapolyomavirus and Betapolyomavirus genera, present in different horseshoe bat host species (Rhinolophus blasii and R. simulator), suggestive of short-range host-switching events. The two pairs of Rhinolophus PyVs in different horseshoe bat host species were 99.9 and 88.8 % identical with each other over their respective LTAg coding sequences and thus constitute the same virus species. To corroborate the species identification of the bat hosts, we analysed mitochondrial cytb and a large nuclear intron dataset derived from six independent and neutrally evolving loci for bat taxa of interest. Bayesian estimates of the ages of the most recent common ancestors suggested that the near-identical and more distantly related PyV species diverged approximately 9.1E4 (5E3-2.8E5) and 9.9E6 (4E6-18E6) years before the present, respectively, in contrast to the divergence times of the bat host species: 12.4E6 (10.4E6-15.4E6). Our findings provide evidence that short-range host-switching of PyVs is possible in horseshoe bats, suggesting that PyV transmission between closely related mammalian species can occur.
Collapse
Affiliation(s)
- Michael Carr
- Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, N20, W10, Kita-ku, Sapporo 001-0020, Japan.,National Virus Reference Laboratory, University College Dublin, Belfield, Dublin 4, Ireland
| | - Gabriel Gonzalez
- Division of Bioinformatics, Research Center for Zoonosis Control, Hokkaido University, N20, W10, Kita-ku, Sapporo 001-0020, Japan
| | - Michihito Sasaki
- Division of Molecular Pathobiology, Research Center for Zoonosis Control, Hokkaido University, N20, W10, Kita-ku, Sapporo 001-0020, Japan
| | - Serena E Dool
- Zoological Institute and Museum, University of Greifswald, Anklamer Street 20, D-17489 Greifswald, Germany
| | - Kimihito Ito
- Division of Bioinformatics, Research Center for Zoonosis Control, Hokkaido University, N20, W10, Kita-ku, Sapporo 001-0020, Japan
| | - Akihiro Ishii
- Hokudai Center for Zoonosis Control in Zambia, Research Center for Zoonosis Control, Hokkaido University, Lusaka, Zambia
| | - Bernard M Hang'ombe
- Department of Para-clinical Studies, School of Veterinary Medicine, University of Zambia, Lusaka, Zambia
| | - Aaron S Mweene
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka, Zambia
| | - Emma C Teeling
- School of Biology and Environmental Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - William W Hall
- Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, N20, W10, Kita-ku, Sapporo 001-0020, Japan.,Global Virus Network, Baltimore, MD 21201, USA
| | - Yasuko Orba
- Division of Molecular Pathobiology, Research Center for Zoonosis Control, Hokkaido University, N20, W10, Kita-ku, Sapporo 001-0020, Japan
| | - Hirofumi Sawa
- Global Virus Network, Baltimore, MD 21201, USA.,Division of Molecular Pathobiology, Research Center for Zoonosis Control, Hokkaido University, N20, W10, Kita-ku, Sapporo 001-0020, Japan.,Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka, Zambia.,Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, N20, W10, Kita-ku, Sapporo 001-0020, Japan
| |
Collapse
|
12
|
Biology, evolution, and medical importance of polyomaviruses: An update. INFECTION GENETICS AND EVOLUTION 2017. [DOI: 10.1016/j.meegid.2017.06.011] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
13
|
Carr M, Gonzalez G, Sasaki M, Ito K, Ishii A, Hang’ombe BM, Mweene AS, Orba Y, Sawa H. Discovery of African bat polyomaviruses and infrequent recombination in the large T antigen in the Polyomaviridae. J Gen Virol 2017; 98:726-738. [DOI: 10.1099/jgv.0.000737] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Affiliation(s)
- Michael Carr
- Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, N20, W10, Kita-ku, Sapporo 001-0020, Japan
- National Virus Reference Laboratory, University College Dublin, Belfield, Dublin 4, Ireland
| | - Gabriel Gonzalez
- Division of Bioinformatics, Research Center for Zoonosis Control, Hokkaido University, N20, W10, Kita-ku, Sapporo 001-0020, Japan
| | - Michihito Sasaki
- Division of Molecular Pathobiology, Research Center for Zoonosis Control, Hokkaido University, N20, W10, Kita-ku, Sapporo 001-0020, Japan
| | - Kimihito Ito
- Division of Bioinformatics, Research Center for Zoonosis Control, Hokkaido University, N20, W10, Kita-ku, Sapporo 001-0020, Japan
| | - Akihiro Ishii
- Hokudai Center for Zoonosis Control in Zambia, Research Center for Zoonosis Control, Hokkaido University, Lusaka, Zambia
| | - Bernard M Hang’ombe
- Department of Para-clinical Studies, School of Veterinary Medicine, University of Zambia, Lusaka, Zambia
| | - Aaron S Mweene
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka, Zambia
| | - Yasuko Orba
- Division of Molecular Pathobiology, Research Center for Zoonosis Control, Hokkaido University, N20, W10, Kita-ku, Sapporo 001-0020, Japan
| | - Hirofumi Sawa
- Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, N20, W10, Kita-ku, Sapporo 001-0020, Japan
- Global Virus Network, Baltimore, Maryland 21201, USA
- Division of Molecular Pathobiology, Research Center for Zoonosis Control, Hokkaido University, N20, W10, Kita-ku, Sapporo 001-0020, Japan
| |
Collapse
|
14
|
[Discovery of DNA viruses in wildlife in Zambia and Indonesia]. Uirusu 2017; 67:151-160. [PMID: 30369539 DOI: 10.2222/jsv.67.151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Zoonoses originate from pathogens harbored in domestic and wild animals and therefore it is likely impossible to completely eradicate zoonotic diseases. For pre-emptive measures to attempt to predict the emergence of zoonosis outbreaks and the prevention of future epidemics and pandemics, it is imperative to identify natural host animals carrying potential pathogens and elucidate the routes of pathogen transmission into the human population. Our research team is conducting epidemiological research studies in Zambia and Indonesia for the control of viral zoonotic diseases. In this review, we present the research findings, including the discovery of orthopoxviruses and polyomaviruses in wildlife in Zambia and the identification of herpesviruses in bats in Indonesia among our activities.
Collapse
|
15
|
Divergent bufavirus harboured in megabats represents a new lineage of parvoviruses. Sci Rep 2016; 6:24257. [PMID: 27113297 PMCID: PMC4845017 DOI: 10.1038/srep24257] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 03/23/2016] [Indexed: 11/08/2022] Open
Abstract
Bufavirus is a recently recognized member of the genus Protoparvovirus in the subfamily Parvovirinae. It has been reported that human bufavirus was detected predominantly in patients with diarrhoea in several countries. However, little is known about bufavirus or its close relatives in nonhuman mammals. In this study, we performed nested-PCR screening and identified bufavirus from 12 megabats of Pteropus spp. in Indonesia. Furthermore, we determined nearly the full genome sequence of a novel megabat-borne bufavirus, tentatively named megabat bufavirus 1. Phylogenetic analyses showed that megabat bufavirus 1 clustered with known protoparvoviruses, including human bufavirus but represented a distinct lineage of bufavirus. Our analyses also inferred phylogenetic relationships among animal-borne bufaviruses recently reported by other studies. Recombination analyses suggested that the most common recent ancestor of megabat bufavirus 1 might have arisen from multiple genetic recombination events. These results characterized megabat bufavirus 1 as the first protoparvovirus discovered from megabats and indicates the high genetic divergence of bufavirus.
Collapse
|
16
|
Nainys J, Timinskas A, Schneider J, Ulrich RG, Gedvilaite A. Identification of Two Novel Members of the Tentative Genus Wukipolyomavirus in Wild Rodents. PLoS One 2015; 10:e0140916. [PMID: 26474048 PMCID: PMC4608572 DOI: 10.1371/journal.pone.0140916] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 10/01/2015] [Indexed: 11/19/2022] Open
Abstract
Two novel polyomaviruses (PyVs) were identified in kidney and chest-cavity fluid samples of wild bank voles (Myodes glareolus) and common voles (Microtus arvalis) collected in Germany. All cloned and sequenced genomes had the typical PyV genome organization, including putative open reading frames for early regulatory proteins large T antigen and small T antigen on one strand and for structural late proteins (VP1, VP2 and VP3) on the other strand. Virus-like particles (VLPs) were generated by yeast expression of the VP1 protein of both PyVs. VLP-based ELISA and large T-antigen sequence-targeted polymerase-chain reaction investigations demonstrated signs of infection of these novel PyVs in about 42% of bank voles and 18% of common voles. In most cases only viral DNA, but not VP1-specific antibodies were detected. In additional animals exclusively VP1-specific antibodies, but no viral DNA was detected, indicative for virus clearance. Phylogenetic and clustering analysis including all known PyV genomes placed novel bank vole and common vole PyVs amongst members of the tentative Wukipolymavirus genus. The other known four rodent PyVs, Murine PyV and Hamster PyV, and Murine pneumotropic virus and Mastomys PyV belong to different phylogenetic clades, tentatively named Orthopolyomavirus I and Orthopolyomavirus II, respectively. In conclusion, the finding of novel vole-borne PyVs may suggest an evolutionary origin of ancient wukipolyomaviruses in rodents and may offer the possibility to develop a vole-based animal model for human wukipolyomaviruses.
Collapse
Affiliation(s)
- Juozas Nainys
- Department of Eukaryote Genetic Engineering, Institute of Biotechnology, Vilnius University, Vilnius, Lithuania
| | - Albertas Timinskas
- Department of Eukaryote Genetic Engineering, Institute of Biotechnology, Vilnius University, Vilnius, Lithuania
| | - Julia Schneider
- Institute for Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Rainer G. Ulrich
- Institute for Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Alma Gedvilaite
- Department of Eukaryote Genetic Engineering, Institute of Biotechnology, Vilnius University, Vilnius, Lithuania
- * E-mail:
| |
Collapse
|