1
|
Wu Y, Hu J, Jin X, Li X, Wang J, Zhang M, Chen J, Xie S, Qi W, Liao M, Jia W. Accelerated Evolution of H7N9 Subtype Influenza Virus under Vaccination Pressure. Virol Sin 2021; 36:1124-1132. [PMID: 33974230 PMCID: PMC8112217 DOI: 10.1007/s12250-021-00383-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 03/17/2021] [Indexed: 01/02/2023] Open
Abstract
No avian H7N9 outbreaks have occurred since the introduction of H7N9 inactivated vaccine in the fall of 2017. However, H7N9 is still prevalent in poultry. To surveil the prevalence, genetic characteristics, and antigenic changes of H7N9, over 7000 oropharyngeal and cloaca swab specimens were collected from live poultry markets and farms in 15 provinces of China from 2017 to 2019. A total of 85 influenza virus subtype H7N9 strains were isolated and 20 representative strains were selected for genetic analysis and antigenicity evaluation. Results indicated the decreased prevalence of low-pathogenic H7N9 strains while highly-pathogenic H7N9 strains became dominated since the introduction of vaccine. Phylogenetic analysis showed that strains from 2019 formed an independent small branch and were genetically distant to strains isolated in 2013-2018. Analysis of key amino acid sites showed that the virus strains may adapt to the host environment evolutionally through mutation. Our analysis predicted additional potential glycosylation sites for HA and NA genes in the 2019 strains. Sequence analysis of HA gene in strains isolated from 2018 to 2019 showed that there were an increased nucleotide substitution rate and an increased mutation rate in the first and second nucleotides of coding codons within the open reading frame. The hemagglutination inhibition (HI) assay showed that H7-Re1 and H7-Re2 exhibited a lower HI titer for isolates from 2019, while H7-Re3 and rLN79 showed a high HI titer. The protective effect of the vaccine decreased after 15 months of use. Overall, under vaccination pressure, the evolution of influenza virus subtype H7N9 has accelerated.
Collapse
Affiliation(s)
- Yifan Wu
- National Avian Influenza Para-Reference Laboratory (Guangzhou), College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Jingkai Hu
- National Avian Influenza Para-Reference Laboratory (Guangzhou), College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Xuanjiang Jin
- National Avian Influenza Para-Reference Laboratory (Guangzhou), College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Xiao Li
- National Avian Influenza Para-Reference Laboratory (Guangzhou), College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Jinfeng Wang
- National Avian Influenza Para-Reference Laboratory (Guangzhou), College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Mengmeng Zhang
- National Avian Influenza Para-Reference Laboratory (Guangzhou), College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Jianglin Chen
- National Avian Influenza Para-Reference Laboratory (Guangzhou), College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Shumin Xie
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China.,National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, 510642, China.,Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Guangzhou, 510642, China
| | - Wenbao Qi
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, 510642, China
| | - Ming Liao
- Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Guangzhou, 510642, China
| | - Weixin Jia
- National Avian Influenza Para-Reference Laboratory (Guangzhou), College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China. .,Key Laboratory of Zoonosis, Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, Guangzhou, 510642, China. .,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China. .,National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, 510642, China. .,Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Guangzhou, 510642, China.
| |
Collapse
|
2
|
Hood G, Roche X, Brioudes A, von Dobschuetz S, Fasina FO, Kalpravidh W, Makonnen Y, Lubroth J, Sims L. A literature review of the use of environmental sampling in the surveillance of avian influenza viruses. Transbound Emerg Dis 2021; 68:110-126. [PMID: 32652790 PMCID: PMC8048529 DOI: 10.1111/tbed.13633] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 05/07/2020] [Accepted: 05/13/2020] [Indexed: 02/05/2023]
Abstract
This literature review provides an overview of use of environmental samples (ES) such as faeces, water, air, mud and swabs of surfaces in avian influenza (AI) surveillance programs, focussing on effectiveness, advantages and gaps in knowledge. ES have been used effectively for AI surveillance since the 1970s. Results from ES have enhanced understanding of the biology of AI viruses in wild birds and in markets, of links between human and avian influenza, provided early warning of viral incursions, allowed assessment of effectiveness of control and preventive measures, and assisted epidemiological studies in outbreaks, both avian and human. Variation exists in the methods and protocols used, and no internationally recognized guidelines exist on the use of ES and data management. Few studies have performed direct comparisons of ES versus live bird samples (LBS). Results reported so far demonstrate reliance on ES will not be sufficient to detect virus in all cases when it is present, especially when the prevalence of infection/contamination is low. Multiple sample types should be collected. In live bird markets, ES from processing/selling areas are more likely to test positive than samples from bird holding areas. When compared to LBS, ES is considered a cost-effective, simple, rapid, flexible, convenient and acceptable way of achieving surveillance objectives. As a non-invasive technique, it can minimize effects on animal welfare and trade in markets and reduce impacts on wild bird communities. Some limitations of environmental sampling methods have been identified, such as the loss of species-specific or information on the source of virus, and taxonomic-level analyses, unless additional methods are applied. Some studies employing ES have not provided detailed methods. In others, where ES and LBS are collected from the same site, positive results have not been assigned to specific sample types. These gaps should be remedied in future studies.
Collapse
Affiliation(s)
- Grace Hood
- Food and Agriculture Organization of the United NationsRomeItaly
| | - Xavier Roche
- Food and Agriculture Organization of the United NationsRomeItaly
| | - Aurélie Brioudes
- Food and Agriculture Organization of the United NationsRegional Office for Asia and the PacificBangkokThailand
| | | | | | | | - Yilma Makonnen
- Food and Agriculture Organization of the United Nations, Sub-Regional Office for Eastern AfricaAddis AbabaEthiopia
| | - Juan Lubroth
- Food and Agriculture Organization of the United NationsRomeItaly
| | - Leslie Sims
- Asia Pacific Veterinary Information ServicesMelbourneAustralia
| |
Collapse
|
3
|
Sun Y, Zhang K, Qi H, Zhang H, Zhang S, Bi Y, Wu L, Sun L, Qi J, Liu D, Ma J, Tien P, Liu W, Li J. Computational predicting the human infectivity of H7N9 influenza viruses isolated from avian hosts. Transbound Emerg Dis 2020; 68:846-856. [PMID: 32706427 PMCID: PMC8246913 DOI: 10.1111/tbed.13750] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/03/2020] [Accepted: 07/13/2020] [Indexed: 12/21/2022]
Abstract
The genome composition of a given avian influenza virus is the primary determinant of its potential for cross-species transmission from birds to humans. Here, we introduce a viral genome-based computational tool that can be used to evaluate the human infectivity of avian isolates of influenza A H7N9 viruses, which can enable prediction of the potential risk of these isolates infecting humans. This tool, which is based on a novel class weight-biased logistic regression (CWBLR) algorithm, uses the sequences of the eight genome segments of an H7N9 strain as the input and gives the probability of this strain infecting humans (reflecting its human infectivity). We examined the replication efficiency and the pathogenicity of several H7N9 avian isolates that were predicted to have very low or high human infectivity by the CWBLR model in cell culture and in mice, and found that the strains with high predicted human infectivity replicated more efficiently in mammalian cells and were more infective in mice than those that were predicted to have low human infectivity. These results demonstrate that our CWBLR model can serve as a powerful tool for predicting the human infectivity and cross-species transmission risks of H7N9 avian strains.
Collapse
Affiliation(s)
- Yeping Sun
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Kun Zhang
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Heyuan Qi
- Information Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - He Zhang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Shuang Zhang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yuhai Bi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Linhuan Wu
- Information Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Lei Sun
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Jianxun Qi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Di Liu
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Juncai Ma
- Information Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Po Tien
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Wenjun Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China.,Institute of Microbiology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Beijing, China.,State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresourses & Laboratory of Animal Infectious Diseases, College of Animal Sciences and Veterinary Medicine, Guangxi University, Guangxi, China
| | - Jing Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
4
|
Wu X, Xiao L, Li L. Research progress on human infection with avian influenza H7N9. Front Med 2020; 14:8-20. [PMID: 31989396 PMCID: PMC7101792 DOI: 10.1007/s11684-020-0739-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 11/28/2019] [Indexed: 11/28/2022]
Abstract
Since the first case of novel H7N9 infection was reported, China has experienced five epidemics of H7N9. During the fifth wave, a highly pathogenic H7N9 strain emerged. Meanwhile, the H7N9 virus continues to accumulate mutations, and its affinity for the human respiratory epithelial sialic acid 2–6 receptor has increased. Therefore, a pandemic is still possible. In the past 6 years, we have accumulated rich experience in dealing with H7N9, especially in terms of virus tracing, epidemiological research, key site mutation monitoring, critical disease mechanisms, clinical treatment, and vaccine development. In the research fields above, significant progress has been made to effectively control the spread of the epidemic and reduce the fatality rate. To fully document the research progress concerning H7N9, we reviewed the clinical and epidemiological characteristics of H7N9, the key gene mutations of the virus, and H7N9 vaccine, thus providing a scientific basis for further monitoring and prevention of H7N9 influenza epidemics.
Collapse
Affiliation(s)
- Xiaoxin Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Lanlan Xiao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China.
| |
Collapse
|
5
|
Naguib MM, Verhagen JH, Mostafa A, Wille M, Li R, Graaf A, Järhult JD, Ellström P, Zohari S, Lundkvist Å, Olsen B. Global patterns of avian influenza A (H7): virus evolution and zoonotic threats. FEMS Microbiol Rev 2019; 43:608-621. [PMID: 31381759 PMCID: PMC8038931 DOI: 10.1093/femsre/fuz019] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 07/31/2019] [Indexed: 01/16/2023] Open
Abstract
Avian influenza viruses (AIVs) continue to impose a negative impact on animal and human health worldwide. In particular, the emergence of highly pathogenic AIV H5 and, more recently, the emergence of low pathogenic AIV H7N9 have led to enormous socioeconomical losses in the poultry industry and resulted in fatal human infections. While H5N1 remains infamous, the number of zoonotic infections with H7N9 has far surpassed those attributed to H5. Despite the clear public health concerns posed by AIV H7, it is unclear why specifically this virus subtype became endemic in poultry and emerged in humans. In this review, we bring together data on global patterns of H7 circulation, evolution and emergence in humans. Specifically, we discuss data from the wild bird reservoir, expansion and epidemiology in poultry, significant increase in their zoonotic potential since 2013 and genesis of highly pathogenic H7. In addition, we analysed available sequence data from an evolutionary perspective, demonstrating patterns of introductions into distinct geographic regions and reassortment dynamics. The integration of all aspects is crucial in the optimisation of surveillance efforts in wild birds, poultry and humans, and we emphasise the need for a One Health approach in controlling emerging viruses such as AIV H7.
Collapse
Affiliation(s)
- Mahmoud M Naguib
- Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Husargatan 3, Uppsala University, Uppsala SE-75237, Sweden
- National Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, 7 Nadi El-Seid Street, Giza 12618, Egypt
| | - Josanne H Verhagen
- Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University, 44008 Hus Vita, Kalmar SE-391 82 , Sweden
| | - Ahmed Mostafa
- Institute of Medical Virology, Justus Liebig University Giessen, Schubertstrasse 81, Giessen 35392, Germany
- Center of Scientific Excellence for Influenza Viruses, National Research Centre (NRC), 33 El-Buhouth street, Giza 12622, Egypt
| | - Michelle Wille
- WHO Collaborating Centre for Reference and Research on Influenza, The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth Street, Melbourne 3000, Victoria, Australia
| | - Ruiyun Li
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, Faculty of Medicine, Imperial College London, Praed Street, London W2 1PG, United Kingdom
| | - Annika Graaf
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, Greifswald-Insel Riems 17493, Germany
| | - Josef D Järhult
- Zoonosis Science Center, Department of Medical Sciences, Uppsala University, Sjukhusvägen 85, Uppsala SE-75185, Sweden
| | - Patrik Ellström
- Zoonosis Science Center, Department of Medical Sciences, Uppsala University, Sjukhusvägen 85, Uppsala SE-75185, Sweden
| | - Siamak Zohari
- Department of Microbiology, National Veterinary Institute, Ulls väg 2B, Uppsala SE-75189, Sweden
| | - Åke Lundkvist
- Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Husargatan 3, Uppsala University, Uppsala SE-75237, Sweden
| | - Björn Olsen
- Zoonosis Science Center, Department of Medical Sciences, Uppsala University, Sjukhusvägen 85, Uppsala SE-75185, Sweden
| |
Collapse
|
6
|
Taubenberger JK, Kash JC, Morens DM. The 1918 influenza pandemic: 100 years of questions answered and unanswered. Sci Transl Med 2019; 11:eaau5485. [PMID: 31341062 PMCID: PMC11000447 DOI: 10.1126/scitranslmed.aau5485] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 02/11/2019] [Indexed: 12/13/2022]
Abstract
The 2018-2019 period marks the centennial of the "Spanish" influenza pandemic, which caused at least 50 million deaths worldwide. The unprecedented nature of the pandemic's sudden appearance and high fatality rate serve as a stark reminder of the threat influenza poses. Unusual features of the 1918-1919 pandemic, including age-specific mortality and the high frequency of severe pneumonias, are still not fully understood. Sequencing and reconstruction of the 1918 virus has allowed scientists to answer many questions about its origin and pathogenicity, although many questions remain. This Review summarizes key findings and still-to-be answered questions about this deadliest of human events.
Collapse
Affiliation(s)
- Jeffery K Taubenberger
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - John C Kash
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - David M Morens
- Office of the Director, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
7
|
Wang WH, Erazo EM, Ishcol MRC, Lin CY, Assavalapsakul W, Thitithanyanont A, Wang SF. Virus-induced pathogenesis, vaccine development, and diagnosis of novel H7N9 avian influenza A virus in humans: a systemic literature review. J Int Med Res 2019; 48:300060519845488. [PMID: 31068040 PMCID: PMC7140199 DOI: 10.1177/0300060519845488] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
H7N9 avian influenza virus (AIV) caused human infections in 2013 in China.
Phylogenetic analyses indicate that H7N9 AIV is a novel reassortant strain with
pandemic potential. We conducted a systemic review regarding virus-induced
pathogenesis, vaccine development, and diagnosis of H7N9 AIV infection in
humans. We followed PRISMA guidelines and searched PubMed, Web of Science, and
Google Scholar to identify relevant articles published between January 2013 and
December 2018. Pathogenesis data indicated that H7N9 AIV belongs to low
pathogenic avian influenza, which is mostly asymptomatic in avian species;
however, H7N9 induces high mortality in humans. Sporadic human infections have
recently been reported, caused by highly pathogenic avian influenza viruses
detected in poultry. H7N9 AIVs resistant to adamantine and oseltamivir cause
severe human infection by rapidly inducing progressive acute community-acquired
pneumonia, multiorgan dysfunction, and cytokine dysregulation; however,
mechanisms via which the virus induces severe syndromes remain unclear. An H7N9
AIV vaccine is lacking; designs under evaluation include synthesized peptide,
baculovirus-insect system, and virus-like particle vaccines. Molecular diagnosis
of H7N9 AIVs is suggested over conventional assays, for biosafety reasons.
Several advanced or modified diagnostic assays are under investigation and
development. We summarized virus-induced pathogenesis, vaccine development, and
current diagnostic assays in H7N9 AIVs.
Collapse
Affiliation(s)
- Wen-Hung Wang
- Division of Infectious Disease, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung.,Center for Infectious Disease and Cancer Research, Kaohsiung Medical University, Kaohsiung
| | - Esmeralda Merari Erazo
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung
| | - Max R Chang Ishcol
- Program in Tropical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung
| | - Chih-Yen Lin
- Center for Infectious Disease and Cancer Research, Kaohsiung Medical University, Kaohsiung.,Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung
| | - Wanchai Assavalapsakul
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | | | - Sheng-Fan Wang
- Center for Infectious Disease and Cancer Research, Kaohsiung Medical University, Kaohsiung.,Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung.,Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung
| |
Collapse
|
8
|
Zheng D, Gao F, Zhao C, Ding Y, Cao Y, Yang T, Xu X, Chen Z. Comparative effectiveness of H7N9 vaccines in healthy individuals. Hum Vaccin Immunother 2018; 15:80-90. [PMID: 30148691 DOI: 10.1080/21645515.2018.1515454] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Avian H7N9 influenza viruses possess a potential pandemic threat to public health worldwide, and have caused severe infection and high mortality in humans. A series of clinical trials of H7N9 vaccines have been completed. Meta-analyses need to be performed to assess the immunogenicity and safety of H7N9 vaccines. METHODS Database research with defined selection criteria was conducted in PubMed, Cochrane Central Register of Controlled Trials, the World Health Organization's International Clinical Trials Registry Platform, ClinicalTrials.gov, etc. Data from randomized clinical trials regarding the immunogenicity and safety of H7N9 vaccines were collected and meta-analyzed. RESULTS For non-adjuvanted H7N9 vaccines, high dose formulations induced limited immunogenicity and increased the risk of local and systemic adverse events, simultaneously. For adjuvanted H7N9 vaccines, on the one hand, ISCOMATRIX, MF59, AS03 and aluminium adjuvants applied in H7N9 vaccines could improve immune responses effectively, and non-aluminium adjuvants had superior performance in saving vaccine dose; on the other hand, aluminium adjuvant had the advantages of safety amongst these adjuvants applied in H7N9 vaccines. CONCLUSION H7N9 influenza vaccines with adjuvant might represent the optimal available option in an influenza pandemic, at present.
Collapse
Affiliation(s)
- Dan Zheng
- a Department of Research and Development , Shanghai Institute of Biological Products , Shanghai , China.,b Shanghai TCM-Integrated Hospital , Shanghai University of Traditional Chinese Medicine , Shanghai , China.,c Department of Vascular Disease , Shanghai TCM-Integrated Institute of Vascular Disease , Shanghai , China
| | - Feixia Gao
- a Department of Research and Development , Shanghai Institute of Biological Products , Shanghai , China
| | - Cheng Zhao
- b Shanghai TCM-Integrated Hospital , Shanghai University of Traditional Chinese Medicine , Shanghai , China.,c Department of Vascular Disease , Shanghai TCM-Integrated Institute of Vascular Disease , Shanghai , China
| | - Yahong Ding
- a Department of Research and Development , Shanghai Institute of Biological Products , Shanghai , China
| | - Yemin Cao
- b Shanghai TCM-Integrated Hospital , Shanghai University of Traditional Chinese Medicine , Shanghai , China.,c Department of Vascular Disease , Shanghai TCM-Integrated Institute of Vascular Disease , Shanghai , China
| | - Tianhan Yang
- a Department of Research and Development , Shanghai Institute of Biological Products , Shanghai , China
| | - Xuesong Xu
- d Huadong Hospital Affiliated to Fudan University , Shanghai , China
| | - Ze Chen
- a Department of Research and Development , Shanghai Institute of Biological Products , Shanghai , China
| |
Collapse
|