1
|
Simmonds P. A critique of the use of species and below-species taxonomic terms for viruses-time for change? Virus Evol 2024; 10:veae096. [PMID: 39697688 PMCID: PMC11654245 DOI: 10.1093/ve/veae096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 11/05/2024] [Accepted: 11/15/2024] [Indexed: 12/20/2024] Open
Abstract
The International Committee for the Taxonomy of Viruses (ICTV) regulates assignment and names of virus species and higher taxa through its taxonomy proposal and ratification process. Despite using similar taxonomic ranks to those used elsewhere in biology, the ICTV has maintained the principle that species and other taxa are strictly categories with a formal nomenclature, whereas the viruses as objects are referenced through a parallel inventory of community-assigned virus names. This is strikingly different from common and scientific name synonyms for species used elsewhere in biology. The recent introduction of binomial names for virus species resembling biological scientific names has intensified this confusion in terms within the virology community and beyond. The ICTV taxonomy furthermore does not engage with or regulate classification below species and consequently lacks taxonomic terms or descriptions for important viral pathogens such as polioviruses, severe acute respiratory syndrome coronavirus type 2, HIV-1, and avian influenza as examples. The consequent reliance on community-adopted virus names, genotypes, and other categories often lacks clarity for clinical, biocontainment, and other regulatory purposes. This article proposes a revision of rules and procedures for species and below-species level classification. It recasts virus and virus species names as 'common' and 'scientific' names that are used in other biology nomenclature codes, each with expanded reference to both object and taxon. It further advocates the creation of a formal below-species taxonomic rank to define a new inventory of approved taxa and specified nomenclature below species. Adoption of the proposed changes will realign virus taxonomy with other biological nomenclatural codes and provide greater transparency and clarity in virology, medical, and regulatory fields.
Collapse
Affiliation(s)
- Peter Simmonds
- Nuffield Department of Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford United Kingdom
| |
Collapse
|
2
|
Simmonds P, Adriaenssens EM, Lefkowitz EJ, Oksanen HM, Siddell SG, Zerbini FM, Alfenas-Zerbini P, Aylward FO, Dempsey DM, Dutilh BE, Freitas-Astúa J, García ML, Hendrickson RC, Hughes HR, Junglen S, Krupovic M, Kuhn JH, Lambert AJ, Łobocka M, Mushegian AR, Penzes J, Muñoz AR, Robertson DL, Roux S, Rubino L, Sabanadzovic S, Smith DB, Suzuki N, Turner D, Van Doorslaer K, Vandamme AM, Varsani A. Changes to virus taxonomy and the ICTV Statutes ratified by the International Committee on Taxonomy of Viruses (2024). Arch Virol 2024; 169:236. [PMID: 39488803 PMCID: PMC11532311 DOI: 10.1007/s00705-024-06143-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2024]
Abstract
This article reports changes to virus taxonomy and taxon nomenclature that were approved and ratified by the International Committee on Taxonomy of Viruses (ICTV) in April 2024. The entire ICTV membership was invited to vote on 203 taxonomic proposals that had been approved by the ICTV Executive Committee (EC) in July 2023 at the 55th EC meeting in Jena, Germany, or in the second EC vote in November 2023. All proposals were ratified by online vote. Taxonomic additions include one new phylum (Ambiviricota), one new class, nine new orders, three new suborders, 51 new families, 18 new subfamilies, 820 new genera, and 3547 new species (excluding taxa that have been abolished). Proposals to complete the process of species name replacement to the binomial (genus + species epithet) format were ratified. Currently, a total of 14,690 virus species have been established.
Collapse
Affiliation(s)
- Peter Simmonds
- Nuffield Department of Medicine, University of Oxford, Peter Medawar Building, South Parks Road, Oxford, OX1 3SY, UK.
| | | | - Elliot J Lefkowitz
- Department of Microbiology, University of Alabama at Birmingham, BBRB 276, 845 19th St South, Birmingham, AL, 35294-2170, USA
| | - Hanna M Oksanen
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Viikinkaari 9, 00014, Helsinki, Finland
| | - Stuart G Siddell
- School of Cellular and Molecular Medicine, Faculty of Life Sciences, University of Bristol, University Walk, Bristol, BS8 1TD, UK
| | - Francisco Murilo Zerbini
- Departamento de Fitopatologia/BIOAGRO, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | - Poliane Alfenas-Zerbini
- Departamento de Microbiologia, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | - Frank O Aylward
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Donald M Dempsey
- Department of Microbiology, University of Alabama at Birmingham, BBRB 276, 845 19th St South, Birmingham, AL, 35294-2170, USA
| | - Bas E Dutilh
- Institute of Biodiversity, Faculty of Biological Sciences, Cluster of Excellence Balance of the Microverse, Friedrich Schiller University, Fürstengraben 1, 07743, Jena, Germany
- Theoretical Biology and Bioinformatics, Department of Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Juliana Freitas-Astúa
- Embrapa Cassava and Fruits, Brazilian Agricultural Research Corporation, Cruz das Almas, BA, 44380-000, Brazil
| | - María Laura García
- Instituto de Biotecnología y Biología Molecular, CCT-La Plata, CONICET-UNLP, Calles 47 y 115 (1900), La Plata, Buenos Aires, Argentina
| | - R Curtis Hendrickson
- Department of Microbiology, University of Alabama at Birmingham, BBRB 276, 845 19th St South, Birmingham, AL, 35294-2170, USA
| | - Holly R Hughes
- Centers for Disease Control and Prevention, Fort Collins, Colorado, USA
| | - Sandra Junglen
- Institute of Virology, Charité-Universitätsmedizin, Corporate Member of Free University Berlin, Humboldt-University Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Mart Krupovic
- Archaeal Virology Unit, Institut Pasteur, Université Paris Cité, CNRS UMR6047, 25 rue du Dr Roux, 75015, Paris, France
| | - Jens H Kuhn
- Integrated Research Facility at Fort Detrick, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, B-8200 Research Plaza, Fort Detrick, Frederick, MD, 21702, USA
| | - Amy J Lambert
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, National Center for Emerging and Zoonotic Infectious Diseases, Fort Collins, CO, 80521, USA
| | - Małgorzata Łobocka
- Institute of Biochemistry and Biophysics of the Polish Academy of Sciences, 02-106, Warsaw, Poland
| | - Arcady R Mushegian
- Division of Molecular and Cellular Biosciences, National Science Foundation, 2415 Eisenhower Avenue, Alexandria, VA, 22314, USA
| | - Judit Penzes
- Institute for Quantitative Biomedicine, Rutgers University, Piscataway, New Jersey, USA
| | | | - David L Robertson
- MRC-University of Glasgow Centre for Virus Research, Sir Michael Stoker Building, 464 Bearsden Road, Glasgow, G61 1QH, UK
| | - Simon Roux
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Luisa Rubino
- Consiglio Nazionale delle Ricerche, Istituto per la Protezione Sostenibile delle Piante, Sede Secondaria di Bari, Via Amendola 165/A, 70126, Bari, Italy
| | - Sead Sabanadzovic
- Department of Agricultural Science and Plant Protection, Mississippi State University, Mississippi State, MS, 39762, USA
- Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University, Mississippi State, MS, 39762, USA
| | - Donald B Smith
- Nuffield Department of Medicine, University of Oxford, Peter Medawar Building, South Parks Road, Oxford, OX1 3SY, UK
| | - Nobuhiro Suzuki
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama, 710-0046, Japan
| | - Dann Turner
- School of Applied Sciences, Faculty of Health, Science and Society, University of the West of England, Bristol, UK
| | - Koenraad Van Doorslaer
- Department of Immunobiology, School of Animal and Comparative Biomedical Sciences, BIO5 Institute, University of Arizona Cancer Center, Tucson, AZ, 85721, USA
| | - Anne-Mieke Vandamme
- Department of Microbiology, Immunology and Transplantation, Clinical and Epidemiological Virology, Rega Institute for Medical Research, KU Leuven, 3000, Leuven, Belgium
- Center for Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Rua da Junqueira, 100, 1349-008, Lisbon, Portugal
| | - Arvind Varsani
- The Biodesign Center for Fundamental and Applied Microbiomics, School of Life Sciences, Center for Evolution and Medicine, Arizona State University, Tempe, AZ, 85287-4701, USA
| |
Collapse
|
3
|
Yan T, Wang Z, Li R, Zhang D, Song Y, Cheng Z. Gyrovirus: current status and challenge. Front Microbiol 2024; 15:1449814. [PMID: 39220040 PMCID: PMC11362077 DOI: 10.3389/fmicb.2024.1449814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024] Open
Abstract
Gyrovirus (GyV) is small, single-stranded circular DNA viruses that has recently been assigned to the family Anelloviridae. In the last decade, many GyVs that have an apparent pan-tropism at the host level were identified by high-throughput sequencing (HTS) technology. As of now, they have achieved global distribution. Several species of GyVs have been demonstrated to be pathogenic to poultry, particularly chicken anemia virus (CAV), causing significant economic losses to the global poultry industry. Although GyVs are highly prevalent in various birds worldwide, their direct involvement in the etiology of specific diseases and the reasons for their ubiquity and host diversity are not fully understood. This review summarizes current knowledge about GyVs, with a major emphasis on their morphofunctional properties, epidemiological characteristics, genetic evolution, pathogenicity, and immunopathogenesis. Additionally, the association between GyVs and various diseases, as well as its potential impact on the poultry industry, have been discussed. Future prevention and control strategies have also been explored. These insights underscore the importance of conducting research to establish a virus culture system, optimize surveillance, and develop vaccines for GyVs.
Collapse
Affiliation(s)
| | | | | | | | | | - Ziqiang Cheng
- Department of Basic Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai’an, China
| |
Collapse
|
4
|
Varsani A, Harrach B, Roumagnac P, Benkő M, Breitbart M, Delwart E, Franzo G, Kazlauskas D, Rosario K, Segalés J, Dunay E, Rukundo J, Goldberg TL, Fehér E, Kaszab E, Bányai K, Krupovic M. 2024 taxonomy update for the family Circoviridae. Arch Virol 2024; 169:176. [PMID: 39143430 DOI: 10.1007/s00705-024-06107-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Circovirids have a circular single-stranded DNA genome packed into a small icosahedral capsid. They are classified within two genera, Circovirus and Cyclovirus, in the family Circoviridae (phylum Cressdnaviricota, class Arfiviricetes, order Cirlivirales). Over the last five years, a number of new circovirids have been identified, and, as a result, 54 new species have been created for their classification based on the previously established species demarcation criterion, namely, that viruses classified into different species share less than 80% genome-wide pairwise sequence identity. Of note, one of the newly created species includes a circovirus that was identified in human hepatocytes and suspected of causing liver damage. Furthermore, to comply with binomial species nomenclature, all new and previously recognized species have been (re)named in binomial format with a freeform epithet. Here, we provide a summary of the properties of circovirid genomes and their classification as of June 2024 (65 species in the genus Circovirus and 90 species in the genus Cyclovirus). Finally, we provide reference datasets of the nucleotide and amino acid sequences representing each of the officially recognized circovirid species to facilitate further classification of newly discovered members of the Circoviridae.
Collapse
Affiliation(s)
- Arvind Varsani
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, 85287-5001, USA.
- Structural Biology Research Unit, Department of Integrative, Biomedical Sciences, University of Cape Town, Observatory, Cape Town, 7925, South Africa.
| | - Balázs Harrach
- HUN-REN Veterinary Medical Research Institute, Budapest, 1143, Hungary
| | - Philippe Roumagnac
- CIRAD-UMR PHIM, Campus International de Baillarguet, 34398, Montpellier, France
| | - Mária Benkő
- HUN-REN Veterinary Medical Research Institute, Budapest, 1143, Hungary
| | - Mya Breitbart
- College of Marine Science, University of South Florida, Saint Petersburg, FL, 33701, USA
| | - Eric Delwart
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, 94118, USA
| | - Giovanni Franzo
- Department of Animal Medicine, Production and Health (MAPS), Università di Padova, Viale dell'Università 16, 35020, Legnaro, Italy
| | - Darius Kazlauskas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio av. 7, 10257, Vilnius, Lithuania
- National Center for Biotechnology Information, National Library of Medicine, NIH, Bethesda, MD, 20894, USA
| | - Karyna Rosario
- College of Marine Science, University of South Florida, Saint Petersburg, FL, 33701, USA
| | - Joaquim Segalés
- Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, 08193, Barcelona, Spain
- Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, 08193, Barcelona, Spain
| | - Emily Dunay
- Department of Pathobiological Sciences, University of Wisconsin-Madison School of Veterinary Medicine, Madison, WI, USA
| | - Joshua Rukundo
- Ngamba Island Chimpanzee Sanctuary/Chimpanzee Trust, Entebbe, Uganda
| | - Tony L Goldberg
- Department of Pathobiological Sciences, University of Wisconsin-Madison School of Veterinary Medicine, Madison, WI, USA
| | - Enikő Fehér
- HUN-REN Veterinary Medical Research Institute, Budapest, 1143, Hungary
| | - Eszter Kaszab
- HUN-REN Veterinary Medical Research Institute, Budapest, 1143, Hungary
| | - Krisztián Bányai
- HUN-REN Veterinary Medical Research Institute, Budapest, 1143, Hungary
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, 1078, Budapest, Hungary
| | - Mart Krupovic
- Institut Pasteur, Université Paris Cité, Archaeal Virology Unit, 25 rue du Dr Roux, 75015, Paris, France.
| |
Collapse
|
5
|
Stellmach C, Hopff SM, Jaenisch T, Nunes de Miranda SM, Rinaldi E. Creation of Standardized Common Data Elements for Diagnostic Tests in Infectious Disease Studies: Semantic and Syntactic Mapping. J Med Internet Res 2024; 26:e50049. [PMID: 38857066 PMCID: PMC11196918 DOI: 10.2196/50049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/10/2023] [Accepted: 01/18/2024] [Indexed: 06/11/2024] Open
Abstract
BACKGROUND It is necessary to harmonize and standardize data variables used in case report forms (CRFs) of clinical studies to facilitate the merging and sharing of the collected patient data across several clinical studies. This is particularly true for clinical studies that focus on infectious diseases. Public health may be highly dependent on the findings of such studies. Hence, there is an elevated urgency to generate meaningful, reliable insights, ideally based on a high sample number and quality data. The implementation of core data elements and the incorporation of interoperability standards can facilitate the creation of harmonized clinical data sets. OBJECTIVE This study's objective was to compare, harmonize, and standardize variables focused on diagnostic tests used as part of CRFs in 6 international clinical studies of infectious diseases in order to, ultimately, then make available the panstudy common data elements (CDEs) for ongoing and future studies to foster interoperability and comparability of collected data across trials. METHODS We reviewed and compared the metadata that comprised the CRFs used for data collection in and across all 6 infectious disease studies under consideration in order to identify CDEs. We examined the availability of international semantic standard codes within the Systemized Nomenclature of Medicine - Clinical Terms, the National Cancer Institute Thesaurus, and the Logical Observation Identifiers Names and Codes system for the unambiguous representation of diagnostic testing information that makes up the CDEs. We then proposed 2 data models that incorporate semantic and syntactic standards for the identified CDEs. RESULTS Of 216 variables that were considered in the scope of the analysis, we identified 11 CDEs to describe diagnostic tests (in particular, serology and sequencing) for infectious diseases: viral lineage/clade; test date, type, performer, and manufacturer; target gene; quantitative and qualitative results; and specimen identifier, type, and collection date. CONCLUSIONS The identification of CDEs for infectious diseases is the first step in facilitating the exchange and possible merging of a subset of data across clinical studies (and with that, large research projects) for possible shared analysis to increase the power of findings. The path to harmonization and standardization of clinical study data in the interest of interoperability can be paved in 2 ways. First, a map to standard terminologies ensures that each data element's (variable's) definition is unambiguous and that it has a single, unique interpretation across studies. Second, the exchange of these data is assisted by "wrapping" them in a standard exchange format, such as Fast Health care Interoperability Resources or the Clinical Data Interchange Standards Consortium's Clinical Data Acquisition Standards Harmonization Model.
Collapse
Affiliation(s)
- Caroline Stellmach
- Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Sina Marie Hopff
- Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Department I of Internal Medicine, University Hospital Cologne and Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Thomas Jaenisch
- Heidelberg Institut für Global Health, Universitätsklinikum Heidelberg, Heidelberg, Germany
| | - Susana Marina Nunes de Miranda
- Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Department I of Internal Medicine, University Hospital Cologne and Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Eugenia Rinaldi
- Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
6
|
Zhu X, Tang L, Wang Z, Xie F, Zhang W, Li Y. A comparative analysis of phage classification methods in light of the recent ICTV taxonomic revisions. Virology 2024; 594:110016. [PMID: 38461619 DOI: 10.1016/j.virol.2024.110016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/02/2024] [Accepted: 02/09/2024] [Indexed: 03/12/2024]
Abstract
Recent ICTV taxonomy updates significantly changed phage taxonomy, yet a thorough phage classification workflow doesn't exist. This study compares six categorization tools and establishes a novel multi-method approach, combining genome similarity and specialized protein analysis. Applying the method to APEC phage P151 showed consistent categorization across platforms. A possible workflow for phage classification is proposed; offering a versatile tool for phage research and development.
Collapse
Affiliation(s)
- Xihui Zhu
- Sanya Institute of Nanjing Agricultural University, Sanya, Hainan, 572000, China; College of Animal Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Luqi Tang
- Sanya Institute of Nanjing Agricultural University, Sanya, Hainan, 572000, China; College of Animal Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Zhiwei Wang
- College of Agronomy and Agricultural Engineering, Liaocheng University, Liaocheng, Shandong, 252059, China
| | - Feng Xie
- Sanya Institute of Nanjing Agricultural University, Sanya, Hainan, 572000, China; College of Animal Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Wei Zhang
- Sanya Institute of Nanjing Agricultural University, Sanya, Hainan, 572000, China; College of Animal Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China.
| | - Yubao Li
- College of Agronomy and Agricultural Engineering, Liaocheng University, Liaocheng, Shandong, 252059, China.
| |
Collapse
|
7
|
Couto RDS, Abreu WU, Rodrigues LRR, Marinho LF, Morais VDS, Villanova F, Pandey RP, Deng X, Delwart E, da Costa AC, Leal E. Genomoviruses in Liver Samples of Molossus molossus Bats. Microorganisms 2024; 12:688. [PMID: 38674632 PMCID: PMC11052389 DOI: 10.3390/microorganisms12040688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 03/15/2024] [Accepted: 03/20/2024] [Indexed: 04/28/2024] Open
Abstract
CRESS-DNA encompasses a broad spectrum of viruses documented across diverse organisms such as animals, plants, diatoms, fungi, and marine invertebrates. Despite this prevalence, the full extent of these viruses' impact on the environment and their respective hosts remains incompletely understood. Furthermore, an increasing number of viruses within this category lack detailed characterization. This investigation focuses on unveiling and characterizing viruses affiliated with the Genomoviridae family identified in liver samples from the bat Molossus molossus. Leveraging viral metagenomics, we identified seven sequences (MmGmV-PA) featuring a circular DNA genome housing two ORFs encoding replication-associated protein (Rep) and capsid protein (Cap). Predictions based on conserved domains typical of the Genomoviridae family were established. Phylogenetic analysis revealed the segregation of these sequences into two clades aligning with the genera Gemycirculavirus (MmGmV-06-PA and MmGmV-07-PA) and Gemykibivirus (MmGmV-01-PA, MmGmV-02-PA, MmGmV-03-PA, MmGmV-05-PA, and MmGmV-09-PA). At the species level, pairwise comparisons based on complete nucleotide sequences indicated the potential existence of three novel species. In summary, our study significantly contributes to an enhanced understanding of the diversity of Genomoviridae within bat samples, shedding light on previously undiscovered viral entities and their potential ecological implications.
Collapse
Affiliation(s)
- Roseane da Silva Couto
- Laboratório de Diversidade Viral, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belem 66075-000, PA, Brazil; (R.d.S.C.); (F.V.)
| | - Wandercleyson Uchôa Abreu
- Programa de Pos-Graduação REDE Bionorte, Polo Pará, Universidade Federal do Oeste do Pará, Santarém 68040-255, PA, Brazil;
| | - Luís Reginaldo Ribeiro Rodrigues
- Laboratory of Genetics & Biodiversity, Institute of Educational Sciences, Universidade Federal do Oeste do Pará, Santarém 68040-255, PA, Brazil;
| | | | - Vanessa dos Santos Morais
- Laboratory of Virology (LIM 52), Instituto de Medicina Tropical, Universidade de São Paulo, São Paulo 05403-000, SP, Brazil; (V.d.S.M.); (A.C.d.C.)
| | - Fabiola Villanova
- Laboratório de Diversidade Viral, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belem 66075-000, PA, Brazil; (R.d.S.C.); (F.V.)
| | - Ramendra Pati Pandey
- School of Health Sciences & Technology, UPES University, Dehradun 248007, Uttarakhand, India;
| | - Xutao Deng
- Vitalant Research Institute, San Francisco, CA 94143, USA;
| | - Eric Delwart
- Department Laboratory Medicine, University of California San Francisco, San Francisco, CA 94143, USA;
| | - Antonio Charlys da Costa
- Laboratory of Virology (LIM 52), Instituto de Medicina Tropical, Universidade de São Paulo, São Paulo 05403-000, SP, Brazil; (V.d.S.M.); (A.C.d.C.)
| | - Elcio Leal
- Laboratório de Diversidade Viral, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belem 66075-000, PA, Brazil; (R.d.S.C.); (F.V.)
| |
Collapse
|
8
|
Varsani A, Kraberger S, Opriessnig T, Maggi F, Celer V, Okamoto H, Biagini P. Anelloviridae taxonomy update 2023. Arch Virol 2023; 168:277. [PMID: 37864606 DOI: 10.1007/s00705-023-05903-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2023]
Abstract
The family Anelloviridae comprises negative single-stranded circular DNA viruses. Within this family, there are 30 established genera. Anelloviruses in the genus Gyrovirus have been identified infecting various avian species, whereas those in the remaining 29 genera have been found primarily infecting various mammal species. We renamed the 146 anellovirus species with binomial species names, as required by the International Committee on Taxonomy of Viruses (ICTV) using a "genus + freeform epithet" format.
Collapse
Affiliation(s)
- Arvind Varsani
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, 1001 S. McAllister Ave, Tempe, AZ, 85287-5001, USA.
- Structural Biology Research Unit, Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town, 7925, South Africa.
| | - Simona Kraberger
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, 1001 S. McAllister Ave, Tempe, AZ, 85287-5001, USA
| | - Tanja Opriessnig
- Moredun Research Institute, Pentland Science Park, Bush Loan, Penicuik, Midlothian, EH26 0PZ, United Kingdom
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Fabrizio Maggi
- National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Vladimir Celer
- Faculty of Veterinary Medicine, University of Veterinary Sciences Brno, Palackeho 1946, 612 42, Brno, Czech Republic
| | - Hiroaki Okamoto
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, 3311-1 Yakushiji, Shimotsuke-shi, Tochigi, 329-0498, Japan
| | - Philippe Biagini
- Equipe Biologie des Groupes Sanguins, UMR 7268 ADES, Aix-Marseille Université, CNRS, EFS, 27 Bd. Jean Moulin, 13005, Marseille, France
| |
Collapse
|
9
|
Siddell SG, Smith DB, Adriaenssens E, Alfenas-Zerbini P, Dutilh BE, Garcia ML, Junglen S, Krupovic M, Kuhn JH, Lambert AJ, Lefkowitz EJ, Łobocka M, Mushegian AR, Oksanen HM, Robertson DL, Rubino L, Sabanadzovic S, Simmonds P, Suzuki N, Van Doorslaer K, Vandamme AM, Varsani A, Zerbini FM. Virus taxonomy and the role of the International Committee on Taxonomy of Viruses (ICTV). J Gen Virol 2023; 104:001840. [PMID: 37141106 PMCID: PMC10227694 DOI: 10.1099/jgv.0.001840] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/16/2023] [Indexed: 05/05/2023] Open
Abstract
The taxonomy of viruses is developed and overseen by the International Committee on Taxonomy of Viruses (ICTV), which scrutinizes, approves and ratifies taxonomic proposals, and maintains a list of virus taxa with approved names (https://ictv.global). The ICTV has approximately 180 members who vote by simple majority. Taxon-specific Study Groups established by the ICTV have a combined membership of over 600 scientists from the wider virology community; they provide comprehensive expertise across the range of known viruses and are major contributors to the creation and evaluation of taxonomic proposals. Proposals can be submitted by anyone and will be considered by the ICTV irrespective of Study Group support. Thus, virus taxonomy is developed from within the virology community and realized by a democratic decision-making process. The ICTV upholds the distinction between a virus or replicating genetic element as a physical entity and the taxon category to which it is assigned. This is reflected by the nomenclature of the virus species taxon, which is now mandated by the ICTV to be in a binomial format (genus + species epithet) and is typographically distinct from the names of viruses. Classification of viruses below the rank of species (such as, genotypes or strains) is not within the remit of the ICTV. This article, authored by the ICTV Executive Committee, explains the principles of virus taxonomy and the organization, function, processes and resources of the ICTV, with the aim of encouraging greater understanding and interaction among the wider virology community.
Collapse
Affiliation(s)
- Stuart G. Siddell
- School of Cellular and Molecular Medicine, Faculty of Life Sciences, University of Bristol, University of Bristol, Bristol, UK
| | - Donald B. Smith
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | | | - Bas E. Dutilh
- Institute of Biodiversity, Faculty of Biological Sciences, Cluster of Excellence Balance of the Microverse, Friedrich-Schiller-University Jena, Jena, Germany
- Theoretical Biology and Bioinformatics, Science for Life, Utrecht University, Utrecht, The Netherlands
| | - Maria Laura Garcia
- Instituto de Biotecnología y Biología Molecular, CCT-La Plata, CONICET, UNLP, La Plata, Buenos Aires, Argentina
| | - Sandra Junglen
- Institute of Virology, Charité-Universitätsmedizin Berlin, Corporate Member of Free University Berlin, Humboldt-University Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Mart Krupovic
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Archaeal Virology Unit, Paris, France
| | - Jens H. Kuhn
- Integrated Research Facility at Fort Detrick (IRF-Frederick), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, Maryland, USA
| | - Amy J. Lambert
- Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases Centers for Disease Control and Prevention, Fort Collins, Colorado, USA
| | - Elliot J. Lefkowitz
- Department of Microbiology, University of Alabama at Birmingham (UAB), Birmingham, Alabama, USA
| | - Małgorzata Łobocka
- Institute of Biochemistry and Biophysics of the Polish Academy of Sciences, Warsaw, Poland
| | - Arcady R. Mushegian
- Division of Molecular and Cellular Biosciences, National Science Foundation, Alexandria, Virginia, USA
| | - Hanna M. Oksanen
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | | | - Luisa Rubino
- Istituto per la Protezione Sostenibile delle Piante, CNR, SS Bari, Bari, Italy
| | - Sead Sabanadzovic
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi, USA
| | - Peter Simmonds
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Nobuhiro Suzuki
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama, Japan
| | - Koenraad Van Doorslaer
- School of Animal and Comparative Biomedical Sciences, Department of Immunobiology, BIO5 Institute, Genetics Graduate Interdisciplinary Program, Cancer Biology Graduate Interdisciplinary Program and University of Arizona Cancer Center, Tucson, Arizona, USA
| | - Anne-Mieke Vandamme
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Clinical and Epidemiological Virology, Leuven, Belgium and Center for Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Arvind Varsani
- The Biodesign Center for Fundamental and Applied Microbiomics, School of Life Sciences, Center for Evolution and Medicine, Arizona State University, Tempe, Arizona, USA
| | - F. Murilo Zerbini
- Departamento de Fitopatologia/BIOAGRO, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| |
Collapse
|
10
|
Chabi-Jesus C, Ramos-González PL, Tassi AD, Rossetto Pereira L, Bastianel M, Lau D, Canale MC, Harakava R, Novelli VM, Kitajima EW, Freitas-Astúa J. Citrus Bright Spot Virus: A New Dichorhavirus, Transmitted by Brevipalpus azores, Causing Citrus Leprosis Disease in Brazil. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12061371. [PMID: 36987059 PMCID: PMC10053991 DOI: 10.3390/plants12061371] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/13/2023] [Accepted: 03/17/2023] [Indexed: 06/01/2023]
Abstract
Citrus leprosis (CL) is the main viral disease affecting the Brazilian citriculture. Sweet orange (Citrus sinensis L. Osbeck) trees affected by CL were identified in small orchards in Southern Brazil. Rod-like particles of 40 × 100 nm and electron lucent viroplasm were observed in the nucleus of infected cells in symptomatic tissues. RNA extracts from three plants, which proved negative by RT-PCR for known CL-causing viruses, were analyzed by high throughput sequencing and Sanger sequencing after RT-PCR. The genomes of bi-segmented ss(-)RNA viruses, with ORFs in a typical organization of members of the genus Dichorhavirus, were recovered. These genomes shared 98-99% nt sequence identity among them but <73% with those of known dichorhavirids, a value below the threshold for new species demarcation within that genus. Phylogenetically, the three haplotypes of the new virus called citrus bright spot virus (CiBSV) are clustered with citrus leprosis virus N, which is a dichorhavirus transmitted by Brevipalpus phoenicis sensu stricto. In CiBSV-infected citrus plants, B. papayensis and B. azores were found, but the virus could only be transmitted to Arabidopsis plants by B. azores. The study provides the first evidence of the role of B. azores as a viral vector and supports the assignment of CiBSV to the tentative new species Dichorhavirus australis.
Collapse
Affiliation(s)
- Camila Chabi-Jesus
- Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo (Esalq/USP), Piracicaba 13418-900, São Paulo, Brazil
- Instituto Biológico/IB, São Paulo 04014-002, São Paulo, Brazil
| | | | | | | | - Marinês Bastianel
- Centro de Citricultura Sylvio Moreira/IAC, Cordeirópolis 13490-970, São Paulo, Brazil
| | - Douglas Lau
- Embrapa Trigo, Passo Fundo 99050-970, Rio Grande do Sul, Brazil
| | - Maria Cristina Canale
- Empresa de Pesquisa Agropecuária e Extensão Rural de Santa Catarina/Epagri, Paulo Lopes 88490-000, Santa Catarina, Brazil
| | | | | | - Elliot Watanabe Kitajima
- Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo (Esalq/USP), Piracicaba 13418-900, São Paulo, Brazil
| | - Juliana Freitas-Astúa
- Instituto Biológico/IB, São Paulo 04014-002, São Paulo, Brazil
- Embrapa Mandioca e Fruticultura, Cruz das Almas 44380-000, Bahia, Brazil
| |
Collapse
|
11
|
Miranda TDS, Schiffler FB, D'arc M, Moreira FRR, Cosentino MAC, Coimbra A, Mouta R, Medeiros G, Girardi DL, Wanderkoke V, Soares CFA, Francisco TM, Henry MD, Afonso BC, Soffiati FL, Ferreira SS, Ruiz-Miranda CR, Soares MA, Santos AFA. Metagenomic analysis reveals novel dietary-related viruses in the gut virome of marmosets hybrids (Callithrix jacchus x Callithrix penicillata), Brazil. Virus Res 2023; 325:199017. [PMID: 36565815 DOI: 10.1016/j.virusres.2022.199017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/02/2022] [Accepted: 12/04/2022] [Indexed: 12/24/2022]
Abstract
Viral metagenomics has contributed enormously to the characterization of a wide range of viruses infecting animals of all phyla in the last decades. Among Neotropical primates, especially those introduced, knowledge about viral diversity remains poorly studied. Therefore, using metagenomics based on virus enrichment, we explored the viral microbiota present in the feces of introduced common marmosets (Callithrix sp.) in three locations from the Silva Jardim region in the State of Rio de Janeiro, Brazil. Fecal samples were collected from nine marmosets, pooled into three sample pools, and sequenced on Illumina MiSeq platform. Sequence reads were analyzed using a viral metagenomic analysis pipeline and two novel insect viruses belonging to the Parvoviridae and Baculoviridae families were identified. The complete genome of a densovirus (Parvoviridae family) of 5,309 nucleotides (nt) was obtained. The NS1 and VP1 proteins share lower than 32% sequence identity with the corresponding proteins of known members of the subfamily Densovirinae. Phylogenetic analysis suggests that this virus represents a new genus, provisionally named Afoambidensovirus due to its discovery in the Brazilian Atlantic Forest. The novel species received the name Afoambidensovirus incertum 1. The complete circular genome of a baculovirus of 107,191 nt was also obtained, showing 60.8% sequence identity with the most closely related member of the Baculoviridae family. Phylogenetic analysis suggests that this virus represents a new species in the Betabaculovirus genus, provisionally named Betabaculovirus incertum 1. In addition, sequences from several families of arthropods in the three pools evaluated were characterized (contigs ranging from 244 to 6,750 nt), corroborating the presence of possible insect hosts with which these new viruses may be associated. Our study expands the knowledge about two viral families known to infect insects, an important component of the marmosets' diet. This identification in hosts' feces samples demonstrates one of the many uses of this type of data and could serve as a basis for future research characterizing viruses in wildlife using noninvasive samples.
Collapse
Affiliation(s)
- Thamiris Dos Santos Miranda
- Laboratório de Diversidade e Doenças Virais, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | | | - Mirela D'arc
- Laboratório de Diversidade e Doenças Virais, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Filipe Romero Rebello Moreira
- Laboratório de Diversidade e Doenças Virais, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil; Department of Infectious Disease Epidemiology, Imperial College London, London, UK
| | | | - Amanda Coimbra
- Laboratório de Diversidade e Doenças Virais, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Ricardo Mouta
- Laboratório de Diversidade e Doenças Virais, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Gabriel Medeiros
- Laboratório de Diversidade e Doenças Virais, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Déa Luiza Girardi
- Laboratório de Diversidade e Doenças Virais, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Victor Wanderkoke
- Laboratório de Diversidade e Doenças Virais, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Caique Ferreira Amaral Soares
- Associação Mico-Leão-Dourado, Silva Jardim, Rio de Janeiro, RJ, Brazil; Laboratório de Ciências Ambientais, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, RJ, Brazil
| | - Talitha Mayumi Francisco
- Associação Mico-Leão-Dourado, Silva Jardim, Rio de Janeiro, RJ, Brazil; Laboratório de Ciências Ambientais, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, RJ, Brazil
| | - Malinda Dawn Henry
- Laboratório de Ciências Ambientais, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, RJ, Brazil
| | - Bianca Cardozo Afonso
- Associação Mico-Leão-Dourado, Silva Jardim, Rio de Janeiro, RJ, Brazil; Laboratório de Ciências Ambientais, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, RJ, Brazil
| | | | | | - Carlos Ramon Ruiz-Miranda
- Associação Mico-Leão-Dourado, Silva Jardim, Rio de Janeiro, RJ, Brazil; Laboratório de Ciências Ambientais, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, RJ, Brazil
| | - Marcelo Alves Soares
- Laboratório de Diversidade e Doenças Virais, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil; Programa de Oncovirologia, Instituto Nacional de Câncer, Rio de Janeiro, RJ, Brazil
| | - André Felipe Andrade Santos
- Laboratório de Diversidade e Doenças Virais, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
12
|
Turner D, Shkoporov AN, Lood C, Millard AD, Dutilh BE, Alfenas-Zerbini P, van Zyl LJ, Aziz RK, Oksanen HM, Poranen MM, Kropinski AM, Barylski J, Brister JR, Chanisvili N, Edwards RA, Enault F, Gillis A, Knezevic P, Krupovic M, Kurtböke I, Kushkina A, Lavigne R, Lehman S, Lobocka M, Moraru C, Moreno Switt A, Morozova V, Nakavuma J, Reyes Muñoz A, Rūmnieks J, Sarkar BL, Sullivan MB, Uchiyama J, Wittmann J, Yigang T, Adriaenssens EM. Abolishment of morphology-based taxa and change to binomial species names: 2022 taxonomy update of the ICTV bacterial viruses subcommittee. Arch Virol 2023; 168:74. [PMID: 36683075 PMCID: PMC9868039 DOI: 10.1007/s00705-022-05694-2] [Citation(s) in RCA: 167] [Impact Index Per Article: 83.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
This article summarises the activities of the Bacterial Viruses Subcommittee of the International Committee on Taxonomy of Viruses for the period of March 2021-March 2022. We provide an overview of the new taxa proposed in 2021, approved by the Executive Committee, and ratified by vote in 2022. Significant changes to the taxonomy of bacterial viruses were introduced: the paraphyletic morphological families Podoviridae, Siphoviridae, and Myoviridae as well as the order Caudovirales were abolished, and a binomial system of nomenclature for species was established. In addition, one order, 22 families, 30 subfamilies, 321 genera, and 862 species were newly created, promoted, or moved.
Collapse
Affiliation(s)
- Dann Turner
- School of Applied Sciences, College of Health, Science and Society, University of the West of England, Bristol, BS16 1QY UK
| | - Andrey N. Shkoporov
- Department of Medicine and APC Microbiome Ireland, School of Microbiology, University College Cork, Cork, Ireland
| | - Cédric Lood
- Department of Biosystems, Faculty of Bioscience Engineering, KU, Leuven, Belgium
| | - Andrew D. Millard
- Department of Genetics and Genome Biology, University of Leicester, University Road, Leicester, UK
| | - Bas E. Dutilh
- Institute of Biodiversity, Faculty of Biological Sciences, Cluster of Excellence Balance of the Microverse, Friedrich-Schiller-University Jena, 07743 Jena, Germany
- Theoretical Biology and Bioinformatics, Science for Life, Utrecht University, Padualaan 8, Utrecht, 3584 CH The Netherlands
| | | | - Leonardo J. van Zyl
- Institute for Microbial Biotechnology and Metagenomics (IMBM), Department of Biotechnology, University of the Western Cape, 7535 Bellville, Cape Town, South Africa
| | - Ramy K. Aziz
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, 11562 Cairo, Egypt
- Egypt/ and Children’s Cancer Hospital, 57357, 11617 Cairo, Egypt
| | - Hanna M. Oksanen
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Viikinkaari 9, 00014 Helsinki, Finland
| | - Minna M. Poranen
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Viikinkaari 9, 00014 Helsinki, Finland
| | - Andrew M. Kropinski
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1 Canada
| | - Jakub Barylski
- Department of Molecular Virology, Adam Mickiewicz University in Poznan, Poznan, Poland
| | - J Rodney Brister
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894 USA
| | - Nina Chanisvili
- The Eliava Institute of Bacteriophage, Microbiology and Virology, Tbilisi, Georgia
| | - Rob A. Edwards
- Flinders Accelerator for Microbiome Exploration, Adelaide, Australia
| | - François Enault
- Université Clermont Auvergne, CNRS, LMGE, Clermont-Ferrand, France
| | - Annika Gillis
- Laboratory of Food and Environmental Microbiology, Université Catholique de Louvain, Croix du Sud 2, L7.05.12, 1348 Louvain-la-Neuve, Belgium
| | - Petar Knezevic
- PK Lab, Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovica 3, Novi Sad, Serbia
| | - Mart Krupovic
- Archaeal Virology Unit, Institut Pasteur, Université Paris Cité, CNRS UMR6047, Paris, 75015 France
| | - Ipek Kurtböke
- School of Science, Technology and Engineering, University of the Sunshine Coast, 4558 Maroochydore, BC, QLD Australia
| | - Alla Kushkina
- Department of Bacteriophage molecular genetics, D.K.Zabolotny Institute of microbiology and virology, NAS of Ukraine, 154 Acad. Zabolotnoho str, 03143 Kyiv, Ukraine
- Department of Bacterial molecular genetics, Faculty of biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| | - Rob Lavigne
- Department of Biosystems, Faculty of Bioscience Engineering, KU, Leuven, Belgium
| | - Susan Lehman
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD USA
| | - Malgorzata Lobocka
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Cristina Moraru
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany
| | - Andrea Moreno Switt
- Escuela de Medicina Veterinaria, Facultad de Agronomía e Ingeniería Forestal, Facultad de Ciencias Biológicas y Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Vera Morozova
- Laboratory of Molecular Microbiology, Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, Russia
| | - Jesca Nakavuma
- College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, P. O. Box 7062, Kampala, Uganda
| | - Alejandro Reyes Muñoz
- Max Planck Tandem Group in Computational Biology, Departamento de Ciencias Biológicas, Universidad de los Andes, 111711 Bogotá, Colombia
| | - Jānis Rūmnieks
- Latvian Biomedical Research and Study Center, 1067 Riga, Latvia
| | - BL Sarkar
- ICMR-National Institute of Cholera and Enteric Diseases (NICED), Kolkata, India
| | - Matthew B. Sullivan
- Departments of Microbiology and Civil, Environmental, and Geodetic Engineering, Ohio State University, Columbus, OH 43210 USA
| | - Jumpei Uchiyama
- Department of Bacteriology, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University, 1-1-1, Tsushima-naka, Kita-ku, Okayama, 7008530 Japan
| | - Johannes Wittmann
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Inhoffenstr. 7B, 38124 Braunschweig, Germany
| | - Tong Yigang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029 China
| | - Evelien M. Adriaenssens
- Quadram Institute Bioscience, Rosalind Franklin Road, Norwich Research Park, Norwich, NR4 7UQ UK
| |
Collapse
|
13
|
Ishag HZA, Terab AMA, Eltahir YM, El Tigani-Asil ETA, Khalil NAH, Gasim EFM, Yuosf MF, Al Yammahi SMS, Al Mansoori AMA, Al Muhairi SSM, Al Hammadi ZMAH, Shah AAM, Alherbawi MMAN, Al Nuaimat MMH, Bensalah OK, Khalafalla AI. A Clinical, Pathological, Epidemiological and Molecular Investigation of Recent Outbreaks of Peste des Petits Ruminants Virus in Domestic and Wild Small Ruminants in the Abu Dhabi Emirate, United Arab Emirates. Vet Sci 2023; 10:56. [PMID: 36669056 PMCID: PMC9862675 DOI: 10.3390/vetsci10010056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/04/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
(1) Background: Peste des petits ruminants (PPR) is a highly contagious animal disease affecting small ruminants, leading to significant economic losses. There has been little published data on PPR virus (PPRV) infection in the United Arab Emirates (UAE); (2) Methods: four outbreaks reported in goats and Dama gazelle in 2021 were investigated using pathological and molecular testing; (3) Results: The infected animals showed symptoms of dyspnea, oculo-nasal secretions, cough, and diarrhea. Necropsy findings were almost similar in all examined animals and compliant to the classical forms of the disease. Phylogenetic analysis based on N gene and F gene partial sequences revealed a circulation of PPRV Asian lineage IV in the UAE, and these sequences clustered close to the sequences of PPRV from United Arab Emirates, Pakistan, Tajikistan and Iran; (4) Conclusions: PPRV Asian lineage IV is currently circulating in the UAE. To the best of our knowledge, this is a first study describing PPRV in domestic small ruminant in the UAE.
Collapse
Affiliation(s)
- Hassan Zackaria Ali Ishag
- Veterinary Laboratories Division, Animal Wealth Sector, Abu Dhabi Agriculture and Food Safety Authority (ADAFSA), Abu Dhabi P.O. Box 52150, United Arab Emirates
| | - Abdelnasir Mohammed Adam Terab
- Veterinary Laboratories Division, Animal Wealth Sector, Abu Dhabi Agriculture and Food Safety Authority (ADAFSA), Abu Dhabi P.O. Box 52150, United Arab Emirates
| | - Yassir Mohammed Eltahir
- Animal Health Division, Animal Wealth Sector, Abu Dhabi Agriculture and Food Safety Authority (ADAFSA), Abu Dhabi P.O. Box 52150, United Arab Emirates
| | - El Tigani Ahmed El Tigani-Asil
- Veterinary Laboratories Division, Animal Wealth Sector, Abu Dhabi Agriculture and Food Safety Authority (ADAFSA), Abu Dhabi P.O. Box 52150, United Arab Emirates
| | - Nasereldien Altaib Hussein Khalil
- Veterinary Laboratories Division, Animal Wealth Sector, Abu Dhabi Agriculture and Food Safety Authority (ADAFSA), Abu Dhabi P.O. Box 52150, United Arab Emirates
| | - Esamt Faisal Malik Gasim
- Veterinary Laboratories Division, Animal Wealth Sector, Abu Dhabi Agriculture and Food Safety Authority (ADAFSA), Abu Dhabi P.O. Box 52150, United Arab Emirates
| | - Mohd Farouk Yuosf
- Veterinary Laboratories Division, Animal Wealth Sector, Abu Dhabi Agriculture and Food Safety Authority (ADAFSA), Abu Dhabi P.O. Box 52150, United Arab Emirates
| | - Saeed Mohamed Saeed Al Yammahi
- Veterinary Laboratories Division, Animal Wealth Sector, Abu Dhabi Agriculture and Food Safety Authority (ADAFSA), Abu Dhabi P.O. Box 52150, United Arab Emirates
| | - Asma Mohammed Amer Al Mansoori
- Veterinary Laboratories Division, Animal Wealth Sector, Abu Dhabi Agriculture and Food Safety Authority (ADAFSA), Abu Dhabi P.O. Box 52150, United Arab Emirates
| | | | - Zulaikha Mohamed Abdel Hameed Al Hammadi
- Veterinary Laboratories Division, Animal Wealth Sector, Abu Dhabi Agriculture and Food Safety Authority (ADAFSA), Abu Dhabi P.O. Box 52150, United Arab Emirates
| | - Asma Abdi Mohamed Shah
- Veterinary Laboratories Division, Animal Wealth Sector, Abu Dhabi Agriculture and Food Safety Authority (ADAFSA), Abu Dhabi P.O. Box 52150, United Arab Emirates
| | | | | | - Oum Keltoum Bensalah
- Animal Health Division, Animal Wealth Sector, Abu Dhabi Agriculture and Food Safety Authority (ADAFSA), Abu Dhabi P.O. Box 52150, United Arab Emirates
| | - Abdelmalik Ibrahim Khalafalla
- Veterinary Laboratories Division, Animal Wealth Sector, Abu Dhabi Agriculture and Food Safety Authority (ADAFSA), Abu Dhabi P.O. Box 52150, United Arab Emirates
| |
Collapse
|
14
|
Krupovic M, Varsani A. Naryaviridae, Nenyaviridae, and Vilyaviridae: three new families of single-stranded DNA viruses in the phylum Cressdnaviricota. Arch Virol 2022; 167:2907-2921. [PMID: 36098801 DOI: 10.1007/s00705-022-05557-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 07/19/2022] [Indexed: 12/14/2022]
Abstract
The phylum Cressdnaviricota includes viruses with circular single-stranded DNA (ssDNA) genomes and icosahedral capsids. These viruses display global environmental distribution and infect diverse eukaryotic hosts, including animals, plants, and fungi. Here, we report on the formal creation of two new orders, Rivendellvirales and Rohanvirales, and three new families, Naryaviridae, Nenyaviridae, and Vilyaviridae, of ssDNA viruses associated with protozoan parasites belonging to the genera Entamoeba and Giardia. We describe a sequence-based taxonomic framework, which was used to classify 60 ssDNA viruses into 12 genera (with 18 species) within the family Vilyaviridae; four genera (with five species) within the family Naryaviridae; and five genera (with six species) within the family Nenyaviridae. We also highlight the challenges associated with the classification of chimeric virus genomes, such as those in the families Naryaviridae and Nenyaviridae, where the replication initiation and capsid protein genes have undergone several independent non-orthologous replacements. The described taxonomic changes have been ratified by the International Committee on Taxonomy of Viruses (ICTV) and expand the phylum Cressdnaviricota to eight orders and 11 families.
Collapse
Affiliation(s)
- Mart Krupovic
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Archaeal Virology Unit, F-75015, Paris, France.
| | - Arvind Varsani
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, Arizona, USA. .,Structural Biology Research Unit, Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town, South Africa.
| |
Collapse
|
15
|
Revisiting Papillomavirus Taxonomy: A Proposal for Updating the Current Classification in Line with Evolutionary Evidence. Viruses 2022; 14:v14102308. [PMID: 36298863 PMCID: PMC9612317 DOI: 10.3390/v14102308] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/11/2022] [Accepted: 10/13/2022] [Indexed: 11/06/2022] Open
Abstract
Papillomaviruses infect a wide array of animal hosts and are responsible for roughly 5% of all human cancers. Comparative genomics between different virus types belonging to specific taxonomic groupings (e.g., species, and genera) has the potential to illuminate physiological differences between viruses with different biological outcomes. Likewise, extrapolation of features between related viruses can be very powerful but requires a solid foundation supporting the evolutionary relationships between viruses. The current papillomavirus classification system is based on pairwise sequence identity. However, with the advent of metagenomics as facilitated by high-throughput sequencing and molecular tools of enriching circular DNA molecules using rolling circle amplification, there has been a dramatic increase in the described diversity of this viral family. Not surprisingly, this resulted in a dramatic increase in absolute number of viral types (i.e., sequences sharing <90% L1 gene pairwise identity). Many of these novel viruses are the sole member of a novel species within a novel genus (i.e., singletons), highlighting that we have only scratched the surface of papillomavirus diversity. I will discuss how this increase in observed sequence diversity complicates papillomavirus classification. I will propose a potential solution to these issues by explicitly basing the species and genera classification on the evolutionary history of these viruses based on the core viral proteins (E1, E2, and L1) of papillomaviruses. This strategy means that it is possible that a virus identified as the closest neighbor based on the E1, E2, L1 phylogenetic tree, is not the closest neighbor based on L1 nucleotide identity. In this case, I propose that a virus would be considered a novel type if it shares less than 90% identity with its closest neighbors in the E1, E2, L1 phylogenetic tree.
Collapse
|
16
|
Dastjerdi A, Jeckel S, Davies H, Irving J, Longue C, Plummer C, Vidovszky MZ, Harrach B, Chantrey J, Martineau H, Williams J. Novel adenovirus associated with necrotizing bronchiolitis in a captive reindeer (Rangifer tarandus). Transbound Emerg Dis 2022; 69:3097-3102. [PMID: 34724349 PMCID: PMC9787489 DOI: 10.1111/tbed.14374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/22/2021] [Accepted: 10/04/2021] [Indexed: 12/30/2022]
Abstract
Adenoviruses cause a range of major diseases across many diverse animal species including ruminants. They are classified into six genera in the family Adenoviridae. In deer species, two adenoviruses are currently recognized: deer adenovirus 1 in the Atadenovirus genus, and deer adenovirus 2 in the Mastadenovirus genus. Deer adenovirus 1 causes adenovirus haemorrhagic disease with high fatality in black-tailed and mule deer in North America. Conversely, deer adenovirus 2 was incidentally detected from a healthy white-tailed deer fawn, but experimentally it has been shown to cause pyrexia, cough and moderate to severe haemorrhage. Here, we detected a novel adenovirus, reindeer adenovirus 1, from lung lesions of a 5-year-old male reindeer (Rangifer tarandus). This animal presented with aspiration pneumonia and necrotizing bronchiolitis following a period of clinical weakness, nasal discharge and wasting. Histopathological examination of the lung revealed large intranuclear basophilic inclusions associated with the areas of necrotizing bronchiolitis. Next generation sequencing of the lung tissue identified a novel mastadenovirus with close similarity to deer adenovirus 2 and bovine adenovirus 3. To our knowledge, this is the first report of a deer mastadenovirus associated with necrotizing bronchiolitis in captive reindeer.
Collapse
Affiliation(s)
- Akbar Dastjerdi
- Virology DepartmentAnimal and Plant Health Agency (APHA)‐WeybridgeAddlestoneSurreyUK
| | - Sonja Jeckel
- Pathobiology and Population SciencesRoyal Veterinary CollegeHatfieldHertfordshireUK
| | - Hannah Davies
- Virology DepartmentAnimal and Plant Health Agency (APHA)‐WeybridgeAddlestoneSurreyUK,School of Veterinary MedicineUniversity of SurreyGuildfordUK
| | - Jennifer Irving
- Pathobiology and Population SciencesRoyal Veterinary CollegeHatfieldHertfordshireUK
| | | | | | | | | | - Julian Chantrey
- Veterinary Pathology and Preclinical SciencesUniversity of Liverpool Veterinary SchoolNestonUK
| | - Henny Martineau
- Pathobiology and Population SciencesRoyal Veterinary CollegeHatfieldHertfordshireUK
| | - Jonathan Williams
- Pathobiology and Population SciencesRoyal Veterinary CollegeHatfieldHertfordshireUK
| |
Collapse
|
17
|
Kondo H, Botella L, Suzuki N. Mycovirus Diversity and Evolution Revealed/Inferred from Recent Studies. ANNUAL REVIEW OF PHYTOPATHOLOGY 2022; 60:307-336. [PMID: 35609970 DOI: 10.1146/annurev-phyto-021621-122122] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
High-throughput virome analyses with various fungi, from cultured or uncultured sources, have led to the discovery of diverse viruses with unique genome structures and even neo-lifestyles. Examples in the former category include splipalmiviruses and ambiviruses. Splipalmiviruses, related to yeast narnaviruses, have multiple positive-sense (+) single-stranded (ss) RNA genomic segments that separately encode the RNA-dependent RNA polymerase motifs, the hallmark of RNA viruses (members of the kingdom Orthornavirae). Ambiviruses appear to have an undivided ssRNA genome of 3∼5 kb with two large open reading frames (ORFs) separated by intergenic regions. Another narna-like virus group has two fully overlapping ORFs on both strands of a genomic segment that span more than 90% of the genome size. New virus lifestyles exhibited by mycoviruses include the yado-kari/yado-nushi nature characterized by the partnership between the (+)ssRNA yadokarivirus and an unrelated dsRNA virus (donor of the capsid for the former) and the hadaka nature of capsidless 10-11 segmented (+)ssRNA accessible by RNase in infected mycelial homogenates. Furthermore, dsRNA polymycoviruses with phylogenetic affinity to (+)ssRNA animal caliciviruses have been shown to be infectious as dsRNA-protein complexes or deproteinized naked dsRNA. Many previous phylogenetic gaps have been filled by recently discovered fungal and other viruses, which haveprovided interesting evolutionary insights. Phylogenetic analyses and the discovery of natural and experimental cross-kingdom infections suggest that horizontal virus transfer may have occurred and continue to occur between fungi and other kingdoms.
Collapse
Affiliation(s)
- Hideki Kondo
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan;
| | - Leticia Botella
- Department of Forest Protection and Wildlife Management, Faculty of Forestry and Wood Technology, Mendel University, Brno, Czech Republic
| | - Nobuhiro Suzuki
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan;
| |
Collapse
|
18
|
Zerbini FM, Siddell SG, Mushegian AR, Walker PJ, Lefkowitz EJ, Adriaenssens EM, Alfenas-Zerbini P, Dutilh BE, García ML, Junglen S, Krupovic M, Kuhn JH, Lambert AJ, Łobocka M, Oksanen HM, Robertson DL, Rubino L, Sabanadzovic S, Simmonds P, Suzuki N, Van Doorslaer K, Vandamme AM, Varsani A. Differentiating between viruses and virus species by writing their names correctly. Arch Virol 2022; 167:1231-1234. [PMID: 35043230 PMCID: PMC9020231 DOI: 10.1007/s00705-021-05323-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Following the results of the International Committee on Taxonomy of Viruses (ICTV) Ratification Vote held in March 2021, a standard two-part "binomial nomenclature" is now the norm for naming virus species. Adoption of the new nomenclature is still in its infancy; thus, it is timely to reiterate the distinction between "virus" and "virus species" and to provide guidelines for naming and writing them correctly.
Collapse
Affiliation(s)
| | - Stuart G Siddell
- School of Cellular and Molecular Medicine, Faculty of Life Sciences, University of Bristol, University Walk, Bristol, BS8 1TD, UK
| | - Arcady R Mushegian
- Division of Molecular and Cellular Biosciences, National Science Foundation, 2415 Eisenhower Avenue, Alexandria, VA, 22314, USA
| | - Peter J Walker
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Elliot J Lefkowitz
- Department of Microbiology, University of Alabama at Birmingham (UAB), BBRB 276, 845 19th St South, Birmingham, AL, 35294-2170, USA
| | | | - Poliane Alfenas-Zerbini
- Departamento de Microbiologia, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | - Bas E Dutilh
- Institute of Biodiversity, Faculty of Biological Sciences, Cluster of Excellence Balance of the Microverse, Friedrich-Schiller-University Jena, Jena, 07743, Germany
- Theoretical Biology and Bioinformatics, Science for Life, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - María Laura García
- Instituto de Biotecnología y Biología Molecular, CCT-La Plata, CONICET, UNLP, calles 47 y 115 (1900), La Plata, Buenos Aires, Argentina
| | - Sandra Junglen
- Institute of Virology, Charité-Universitätsmedizin, corporate member of Free University Berlin, Humboldt-University Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Mart Krupovic
- Institut Pasteur, Université de Paris, Archaeal Virology Unit, Paris, 75015, France
| | - Jens H Kuhn
- NIH/NIAID/DCR/Integrated Research Facility at Fort Detrick (IRF-Frederick), B‑8200 Research Plaza, Fort Detrick, Frederick, MD, 21702, USA
| | - Amy J Lambert
- Division of Vector‑Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, 80521, USA
| | - Małgorzata Łobocka
- Institute of Biochemistry and Biophysics of the Polish Academy of Sciences, 02-106, Warsaw, Poland
| | - Hanna M Oksanen
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Viikinkaari 9, 00014, Helsinki, Finland
| | - David L Robertson
- MRC-University of Glasgow Centre for Virus Research, Sir Michael Stoker Building, 464 Bearsden Road, Glasgow, G61 1QH, UK
| | - Luisa Rubino
- Istituto per la Protezione Sostenibile delle Piante, CNR, UOS Bari, Via Amendola 165/A, 70126, Bari, Italy
| | - Sead Sabanadzovic
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, 100 Old Hwy 12 Mail Stop 9775, Mississippi State, MS, 39762, USA
| | - Peter Simmonds
- Nuffield Department of Medicine, University of Oxford, Peter Medawar Building, South Parks Road, Oxford, OX1 3SY, UK
| | - Nobuhiro Suzuki
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama, 710-0046, Japan
| | - Koenraad Van Doorslaer
- School of Animal and Comparative Biomedical Sciences, Department of Immunobiology, BIO5 Institute, and University of Arizona Cancer Center, Tucson, AZ, 85721, USA
| | - Anne-Mieke Vandamme
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Clinical and Epidemiological Virology, Institute for the Future, 3000, Leuven, Belgium
- Center for Global Health and Tropical Medicine, Unidade de Microbiologia, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Rua da Junqueira, 100, 1349-008, Lisboa, Portugal
| | - Arvind Varsani
- The Biodesign Center for Fundamental and Applied Microbiomics, School of Life Sciences, Center for Evolution and Medicine, Arizona State University, P.O. Box 874701, Tempe, AZ, 85287-4701, USA
| |
Collapse
|
19
|
Complete Genome Sequence of Macrobrachium rosenbergii Golda Virus (MrGV) from China. Animals (Basel) 2021; 12:ani12010027. [PMID: 35011135 PMCID: PMC8749832 DOI: 10.3390/ani12010027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/17/2021] [Accepted: 12/19/2021] [Indexed: 01/22/2023] Open
Abstract
Simple Summary Macrobrachium rosenbergii golda virus (MrGV) was first identified in Macrobrachium rosenbergii in Bangladesh with massive larva death. In this study, the variant of MrGV Mr-18 from China was accidentally found in a meta-transcriptome study of M. rosenbergii and compared with MrGV LH1-2018 reported in Bangladesh. Phylogenetic analysis has shown that these two variants belong to the same, yet unclassified, genus. At present, there has no evidence that MrGV Mr-18 causes disease in M. rosenbergii. However, we should be alert that MrGV may lead to the mass death of M. rosenbergii larvae; thus, surveillance of MrGV in Asia should be given priority. Abstract In a meta-transcriptome study of the giant freshwater prawn Macrobrachium rosenbergii sampled in 2018 from a hatchery, we identified a variant of Macrobrachium rosenbergii golda virus (MrGV) in postlarvae without clinical signs. The virus belongs to the family Roniviridae, and the genome of this MrGV variant, Mr-18, consisted of 28,957 nucleotides, including 4 open reading frames (ORFs): (1) ORF1a, encoding a 3C-like protein (3CLP) (4933 aa); (2) ORF1b, encoding a replicase polyprotein (2877 aa); (3) ORF2, encoding a hypothetical nucleocapsid protein (125 aa); and (4) ORF3, encoding a glycoprotein (1503 aa). ORF1a overlaps with ORF1b with 40 nucleotides, where a −1 ribosomal frameshift with slippage sequence 5′-G14925GGUUUU14931-3′ produces the pp1ab polyprotein. The genomic sequence of Mr-18 shared 97.80% identity with MrGV LH1-2018 discovered in Bangladesh. The amino acid sequence identities between them were 99.30% (ORF1a), 99.60% (ORF1b), 100.00% (ORF2), and 99.80% (ORF3), respectively. Phylogenetic analysis of the RNA-dependent RNA polymerase (RdRp) proteins revealed that they clustered together and formed a separate cluster from the genus Okavirus. The finding of MrGV in China warrants further studies to determine its pathogenicity and prevalence within the region.
Collapse
|
20
|
Roumagnac P, Lett JM, Fiallo-Olivé E, Navas-Castillo J, Zerbini FM, Martin DP, Varsani A. Establishment of five new genera in the family Geminiviridae: Citlodavirus, Maldovirus, Mulcrilevirus, Opunvirus, and Topilevirus. Arch Virol 2021; 167:695-710. [PMID: 34837111 DOI: 10.1007/s00705-021-05309-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Geminiviruses are plant-infecting, circular single-stranded DNA viruses that have a geminate virion morphology. These viruses infect both cultivated and non-cultivated monocotyledonous and dicotyledonous plants and have a wide geographical distribution. Nine genera had been established within the family Geminiviridae (Becurtovirus, Begomovirus, Capulavirus, Curtovirus, Eragrovirus, Grablovirus, Mastrevirus, Topocuvirus, and Turncurtovirus) as of 2020. In the last decade, metagenomics approaches have facilitated the discovery and identification of many novel viruses, among them numerous highly divergent geminiviruses. Here, we report the establishment of five new genera in the family Geminiviridae (Citlodavirus, Maldovirus, Mulcrilevirus, Opunvirus, and Topilevirus) to formally classify twelve new, divergent geminiviruses.
Collapse
Affiliation(s)
- Philippe Roumagnac
- CIRAD, UMR PHIM, 34090, Montpellier, France.
- PHIM Plant Health Institute, Univ Montpellier, CIRAD, INRAE, Institut Agro, IRD, Montpellier, France.
| | | | - Elvira Fiallo-Olivé
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", "La Mayora" (IHSM-UMA-CSIC), Consejo Superior de Investigaciones Científicas, 29750, Algarrobo-Costa, Málaga, Spain
| | - Jesús Navas-Castillo
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", "La Mayora" (IHSM-UMA-CSIC), Consejo Superior de Investigaciones Científicas, 29750, Algarrobo-Costa, Málaga, Spain
| | - F Murilo Zerbini
- Dep. de Fitopatologia/Bioagro, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Darren P Martin
- Department of Integrative Biomedical Sciences, Computational Biology Division, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Observatory, Cape Town, 7925, South Africa
| | - Arvind Varsani
- The Biodesign Center for Fundamental and Applied Microbiomics, School of Life Sciences, Center for Evolution and Medicine, Arizona State University, Tempe, AZ, 85287, USA.
- Structural Biology Research Unit, Department of Integrative Biomedical Sciences, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, 7925, South Africa.
| |
Collapse
|
21
|
Dong X, Hu T, Ren Y, Meng F, Li C, Zhang Q, Chen J, Song J, Wang R, Shi M, Li J, Zhao P, Li C, Tang KFJ, Cowley JA, Shi W, Huang J. A Novel Bunyavirus Discovered in Oriental Shrimp ( Penaeus chinensis). Front Microbiol 2021; 12:751112. [PMID: 34899637 PMCID: PMC8652140 DOI: 10.3389/fmicb.2021.751112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 10/25/2021] [Indexed: 11/21/2022] Open
Abstract
Herein, we describe a novel bunyavirus, oriental wenrivirus 1 (OWV1), discovered in moribund oriental shrimp (Penaeus chinensis) collected from a farm in China in 2016. Like most bunyaviruses, OWV1 particles were enveloped, spherical- to ovoid-shaped, and 80-115 nm in diameter. However, its genome was found to comprise four segments of (-)ssRNA. These included an L RNA segment (6,317 nt) encoding an RNA-directed RNA polymerase (RdRp) of 2,052 aa, an M RNA segment (2,978 nt) encoding a glycoprotein precursor (GPC) of 922 aa, an S1 RNA segment (1,164 nt) encoding a nucleocapsid (N) protein of 243 aa, and an S2 RNA segment (1,382 nt) encoding a putative non-structural (NSs2) protein of 401 aa. All the four OWV1 RNA segments have complementary terminal decanucleotides (5'-ACACAAAGAC and 3'-UGUGUUUCUG) identical to the genomic RNA segments of uukuviruses and similar to those of phleboviruses and tenuiviruses in the Phenuiviridae. Phylogenetic analyses revealed that the RdRp, GPC, and N proteins of OWV1 were closely related to Wēnzhōu shrimp virus 1 (WzSV-1) and Mourilyan virus (MoV) that infect black tiger shrimp (P. monodon). Phylogenetic analyses also suggested that OWV1 could be classified into a second, yet to be established, species of the Wenrivirus genus in the Phenuiviridae. These wenriviruses also clustered with Wenling crustacean virus 7 from shrimps and bunya-like brown spot virus from white-clawed crayfish. Of note there were no homologs of the NSs2 of OWV1 and MoV/WzSV-1 in GenBank, and whether other crustacean phenuiviruses also possess a similar S2 RNA segment warrants further investigation. In addition, we established a TaqMan probe-based reverse-transcription quantitative PCR method for detection of OWV1, and it was detected as 1.17 × 102-1.90 × 107 copies/ng-RNA in gills of 23 out of 32 P. chinensis samples without an obvious gross sign. However, the discovery of OWV1 highlights the expanding genomic diversity of bunyaviruses.
Collapse
Affiliation(s)
- Xuan Dong
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affair, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Qingdao, China
| | - Tao Hu
- Key Laboratory of Etiology and Epidemiology of Emerging Infectious Diseases in Universities of Shandong, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, China
| | - Yanbei Ren
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affair, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Qingdao, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, China
| | - Fanzeng Meng
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affair, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Qingdao, China
| | - Chen Li
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affair, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Qingdao, China
| | - Qingli Zhang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affair, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Qingdao, China
| | - Jiayuan Chen
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affair, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Qingdao, China
| | - Jipeng Song
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affair, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Qingdao, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, China
| | - Ruoyu Wang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affair, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Qingdao, China
| | - Mang Shi
- School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Juan Li
- Key Laboratory of Etiology and Epidemiology of Emerging Infectious Diseases in Universities of Shandong, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, China
| | - Peng Zhao
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, China
| | - Cixiu Li
- Key Laboratory of Etiology and Epidemiology of Emerging Infectious Diseases in Universities of Shandong, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, China
| | - Kathy F. J. Tang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affair, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Qingdao, China
| | - Jeff A. Cowley
- Livestock and Aquaculture, CSIRO Agriculture and Food, Queensland Bioscience Precinct, St. Lucia, QLD, Australia
| | - Weifeng Shi
- Key Laboratory of Etiology and Epidemiology of Emerging Infectious Diseases in Universities of Shandong, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, China
| | - Jie Huang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affair, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Qingdao, China
- Network of Aquaculture Centres in Asia-Pacific, Bangkok, Thailand
| |
Collapse
|
22
|
Varsani A, Martin DP, Randles JW, Vetten HJ, Thomas JE, Fiallo-Olivé E, Navas-Castillo J, Lett JM, Zerbini FM, Roumagnac P, Gronenborn B. Taxonomy update for the family Alphasatellitidae: new subfamily, genera, and species. Arch Virol 2021; 166:3503-3511. [PMID: 34550466 DOI: 10.1007/s00705-021-05232-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Alphasatellites (family Alphasatellitidae) are circular, single-stranded DNA molecules (~1-1.4 kb) that encode a replication-associated protein and have commonly been associated with some members of the families Geminiviridae, Nanoviridae, and Metaxyviridae (recently established). Here, we provide a taxonomy update for the family Alphasatellitidae following the International Committee on Taxonomy of Viruses (ICTV) Ratification Vote held in March 2021. The taxonomic update includes the establishment of the new subfamily Petromoalphasatellitinae. This new subfamily includes three new genera as well as the genus Babusatellite, which previously belonged to the subfamily Nanoalphasatellitinae. Additionally, three new genera and 14 new species have been established in the subfamily Geminialphasatellitinae, as well as five new species in the subfamily Nanoalphasatellitinae.
Collapse
Affiliation(s)
- Arvind Varsani
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, 1001 S. McAllister Ave, Tempe, AZ, 85287-5001, USA. .,Structural Biology Research Unit, Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town, 7925, South Africa.
| | - Darren P Martin
- Computational Biology Division, Department of Integrative Biomedical Sciences, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town Observatory, Cape Town, 7925, South Africa
| | - John W Randles
- School of Agriculture Food and Wine, University of Adelaide, Adelaide, South Australia, 5005, Australia
| | | | - John E Thomas
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, GPO Box 267, Brisbane, Queensland, 4001, Australia
| | - Elvira Fiallo-Olivé
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Consejo Superior de Investigaciones Científicas-Universidad de Málaga (IHSM-CSIC-UMA), 29750, Algarrobo-Costa, Málaga, Spain
| | - Jesús Navas-Castillo
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Consejo Superior de Investigaciones Científicas-Universidad de Málaga (IHSM-CSIC-UMA), 29750, Algarrobo-Costa, Málaga, Spain
| | - Jean-Michel Lett
- CIRAD, UMR PVBMT, Pôle de Protection des Plantes, 97410, Saint-Pierre, Ile de la Reunion, France
| | - F Murilo Zerbini
- Departmento de Fitopatologia/BIOAGRO, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil.,National Research Institute for Plant-Pest Interactions, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | - Philippe Roumagnac
- CIRAD, UMR PHIM, 34090, Montpellier, France.,PHIM Plant Health Institute, Univ Montpellier, CIRAD, INRAE, Institut Agro, IRD, 34090, Montpellier, France
| | | |
Collapse
|
23
|
Abstract
The family Smacoviridae (order Cremevirales, class Arfiviricetes, phylum Cressdnaviricota) is comprised of viruses with small circular single-stranded DNA genomes of ~2.3-3 kb in length that have primarily been identified in fecal sample of various animals. Smacovirus genomes carry two genes in ambisense orientation encoding a capsid protein and a rolling-circle replication initiation protein, respectively. We have revised the taxonomy of the family by assigning 138 new genomic sequences deposited in GenBank to already established taxa as well as 41 new species and six new genera. Furthermore, we have adopted binomial species nomenclature, conforming to the "Genus + freeform epithet" format for all 84 species from 12 genera. The updated Smacoviridae taxonomy presented in this article has been ratified by the International Committee on Taxonomy of Viruses (ICTV).
Collapse
Affiliation(s)
- Mart Krupovic
- Archaeal Virology Unit, Institut Pasteur, Paris, France.
| | - Arvind Varsani
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, USA. .,Structural Biology Research Unit, Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town, South Africa.
| |
Collapse
|
24
|
Walker PJ, Siddell SG, Lefkowitz EJ, Mushegian AR, Adriaenssens EM, Alfenas-Zerbini P, Davison AJ, Dempsey DM, Dutilh BE, García ML, Harrach B, Harrison RL, Hendrickson RC, Junglen S, Knowles NJ, Krupovic M, Kuhn JH, Lambert AJ, Łobocka M, Nibert ML, Oksanen HM, Orton RJ, Robertson DL, Rubino L, Sabanadzovic S, Simmonds P, Smith DB, Suzuki N, Van Dooerslaer K, Vandamme AM, Varsani A, Zerbini FM. Changes to virus taxonomy and to the International Code of Virus Classification and Nomenclature ratified by the International Committee on Taxonomy of Viruses (2021). Arch Virol 2021; 166:2633-2648. [PMID: 34231026 DOI: 10.1007/s00705-021-05156-1] [Citation(s) in RCA: 204] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
This article reports the changes to virus taxonomy approved and ratified by the International Committee on Taxonomy of Viruses (ICTV) in March 2021. The entire ICTV was invited to vote on 290 taxonomic proposals approved by the ICTV Executive Committee at its meeting in October 2020, as well as on the proposed revision of the International Code of Virus Classification and Nomenclature (ICVCN). All proposals and the revision were ratified by an absolute majority of the ICTV members. Of note, ICTV mandated a uniform rule for virus species naming, which will follow the binomial 'genus-species' format with or without Latinized species epithets. The Study Groups are requested to convert all previously established species names to the new format. ICTV has also abolished the notion of a type species, i.e., a species chosen to serve as a name-bearing type of a virus genus. The remit of ICTV has been clarified through an official definition of 'virus' and several other types of mobile genetic elements. The ICVCN and ICTV Statutes have been amended to reflect these changes.
Collapse
Affiliation(s)
- Peter J Walker
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Stuart G Siddell
- School of Cellular and Molecular Medicine, Faculty of Life Sciences, University of Bristol, University Walk, Bristol, BS8 1TD, UK
| | - Elliot J Lefkowitz
- Department of Microbiology, University of Alabama at Birmingham (UAB), BBRB 276, 845 19th St South, Birmingham, AL, 35294-2170, USA
| | - Arcady R Mushegian
- Division of Molecular and Cellular Biosciences, National Science Foundation, 2415 Eisenhower Avenue, Alexandria, VA, 22314, USA.
| | | | - Poliane Alfenas-Zerbini
- Departamento de Microbiologia, Universidade Federal de Viçosa, Viçosa, MG, 36570-000, Brazil
| | - Andrew J Davison
- MRC-University of Glasgow Centre for Virus Research, Sir Michael Stoker Building, 464 Bearsden Road, Glasgow, G61 1QH, UK
| | - Donald M Dempsey
- Department of Microbiology, University of Alabama at Birmingham (UAB), BBRB 276, 845 19th St South, Birmingham, AL, 35294-2170, USA
| | - Bas E Dutilh
- Theoretical Biology and Bioinformatics, Department of Biology, Utrecht University, Padualaan 8, Room Z-509, 3584 CH, Utrecht, The Netherlands
| | - María Laura García
- Instituto de Biotecnología y Biología Molecular, CCT-La Plata, CONICET, UNLP, calles 47 y 115 (1900), La Plata, Buenos Aires, Argentina
| | - Balázs Harrach
- Veterinary Medical Research Institute, Hungária krt. 21, H-1143, Budapest, Hungary
| | - Robert L Harrison
- Invasive Insect Biocontrol and Behavior Laboratory, USDA-ARS, 10300 Baltimore Avenue, Bldg 007 Barc-West, Beltsville, MD, 20705, USA
| | - R Curtis Hendrickson
- Department of Microbiology, University of Alabama at Birmingham (UAB), BBRB 276, 845 19th St South, Birmingham, AL, 35294-2170, USA
| | - Sandra Junglen
- Institute of Virology, Charité-Universitätsmedizin, corporate member of Free University Berlin, Humboldt-University Berlin, and Berlin Institute of Health, Germany, Berlin, Germany
| | - Nick J Knowles
- The Pirbright Institute, Ash Road, Pirbright, GU24 0NF, Surrey, UK
| | - Mart Krupovic
- Department of Microbiology, Institut Pasteur, 25 rue du Dr Roux, 75015, Paris, France
| | - Jens H Kuhn
- NIH/NIAID/DCR/Integrated Research Facility at Fort Detrick (IRF-Frederick), B-8200 Research Plaza, Fort Detrick, Frederick, MD, 21702, USA
| | - Amy J Lambert
- Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, 80521, USA
| | - Małgorzata Łobocka
- Institute of Biochemistry and Biophysics of the Polish Academy of Sciences, 02-106, Warsaw, Poland
| | - Max L Nibert
- Department of Microbiology, Harvard Medical School, 77 Ave Louis Pasteur, Boston, MA, 02115, USA
| | - Hanna M Oksanen
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Viikinkaari 9, FI-00014, Helsinki, Finland
| | - Richard J Orton
- MRC-University of Glasgow Centre for Virus Research, Sir Michael Stoker Building, 464 Bearsden Road, Glasgow, G61 1QH, UK
| | - David L Robertson
- MRC-University of Glasgow Centre for Virus Research, Sir Michael Stoker Building, 464 Bearsden Road, Glasgow, G61 1QH, UK
| | - Luisa Rubino
- Istituto per la Protezione Sostenibile delle Piante, CNR, UOS Bari, Via Amendola 165/A, 70126, Bari, Italy
| | - Sead Sabanadzovic
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, 100 Old Hwy 12 Mail Stop 9775, Mississippi State, MS, 39762, USA
| | - Peter Simmonds
- Nuffield Department of Medicine, University of Oxford, Peter Medawar Building, South Parks Road, Oxford, OX1 3SY, UK
| | - Donald B Smith
- Nuffield Department of Medicine, University of Oxford, Peter Medawar Building, South Parks Road, Oxford, OX1 3SY, UK
| | - Nobuhiro Suzuki
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama, 710-0046, Japan
| | - Koenraad Van Dooerslaer
- School of Animal and Comparative Biomedical Sciences, Department of Immunobiology, BIO5 Institute, and University of Arizona Cancer Center, Tucson, AZ, 85721, USA
| | - Anne-Mieke Vandamme
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Clinical and Epidemiological Virology, Institute for the Future, 3000, Leuven, Belgium.,Center for Global Health and Tropical Medicine, Unidade de Microbiologia, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Rua da Junqueira, 100, 1349-008, Lisboa, Portugal
| | - Arvind Varsani
- The Biodesign Center for Fundamental and Applied Microbiomics, School of Life Sciences, Center for Evolution and Medicine, Arizona State University, P.O. Box 874701, Tempe, AZ, 85287-4701, USA
| | - Francisco Murilo Zerbini
- Departamento de Fitopatologia/BIOAGRO, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| |
Collapse
|
25
|
Abstract
Anelloviruses are small negative-sense single-stranded DNA viruses with genomes ranging in size from 1.6 to 3.9 kb. The family Anelloviridae comprised 14 genera before the present changes. However, in the last five years, a large number of diverse anelloviruses have been identified in various organisms. Here, we undertake a global analysis of mammalian anelloviruses whose full genome sequences have been determined and have an intact open reading frame 1 (ORF1). We established new criteria for the classification of anelloviruses, and, based on our analyses, we establish new genera and species to accommodate the unclassified anelloviruses. We also note that based on the updated species demarcation criteria, some previously assigned species (n = 10) merge with other species. Given the rate at which virus sequence data are accumulating, and with the identification of diverse anelloviruses, we acknowledge that the taxonomy will have to be dynamic and continuously evolve to accommodate new members.
Collapse
|
26
|
Taxonomic updates for the genus Gyrovirus (family Anelloviridae): recognition of several new members and establishment of species demarcation criteria. Arch Virol 2021; 166:2937-2942. [PMID: 34347169 DOI: 10.1007/s00705-021-05194-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The genus Gyrovirus was assigned to the family Anelloviridae in 2017 with only one recognized species, Chicken anemia virus. Over the last decade, many diverse viruses related to chicken anemia virus have been identified but not classified. Here, we provide a framework for the classification of new species in the genus Gyrovirus and communicate the establishment of nine new species. We adopted the 'Genus + freeform epithet' binomial system for the naming of these species.
Collapse
|
27
|
Abstract
The family Genomoviridae (phylum Cressdnaviricota, class Repensiviricetes, order Geplafuvirales) includes viruses with circular single-stranded DNA genomes encoding two proteins, the capsid protein and the rolling-circle replication initiation protein. The genomes of the vast majority of members in this family have been sequenced directly from diverse environmental or animal- and plant-associated samples, but two genomoviruses have been identified infecting fungi. Since the last taxonomic update of the Genomoviridae, a number of new members of this family have been sequenced. Here, we report on the most recent taxonomic update, including the creation of one new genus, Gemytripvirus, and classification of ~420 new genomoviruses into 164 new species. We also announce the adoption of the "Genus + freeform epithet" binomial system for the naming of all 236 officially recognized species in the family Genomoviridae. The updated taxonomy presented in this article has been accepted by the International Committee on Taxonomy of Viruses (ICTV).
Collapse
Affiliation(s)
- Arvind Varsani
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, Arizona, USA.
- Structural Biology Research Unit, Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town, South Africa.
| | - Mart Krupovic
- Archaeal Virology Unit, Institut Pasteur, Paris, France.
| |
Collapse
|
28
|
Burke GR, Hines HM, Sharanowski BJ. The Presence of Ancient Core Genes Reveals Endogenization from Diverse Viral Ancestors in Parasitoid Wasps. Genome Biol Evol 2021; 13:evab105. [PMID: 33988720 PMCID: PMC8325570 DOI: 10.1093/gbe/evab105] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2021] [Indexed: 12/12/2022] Open
Abstract
The Ichneumonoidea (Ichneumonidae and Braconidae) is an incredibly diverse superfamily of parasitoid wasps that includes species that produce virus-like entities in their reproductive tracts to promote successful parasitism of host insects. Research on these entities has traditionally focused upon two viral genera Bracovirus (in Braconidae) and Ichnovirus (in Ichneumonidae). These viruses are produced using genes known collectively as endogenous viral elements (EVEs) that represent historical, now heritable viral integration events in wasp genomes. Here, new genome sequence assemblies for 11 species and 6 publicly available genomes from the Ichneumonoidea were screened with the goal of identifying novel EVEs and characterizing the breadth of species in lineages with known EVEs. Exhaustive similarity searches combined with the identification of ancient core genes revealed sequences from both known and novel EVEs. One species harbored a novel, independently derived EVE related to a divergent large double-stranded DNA (dsDNA) virus that manipulates behavior in other hymenopteran species. Although bracovirus or ichnovirus EVEs were identified as expected in three species, the absence of ichnoviruses in several species suggests that they are independently derived and present in two younger, less widespread lineages than previously thought. Overall, this study presents a novel bioinformatic approach for EVE discovery in genomes and shows that three divergent virus families (nudiviruses, the ancestors of ichnoviruses, and Leptopilina boulardi Filamentous Virus-like viruses) are recurrently acquired as EVEs in parasitoid wasps. Virus acquisition in the parasitoid wasps is a common process that has occurred in many more than two lineages from a diverse range of arthropod-infecting dsDNA viruses.
Collapse
Affiliation(s)
- Gaelen R Burke
- Department of Entomology, University of Georgia, Athens, Georgia, USA
| | - Heather M Hines
- Department of Biology and Department of Entomology, Pennsylvania State University, University Park, Pennsylvania, USA
| | | |
Collapse
|
29
|
Hugenholtz P, Chuvochina M, Oren A, Parks DH, Soo RM. Prokaryotic taxonomy and nomenclature in the age of big sequence data. THE ISME JOURNAL 2021; 15:1879-1892. [PMID: 33824426 PMCID: PMC8245423 DOI: 10.1038/s41396-021-00941-x] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 02/09/2021] [Accepted: 02/11/2021] [Indexed: 02/01/2023]
Abstract
The classification of life forms into a hierarchical system (taxonomy) and the application of names to this hierarchy (nomenclature) is at a turning point in microbiology. The unprecedented availability of genome sequences means that a taxonomy can be built upon a comprehensive evolutionary framework, a longstanding goal of taxonomists. However, there is resistance to adopting a single framework to preserve taxonomic freedom, and ever increasing numbers of genomes derived from uncultured prokaryotes threaten to overwhelm current nomenclatural practices, which are based on characterised isolates. The challenge ahead then is to reach a consensus on the taxonomic framework and to adapt and scale the existing nomenclatural code, or create a new code, to systematically incorporate uncultured taxa into the chosen framework.
Collapse
Affiliation(s)
- Philip Hugenholtz
- grid.1003.20000 0000 9320 7537Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD Australia
| | - Maria Chuvochina
- grid.1003.20000 0000 9320 7537Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD Australia
| | - Aharon Oren
- grid.9619.70000 0004 1937 0538Department of Plant and Environmental Sciences, The Alexander Silberman Institute of Life Sciences, The Edmond J. Safra campus, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Donovan H. Parks
- grid.1003.20000 0000 9320 7537Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD Australia
| | - Rochelle M. Soo
- grid.1003.20000 0000 9320 7537Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD Australia
| |
Collapse
|
30
|
The Tragedy of Names. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2021; 94:375-378. [PMID: 34211356 PMCID: PMC8223546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The naming of pathogens and their associated syndromes is a thorny process which unfolds in a complex geopolitical environment. This brief piece offers perspective on the multitude of forces that shape the name of a pathogen and summarizes the story of Sin Nombre Virus, with some reference to the ongoing saga of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). A monopoly on names and circulating monikers rarely exists, and certain communities become disproportionately impacted by misunderstandings or stigmatization. By acknowledging these processes, we can better serve as allies to affected communities dealing with both pandemic and prejudice.
Collapse
|
31
|
Abstract
Since 2010, sexual precocity, a typical sign of the iron prawn syndrome (IPS), resulting in the reduced size of farmed giant freshwater prawns Macrobrachium rosenbergii, has caused substantial production losses. However, the cause of IPS was not clear. We ran tests for eight major shrimp pathogens, but none were detected from IPS-affected prawns. We performed the histopathological examination of tissues and identified an eosinophilic inclusion in the perinuclear cytoplasm of cells in various tissues associated with nervous and endocrinal functions in the compound eyes. A subsequent bioassay with viral extracts of IPS-affected samples reproduced the gross signs of IPS. Metatranscriptomic sequencing identified a novel virus of Flaviviridae in all IPS-affected M. rosenbergii prawns, which was not found in samples without IPS. This virus contains a positive-sense, single-stranded RNA genome of 12,630 nucleotides (nt). Phylogenetic analysis of the conserved RdRp and NS3 domains showed that it may belong to a new genus between Jingmenvirus and Flavivirus. Under transmission electron microscopy (TEM), putative virus particles showed as spherical with a diameter of 40 to 60 nm. In situ hybridization found hybridization signals consistent with the histopathology in the compound eyes from IPS-affected M. rosenbergii. We provisionally name this virus infectious precocity virus (IPV) and propose the binominal Latin name Crustaflavivirus infeprecoquis gen. nov., sp. nov. We developed a nested reverse transcription-PCR diagnostic assay and confirmed that all IPS-affected prawns tested IPV positive but normal prawns tested negative. Collectively, our study revealed a novel virus of Flaviviridae associated with sexual precocity in M. rosenbergii. IMPORTANCE The iron prawn syndrome (IPS), also described as sexual precocity, results in the reduced size of farmed prawns at harvest and significant economic losses. IPS has been frequently reported in populations of farmed Macrobrachium rosenbergii since 2010, but the cause was heretofore unknown. Here, we reported a novel virus identified from prawns with IPS using infection experiments, metatranscriptomic sequencing, and transmission electron microscopy and provisionally named it infectious precocity virus (IPV). Phylogenetic analysis showed that IPV represents a new genus, proposed as Crustaflavivirus gen. nov., in the family Flaviviridae. This study provides novel insight that a viral infection may cause pathological change and sexual maturation and subsequently affect crustacean growth. Therefore, we call for quarantine inspection of IPV in transboundary trade of live M. rosenbergii and enhanced surveillance of IPV in aquaculture in the region and globally.
Collapse
|
32
|
30 years of Virology Division News in Archives of Virology. Arch Virol 2021; 166:1529-1531. [PMID: 33835259 DOI: 10.1007/s00705-021-05050-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 03/19/2021] [Indexed: 10/21/2022]
|
33
|
Abstract
Species taxa are the units of taxonomy most suited to measure virus diversity, and they account for more than 70% of all virus taxa. Yet, as evidenced by the content of GenBank entries and illustrated by the recent literature on SARS-CoV-2, they are the most neglected taxa of virus research. To correct this disparity, we propose to make species taxa a first choice for communicating virus taxonomy in publications concerning viruses. We see it as a key step toward promoting research on diverse viruses, including pathogens, at this fundamental level of biology.
Collapse
Affiliation(s)
- Alexander E Gorbalenya
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, the Netherlands.,Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| | - Stuart G Siddell
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
34
|
Matsuno K. [Yezo virus and emerging orthonairovirus diseases]. Uirusu 2021; 71:117-124. [PMID: 37245974 DOI: 10.2222/jsv.71.117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
A new etiological agent of an acute febrile illness following tick bite has been found in Hokkaido, Japan, in 2019 and designated as Yezo virus. Seven cases of Yezo virus infection were identified from 2014 to 2020 by passive and retrospective surveillance. Yezo virus is classified into the genus Orthonairovirus, family Nairoviridae and forms Sulina genogroup together with Sulina virus, which was identified in ticks in Romania. The Sulina genogroup viruses are closely related to the Tamdy genogroup viruses recently reported as causative agents of febrile illness in China and distant from known orthonairovirus pathogens, such as Crimean-Congo hemorrhagic fever virus. Since only limited information is available for the emerging orthonairovirus diseases, including Yezo virus infection, their occurrence should be carefully monitored.
Collapse
Affiliation(s)
- Keita Matsuno
- Okazaki National Research Institutes
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University
- One Health Research Center, Hokkaido University
| |
Collapse
|
35
|
Hu Z, Yang Z, Li Q, Zhang A. The COVID-19 Infodemic: Infodemiology Study Analyzing Stigmatizing Search Terms. J Med Internet Res 2020; 22:e22639. [PMID: 33156807 PMCID: PMC7674145 DOI: 10.2196/22639] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 08/19/2020] [Accepted: 11/03/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND In the context of the COVID-19 infodemic, the global profusion of monikers and hashtags for COVID-19 have found their way into daily communication and contributed to a backlash against China and the Chinese people. OBJECTIVE This study examines public engagement in crisis communication about COVID-19 during the early epidemic stage and the practical strategy of social mobilization to mitigate the infodemic. METHODS We retrieved the unbiased values of the top-ranked search phrases between December 30, 2019, and July 15, 2020, which normalized the anonymized, categorized, and aggregated samples from Google Search data. This study illustrates the most-searched terms, including the official COVID-19 terms, the stigmatized terms, and other controls, to measure the collective behavioral propensities to stigmatized terms and to explore the global reaction to the COVID-19 epidemic in the real world. We calculated the ratio of the cumulative number of COVID-19 cases to the regional population as the cumulative rate (R) of a specific country or territory and calculated the Gini coefficient (G) to measure the collective heterogeneity of crowd behavior. RESULTS People around the world are using stigmatizing terms on Google Search, and these terms were used earlier than the official names. Many stigmatized monikers against China (eg, "Wuhan pneumonia," G=0.73; "Wuhan coronavirus," G=0.60; "China pneumonia," G=0.59; "China coronavirus," G=0.52; "Chinese coronavirus," G=0.50) had high collective heterogeneity of crowd behavior between December 30, 2019, and July 15, 2020, while the official terms "COVID-19" (G=0.44) and "SARS-CoV-2" (G=0.42) have not become de facto standard usages. Moreover, the pattern of high consistent usage was observed in 13 territories with low cumulative rates (R) between January 16 and July 15, 2020, out of 58 countries and territories that have reported confirmed cases of COVID-19. In the scientific literature, multifarious naming practices may have provoked unintended negative impacts by stigmatizing Chinese people. The World Health Organization; the United Nations Educational, Scientific and Cultural Organization; and the media initiated campaigns for fighting back against the COVID-19 infodemic with the same mission but in diverse voices. CONCLUSIONS Infodemiological analysis can articulate the collective propensities to stigmatized monikers across search behaviors, which may reflect the collective sentiment of backlash against China and Chinese people in the real world. The full-fledged official terms are expected to fight back against the resilience of negative perceptual bias amid the COVID-19 epidemic. Such official naming efforts against the infodemic should be met with a fair share of identification in scientific conventions and sociocultural paradigms. As an integral component of preparedness, appropriate nomenclatures should be duly assigned to the newly identified coronavirus, and social mobilization in a uniform voice is a priority for combating the next infodemic.
Collapse
Affiliation(s)
- Zhiwen Hu
- School of Computer and Information Engineering, Zhejiang Gongshang University, Hangzhou, China
| | - Zhongliang Yang
- Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, China
| | - Qi Li
- Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, China
| | - An Zhang
- State Key Laboratory of Resources and Environmental Information System, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
36
|
Ibaba JD, Gubba A. High-Throughput Sequencing Application in the Diagnosis and Discovery of Plant-Infecting Viruses in Africa, A Decade Later. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1376. [PMID: 33081084 PMCID: PMC7602839 DOI: 10.3390/plants9101376] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 09/25/2020] [Accepted: 09/29/2020] [Indexed: 12/18/2022]
Abstract
High-throughput sequencing (HTS) application in the field of plant virology started in 2009 and has proven very successful for virus discovery and detection of viruses already known. Plant virology is still a developing science in most of Africa; the number of HTS-related studies published in the scientific literature has been increasing over the years as a result of successful collaborations. Studies using HTS to identify plant-infecting viruses have been conducted in 20 African countries, of which Kenya, South Africa and Tanzania share the most published papers. At least 29 host plants, including various agricultural economically important crops, ornamentals and medicinal plants, have been used in viromics analyses and have resulted in the detection of previously known viruses and novel ones from almost any host. Knowing that the effectiveness of any management program requires knowledge on the types, distribution, incidence, and genetic of the virus-causing disease, integrating HTS and efficient bioinformatics tools in plant virology research projects conducted in Africa is a matter of the utmost importance towards achieving and maintaining sustainable food security.
Collapse
Affiliation(s)
- Jacques Davy Ibaba
- Discipline of Plant Pathology, School of Agricultural, Earth and Environmental Sciences, Agriculture Campus, University of KwaZulu-Natal, Scottsville, Pietermaritzburg 3209, South Africa;
| | | |
Collapse
|
37
|
Gibbs A. Binomial nomenclature for virus species: a long view. Arch Virol 2020; 165:3079-3083. [PMID: 33025196 DOI: 10.1007/s00705-020-04828-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 08/31/2020] [Indexed: 01/02/2023]
Abstract
On several occasions over the past century it has been proposed that Latinized (Linnaean) binomial names (LBs) should be used for the formal names of virus species, and the opinions expressed in the early debates are still valid. The use of LBs would be sensible for the current Taxonomy if confined to the names of the specific and generic taxa of viruses of which some basic biological properties are known (e.g. ecology, hosts and virions); there is no advantage in filling the literature with formal names for partly described viruses or virus-like gene sequences. The ICTV should support the time-honoured convention that LBs are only used with biological (phylogenetic) classifications. Recent changes have left the ICTV Taxonomy and its Code uncoordinated, and its aims and audience uncertain.
Collapse
Affiliation(s)
- Adrian Gibbs
- Emeritus Faculty, Australian National University, Canberra, ACT 2601, Australia.
| |
Collapse
|
38
|
Mallapaty S. Should virus-naming rules change during a pandemic? The question divides virologists. Nature 2020; 584:19-20. [DOI: 10.1038/d41586-020-02243-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
39
|
|
40
|
Taxonomy of prokaryotic viruses: 2018-2019 update from the ICTV Bacterial and Archaeal Viruses Subcommittee. Arch Virol 2020; 165:1253-1260. [PMID: 32162068 DOI: 10.1007/s00705-020-04577-8] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
This article is a summary of the activities of the ICTV's Bacterial and Archaeal Viruses Subcommittee for the years 2018 and 2019. Highlights include the creation of a new order, 10 families, 22 subfamilies, 424 genera and 964 species. Some of our concerns about the ICTV's ability to adjust to and incorporate new DNA- and protein-based taxonomic tools are discussed.
Collapse
|
41
|
Gorbalenya AE, Baker SC, Baric RS, de Groot RJ, Drosten C, Gulyaeva AA, Haagmans BL, Lauber C, Leontovich AM, Neuman BW, Penzar D, Perlman S, Poon LLM, Samborskiy DV, Sidorov IA, Sola I, Ziebuhr J. The species Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat Microbiol 2020; 5:536-544. [PMID: 32123347 PMCID: PMC7095448 DOI: 10.1038/s41564-020-0695-z] [Citation(s) in RCA: 4530] [Impact Index Per Article: 906.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 02/19/2020] [Indexed: 02/06/2023]
Abstract
The present outbreak of a coronavirus-associated acute respiratory disease called coronavirus disease 19 (COVID-19) is the third documented spillover of an animal coronavirus to humans in only two decades that has resulted in a major epidemic. The Coronaviridae Study Group (CSG) of the International Committee on Taxonomy of Viruses, which is responsible for developing the classification of viruses and taxon nomenclature of the family Coronaviridae, has assessed the placement of the human pathogen, tentatively named 2019-nCoV, within the Coronaviridae. Based on phylogeny, taxonomy and established practice, the CSG recognizes this virus as forming a sister clade to the prototype human and bat severe acute respiratory syndrome coronaviruses (SARS-CoVs) of the species Severe acute respiratory syndrome-related coronavirus, and designates it as SARS-CoV-2. In order to facilitate communication, the CSG proposes to use the following naming convention for individual isolates: SARS-CoV-2/host/location/isolate/date. While the full spectrum of clinical manifestations associated with SARS-CoV-2 infections in humans remains to be determined, the independent zoonotic transmission of SARS-CoV and SARS-CoV-2 highlights the need for studying viruses at the species level to complement research focused on individual pathogenic viruses of immediate significance. This will improve our understanding of virus–host interactions in an ever-changing environment and enhance our preparedness for future outbreaks.
Collapse
|
42
|
The species Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat Microbiol 2020. [PMID: 32123347 DOI: 10.1038/s41564-020-0695] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The present outbreak of a coronavirus-associated acute respiratory disease called coronavirus disease 19 (COVID-19) is the third documented spillover of an animal coronavirus to humans in only two decades that has resulted in a major epidemic. The Coronaviridae Study Group (CSG) of the International Committee on Taxonomy of Viruses, which is responsible for developing the classification of viruses and taxon nomenclature of the family Coronaviridae, has assessed the placement of the human pathogen, tentatively named 2019-nCoV, within the Coronaviridae. Based on phylogeny, taxonomy and established practice, the CSG recognizes this virus as forming a sister clade to the prototype human and bat severe acute respiratory syndrome coronaviruses (SARS-CoVs) of the species Severe acute respiratory syndrome-related coronavirus, and designates it as SARS-CoV-2. In order to facilitate communication, the CSG proposes to use the following naming convention for individual isolates: SARS-CoV-2/host/location/isolate/date. While the full spectrum of clinical manifestations associated with SARS-CoV-2 infections in humans remains to be determined, the independent zoonotic transmission of SARS-CoV and SARS-CoV-2 highlights the need for studying viruses at the species level to complement research focused on individual pathogenic viruses of immediate significance. This will improve our understanding of virus–host interactions in an ever-changing environment and enhance our preparedness for future outbreaks.
Collapse
|
43
|
Gorbalenya AE, Baker SC, Baric RS, de Groot RJ, Drosten C, Gulyaeva AA, Haagmans BL, Lauber C, Leontovich AM, Neuman BW, Penzar D, Perlman S, Poon LL, Samborskiy D, Sidorov IA, Sola I, Ziebuhr J. The species Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat Microbiol 2020; 5:536-544. [PMID: 32123347 DOI: 10.1101/2020.02.07.937862] [Citation(s) in RCA: 399] [Impact Index Per Article: 79.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 02/19/2020] [Indexed: 05/21/2023]
Abstract
The present outbreak of a coronavirus-associated acute respiratory disease called coronavirus disease 19 (COVID-19) is the third documented spillover of an animal coronavirus to humans in only two decades that has resulted in a major epidemic. The Coronaviridae Study Group (CSG) of the International Committee on Taxonomy of Viruses, which is responsible for developing the classification of viruses and taxon nomenclature of the family Coronaviridae, has assessed the placement of the human pathogen, tentatively named 2019-nCoV, within the Coronaviridae. Based on phylogeny, taxonomy and established practice, the CSG recognizes this virus as forming a sister clade to the prototype human and bat severe acute respiratory syndrome coronaviruses (SARS-CoVs) of the species Severe acute respiratory syndrome-related coronavirus, and designates it as SARS-CoV-2. In order to facilitate communication, the CSG proposes to use the following naming convention for individual isolates: SARS-CoV-2/host/location/isolate/date. While the full spectrum of clinical manifestations associated with SARS-CoV-2 infections in humans remains to be determined, the independent zoonotic transmission of SARS-CoV and SARS-CoV-2 highlights the need for studying viruses at the species level to complement research focused on individual pathogenic viruses of immediate significance. This will improve our understanding of virus–host interactions in an ever-changing environment and enhance our preparedness for future outbreaks.
Collapse
|
44
|
The species Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat Microbiol 2020. [PMID: 32123347 DOI: 10.1038/s41564-020-0598-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
The present outbreak of a coronavirus-associated acute respiratory disease called coronavirus disease 19 (COVID-19) is the third documented spillover of an animal coronavirus to humans in only two decades that has resulted in a major epidemic. The Coronaviridae Study Group (CSG) of the International Committee on Taxonomy of Viruses, which is responsible for developing the classification of viruses and taxon nomenclature of the family Coronaviridae, has assessed the placement of the human pathogen, tentatively named 2019-nCoV, within the Coronaviridae. Based on phylogeny, taxonomy and established practice, the CSG recognizes this virus as forming a sister clade to the prototype human and bat severe acute respiratory syndrome coronaviruses (SARS-CoVs) of the species Severe acute respiratory syndrome-related coronavirus, and designates it as SARS-CoV-2. In order to facilitate communication, the CSG proposes to use the following naming convention for individual isolates: SARS-CoV-2/host/location/isolate/date. While the full spectrum of clinical manifestations associated with SARS-CoV-2 infections in humans remains to be determined, the independent zoonotic transmission of SARS-CoV and SARS-CoV-2 highlights the need for studying viruses at the species level to complement research focused on individual pathogenic viruses of immediate significance. This will improve our understanding of virus–host interactions in an ever-changing environment and enhance our preparedness for future outbreaks.
Collapse
|