1
|
Pires ECF, da Silva FP, Schallenberger K, Hermann BS, Mallmann L, Moura WS, Ascêncio SD, Barbosa RDS, Soares IM, Fleck JD, de Oliveira EE, Smagghe G, Ribeiro BM, Aguiar RWDS. Antiviral Potential of Chiococca alba (L.) Hitchc. Plant Extracts Against Chikungunya and Mayaro Viruses. Int J Mol Sci 2024; 25:11397. [PMID: 39518948 PMCID: PMC11546558 DOI: 10.3390/ijms252111397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/12/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024] Open
Abstract
Chikungunya and Mayaro fevers are viral infectious diseases characterized by fever and arthralgia, for which there are currently no effective vaccines or treatments. The urgent need for novel antiviral agents against Chikungunya virus (CHIKV) and Mayaro virus (MAYV) has led to interest in plant-based compounds that can disrupt the viral replication cycle. Chiococca alba (L.) Hitchc., a Neotropical plant traditionally used by Yucatec Maya healers as an antipyretic and antirheumatic, may hold potential as a source of antiviral agents. This study aimed to evaluate the antiviral potential of C. alba methanolic extracts (CAH21 and CAH24) against CHIKV and MAYV through preliminary in vitro and in silico analyses. The cytotoxicity of two methanolic extracts from C. alba roots was assessed in Vero cells using the neutral red assay, and their viral activity was determined via plaque assay post-treatment. Given the observed antiviral effects, we used computational predictions to explore interactions between the multifunctional nsP2 proteases and secondary metabolites identified in C. alba extracts. The metabolites were identified using high-performance liquid chromatography (HPLC) and gas chromatography-mass spectrometry (GC-MS). Phytochemical analysis revealed the presence of flavonoids, coumarins, and phenolic acids in the C. alba extracts. In vitro assays demonstrated that both extracts inhibited over 70% of activity against CHIKV and MAYV at a concentration of 60 µg/mL. In silico predictions suggested that the flavonoids naringin and vitexin had the highest affinity for the nsP2 proteases of CHIKV and MAYV, indicating their potential as viral inhibitors. Our findings revealed that C. alba extract represents a promising source of novel antiviral compounds.
Collapse
Affiliation(s)
- Ellen Caroline Feitoza Pires
- Department of Biotechnology, Molecular Biology Laboratory, Federal University of Tocantins, Gurupi 77410-570, Brazil; (E.C.F.P.); (R.W.d.S.A.)
- Department of Cell Biology, Institute of Biology, University of Brasília, Brasília 70910-900, Brazil
| | - Francini Pereira da Silva
- Institute of Health Sciences, Molecular Microbiology Laboratory, Feevale University, Novo Hamburgo 93525-075, Brazil (J.D.F.)
| | - Karoline Schallenberger
- Institute of Health Sciences, Molecular Microbiology Laboratory, Feevale University, Novo Hamburgo 93525-075, Brazil (J.D.F.)
| | - Bruna Saraiva Hermann
- Institute of Health Sciences, Molecular Microbiology Laboratory, Feevale University, Novo Hamburgo 93525-075, Brazil (J.D.F.)
| | - Larissa Mallmann
- Institute of Health Sciences, Molecular Microbiology Laboratory, Feevale University, Novo Hamburgo 93525-075, Brazil (J.D.F.)
| | - Wellington Souza Moura
- Department of Biotechnology Biodiversity and Graduate School of Biotechnology of Amazônia (Bionorte), Natural Products Laboratory, Federal University of Tocantins, Gurupi 77410-570, Brazil; (W.S.M.); (S.D.A.); (R.d.S.B.)
| | - Sergio Donizeti Ascêncio
- Department of Biotechnology Biodiversity and Graduate School of Biotechnology of Amazônia (Bionorte), Natural Products Laboratory, Federal University of Tocantins, Gurupi 77410-570, Brazil; (W.S.M.); (S.D.A.); (R.d.S.B.)
| | - Robson dos Santos Barbosa
- Department of Biotechnology Biodiversity and Graduate School of Biotechnology of Amazônia (Bionorte), Natural Products Laboratory, Federal University of Tocantins, Gurupi 77410-570, Brazil; (W.S.M.); (S.D.A.); (R.d.S.B.)
| | - Ilsamar Mendes Soares
- Department of Biotechnology Biodiversity and Graduate School of Biotechnology of Amazônia (Bionorte), Natural Products Laboratory, Federal University of Tocantins, Gurupi 77410-570, Brazil; (W.S.M.); (S.D.A.); (R.d.S.B.)
| | - Juliane Deise Fleck
- Institute of Health Sciences, Molecular Microbiology Laboratory, Feevale University, Novo Hamburgo 93525-075, Brazil (J.D.F.)
| | | | - Guy Smagghe
- Department of Plants and Crops, Ghent University, 9000 Ghent, Belgium
- Institute of Entomology, Guizhou University, Guiyang 550025, China
- Department of Biology, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Bergmann Morais Ribeiro
- Department of Cell Biology, Institute of Biology, University of Brasília, Brasília 70910-900, Brazil
| | - Raimundo Wagner de Souza Aguiar
- Department of Biotechnology, Molecular Biology Laboratory, Federal University of Tocantins, Gurupi 77410-570, Brazil; (E.C.F.P.); (R.W.d.S.A.)
| |
Collapse
|
2
|
Lopes RP, Ferreira FL, Faria de Sousa G, Cruz Nizer WSD, Magalhães CLDB, Ferreira JMS, Tótola AH, Duarte LP, de Magalhães JC. Activity of extracts and terpenoids from Tontelea micrantha (Mart. ex Schult.) A.C.Sm. (Celastraceae) against pathogenic bacteria. Nat Prod Res 2024:1-10. [PMID: 38328949 DOI: 10.1080/14786419.2024.2309554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 01/18/2024] [Indexed: 02/09/2024]
Abstract
The pharmacological properties of plant extracts and phytochemicals, such as flavonoids and terpenoids, remain of great interest. In this work, the effect of extracts, friedelan-3,21-dione, and 3β-O-D-glucosyl-sitosterol isolated from Tontelea micrantha roots was evaluated against Staphylococcus aureus, Bacillus subtilis, Klebsiella pneumoniae, Klebsiella oxytoca and Escherichia coli. The antibacterial activity was evaluated by the minimum inhibitory and bactericidal concentrations (MIC and MBC, respectively), and the synergistic effect was assessed by the Checkerboard assay. Furthermore, the cytotoxicity of the plant-derived compounds against Vero cells was measured by the 3-(4 5-dimethylthiazol-2-yl)-2 5-diphenyltetrazolium bromide (MTT) method. The biological effects of the isolated compounds were predicted using the PASS online software. The chloroform and hexane extracts of T. micrantha roots showed promising antibacterial effect, with MIC in the range of 4.8-78.0 µg/mL. Further analyses showed that these compounds do not affect the integrity of the membrane. The combination with streptomycin strongly reduced the MIC of this antibiotic and extracts. The extracts were highly toxic to Vero cells, and no cytotoxicity was detected for the two terpenoids isolated from them (i.e. friedelan-3,21-dione and 3β-O-D-glucosyl-sitosterol; CC50 > 1000 μg/mL). Therefore, extracts obtained from T. micrantha roots significantly inhibited bacterial growth and are considered promising agents against pathogenic bacteria. The cytotoxicity results were very relevant and can be tested in bioassays.
Collapse
Affiliation(s)
- Ranieli Paiva Lopes
- Department of Chemistry, Biotechnology, and Bioprocess Engineering, Universidade Federal de São João del-Rei, São João del-Rei, Brazil
| | | | | | | | | | | | - Antônio Helvécio Tótola
- Department of Chemistry, Biotechnology, and Bioprocess Engineering, Universidade Federal de São João del-Rei, São João del-Rei, Brazil
| | - Lucienir Pains Duarte
- Department of Chemistry, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - José Carlos de Magalhães
- Department of Chemistry, Biotechnology, and Bioprocess Engineering, Universidade Federal de São João del-Rei, São João del-Rei, Brazil
| |
Collapse
|
3
|
Nunes DADF, Lopes GFM, Nizer WSDC, Aguilar MGD, Santos FRDS, Sousa GFD, Ferraz AC, Duarte LP, Brandão GC, Vieira-Filho SA, Magalhães CLDB, Ferreira JMS, de Magalhães JC. Virucidal antiviral activity of Maytenus quadrangulata extract against Mayaro virus: Evidence for the presence of catechins. JOURNAL OF ETHNOPHARMACOLOGY 2023; 311:116436. [PMID: 37003399 DOI: 10.1016/j.jep.2023.116436] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/14/2023] [Accepted: 03/24/2023] [Indexed: 06/19/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Mayaro virus (MAYV) is an arbovirus endemic to the Amazon region, which comprises the states of the North and Midwest region of Brazil and encompasses the largest tropical forest in the world, the Amazon Forest. The confirmation of its potential transmission by Aedes aegypti and recent cases in Brazil, mainly in large centers in the northern region, led to the classification of Mayaro fever as an emerging disease. Traditional medicine is commonly used to treat various diseases, mainly by local riverside populations. Some species of the genus Maytenus, which have similar morphologies, are popularly used to treat infections and inflammations. In this context, our research group has studied and confirmed the antiviral activity of several plant-derived compounds. However, several species of this same genus have not been studied and therefore deserve attention. AIM OF THE STUDY This study aimed to demonstrate the effects of ethyl acetate extracts of leaves (LAE) and branches (TAE) of Maytenus quadrangulata against MAYV. MATERIALS AND METHODS Mammalian cells (Vero cells) were used to evaluate the cytotoxicity of the extracts. After cell infection by MAYV and the treatment with the extracts, we evaluated the selectivity index (SI), the virucidal effect, viral adsorption and internalization, and the effect on viral gene expression. The antiviral action was confirmed by quantifying the viral genome using RT-qPCR and by analyzing the effect on virus yield in infected cells. The treatment was performed based on the effective concentration protective for 50% of the infected cells (EC50). RESULTS The leaves (LAE; EC50 12.0 μg/mL) and branches (TAE; EC50 101.0 μg/mL) extracts showed significative selectivity against the virus, with SI values of 79.21 and 9.91, respectively, which were considered safe. Phytochemical analysis revealed that the antiviral action was associated with the presence of catechins, mainly in LAE. This extract was chosen for the subsequent studies since it reduced the viral cytopathic effect and virus production, even at high viral loads [MOI (multiplicity of infection) 1 and 5]. The effects of LAE resulted in a marked reduction in viral gene expression. The viral title was drastically reduced when LAE was added to the virus before infection or during replication stages, reducing virus production up to 5-log units compared to infected and untreated cells. CONCLUSION Through kinetic replication, MAYV was not detected in Vero cells treated with LAE throughout the viral cycle. The virucidal effect of LAE inactivates the viral particle and can intercept the virus at the end of the cycle when it gains the extracellular environment. Therefore, LAE is a promising source of antiviral agents.
Collapse
Affiliation(s)
| | | | | | - Mariana G de Aguilar
- Department of Chemistry, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | | | - Ariane Coelho Ferraz
- Department of Biological Sciences, Universidade Federal de Ouro Preto, MG, Brazil
| | - Lucienir Pains Duarte
- Department of Chemistry, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | | | | | | | - José Carlos de Magalhães
- Laboratory of Virology and Cellular Technology, Department of Chemistry, Biotechnology, and Bioprocess Engineering, Universidade Federal de São João del-Rei, Ouro Branco, MG, Brazil.
| |
Collapse
|
4
|
Paschoalino M, Marinho MDS, Santos IA, Grosche VR, Martins DOS, Rosa RB, Jardim ACG. An update on the development of antiviral against Mayaro virus: from molecules to potential viral targets. Arch Microbiol 2023; 205:106. [PMID: 36881172 PMCID: PMC9990066 DOI: 10.1007/s00203-023-03441-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/16/2023] [Accepted: 02/15/2023] [Indexed: 03/08/2023]
Abstract
Mayaro virus (MAYV), first isolated in 1954 in Trinidad and Tobago islands, is the causative agent of Mayaro fever, a disease characterized by fever, rashes, headaches, myalgia, and arthralgia. The infection can progress to a chronic condition in over 50% of cases, with persistent arthralgia, which can lead to the disability of the infected individuals. MAYV is mainly transmitted through the bite of the female Haemagogus spp. mosquito genus. However, studies demonstrate that Aedes aegypti is also a vector, contributing to the spread of MAYV beyond endemic areas, given the vast geographical distribution of the mosquito. Besides, the similarity of antigenic sites with other Alphavirus complicates the diagnoses of MAYV, contributing to underreporting of the disease. Nowadays, there are no antiviral drugs available to treat infected patients, being the clinical management based on analgesics and non-steroidal anti-inflammatory drugs. In this context, this review aims to summarize compounds that have demonstrated antiviral activity against MAYV in vitro, as well as discuss the potentiality of viral proteins as targets for the development of antiviral drugs against MAYV. Finally, through rationalization of the data presented herein, we wish to encourage further research encompassing these compounds as potential anti-MAYV drug candidates.
Collapse
Affiliation(s)
- Marina Paschoalino
- Institute of Biomedical Science, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
| | | | - Igor Andrade Santos
- Institute of Biomedical Science, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - Victória Riquena Grosche
- Institute of Biomedical Science, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil.,Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University, São José do Rio Preto, São Paulo, Brazil
| | - Daniel Oliveira Silva Martins
- Institute of Biomedical Science, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil.,Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University, São José do Rio Preto, São Paulo, Brazil
| | - Rafael Borges Rosa
- Institute Aggeu Magalhães, Fiocruz Pernambuco, Recife, Pernambuco, Brazil.,Rodents Animal Facilities Complex, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - Ana Carolina Gomes Jardim
- Institute of Biomedical Science, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil. .,Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University, São José do Rio Preto, São Paulo, Brazil.
| |
Collapse
|
5
|
Lingwan M, Shagun S, Pahwa F, Kumar A, Verma DK, Pant Y, Kamatam LVK, Kumari B, Nanda RK, Sunil S, Masakapalli SK. Phytochemical rich Himalayan Rhododendron arboreum petals inhibit SARS-CoV-2 infection in vitro. J Biomol Struct Dyn 2023; 41:1403-1413. [PMID: 34961411 DOI: 10.1080/07391102.2021.2021287] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Phytochemicals with potential to competitively bind to the host receptors or inhibit SARS-CoV-2 replication, may prove to be useful as adjunct therapeutics for COVID-19. We profiled and investigated the phytochemicals of Rhododendron arboreum petals sourced from Himalayan flora, undertook in vitro studies and found it as a promising candidate against SARS-CoV-2. The phytochemicals were reported in various scientific investigations to act against a range of virus in vitro and in vivo, which prompted us to test against SARS-CoV-2. In vitro assays of R. arboreum petals hot aqueous extract confirmed dose dependent reduction in SARS-CoV-2 viral load in infected Vero E6 cells (80% inhibition at 1 mg/ml; IC50 = 173 µg/ml) and phytochemicals profiled were subjected to molecular docking studies against SARS CoV-2 target proteins. The molecules 5-O-Feruloyl-quinic acid, 3-Caffeoyl-quinic acid, 5-O-Coumaroyl-D-quinic acid, Epicatechin and Catechin showed promising binding affinity with SARS-CoV-2 Main protease (MPro; PDB ID: 6LU7; responsible for viral replication) and Human Angiotensin Converting Enzyme-2 (ACE2; PDB ID: 1R4L; mediate viral entry in the host). Molecular dynamics (MD) simulation of 5-O-Feruloyl-quinic acid, an abundant molecule in the extract complexed with the target proteins showed stable interactions. Taken together, the phytochemical profiling, in silico analysis and in vitro anti-viral assay revealed that the petals extract act upon MPro and may be inhibiting SARS-CoV-2 replication. This is the first report highlighting R. arboreum petals as a reservoir of antiviral phytochemicals with potential anti-SARS-CoV-2 activity using an in vitro system.
Collapse
Affiliation(s)
- Maneesh Lingwan
- BioX Centre, School of Basic Sciences, Indian Institute of Technology Mandi, Kamand, Himachal Pradesh, India
| | - Shagun Shagun
- BioX Centre, School of Basic Sciences, Indian Institute of Technology Mandi, Kamand, Himachal Pradesh, India
| | - Falak Pahwa
- Translational Health Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Ankit Kumar
- Vector Borne Disease Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Dileep Kumar Verma
- Vector Borne Disease Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Yogesh Pant
- BioX Centre, School of Basic Sciences, Indian Institute of Technology Mandi, Kamand, Himachal Pradesh, India
| | - Lingarao V K Kamatam
- BioX Centre, School of Basic Sciences, Indian Institute of Technology Mandi, Kamand, Himachal Pradesh, India
| | - Bandna Kumari
- BioX Centre, School of Basic Sciences, Indian Institute of Technology Mandi, Kamand, Himachal Pradesh, India
| | - Ranjan Kumar Nanda
- Translational Health Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Sujatha Sunil
- Vector Borne Disease Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Shyam Kumar Masakapalli
- BioX Centre, School of Basic Sciences, Indian Institute of Technology Mandi, Kamand, Himachal Pradesh, India
| |
Collapse
|
6
|
Lopes GFM, Lima WG, Santos FRS, Nunes DAF, Passos MJF, Fernandes SOA, de Magalhães JC, Dos Santos LL, Ferreira JMS. Anti-Mayaro virus activity of a hydroethanolic extract from Fridericia chica (Bonpl.) L. G. Lohmann leaves. JOURNAL OF ETHNOPHARMACOLOGY 2022; 299:115685. [PMID: 36067840 DOI: 10.1016/j.jep.2022.115685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/19/2022] [Accepted: 08/28/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Mayaro fever is a neglected tropical disease. The region of the most significant circulation of the Mayaro virus (MAYV) is the Amazon rainforest, situated in remote areas that are difficult to access and where medicine is scarce. Thus, the regional population uses plants as an alternative for the treatment of various diseases. Fridericia chica is an endemic plant of tropical regions used in traditional medicine to treat fever, malaise, inflammation, and infectious diseases such as hepatitis B. However, its antiviral activity is poorly understood. AIM OF THE STUDY This study aimed to investigate the anti-MAYV activity of the hydroethanolic extract of the leaves of Fridericia chica (HEFc) in mammalian cells and its possible mechanism of action. MATERIALS AND METHODS The antiviral activity of HEFc was studied using Vero cell lines against MAYV. The cytotoxicity and antiviral activity of the extract were evaluated by the 3-(4, 5- dimethyl-2-thiazolyl)-2, 5-diphenyl-2H-tetrazolium bromide (MTT) assay. The overall antiviral activity was confirmed by the plaque forming units (PFU) method. Then, the effects of HEFc on MAYV multiplication kinetics, virus adsorption, penetration, and post-penetration, and its virucidal activity were determined in Vero cells using standard experimental procedures. RESULTS HEFc exerted a effect against viral infection in Vero cells at a non-cytotoxic concentration, and no virion was detected in the supernatant in a dose-dependent and selective manner. HEFc inhibited MAYV in the early and late stages of the viral multiplication cycle. The extract showed significant virucidal activity at low concentrations and did not affect adsorption or viral internalization stages. In addition, HEFc reduced virions at all post-infection times investigated. CONCLUSIONS HEFc has good antiviral activity against MAYV, acting directly on the viral particles. This plant extract possesses an excellent and promising potential for developing effective herbal antiviral drugs.
Collapse
Affiliation(s)
- Gabriela F M Lopes
- Medical Microbiology Laboratory, Universidade Federal de São João del-Rei (UFSJ), Divinópolis, Minas Gerais, Brazil; Molecular Biology Laboratory, Universidade Federal de São João Del Rei (UFSJ), Divinópolis, Minas Gerais, Brazil.
| | - Willam G Lima
- Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Felipe R S Santos
- Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Damiana A F Nunes
- Medical Microbiology Laboratory, Universidade Federal de São João del-Rei (UFSJ), Divinópolis, Minas Gerais, Brazil
| | - Maria J F Passos
- Multi-User Analytical Center, Universidade Federal de São João del-Rei (UFSJ), Divinópolis, Minas Gerais, Brazil
| | - Simone O A Fernandes
- Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - José C de Magalhães
- Laboratory of Virology and Cell Technology, Universidade Federal de São João del-Rei (UFSJ), Ouro Branco, Minas Gerais, Brazil
| | - Luciana L Dos Santos
- Molecular Biology Laboratory, Universidade Federal de São João Del Rei (UFSJ), Divinópolis, Minas Gerais, Brazil
| | - Jaqueline M S Ferreira
- Medical Microbiology Laboratory, Universidade Federal de São João del-Rei (UFSJ), Divinópolis, Minas Gerais, Brazil
| |
Collapse
|
7
|
Andreolla AP, Borges AA, Bordignon J, Duarte dos Santos CN. Mayaro Virus: The State-of-the-Art for Antiviral Drug Development. Viruses 2022; 14:1787. [PMID: 36016409 PMCID: PMC9415492 DOI: 10.3390/v14081787] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 12/18/2022] Open
Abstract
Mayaro virus is an emerging arbovirus that causes nonspecific febrile illness or arthralgia syndromes similar to the Chikungunya virus, a virus closely related from the Togaviridae family. MAYV outbreaks occur more frequently in the northern and central-western states of Brazil; however, in recent years, virus circulation has been spreading to other regions. Due to the undifferentiated initial clinical symptoms between MAYV and other endemic pathogenic arboviruses with geographic overlapping, identification of patients infected by MAYV might be underreported. Additionally, the lack of specific prophylactic approaches or antiviral drugs limits the pharmacological management of patients to treat symptoms like pain and inflammation, as is the case with most pathogenic alphaviruses. In this context, this review aims to present the state-of-the-art regarding the screening and development of compounds/molecules which may present anti-MAYV activity and infection inhibition.
Collapse
Affiliation(s)
- Ana Paula Andreolla
- Laboratório de Virologia Molecular, Instituto Carlos Chagas, ICC/Fiocruz, Curitiba 81350-010, PR, Brazil
- Departamento de Biologia Celular e Molecular, Universidade Federal do Paraná, Curitiba 81530-900, PR, Brazil
| | - Alessandra Abel Borges
- Laboratório de Pesquisas em Virologia e Imunologia, Universidade Federal de Alagoas, Maceió 57072-900, AL, Brazil
| | - Juliano Bordignon
- Laboratório de Virologia Molecular, Instituto Carlos Chagas, ICC/Fiocruz, Curitiba 81350-010, PR, Brazil
| | | |
Collapse
|
8
|
Camargo KC, de Aguilar MG, Moraes ARA, de Castro RG, Szczerbowski D, Miguel ELM, Oliveira LR, Sousa GF, Vidal DM, Duarte LP. Pentacyclic Triterpenoids Isolated from Celastraceae: A Focus in the 13C-NMR Data. Molecules 2022; 27:molecules27030959. [PMID: 35164224 PMCID: PMC8838773 DOI: 10.3390/molecules27030959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 12/10/2022] Open
Abstract
The Celastraceae family comprises about 96 genera and more than 1.350 species, occurring mainly in tropical and subtropical regions of the world. The species of this family stand out as important plant sources of triterpenes, both in terms of abundance and structural diversity. Triterpenoids found in Celastraceae species display mainly lupane, ursane, oleanane, and friedelane skeletons, exhibiting a wide range of biological activities such as antiviral, antimicrobial, analgesic, anti-inflammatory, and cytotoxic against various tumor cell lines. This review aimed to document all triterpenes isolated from different botanical parts of species of the Celastraceae family covering 2001 to 2021. Furthermore, a compilation of their 13C-NMR data was carried out to help characterize compounds in future investigations. A total of 504 pentacyclic triterpenes were compiled and distinguished as 29 aromatic, 50 dimers, 103 friedelanes, 89 lupanes, 102 oleananes, 22 quinonemethides, 88 ursanes and 21 classified as others.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Grasiely Faria Sousa
- Correspondence: (G.F.S.); (D.M.V.); (L.P.D.);Tel.: +55-31-3409-5728 (G.F.S.); +55-31-3409-5750 (D.M.V.); +55-31-3409-5722 (L.P.D.)
| | - Diogo Montes Vidal
- Correspondence: (G.F.S.); (D.M.V.); (L.P.D.);Tel.: +55-31-3409-5728 (G.F.S.); +55-31-3409-5750 (D.M.V.); +55-31-3409-5722 (L.P.D.)
| | - Lucienir Pains Duarte
- Correspondence: (G.F.S.); (D.M.V.); (L.P.D.);Tel.: +55-31-3409-5728 (G.F.S.); +55-31-3409-5750 (D.M.V.); +55-31-3409-5722 (L.P.D.)
| |
Collapse
|
9
|
Park Y, Jung W, Yang E, Nam KY, Bong WR, Kim J, Kim KY, Lee S, Cho JY, Hong JH, Kim J. Evaluation of food effects on the pharmacokinetics of Pelargonium sidoides and Coptis with each bioactive compound berberine and epicatechin after a single oral dose of an expectorant and antitussive agent UI026 in healthy subjects. Transl Clin Pharmacol 2022; 30:49-56. [PMID: 35419311 PMCID: PMC8979756 DOI: 10.12793/tcp.2022.30.e3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 02/21/2022] [Accepted: 02/25/2022] [Indexed: 11/19/2022] Open
Abstract
UI026 is an expectorant and antitussive agent which is a new combination of Pelargonium sidoides extract and Coptis extract. The bioactive compounds of Pelargonium sidoides and Coptis extracts were identified as epicatechin and berberine, respectively. This study evaluated the effect of food on the pharmacokinetics (PKs) and safety of UI026. A randomized, open-label, single-dose, 2-treatment, parallel study in 12 healthy male subjects was performed. Subjects received a single oral dose of UI026 (27 mL of syrup) under a fed or fasted condition according to their randomly assigned treatment. Blood samples for the PK analysis were obtained up to 24 hours post-dose for berberine and 12 hours post-dose for epicatechin. The PK parameters were calculated by non-compartmental analysis. In the fed condition, the mean maximum plasma concentration (Cmax) and mean area under the plasma concentration-time curve from time zero to the last observed time point (AUClast) for berberine were approximately 33% and 67% lower, respectively, compared with the fasted condition, both showing statistically significant difference. For epicatechin, the mean Cmax and mean AUClast were about 29% and 45% lower, respectively, compared to the fasting condition, neither of which showed a statistically significant difference. There were no drug-related adverse events. This finding suggests that food affects the systemic exposure and bioavailability of berberine and epicatechin.
Collapse
Affiliation(s)
- Yewon Park
- Department of Clinical Pharmacology and Therapeutics, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Korea
| | - WonTae Jung
- Global R&D, Korea United Pharm., Inc., Seoul 06116, Korea
| | - Eunsol Yang
- Department of Clinical Pharmacology and Therapeutics, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Kyu-Yeol Nam
- Global R&D, Korea United Pharm., Inc., Seoul 06116, Korea
| | - Woo-Ri Bong
- Global R&D, Korea United Pharm., Inc., Seoul 06116, Korea
| | | | | | - SeungHwan Lee
- Department of Clinical Pharmacology and Therapeutics, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Joo-Youn Cho
- Department of Clinical Pharmacology and Therapeutics, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Jang-Hee Hong
- Chungnam National University Hospital, Chungnam National University College of Medicine, Daejeon 35015, Korea
| | - JaeWoo Kim
- H Plus Yangji Hospital, Seoul 08779, Korea
| |
Collapse
|
10
|
Al-Shuhaib MBS, Hashim HO, Al-Shuhaib JMB. Epicatechin is a promising novel inhibitor of SARS-CoV-2 entry by disrupting interactions between angiotensin-converting enzyme type 2 and the viral receptor binding domain: A computational/simulation study. Comput Biol Med 2021; 141:105155. [PMID: 34942397 PMCID: PMC8679518 DOI: 10.1016/j.compbiomed.2021.105155] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/15/2021] [Accepted: 12/15/2021] [Indexed: 01/02/2023]
Abstract
Angiotensin-converting enzyme 2 (ACE2) is the first target of SARS-CoV-2 and a key functional host receptor through which this virus hooks into and infects human cells. The necessity to block this receptor is one of the essential means to prevent the outbreak of COVID-19. This study was conducted to determine the most eligible natural compound to suppress ACE2 to counterfeit its interaction with the viral infection. To do this, the most known compounds of sixty-six Iraqi medicinal plants were generated and retrieved from PubChem database. After preparing a library for Iraqi medicinal plants, 3663 unique ligands’ conformers were docked to ACE2 using the GLIDE tool. Results found that twenty-three compounds exhibited the highest binding affinity with ACE2. The druglikeness and toxicity potentials of these compounds were evaluated using SwissADME and Protox servers respectively. Out of these virtually screened twenty-three compounds, epicatechin and kempferol were predicted to exert the highest druglikeness and lowest toxicity potentials. Extended Molecular dynamics (MD) simulations showed that ACE2-epicatechin complex exhibited a slightly higher binding stability than ACE2-kempferol complex. In addition to the well-known ACE2 inhibitors that were identified in previous studies, this study revealed for the first time that epicatechin from Hypericum perforatum provided a better static and dynamic inhibition for ACE2 with highly favourable pharmacokinetic properties than the other known ACE2 inhibiting compounds. This study entailed the ability of epicatechin to be used as a potent natural inhibitor that can be used to block or at least weaken the SARS-CoV-2 entry and its subsequent invasion. In vitro experiments are required to validate epicatechin effectiveness against the activity of the human ACE2 receptor.
Collapse
Affiliation(s)
- Mohammed Baqur S Al-Shuhaib
- Department of Animal Production, College of Agriculture, Al-Qasim Green University, Al-Qasim, 51013, Babil, Iraq.
| | - Hayder O Hashim
- Department of Clinical Laboratory Sciences, College of Pharmacy, University of Babylon, Babil, 51001, Iraq.
| | | |
Collapse
|
11
|
Evaluation of Antiviral Activity of Cyclic Ketones against Mayaro Virus. Viruses 2021; 13:v13112123. [PMID: 34834929 PMCID: PMC8625987 DOI: 10.3390/v13112123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 10/19/2021] [Accepted: 10/19/2021] [Indexed: 12/21/2022] Open
Abstract
Mayaro virus (MAYV) is a neglected arthropod-borne virus found in the Americas. MAYV infection results in Mayaro fever, a non-lethal debilitating disease characterized by a strong inflammatory response affecting the joints and muscles. MAYV was once considered endemic to forested areas in Brazil but has managed to adapt and spread to urban regions using new vectors, such as Aedes aegypti, and has the potential to cause serious epidemics in the future. Currently, there are no vaccines or specific treatments against MAYV. In this study, the antiviral activity of a series of synthetic cyclic ketones were evaluated for the first time against MAYV. Twenty-four compounds were screened in a cell viability assay, and eight were selected for further evaluation. Effective concentration (EC50) and selectivity index (SI) were calculated and compound 9-(5-(4-chlorophenyl]furan-2-yl)-3,6-dimethyl-3,4,5,6,7,9-hexahydro-1H-xanthene-1,8(2))-dione (9) (EC50 = 21.5 µmol·L−1, SI = 15.8) was selected for mechanism of action assays. The substance was able to reduce viral activity by approximately 70% in both pre-treatment and post-treatment assays.
Collapse
|
12
|
Moraes TFS, Ferraz AC, da Cruz Nizer WS, Tótola AH, Soares DBS, Duarte LP, Vieira-Filho SA, Magalhães CLB, de Magalhães JC. A methanol extract and N,N-dimethyltryptamine from Psychotria viridis Ruiz & Pav. inhibit Zika virus infection in vitro. Arch Virol 2021; 166:3275-3287. [PMID: 34536126 DOI: 10.1007/s00705-021-05230-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/19/2021] [Indexed: 10/20/2022]
Abstract
Zika virus (ZIKV) is a public health problem due to its association with serious fetal and neurological complications and the lack of antiviral agents and licensed vaccines against this virus. Surveillance studies have alerted about the potential occurrence of a new South American epidemic episode due to the recent circulation of an African ZIKV strain detected in Brazil. Therefore, it is essential to discover antiviral agents, including natural substances, that are capable of neutralizing the action of ZIKV. Several Psychotria species have antimicrobial and anti-inflammatory properties. Thus, a methanol extract and dimethyltryptamine from Psychotria viridis were evaluated for their ability to inhibit ZIKV infection in vitro by measuring the effective concentration that protects 50% of cells and investigating their possible mechanisms of action. The tested samples showed antiviral activity against ZIKV. The extract showed virucidal activity, affecting viral and non-cellular elements, inactivating the virus before infection or when it becomes extracellular after the second cycle of infection. It was also observed that both extract and dimethyltryptamine could inhibit the virus at intracellular stages of the viral cycle. In addition to dimethyltryptamine, it is believed that other compounds also contribute to the promising virucidal effect observed for the methanol extract. To our knowledge, this is the first report of the activity of a methanolic extract and dimethyltryptamine from Psychotria viridis against cellular ZIKV infection. These two samples, extracted from natural sources, are potential candidates for use as antiviral drugs to inhibit ZIKV infections.
Collapse
Affiliation(s)
- Thaís F S Moraes
- Department of Chemistry, Biotechnology and Bioprocess Engineering, Universidade Federal de São João del-Rei, Rodovia MG 443, Km7, Ouro Branco, MG, 36420-000, Brazil.,Department of Microbiology, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, Belo Horizonte, MG, 31270-901, Brazil
| | - Ariane C Ferraz
- Department of Chemistry, Biotechnology and Bioprocess Engineering, Universidade Federal de São João del-Rei, Rodovia MG 443, Km7, Ouro Branco, MG, 36420-000, Brazil.,Department of Biological Sciences, Universidade Federal de Ouro Preto, Campus Morro do Cruzeiro, Ouro Prêto, MG, 35400-000, Brazil
| | - Waleska S da Cruz Nizer
- Department of Chemistry, Biotechnology and Bioprocess Engineering, Universidade Federal de São João del-Rei, Rodovia MG 443, Km7, Ouro Branco, MG, 36420-000, Brazil.,Department of Health Sciences, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada
| | - Antônio H Tótola
- Department of Chemistry, Biotechnology and Bioprocess Engineering, Universidade Federal de São João del-Rei, Rodovia MG 443, Km7, Ouro Branco, MG, 36420-000, Brazil
| | - Débora B S Soares
- Department of Chemistry, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Lucienir P Duarte
- Department of Chemistry, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Sidney A Vieira-Filho
- Department of Pharmacy, Pharmacy's School, Universidade Federal de Ouro Preto, Campus Morro do Cruzeiro, Ouro Preto, MG, 35400-000, Brazil
| | - Cintia L B Magalhães
- Department of Biological Sciences, Universidade Federal de Ouro Preto, Campus Morro do Cruzeiro, Ouro Prêto, MG, 35400-000, Brazil
| | - José C de Magalhães
- Department of Chemistry, Biotechnology and Bioprocess Engineering, Universidade Federal de São João del-Rei, Rodovia MG 443, Km7, Ouro Branco, MG, 36420-000, Brazil.
| |
Collapse
|
13
|
Mhatre S, Gurav N, Shah M, Patravale V. Entry-inhibitory role of catechins against SARS-CoV-2 and its UK variant. Comput Biol Med 2021; 135:104560. [PMID: 34147855 PMCID: PMC8189743 DOI: 10.1016/j.compbiomed.2021.104560] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/06/2021] [Accepted: 06/06/2021] [Indexed: 01/22/2023]
Abstract
BACKGROUND The global pandemic caused by a RNA virus capable of infecting humans and animals, has resulted in millions of deaths worldwide. Severe acute respiratory syndrome corona virus 2 (SARS-CoV-2) infects the lungs, and the gastrointestinal tract to some extent. Rapid structural mutations have increased the virulence and infectivity of the virus drastically. One such mutated strain known as the UK variant has caused many deaths in the United Kingdom. HYPOTHESIS Among several indigenous natural ingredients used for prevention and cure of many diseases, the catechins have been reported for their antiviral activity, even against SARS-CoV-2. Characteristic mutations present on the spike protein have presented the newer strain its enhanced infectivity. The spike protein helps the virus bind to ACE2 receptor of the host cell and hence is a drug target. Catechins have been reported for their entry-inhibitory activity against several viruses. METHOD In this study, we performed molecular docking of different catechins with the wild and mutant variants of the spike protein of SARS-CoV-2. The stability of the best docked complexes was validated using molecular dynamics simulation. RESULTS The in-silico studies show that the catechins form favourable interactions with the spike protein and can potentially impair its function. Epigallocatechin gallate (EGCG) showed the best binding among the catechins against both the strains. Both the protein-ligand complexes were stable throughout the simulation time frame. CONCLUSION The outcomes should encourage further exploration of the antiviral activity of EGCG against SARS-CoV-2 and its variants.
Collapse
Affiliation(s)
- Susmit Mhatre
- Department of Pharmaceutical Science and Technology, Institute of Chemical Technology, Mumbai, Nathalal Parekh Marg, Matunga (E), Mumbai-19, Maharashtra, India.
| | - Nitisha Gurav
- School of Biosciences, University of Nottingham, Sutton Bonington, Loughborough, LE12 5RD, United Kingdom.
| | - Mansi Shah
- Department of Pharmaceutical Science and Technology, Institute of Chemical Technology, Mumbai, Nathalal Parekh Marg, Matunga (E), Mumbai-19, Maharashtra, India.
| | - Vandana Patravale
- Department of Pharmaceutical Science and Technology, Institute of Chemical Technology, Mumbai, Nathalal Parekh Marg, Matunga (E), Mumbai-19, Maharashtra, India.
| |
Collapse
|
14
|
Repurposing Drugs for Mayaro Virus: Identification of EIDD-1931, Favipiravir and Suramin as Mayaro Virus Inhibitors. Microorganisms 2021; 9:microorganisms9040734. [PMID: 33807492 PMCID: PMC8065421 DOI: 10.3390/microorganisms9040734] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/25/2021] [Accepted: 03/29/2021] [Indexed: 12/21/2022] Open
Abstract
Despite the emerging threat of the Mayaro virus (MAYV) in Central and South-America, there are no licensed antivirals or vaccines available for this neglected mosquito-borne virus. Here, we optimized a robust antiviral assay based on the inhibition of the cytopathogenic effect that could be used for high-throughput screening to identify MAYV inhibitors. We first evaluated different cell lines and virus inputs to determine the best conditions for a reliable and reproducible antiviral assay. Next, we used this assay to evaluate a panel of antiviral compounds with known activity against other arboviruses. Only three drugs were identified as inhibitors of MAYV: β-D-N4-hydroxycytidine (EIDD-1931), favipiravir and suramin. The in vitro anti-MAYV activity of these antiviral compounds was further confirmed in a virus yield assay. These antivirals can therefore serve as reference compounds for future anti-MAYV compound testing. In addition, it is of interest to further explore the activity of EIDD-1931 and its orally bioavailable pro-drug molnupiravir in animal infection models to determine whether it offers promise for the treatment of MAYV infection.
Collapse
|
15
|
Bernatova I, Liskova S. Mechanisms Modified by (-)-Epicatechin and Taxifolin Relevant for the Treatment of Hypertension and Viral Infection: Knowledge from Preclinical Studies. Antioxidants (Basel) 2021; 10:467. [PMID: 33809620 PMCID: PMC8002320 DOI: 10.3390/antiox10030467] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/05/2021] [Accepted: 03/10/2021] [Indexed: 02/07/2023] Open
Abstract
Various studies have shown that certain flavonoids, flavonoid-containing plant extracts, and foods can improve human health. Experimental studies showed that flavonoids have the capacity to alter physiological processes as well as cellular and molecular mechanisms associated with their antioxidant properties. An important function of flavonoids was determined in the cardiovascular system, namely their capacity to lower blood pressure and to improve endothelial function. (-)-Epicatechin and taxifolin are two flavonoids with notable antihypertensive effects and multiple beneficial actions in the cardiovascular system, but they also possess antiviral effects, which may be of particular importance in the ongoing pandemic situation. Thus, this review is focused on the current knowledge of (-)-epicatechin as well as (+)-taxifolin and/or (-)-taxifolin-modified biological action and underlining molecular mechanisms determined in preclinical studies, which are relevant not only to the treatment of hypertension per se but may provide additional antiviral benefits that could be relevant to the treatment of hypertensive subjects with SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Iveta Bernatova
- Centre of Experimental Medicine, Institute of Normal and Pathological Physiology, Slovak Academy of Sciences, Sienkiewiczova 1, 813 71 Bratislava, Slovakia;
| | - Silvia Liskova
- Centre of Experimental Medicine, Institute of Normal and Pathological Physiology, Slovak Academy of Sciences, Sienkiewiczova 1, 813 71 Bratislava, Slovakia;
- Faculty of Medicine, Institute of Pharmacology and Clinical Pharmacology, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia
| |
Collapse
|
16
|
Mello MVP, Domingos TFS, Ferreira DF, Ribeiro MMJ, Ribeiro TP, Rodrigues CR, Souza AMT. Antiviral Drug Discovery and Development for Mayaro Fever - What do we have so far? Mini Rev Med Chem 2020; 20:921-928. [PMID: 32178610 DOI: 10.2174/1389557520666200316160425] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 02/01/2020] [Accepted: 03/08/2020] [Indexed: 11/22/2022]
Abstract
Tropical infectious diseases cause millions of deaths every year in developing countries, with about half of the world population living at risk. Mayaro virus (MAYV) is an emerging arbovirus that causes Mayaro fever, which is characterized by fever, headache, diarrhea, arthralgia, and rash. These symptoms can be clinically indistinguishable from other arboviruses, such as Dengue, Zika, and Chikungunya, which makes the diagnosis and treatment of the disease more difficult. Though, the Mayaro virus is a potential candidate to cause large-scale epidemics on the scale of ZIKV and CHIKV. Despite this, there is no licensed vaccine or antiviral for the treatment of Mayaro fever and most arboviruses, so the design and development of candidates for antiviral drugs are urgently needed. In this context, this mini-review aims to provide an overview of studies of anti-MAYV derivatives and highlight the importance of the discovery and development of promising drug candidates for Mayaro fever.
Collapse
Affiliation(s)
- Marcos V P Mello
- Laboratory of Molecular Modeling & QSAR (ModMolQSAR), Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil.,Chemistry Institute, Federal Fluminense University, Niterói, RJ, Brazil
| | - Thaisa F S Domingos
- Laboratory of Molecular Modeling & QSAR (ModMolQSAR), Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Davis F Ferreira
- Department of Virology, Paulo de Góes Microbiology Institute, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil.,Department of Molecular and Structural Biochemistry, North Carolina State University, North Carolina, United States of America
| | - Mariana M J Ribeiro
- Laboratory of Molecular Modeling & QSAR (ModMolQSAR), Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Thayssa P Ribeiro
- Laboratory of Molecular Modeling & QSAR (ModMolQSAR), Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Carlos R Rodrigues
- Laboratory of Molecular Modeling & QSAR (ModMolQSAR), Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Alessandra M T Souza
- Laboratory of Molecular Modeling & QSAR (ModMolQSAR), Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
17
|
Mayaro Virus Infection: Clinical Features and Global Threat. CURRENT TREATMENT OPTIONS IN INFECTIOUS DISEASES 2020. [DOI: 10.1007/s40506-020-00240-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
18
|
Oliveira MB, Valentim IB, Rocha TS, Santos JC, Pires KS, Tanabe EL, Borbely KS, Borbely AU, Goulart MO. Schinus terebenthifolius Raddi extracts: From sunscreen activity toward protection of the placenta to Zika virus infection, new uses for a well-known medicinal plant. INDUSTRIAL CROPS AND PRODUCTS 2020; 152:112503. [PMID: 32346222 PMCID: PMC7186214 DOI: 10.1016/j.indcrop.2020.112503] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 04/22/2020] [Accepted: 04/23/2020] [Indexed: 05/02/2023]
Abstract
Schinus terebinthifolius Raddi is a well-known medicinal plant native of South America. This species has demonstrated important biological activities such as antihypertensive and vasodilator, antimicrobial, anti-inflammatory and antioxidant. However, no studies have been, so far, reported with the fruits of S. terebinthifolius as a protector of the placenta against Zika virus infection and as sunscreen agents. The present study aimed to investigate new uses for the ethanolic fruit extracts of S. terebinthifolius, from fruits'peel (STPE) and from the whole fruits (STWFE). Zika virus (ZIKV) has been linked to several fetal malformations, such as microcephaly and other central nervous system abnormalities. Thus, the potential of these natural extracts against ZIKV infection was evaluated, using an in vitro method. The photoprotective potential, determined by spectrometry, along with phenolic content, antioxidant capacity, and chemical composition of both extracts were also evaluated. The chemical composition of the extracts was evaluated by HPLC-UV / vis. The cytotoxicity of peel and whole fruit extracts in vero E6 cell lines, in placental cell lines and placental explant cultures were evaluated by the MTT assay. The infectivity of placental cells and explants was evaluated by qRT-PCR and the effects of extracts on ZIKV infection were investigated using HTR-8/SVneo cells, pre-treated with 100 μg mL-1 of STWFE for 1 h, and infected with MR766 (AD) or PE243 (EH) ZIKV strains. STFE and STWFE were well-tolerated by both placental-derived trophoblast cell line HTR-8/SVneo as well as by term placental chorionic villi explants, which indicate absence of cytotoxicity in all analysed concentrations. Two strains of ZIKV were tested to access if pre-treatment of trophoblast cells with the STWFE would protect them against infection. Flow cytometry analysis revealed that STWFE extract greatly reduced ZIKV infection. The extracts were also photoprotective with SPF values equivalent to the standard, benzophenone-3. The formulations prepared in different concentrations of the extracts (5-10 %) had shown maximum SPF values of 32.21. STWFE represents a potential natural mixture to be used in pregnancy in order to restrain placental infection by ZIKV and might potentially protect fetus against ZIKV-related malformations. The extracts exhibited photoprotective activity and some of the phenolic compounds, mainly resveratrol, catechin and epicatechin, are active ingredients in all assayed activities. The development of biotechnological/medical products, giving extra value to products from family farming, is expected, with strong prospects for success.
Collapse
Affiliation(s)
- Monika B.S. Oliveira
- Universidade Federal de Alagoas (UFAL), Instituto de Química e Biotecnologia, Av. Lourival Melo Mota, s/n, Tabuleiro do Martins, 57072-970, Maceió, AL, Brazil
| | - Iara B. Valentim
- Instituto Federal de Educação, Ciência e Tecnologia de Alagoas (IFAL), Rua Mizael Domingues, 75, Centro, CEP 57020-600, Maceió, AL, Brazil
| | - Tauane S. Rocha
- Universidade Federal de Alagoas (UFAL), Instituto de Química e Biotecnologia, Av. Lourival Melo Mota, s/n, Tabuleiro do Martins, 57072-970, Maceió, AL, Brazil
| | - Jaqueline C. Santos
- Universidade Federal de Alagoas (UFAL), Instituto de Ciências Biológicas e da Saúde, Laboratório de Biologia Celular, Av. Lourival Melo Mota, s/n, Tabuleiro do Martins, 57072-970, Maceió, AL, Brazil
| | - Keyla S.N. Pires
- Universidade Federal de Alagoas (UFAL), Instituto de Ciências Biológicas e da Saúde, Laboratório de Biologia Celular, Av. Lourival Melo Mota, s/n, Tabuleiro do Martins, 57072-970, Maceió, AL, Brazil
| | - Eloiza L.L. Tanabe
- Universidade Federal de Alagoas (UFAL), Instituto de Ciências Biológicas e da Saúde, Laboratório de Biologia Celular, Av. Lourival Melo Mota, s/n, Tabuleiro do Martins, 57072-970, Maceió, AL, Brazil
| | - Karen S.C. Borbely
- Universidade Federal de Alagoas (UFAL), Instituto de Ciências Biológicas e da Saúde, Laboratório de Biologia Celular, Av. Lourival Melo Mota, s/n, Tabuleiro do Martins, 57072-970, Maceió, AL, Brazil
- Universidade Federal de Alagoas (UFAL), Faculdade de Nutrição, Av. Lourival Melo Mota, s/n, Tabuleiro do Martins, 57072-970, Maceió, AL, Brazil
| | - Alexandre U. Borbely
- Universidade Federal de Alagoas (UFAL), Instituto de Ciências Biológicas e da Saúde, Laboratório de Biologia Celular, Av. Lourival Melo Mota, s/n, Tabuleiro do Martins, 57072-970, Maceió, AL, Brazil
- Corresponding auhtors at: Instituto de Química e Biotecnologia, Universidade Federal de Alagoas, Campus A.C. Simões, Tabuleiro dos Martins, 57072-970, Maceió, AL, Brazil.
| | - Marília O.F. Goulart
- Universidade Federal de Alagoas (UFAL), Instituto de Química e Biotecnologia, Av. Lourival Melo Mota, s/n, Tabuleiro do Martins, 57072-970, Maceió, AL, Brazil
- Corresponding auhtors at: Instituto de Química e Biotecnologia, Universidade Federal de Alagoas, Campus A.C. Simões, Tabuleiro dos Martins, 57072-970, Maceió, AL, Brazil.
| |
Collapse
|
19
|
Tyrosol 1,2,3-triazole analogues as new acetylcholinesterase (AChE) inhibitors. Comput Biol Chem 2020; 88:107359. [PMID: 32853899 DOI: 10.1016/j.compbiolchem.2020.107359] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/31/2020] [Accepted: 08/11/2020] [Indexed: 01/08/2023]
Abstract
The present work proposed the preparation of triazolic analogues of tyrosol, a biophenol found in olive oil and whose wide range of bioactivities has been the target of many studies. We obtained fifteen novel tyrosol derivatives and the compounds of the series were later evaluated as acetylcholinesterase (AChE) inhibitors. The study of AChE inhibition is important for the development of new drugs and pesticides, and especially the research for managing Alzheimer's disease. The most active compound, namely 7-({1-[2-(4-hydroxyphenyl)ethyl]-1H-1,2,3-triazol-4-yl}methoxy)-4-methyl-2H-chromen-2-one (30), showed IC50 value of 14.66 ± 2.29 μmol L-1. Docking experiments corroborated by kinetic assay are suggestive of a competitive inhibition mechanism. Derivatives interacted with amino acids from the AChE active site associated to the development of Alzheimer's disease. The results indicate that the compounds synthesized have a high potential as prototypes for the development of new acetylcholinesterase inhibitors.
Collapse
|
20
|
Camargo KC, Duarte LP, Vidal DM, Pereira HV, Pereira RCG, Aguilar MG, Sousa GF, Filho SAV, Mercadante‐Simões MO, Messias MCTB, Oliveira DM. Chemodiversity of Essential Oils from Nine Species of Celastraceae. Chem Biodivers 2020; 17:e2000107. [DOI: 10.1002/cbdv.202000107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 03/27/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Karen C. Camargo
- Departamento de QuímicaUniversidade Federal de Minas Gerais Avenida Presidente Antônio Carlos, 6627, Pampulha 31270-901 Belo Horizonte Minas Gerais Brazil
| | - Lucienir P. Duarte
- Departamento de QuímicaUniversidade Federal de Minas Gerais Avenida Presidente Antônio Carlos, 6627, Pampulha 31270-901 Belo Horizonte Minas Gerais Brazil
| | - Diogo M. Vidal
- Departamento de QuímicaUniversidade Federal de Minas Gerais Avenida Presidente Antônio Carlos, 6627, Pampulha 31270-901 Belo Horizonte Minas Gerais Brazil
| | - Hebert V. Pereira
- Departamento de QuímicaUniversidade Federal de Minas Gerais Avenida Presidente Antônio Carlos, 6627, Pampulha 31270-901 Belo Horizonte Minas Gerais Brazil
| | - Rafael C. G. Pereira
- Departamento de QuímicaUniversidade Federal de Minas Gerais Avenida Presidente Antônio Carlos, 6627, Pampulha 31270-901 Belo Horizonte Minas Gerais Brazil
| | - Mariana G. Aguilar
- Departamento de QuímicaUniversidade Federal de Minas Gerais Avenida Presidente Antônio Carlos, 6627, Pampulha 31270-901 Belo Horizonte Minas Gerais Brazil
| | - Grasiely F. Sousa
- Departamento de QuímicaUniversidade Federal de Minas Gerais Avenida Presidente Antônio Carlos, 6627, Pampulha 31270-901 Belo Horizonte Minas Gerais Brazil
| | - Sidney A. Vieira Filho
- Departamento de FarmáciaUniversidade Federal de Ouro Preto Campus Morro do Cruzeiro, s/n. 35400-000 Ouro Preto Minas Gerais Brazil
| | - Maria O. Mercadante‐Simões
- Departamento de Biologia GeralCentro de Ciências Biológicas e da SaúdeUniversidade Estadual de Montes Claros, Campus Universitário Professor Darcy Ribeiro 394001-089 Montes Claros Minas Gerais Brazil
| | - Maria Cristina T. B. Messias
- Departamento de BiodiversidadeEvolução e Meio AmbienteUniversidade Federal de Ouro Preto Campus Morro do Cruzeiro, s/n. 35400-000 Ouro Preto Minas Gerais Brazil
| | - Djalma M. Oliveira
- Departamento de Química e ExatasUniversidade Estadual do Sudoeste da Bahia Rua José Moreira Sobrinho, s/n., Jequiezinho, CEP 45.206-190 Jequié Bahia Brazil
| |
Collapse
|
21
|
Santos FRS, Nunes DAF, Lima WG, Davyt D, Santos LL, Taranto AG, M. S. Ferreira J. Identification of Zika Virus NS2B-NS3 Protease Inhibitors by Structure-Based Virtual Screening and Drug Repurposing Approaches. J Chem Inf Model 2019; 60:731-737. [DOI: 10.1021/acs.jcim.9b00933] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Felipe R. S. Santos
- Laboratório de Microbiologia Médica, Campus Centro-Oeste Dona Lindu, Universidade Federal de São João Del-Rei (UFSJ), Divinópolis 35501-296, Minas Gerais, Brasil
- Laboratório de Química Farmacêutica Medicinal, Campus Centro-Oeste Dona Lindu, Universidade Federal de São João Del-Rei (UFSJ), Divinópolis 35501-296, Minas Gerais, Brasil
| | - Damiana A. F. Nunes
- Laboratório de Microbiologia Médica, Campus Centro-Oeste Dona Lindu, Universidade Federal de São João Del-Rei (UFSJ), Divinópolis 35501-296, Minas Gerais, Brasil
| | - William G. Lima
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brasil
| | - Danilo Davyt
- Departamento de Química Orgánica, Facultad de Química, Universidad de la República, Montevideo 11800, Uruguay
| | - Luciana L. Santos
- Laboratório de Biologia Molecular, Campus Centro-Oeste Dona Lindu, Universidade Federal de São, João Del-Rei (UFSJ), Divinópolis 35501-296, Minas Gerais, Brasil
| | - Alex G. Taranto
- Laboratório de Química Farmacêutica Medicinal, Campus Centro-Oeste Dona Lindu, Universidade Federal de São João Del-Rei (UFSJ), Divinópolis 35501-296, Minas Gerais, Brasil
| | - Jaqueline M. S. Ferreira
- Laboratório de Microbiologia Médica, Campus Centro-Oeste Dona Lindu, Universidade Federal de São João Del-Rei (UFSJ), Divinópolis 35501-296, Minas Gerais, Brasil
| |
Collapse
|
22
|
da Silva ML, Stehmann JR, Serafim MSM, Vale VV, Gontijo DC, Brandão GC, Kroon EG, de Oliveira AB. Himatanthus bracteatus stem extracts present anti-flavivirus activity while an isolated sesquiterpene glucoside present only anti-Zika virus activity in vitro. Nat Prod Res 2019; 35:3161-3165. [PMID: 31746240 DOI: 10.1080/14786419.2019.1690487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The hexane and ethanol extracts from Himatanthus bracteatus (Apocynaceae) stems were evaluated for antiviral activity against Zika virus, yellow fever virus and dengue virus 2 and for cytotoxicity in Vero cells by MTT assay. The ethanol extract showed good antiviral activity against the three viruses with selective indexes (SI) > 10 and its fractionation led to the isolation of the known plumieride that was active only against Zika virus (SI of 15.97).
Collapse
Affiliation(s)
- Marlene Lourenço da Silva
- Departamento de Produtos Farmacêuticos, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - João Renato Stehmann
- Departamento de Botânica, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Valdicley Vieira Vale
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Pará, Belém, Brazil
| | - Douglas Costa Gontijo
- Departamento de Produtos Farmacêuticos, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Erna Geessien Kroon
- Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Alaíde Braga de Oliveira
- Departamento de Produtos Farmacêuticos, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
23
|
Dos Santos M, Teixeira TR, Santos FRDS, Lima WG, Ferraz AC, Silva NL, Leite FJ, Siqueira JM, Luyten W, de Castro AHF, de Magalhães JC, Ferreira JMS. Bauhinia holophylla (Bong.) Steud. leaves-derived extracts as potent anti-dengue serotype 2. Nat Prod Res 2019; 35:2804-2809. [PMID: 31554433 DOI: 10.1080/14786419.2019.1669030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Dengue virus (DENV) is the most prevalent mosquito-borne viral pathogen and made the disease a major health concern worldwide. However, specific antiviral drugs against this arbovirose or vaccines are not yet available for treatment or prevention. Thus, here we aimed to study the antiviral activity of hydroethanolic extract, fraction ethyl acetate and subfractions of the leaves of Bauhinia holophylla (Fabaceae:Cercideae), a native plant of the Brazilian Cerrado, against DENV-2 by methylthiazolyldiphenyl-tetrazolium bromide (MTT) method in mammalian cells culture. As results, the hydroethanolic extract showed the most potent effect, with an inhibitory concentration (IC50) of 3.2 μg mL-1 and selectivity index (SI) of 27.6, approximately 16-times higher anti-DENV-2 activity than of the ribavirin (IC50 52.8 μg mL-1). Our results showed in this study appointed that B. holophylla has a promising anti-dengue activity, which was associated mainly with the presence of flavonoids.
Collapse
Affiliation(s)
- Michelli Dos Santos
- Laboratório de Microbiologia Médica, Universidade Federal de São João del-Rei, Divinópolis, Brazil
| | - Thaiz Rodrigues Teixeira
- Laboratório de Química Orgânica do Ambiente Marinho. Departamento de Física e Química da Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, Ribeirão Preto, Brazil
| | | | - William Gustavo Lima
- Laboratório de Radioisótopos, Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ariane Coelho Ferraz
- Laboratório de Microbiologia Médica, Universidade Federal de São João del-Rei, Divinópolis, Brazil.,Laboratório de Biologia Molecular e Celular, Departamento de Química, Biotecnologia e Engenharia de Bioprocessos, Universidade Federal de São João del-Rei, Ouro Branco, Brazil
| | - Nathália Lucca Silva
- Laboratório de Química de Produtos Naturais, Universidade Federal de São João del-Rei, Divinópolis, Brazil
| | - Flávio José Leite
- Laboratório de Química de Produtos Naturais, Universidade Federal de São João del-Rei, Divinópolis, Brazil
| | - João Máximo Siqueira
- Laboratório de Química de Produtos Naturais, Universidade Federal de São João del-Rei, Divinópolis, Brazil
| | | | | | - José Carlos de Magalhães
- Laboratório de Biologia Molecular e Celular, Departamento de Química, Biotecnologia e Engenharia de Bioprocessos, Universidade Federal de São João del-Rei, Ouro Branco, Brazil
| | | |
Collapse
|
24
|
|
25
|
Ferraz AC, Moraes TDFS, Nizer WSDC, Santos MD, Tótola AH, Ferreira JMS, Vieira-Filho SA, Rodrigues VG, Duarte LP, de Brito Magalhães CL, de Magalhães JC. Virucidal activity of proanthocyanidin against Mayaro virus. Antiviral Res 2019; 168:76-81. [PMID: 31125633 DOI: 10.1016/j.antiviral.2019.05.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 05/17/2019] [Accepted: 05/20/2019] [Indexed: 12/12/2022]
Abstract
Mayaro virus (MAYV) is a sublethal arbovirus transmitted by mosquitoes with possible installation of an urban cycle in the Americas. Its infection causes disabling arthralgia, and still, there is no vaccine or treatment to it. We recently investigated nearly 600 compounds by molecular docking and identified epicatechin as a potent antiviral against MAYV. The root extract of Maytenus imbricata showed anti-MAYV activity and two isolated compounds from this plant were also evaluated in vitro. Proanthocyanidin (PAC), a dimer containing epicatechin, showed an effective concentration for 50% of the cells infected by MAYV (EC50) of 37.9 ± 2.4 μM and a selectivity index (SI) above 40. PAC showed significant virucidal activity, inhibiting 100% of the virus proliferation (7 log units), and caused moderate effect during adsorption and virus internalization stage. However, PAC was unable to block the infection when only the cells were pretreated. It was observed a reduction in virus yields when adding PAC at different moments after infection. The set of results indicates that PAC binds to viral and non-cellular elements and may inactivate the MAYV. The inactivation occurs before infection or when the virus reaches the extracellular environment from the 2nd cycle of infection that could block its progression cell-to-cell or to tissues not yet infected.
Collapse
Affiliation(s)
- Ariane Coelho Ferraz
- Department of Chemistry, Biotechnology and Bioprocess Engineering, Federal University of São João del-Rei, Campus Alto Paraopeba, Ouro Branco, Minas Gerais, Brazil; Federal University of São João del-Rei, Campus Centro Oeste Dona Lindu, Divinópolis, Minas Gerais, Brazil
| | - Thaís de Fátima Silva Moraes
- Department of Chemistry, Biotechnology and Bioprocess Engineering, Federal University of São João del-Rei, Campus Alto Paraopeba, Ouro Branco, Minas Gerais, Brazil
| | - Waleska Stephanie da Cruz Nizer
- Department of Chemistry, Biotechnology and Bioprocess Engineering, Federal University of São João del-Rei, Campus Alto Paraopeba, Ouro Branco, Minas Gerais, Brazil; Federal University of São João del-Rei, Campus Centro Oeste Dona Lindu, Divinópolis, Minas Gerais, Brazil
| | - Michelli Dos Santos
- Federal University of São João del-Rei, Campus Centro Oeste Dona Lindu, Divinópolis, Minas Gerais, Brazil
| | - Antônio Helvécio Tótola
- Department of Chemistry, Biotechnology and Bioprocess Engineering, Federal University of São João del-Rei, Campus Alto Paraopeba, Ouro Branco, Minas Gerais, Brazil
| | | | - Sidney Augusto Vieira-Filho
- Department of Pharmacy, Pharmacy's School, Federal University of Ouro Preto, Campus Morro do Cruzeiro, Ouro Preto, Minas Gerais, Brazil
| | | | - Lucienir Pains Duarte
- Department of Chemistry, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Cintia Lopes de Brito Magalhães
- Department of Biological Sciences, Nucleus of Biological Sciences Research, Federal University of Ouro Preto, Campus Morro do Cruzeiro, Ouro Preto, Minas Gerais, Brazil
| | - José Carlos de Magalhães
- Department of Chemistry, Biotechnology and Bioprocess Engineering, Federal University of São João del-Rei, Campus Alto Paraopeba, Ouro Branco, Minas Gerais, Brazil.
| |
Collapse
|
26
|
Liu C, Li P, Qu Z, Xiong W, Liu A, Zhang S. Advances in the Antagonism of Epigallocatechin-3-gallate in the Treatment of Digestive Tract Tumors. Molecules 2019; 24:molecules24091726. [PMID: 31058847 PMCID: PMC6539113 DOI: 10.3390/molecules24091726] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 04/24/2019] [Accepted: 04/30/2019] [Indexed: 12/12/2022] Open
Abstract
Due to changes in the dietary structure of individuals, the incidence of digestive tract tumors has increased significantly in recent years, causing a serious threat to the life and health of patients. This has in turn led to an increase in cancer prevention research. Many studies have shown that epigallocatechin-3-gallate (EGCG), an active ingredient in green tea, is in direct contact with the digestive tract upon ingestion, which allows it to elicit a significant antagonizing effect on digestive tract tumors. The main results of EGCG treatment include the prevention of tumor development in the digestive tract and the induction of cell cycle arrest and apoptosis. EGCG can be orally administered, is safe, and combats other resistances. The synergistic use of cancer drugs can promote the efficacy and reduce the anti-allergic properties of drugs, and is thus, favored in medical research. EGCG, however, currently possesses several shortcomings such as poor stability and low bioavailability, and its clinical application prospects need further development. In this paper, we have systematically summarized the research progress on the ability of EGCG to antagonize the activity and mechanism of action of digestive tract tumors, to achieve prevention, alleviation, delay, and even treat human gastrointestinal tract tumors via exogenous dietary EGCG supplementation or the development of new drugs containing EGCG.
Collapse
Affiliation(s)
- Changwei Liu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China.
- National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Centre of Utilisation of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha 410128, China.
| | - Penghui Li
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China.
- National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Centre of Utilisation of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha 410128, China.
| | - Zhihao Qu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China.
- National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Centre of Utilisation of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha 410128, China.
| | - Wei Xiong
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha 410078, China.
| | - Ailing Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China.
| | - Sheng Zhang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China.
- National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Centre of Utilisation of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
27
|
Rodrigues ACBDC, Oliveira FPD, Dias RB, Sales CBS, Rocha CAG, Soares MBP, Costa EV, Silva FMAD, Rocha WC, Koolen HHF, Bezerra DP. In vitro and in vivo anti-leukemia activity of the stem bark of Salacia impressifolia (Miers) A. C. Smith (Celastraceae). JOURNAL OF ETHNOPHARMACOLOGY 2019; 231:516-524. [PMID: 30445109 DOI: 10.1016/j.jep.2018.11.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 10/18/2018] [Accepted: 11/03/2018] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Salacia impressifolia (Miers) A. C. Smith (family Celastraceae) is a traditional medicinal plant found in the Amazon Rainforest known as "miraruíra", "cipó-miraruíra" or "panu" and is traditionally used to treat dengue, flu, inflammation, pain, diabetes, male impotency, renal affections, rheumatism and cancer. AIM OF THE STUDY The aim of this study was to investigate in vitro and in vivo anti-leukemia activity of the stem bark of S. impressifolia in experimental models. MATERIALS AND METHODS The in vitro cytotoxic activity of extracts, fractions and quinonemethide triterpenes (22-hydroxytingenone, tingenone and pristimerin) from the stem bark of S. impressifolia in cultured cancer cells was determined. The in vivo antitumor activity of the ethyl acetate extract (EAE) and of its fraction (FEAE.3) from the stem bark of S. impressifolia was assessed in C.B-17 severe combined immunodeficient (SCID) mice engrafted with human promyelocytic leukemia HL-60 cells. RESULTS The extract EAE, its fraction FEAE.3, and quinonemethide triterpenes exhibited potent cytotoxicity against cancer cell lines, including in vitro anti-leukemia activity against HL-60 and K-562 cells. Moreover, extract EAE and its fraction FEAE.3 inhibited the in vivo development of HL-60 cells engrafted in C.B-17 SCID mice. Tumor mass inhibition rates were measured as 40.4% and 81.5% for the extract EAE (20 mg/kg) and for its fraction FEAE.3 (20 mg/kg), respectively. CONCLUSIONS Ethyl acetate extract and its fraction from the stem bark of S. impressifolia exhibit in vitro and in vivo anti-leukemia activity that can be attributed to their quinonemethide triterpenes. These data confirm the ethnopharmacological use of this species and may contribute to the development of a novel anticancer herbal medicine.
Collapse
Affiliation(s)
| | - Felipe P de Oliveira
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia 40296-710, Brazil
| | - Rosane B Dias
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia 40296-710, Brazil
| | - Caroline B S Sales
- Department of Biomorphology, Institute of Health Sciences, Federal University of Bahia, Salvador (UFBA), Bahia 40110-902, Brazil
| | - Clarissa A G Rocha
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia 40296-710, Brazil
| | - Milena B P Soares
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia 40296-710, Brazil; Center of Biotechnology and Cell Therapy, Hospital São Rafael, Salvador, Bahia 41253-190, Brazil
| | - Emmanoel V Costa
- Department of Chemistry, Federal University of Amazonas (UFAM), Manaus, Amazonas 69077-000, Brazil
| | - Felipe M A da Silva
- Department of Chemistry, Federal University of Amazonas (UFAM), Manaus, Amazonas 69077-000, Brazil
| | - Waldireny C Rocha
- Health and Biotechnology Institute, Federal University of Amazonas (UFAM), Coari, Amazonas 69460-000, Brazil
| | - Hector H F Koolen
- Metabolomics and Mass Spectrometry Research Group, Amazonas State University (UEA), Manaus, Amazonas 690065-130, Brazil
| | - Daniel P Bezerra
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia 40296-710, Brazil.
| |
Collapse
|
28
|
Mayaro: an emerging viral threat? Emerg Microbes Infect 2018; 7:163. [PMID: 30254258 PMCID: PMC6156602 DOI: 10.1038/s41426-018-0163-5] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 07/16/2018] [Accepted: 08/20/2018] [Indexed: 12/17/2022]
Abstract
Mayaro virus (MAYV), an enveloped RNA virus, belongs to the Togaviridae family and Alphavirus genus. This arthropod-borne virus (Arbovirus) is similar to Chikungunya (CHIKV), Dengue (DENV), and Zika virus (ZIKV). The term “ChikDenMaZika syndrome” has been coined for clinically suspected arboviruses, which have arisen as a consequence of the high viral burden, viral co-infection, and co-circulation in South America. In most cases, MAYV disease is nonspecific, mild, and self-limited. Fever, arthralgia, and maculopapular rash are among the most common symptoms described, being largely indistinguishable from those caused by other arboviruses. However, severe manifestations of the infection have been reported, such as chronic polyarthritis, neurological complications, hemorrhage, myocarditis, and even death. Currently, there are no specific commercial tools for the diagnosis of MAYV, and the use of serological methods can be affected by cross-reactivity and the window period. A diagnosis based on clinical and epidemiological data alone is still premature. Therefore, new entomological research is warranted, and new highly specific molecular diagnostic methods should be developed. This comprehensive review is intended to encourage public health authorities and scientific communities to actively work on diagnosing, preventing, and treating MAYV infection.
Collapse
|