1
|
Khan F, Naseem H, Asif M, Alvi I, Rehman SU, Rehman A. Bacteriophages RCF and 1-6bf can control the growth of avian pathogenic Escherichia coli. Poult Sci 2025; 104:104790. [PMID: 39808915 PMCID: PMC11773471 DOI: 10.1016/j.psj.2025.104790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 12/14/2024] [Accepted: 01/06/2025] [Indexed: 01/16/2025] Open
Abstract
Escherichia coli (E. coli) is a widely distributed pathogenic bacterium that poses a substantial hazard to poultry, leading to the development of a severe systemic disease known as colibacillosis. Colibacillosis is involved in multimillion-dollar losses to the poultry industry each year worldwide. Avian pathogenic E. coli is also involved in causing meningitis and urinary tract infections in humans. This creates a significant risk to public health. The increasing incidence of multidrug-resistant illnesses and the failure of antibiotics in human and veterinary medicine have led to a pressing demand for alternate approaches. This study investigates the possibility of bacteriophages as an acceptable substitute for antibiotics in managing E. coli infections in poultry. In the current study, two novel phages targeting E. coli (EP1) strain were isolated from sewage water and thoroughly characterized in vitro. Transmission electron microscopy reveals that Rcf and 1-6bf belong to the "Podoviridae" and "Caudovirales". Rcf has an icosahedral capsid of 18 nm with a tail size of 5 nm, while 1-6bf has an elongated head capsid of 93 nm and a short non-contractile tail of 8 nm with tail fibers for attachment. RCF and 1-6bf have genome sizes of 38 kb and 77 kb, with GC content of 50.98 % and 42.1 % respectively. Notably, phage 1-6bf displayed remarkable tolerance to high temperatures, retaining lytic activity at 95°C. Both phages effectively controlled host bacterial growth for up to 12 h post-infection. Rcf and 1-6bf produce clear plaques with a latent period of 10 min and 5 min with a burst size of 85 and 220 PFU/cell respectively.
Collapse
Affiliation(s)
- Farah Khan
- Institute of Microbiology and Molecular Genetics, University of the Punjab, Lahore, Pakistan
| | - Hafsa Naseem
- Institute of Microbiology and Molecular Genetics, University of the Punjab, Lahore, Pakistan
| | - Muhammad Asif
- Institute of Industrial Biotechnology, Govt. College University Lahore, Pakistan
| | - Iqbal Alvi
- Department of Microbiology, Hazara University, Mansehra, Pakistan
| | - Shafiq Ur Rehman
- Institute of Microbiology and Molecular Genetics, University of the Punjab, Lahore, Pakistan
| | - Abdul Rehman
- Institute of Microbiology and Molecular Genetics, University of the Punjab, Lahore, Pakistan.
| |
Collapse
|
2
|
Pal N, Sharma P, Kumawat M, Singh S, Verma V, Tiwari RR, Sarma DK, Nagpal R, Kumar M. Phage therapy: an alternative treatment modality for MDR bacterial infections. Infect Dis (Lond) 2024; 56:785-817. [PMID: 39017931 DOI: 10.1080/23744235.2024.2379492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 07/07/2024] [Accepted: 07/08/2024] [Indexed: 07/18/2024] Open
Abstract
The increasing global incidence of multidrug-resistant (MDR) bacterial infections threatens public health and compromises various aspects of modern medicine. Recognising the urgency of this issue, the World Health Organisation has prioritised the development of novel antimicrobials to combat ESKAPEE pathogens. Comprising Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter spp. and Escherichia coli, such pathogens represent a spectrum of high to critical drug resistance, accounting for a significant proportion of hospital-acquired infections worldwide. In response to the waning efficacy of antibiotics against these resilient pathogens, phage therapy (PT) has emerged as a promising therapeutic strategy. This review provides a comprehensive summary of clinical research on PT and explores the translational journey of phages from laboratory settings to clinical applications. It examines recent advancements in pre-clinical and clinical developments, highlighting the potential of phages and their proteins, alone or in combination with antibiotics. Furthermore, this review underlines the importance of establishing safe and approved routes of phage administration to patients. In conclusion, the evolving landscape of phage therapy offers a beacon of hope in the fight against MDR bacterial infections, emphasising the imperative for continued research, innovation and regulatory diligence to realise its full potential in clinical practice.
Collapse
Affiliation(s)
- Namrata Pal
- Department of Microbiology, ICMR-National Institute for Research in Environmental Health, Bhopal, Madhya Pradesh, India
- Department of Microbiology, Barkatullah University, Bhopal, Madhya Pradesh, India
| | - Poonam Sharma
- Department of Microbiology, ICMR-National Institute for Research in Environmental Health, Bhopal, Madhya Pradesh, India
| | - Manoj Kumawat
- Department of Microbiology, ICMR-National Institute for Research in Environmental Health, Bhopal, Madhya Pradesh, India
| | - Samradhi Singh
- Department of Microbiology, ICMR-National Institute for Research in Environmental Health, Bhopal, Madhya Pradesh, India
| | - Vinod Verma
- Stem Cell Research Centre, Department of Hematology, Sanjay Gandhi Post-Graduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Rajnarayan R Tiwari
- Department of Microbiology, ICMR-National Institute for Research in Environmental Health, Bhopal, Madhya Pradesh, India
| | - Devojit Kumar Sarma
- Department of Microbiology, ICMR-National Institute for Research in Environmental Health, Bhopal, Madhya Pradesh, India
| | - Ravinder Nagpal
- Department of Nutrition and Integrative Physiology, College of Health and Human Sciences, Florida State University, Tallahassee, FL, USA
| | - Manoj Kumar
- Department of Microbiology, ICMR-National Institute for Research in Environmental Health, Bhopal, Madhya Pradesh, India
| |
Collapse
|
3
|
Martinho I, Braz M, Duarte J, Brás A, Oliveira V, Gomes NCM, Pereira C, Almeida A. The Potential of Phage Treatment to Inactivate Planktonic and Biofilm-Forming Pseudomonas aeruginosa. Microorganisms 2024; 12:1795. [PMID: 39338470 PMCID: PMC11433742 DOI: 10.3390/microorganisms12091795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 08/18/2024] [Accepted: 08/20/2024] [Indexed: 09/30/2024] Open
Abstract
Pseudomonas aeruginosa is a common cause of hospital-acquired infections and exhibits a strong resistance to antibiotics. An alternative treatment option for bacterial infections is the use of bacteriophages (or phages). In this study, two distinct phages, VB_PaD_phPA-G (phPA-G) and VB_PaN_phPA-Intesti (phPA-Intesti), were used as single suspensions or in a phage cocktail to inactivate the planktonic cells and biofilms of P. aeruginosa. Preliminary experiments in culture medium showed that phage phPA-Intesti (reductions of 4.5-4.9 log CFU/mL) outperformed phPA-G (reductions of 0.6-2.6 log CFU/mL) and the phage cocktail (reduction of 4.2 log CFU/mL). Phage phPA-Intesti caused a maximum reduction of 5.5 log CFU/cm2 in the P. aeruginosa biofilm in urine after 4 h of incubation. The combination of phage phPA-Intesti and ciprofloxacin did not improve the efficacy of bacterial inactivation nor reduce the development of resistant mutants. However, the development of resistant bacteria was lower in the combined treatment with the phage and the antibiotic compared to treatment with the antibiotic alone. This phage lacks known toxins, virulence, antibiotic resistance, and integrase genes. Overall, the results suggest that the use of phage phPA-Intesti could be a potential approach to control urinary tract infections (UTIs), namely those caused by biofilm-producing and multidrug-resistant strains of P. aeruginosa.
Collapse
Affiliation(s)
- Inês Martinho
- Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Márcia Braz
- Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - João Duarte
- Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Ana Brás
- Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Vanessa Oliveira
- Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Newton C M Gomes
- Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Carla Pereira
- Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Adelaide Almeida
- Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| |
Collapse
|
4
|
Alipour-Khezri E, Skurnik M, Zarrini G. Pseudomonas aeruginosa Bacteriophages and Their Clinical Applications. Viruses 2024; 16:1051. [PMID: 39066214 PMCID: PMC11281547 DOI: 10.3390/v16071051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024] Open
Abstract
Antimicrobial resistance poses a serious risk to contemporary healthcare since it reduces the number of bacterial illnesses that may be treated with antibiotics, particularly for patients with long-term conditions like cystic fibrosis (CF). People with a genetic predisposition to CF often have recurrent bacterial infections in their lungs due to a buildup of sticky mucus, necessitating long-term antibiotic treatment. Pseudomonas aeruginosa infections are a major cause of CF lung illness, and P. aeruginosa airway isolates are frequently resistant to many antibiotics. Bacteriophages (also known as phages), viruses that infect bacteria, are a viable substitute for antimicrobials to treat P. aeruginosa infections in individuals with CF. Here, we reviewed the utilization of P. aeruginosa bacteriophages both in vivo and in vitro, as well as in the treatment of illnesses and diseases, and the outcomes of the latter.
Collapse
Affiliation(s)
- Elaheh Alipour-Khezri
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz 51368, Iran;
| | - Mikael Skurnik
- Human Microbiome Research Program, and Department of Bacteriology and Immunology, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
| | - Gholamreza Zarrini
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz 51368, Iran;
- Microbial Biotechnology Research Group, University of Tabriz, Tabriz 51368, Iran
| |
Collapse
|
5
|
Santamaría-Corral G, Pagán I, Aguilera-Correa JJ, Esteban J, García-Quintanilla M. A Novel Bacteriophage Infecting Multi-Drug- and Extended-Drug-Resistant Pseudomonas aeruginosa Strains. Antibiotics (Basel) 2024; 13:523. [PMID: 38927189 PMCID: PMC11200629 DOI: 10.3390/antibiotics13060523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/13/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
The prevalence of carbapenem-resistant P. aeruginosa has dramatically increased over the last decade, and antibiotics alone are not enough to eradicate infections caused by this opportunistic pathogen. Phage therapy is a fresh treatment that can be administered under compassionate use, particularly against chronic cases. However, it is necessary to thoroughly characterize the virus before therapeutic application. Our work describes the discovery of the novel sequenced bacteriophage, vB_PaeP-F1Pa, containing an integrase, performs a phylogenetical analysis, describes its stability at a physiological pH and temperature, latent period (40 min), and burst size (394 ± 166 particles per bacterial cell), and demonstrates its ability to infect MDR and XDR P. aeruginosa strains. Moreover, this novel bacteriophage was able to inhibit the growth of bacteria inside preformed biofilms. The present study offers a road map to analyze essential areas for successful phage therapy against MDR and XDR P. aeruginosa infections, and shows that a phage containing an integrase is also able to show good in vitro results, indicating that it is very important to perform a genomic analysis before any clinical use, in order to prevent adverse effects in patients.
Collapse
Affiliation(s)
- Guillermo Santamaría-Corral
- Clinical Microbiology Department, IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, 28040 Madrid, Spain; (G.S.-C.); (J.J.A.-C.); (M.G.-Q.)
| | - Israel Pagán
- Centro de Biotecnología y Genómica de Plantas UPM-INIA/CSIC and E.T.S. Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, 28223 Madrid, Spain;
| | - John Jairo Aguilera-Correa
- Clinical Microbiology Department, IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, 28040 Madrid, Spain; (G.S.-C.); (J.J.A.-C.); (M.G.-Q.)
- CIBERINFEC-Consorcio Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Infecciosas, 28029 Madrid, Spain
| | - Jaime Esteban
- Clinical Microbiology Department, IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, 28040 Madrid, Spain; (G.S.-C.); (J.J.A.-C.); (M.G.-Q.)
- CIBERINFEC-Consorcio Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Infecciosas, 28029 Madrid, Spain
| | - Meritxell García-Quintanilla
- Clinical Microbiology Department, IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, 28040 Madrid, Spain; (G.S.-C.); (J.J.A.-C.); (M.G.-Q.)
- CIBERINFEC-Consorcio Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Infecciosas, 28029 Madrid, Spain
| |
Collapse
|
6
|
Bisen M, Kharga K, Mehta S, Jabi N, Kumar L. Bacteriophages in nature: recent advances in research tools and diverse environmental and biotechnological applications. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:22199-22242. [PMID: 38411907 DOI: 10.1007/s11356-024-32535-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 02/15/2024] [Indexed: 02/28/2024]
Abstract
Bacteriophages infect and replicate within bacteria and play a key role in the environment, particularly in microbial ecosystems and bacterial population dynamics. The increasing recognition of their significance stems from their wide array of environmental and biotechnological uses, which encompass the mounting issue of antimicrobial resistance (AMR). Beyond their therapeutic potential in combating antibiotic-resistant infections, bacteriophages also find vast applications such as water quality monitoring, bioremediation, and nutrient cycling within environmental sciences. Researchers are actively involved in isolating and characterizing bacteriophages from different natural sources to explore their applications. Gaining insights into key aspects such as the life cycle of bacteriophages, their host range, immune interactions, and physical stability is vital to enhance their application potential. The establishment of diverse phage libraries has become indispensable to facilitate their wide-ranging uses. Consequently, numerous protocols, ranging from traditional to cutting-edge techniques, have been developed for the isolation, detection, purification, and characterization of bacteriophages from diverse environmental sources. This review offers an exploration of tools, delves into the methods of isolation, characterization, and the extensive environmental applications of bacteriophages, particularly in areas like water quality assessment, the food sector, therapeutic interventions, and the phage therapy in various infections and diseases.
Collapse
Affiliation(s)
- Monish Bisen
- School of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Kusum Kharga
- School of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Sakshi Mehta
- School of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Nashra Jabi
- School of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Lokender Kumar
- School of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh, 173229, India.
- Cancer Biology Laboratory, Raj Khosla Centre for Cancer Research, Shoolini University, Himachal Pradesh, Solan, 173229, India.
| |
Collapse
|
7
|
Ashworth EA, Wright RCT, Shears RK, Wong JKL, Hassan A, Hall JPJ, Kadioglu A, Fothergill JL. Exploiting lung adaptation and phage steering to clear pan-resistant Pseudomonas aeruginosa infections in vivo. Nat Commun 2024; 15:1547. [PMID: 38378698 PMCID: PMC10879199 DOI: 10.1038/s41467-024-45785-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 02/05/2024] [Indexed: 02/22/2024] Open
Abstract
Pseudomonas aeruginosa is a major nosocomial pathogen that causes severe disease including sepsis. Carbapenem-resistant P. aeruginosa is recognised by the World Health Organisation as a priority 1 pathogen, with urgent need for new therapeutics. As such, there is renewed interest in using bacteriophages as a therapeutic. However, the dynamics of treating pan-resistant P. aeruginosa with phage in vivo are poorly understood. Using a pan-resistant P. aeruginosa in vivo infection model, phage therapy displays strong therapeutic potential, clearing infection from the blood, kidneys, and spleen. Remaining bacteria in the lungs and liver displays phage resistance due to limiting phage adsorption. Yet, resistance to phage results in re-sensitisation to a wide range of antibiotics. In this work, we use phage steering in vivo, pre-exposing a pan resistant P. aeruginosa infection with a phage cocktail to re-sensitise bacteria to antibiotics, clearing the infection from all organs.
Collapse
Affiliation(s)
- Eleri A Ashworth
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool, UK
| | - Rosanna C T Wright
- Division of Evolution & Genomic Sciences, School of Biological Sciences, University of Manchester, Manchester, UK
| | - Rebecca K Shears
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool, UK
- Centre for Bioscience, Manchester Metropolitan University, Manchester, M1 5DG, UK
| | - Janet K L Wong
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool, UK
| | - Akram Hassan
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool, UK
| | - James P J Hall
- Department of Evolution, Ecology and Behaviour, University of Liverpool, Liverpool, UK
| | - Aras Kadioglu
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool, UK.
| | - Joanne L Fothergill
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool, UK.
| |
Collapse
|
8
|
Abdelghafar A, El-Ganiny A, Shaker G, Askoura M. A novel lytic phage exhibiting a remarkable in vivo therapeutic potential and higher antibiofilm activity against Pseudomonas aeruginosa. Eur J Clin Microbiol Infect Dis 2023; 42:1207-1234. [PMID: 37608144 PMCID: PMC10511388 DOI: 10.1007/s10096-023-04649-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 08/07/2023] [Indexed: 08/24/2023]
Abstract
BACKGROUND Pseudomonas aeruginosa is a nosocomial bacterium responsible for variety of infections. Inappropriate use of antibiotics could lead to emergence of multidrug-resistant (MDR) P. aeruginosa strains. Herein, a virulent phage; vB_PaeM_PS3 was isolated and tested for its application as alternative to antibiotics for controlling P. aeruginosa infections. METHODS Phage morphology was observed using transmission electron microscopy (TEM). The phage host range and efficiency of plating (EOP) in addition to phage stability were analyzed. One-step growth curve was performed to detect phage growth kinetics. The impact of isolated phage on planktonic cells and biofilms was assessed. The phage genome was sequenced. Finally, the therapeutic potential of vB_PaeM_PS3 was determined in vivo. RESULTS Isolated phage has an icosahedral head and a contractile tail and was assigned to the family Myoviridae. The phage vB_PaeM_PS3 displayed a broad host range, strong bacteriolytic ability, and higher environmental stability. Isolated phage showed a short latent period and large burst size. Importantly, the phage vB_PaeM_PS3 effectively eradicated bacterial biofilms. The genome of vB_PaeM_PS3 consists of 93,922 bp of dsDNA with 49.39% G + C content. It contains 171 predicted open reading frames (ORFs) and 14 genes as tRNA. Interestingly, the phage vB_PaeM_PS3 significantly attenuated P. aeruginosa virulence in host where the survival of bacteria-infected mice was markedly enhanced following phage treatment. Moreover, the colonizing capability of P. aeruginosa was markedly impaired in phage-treated mice as compared to untreated infected mice. CONCLUSION Based on these findings, isolated phage vB_PaeM_PS3 could be potentially considered for treating of P. aeruginosa infections.
Collapse
Affiliation(s)
- Aliaa Abdelghafar
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Amira El-Ganiny
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Ghada Shaker
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Momen Askoura
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt.
| |
Collapse
|
9
|
Abdelghafar A, El-Ganiny A, Shaker G, Askoura M. Isolation of a bacteriophage targeting Pseudomonas aeruginosa and exhibits a promising in vivo efficacy. AMB Express 2023; 13:79. [PMID: 37495819 PMCID: PMC10371947 DOI: 10.1186/s13568-023-01582-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 07/07/2023] [Indexed: 07/28/2023] Open
Abstract
Pseudomonas aeruginosa is an important pathogen that causes serious infections. Bacterial biofilms are highly resistant and render bacterial treatment very difficult, therefore necessitates alternative antibacterial strategies. Phage therapy has been recently regarded as a potential therapeutic option for treatment of bacterial infections. In the current study, a novel podovirus vB_PaeP_PS28 has been isolated from sewage with higher lytic activity against P. aeruginosa. Isolated phage exhibits a short latent period, large burst size and higher stability over a wide range of temperatures and pH. The genome of vB_PaeP_PS28 consists of 72,283 bp circular double-stranded DNA, with G + C content of 54.75%. The phage genome contains 94 open reading frames (ORFs); 32 for known functional proteins and 62 for hypothetical proteins and no tRNA genes. The phage vB_PaeP_PS28 effectively inhibited the growth of P. aeruginosa planktonic cells and displayed a higher biofilm degrading capability. Moreover, therapeutic efficacy of isolated phage was evaluated in vivo using mice infection model. Interestingly, survival of mice infected with P. aeruginosa was significantly enhanced upon treatment with vB_PaeP_PS28. Furthermore, the bacterial load in liver and kidney isolated from mice infected with P. aeruginosa and treated with phage markedly decreased as compared with phage-untreated P. aeruginosa-infected mice. These findings support the efficacy of isolated phage vB_PaeP_PS28 in reducing P. aeruginosa colonization and pathogenesis in host. Importantly, the isolated phage vB_PaeP_PS28 could be applied alone or as combination therapy with other lytic phages as phage cocktail therapy or with antibiotics to limit infections caused by P. aeruginosa.
Collapse
Affiliation(s)
- Aliaa Abdelghafar
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Amira El-Ganiny
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Ghada Shaker
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Momen Askoura
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt.
| |
Collapse
|
10
|
Mehmood Khan F, Manohar P, Singh Gondil V, Mehra N, Kayode Oyejobi G, Odiwuor N, Ahmad T, Huang G. The applications of animal models in phage therapy: An update. Hum Vaccin Immunother 2023; 19:2175519. [PMID: 36935353 PMCID: PMC10072079 DOI: 10.1080/21645515.2023.2175519] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023] Open
Abstract
The rapid increase in antibiotic resistance presents a dire situation necessitating the need for alternative therapeutic agents. Among the current alternative therapies, phage therapy (PT) is promising. This review extensively summarizes preclinical PT approaches in various in-vivo models. PT has been evaluated in several recent clinical trials. However, there are still several unanswered concerns due to a lack of appropriate regulation and pharmacokinetic data regarding the application of phages in human therapeutic procedures. In this review, we also presented the current state of PT and considered how animal models can be used to adapt these therapies for humans. The development of realistic solutions to circumvent these constraints is critical for advancing this technology.
Collapse
Affiliation(s)
- Fazal Mehmood Khan
- College of Civil and Transportation Engineering, Shenzhen University, Shenzhen, China.,Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China.,Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, China.,Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Prasanth Manohar
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Vijay Singh Gondil
- Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China.,Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Nancy Mehra
- Department of Pediatrics, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Greater Kayode Oyejobi
- Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China.,Department of Microbiology, Osun State University, Osogbo, Nigeria.,School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Nelson Odiwuor
- Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China.,International College, University of Chinese Academy of Sciences, Beijing, China.,Microbiology, Sino-Africa Joint Research Centre, Nairobi, Kenya
| | - Tauseef Ahmad
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, China
| | - Guangtao Huang
- Department of Burn and Plastic Surgery, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen, China.,Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China.,Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
11
|
Martínez-Gallardo MJ, Villicaña C, Yocupicio-Monroy M, Alcaraz-Estrada SL, León-Félix J. Current knowledge in the use of bacteriophages to combat infections caused by Pseudomonas aeruginosa in cystic fibrosis. Folia Microbiol (Praha) 2023; 68:1-16. [PMID: 35931928 DOI: 10.1007/s12223-022-00990-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 07/02/2022] [Indexed: 11/04/2022]
Abstract
Pseudomonas aeruginosa (PA) is considered the first causal agent of morbidity and mortality in people with cystic fibrosis (CF) disease. Multi-resistant strains have emerged due to prolonged treatment with specific antibiotics, so new alternatives have been sought for their control. In this context, there is a renewed interest in therapies based on bacteriophages (phages) supported by several studies suggesting that therapy based on lytic phages and biofilm degraders may be promising for the treatment of lung infections in CF patients. However, there is little clinical data about phage studies in CF and the effectiveness and safety in patients with this disease has not been clear. Therefore, studies regarding on phage characterization, selection, and evaluation in vitro and in vivo models will provide reliable information for designing effective cocktails, either using mixed phages or in combination with antibiotics, making a great progress in clinical research. Hence, this review focuses on the most relevant and recent findings on the activity of lytic phages against PA strains isolated from CF patients and hospital environments, and discusses perspectives on the use of phage therapy on the treatment of PA in CF patients.
Collapse
Affiliation(s)
- María José Martínez-Gallardo
- Laboratory of Molecular Biology and Functional Genomics, Centro de Investigación en Alimentación y Desarrollo, Culiacán, Sinaloa, A.C. (CIAD), Mexico
| | - Claudia Villicaña
- CONACYT-Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD), Culiacán, Sinaloa, Mexico
| | - Martha Yocupicio-Monroy
- Postgraduate in Genomic Sciences, Universidad Autónoma de la Ciudad de México (UACM), Mexico City, Mexico
| | | | - Josefina León-Félix
- Laboratory of Molecular Biology and Functional Genomics, Centro de Investigación en Alimentación y Desarrollo, Culiacán, Sinaloa, A.C. (CIAD), Mexico.
| |
Collapse
|
12
|
Zagaliotis P, Michalik-Provasek J, Gill JJ, Walsh TJ. Therapeutic Bacteriophages for Gram-Negative Bacterial Infections in Animals and Humans. Pathog Immun 2022; 7:1-45. [PMID: 36320594 PMCID: PMC9596135 DOI: 10.20411/pai.v7i2.516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 08/09/2022] [Indexed: 12/15/2022] Open
Abstract
Drug-resistant Gram-negative bacterial pathogens are an increasingly serious health threat causing worldwide nosocomial infections with high morbidity and mortality. Of these, the most prevalent and severe are Pseudomonas aeruginosa, Klebsiella pneumoniae, Escherichia coli, Acinetobacter baumannii, and Salmonella typhimurium. The extended use of antibiotics has led to the emergence of multidrug resistance in these bacteria. Drug-inactivating enzymes produced by these bacteria, as well as other resistance mechanisms, render drugs ineffective and make treatment of such infections more difficult and complicated. This makes the development of novel antimicrobial agents an urgent necessity. Bacteriophages, which are bacteria-killing viruses first discovered in 1915, have been used as therapeutic antimicrobials in the past, but their use was abandoned due to the widespread availability of antibiotics in the 20th century. The emergence, however, of drug-resistant pathogens has re-affirmed the need for bacteriophages as therapeutic strategies. This review describes the use of bacteriophages as novel agents to combat this rapidly emerging public health crisis by comprehensively enumerating and discussing the innovative use of bacteriophages in both animal models and in patients infected by Gram-negative bacteria.
Collapse
Affiliation(s)
- Panagiotis Zagaliotis
- Transplantation-Oncology Infectious Diseases Program, Weill Cornell Medicine New York, NY
- Department of Pharmacology and Therapeutics, School of Pharmacy, Aristotle University of Thessaloniki, Greece
| | | | - Jason J. Gill
- Center for Phage Technology, Texas A&M University, College Station, Texas
| | - Thomas J. Walsh
- Transplantation-Oncology Infectious Diseases Program, Weill Cornell Medicine New York, NY
- Departments of Pediatrics and Microbiology & Immunology, Weill Cornell Medicine New York, NY
- Center for Innovative Therapeutics and Diagnostics, Richmond, VA
| |
Collapse
|
13
|
Chancharoenthana W, Sutnu N, Visitchanakun P, Sawaswong V, Chitcharoen S, Payungporn S, Schuetz A, Schultz MJ, Leelahavanichkul A. Critical roles of sepsis-reshaped fecal virota in attenuating sepsis severity. Front Immunol 2022; 13:940935. [PMID: 35983067 PMCID: PMC9380439 DOI: 10.3389/fimmu.2022.940935] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
Because studies on all fecal organisms (bacteria, fungi, and viruses) in sepsis are rare and bacteriophages during sepsis might have adapted against gut bacteria with possible pathogenicity, cecal ligation and puncture (CLP; a sepsis mouse model) was evaluated. In fecal bacteriome, sepsis increased Bacteroides and Proteobacteria but decreased Firmicutes, while fecal virome demonstrated increased Podoviridae when compared with sham feces. There was no difference in the fungal microbiome (predominant Ascomycota in both sham and CLP mice) and the abundance of all organisms between sepsis and control groups. Interestingly, the transfers of feces from CLP mice worsened sepsis severity when compared with sham fecal transplantation, as evaluated by mortality, renal injury (serum creatinine and histology), liver damage (liver enzyme and histology), spleen apoptosis, serum cytokines, endotoxemia, and bacteremia. In contrast, the transfers of fecal viral particles from sepsis mice, but not from sham mice, attenuated inflammation in CLP sepsis possibly through the decrease in several fecal pathogenic bacteria (such as Proteobacteria, Gammaproteobacteria, and Prevotellaceae) as evaluated by fecal microbiome analysis. Perhaps the isolation of favorable bacteriophages in sepsis feces and increased abundance ex vivo before oral treatment in a high concentration are beneficial.
Collapse
Affiliation(s)
- Wiwat Chancharoenthana
- Tropical Nephrology Research Unit, Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Tropical Immunology and Translational Research Unit, Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- *Correspondence: Wiwat Chancharoenthana, ; Asada Leelahavanichkul,
| | - Nattawut Sutnu
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence on Translational Research in Inflammatory and Immunology (CETRII), Department of Microbiology, Chulalongkorn University, Bangkok, Thailand
| | - Peerapat Visitchanakun
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence on Translational Research in Inflammatory and Immunology (CETRII), Department of Microbiology, Chulalongkorn University, Bangkok, Thailand
| | - Vorthon Sawaswong
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Research Unit of Systems Microbiology, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Suwalak Chitcharoen
- Research Unit of Systems Microbiology, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Sunchai Payungporn
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Research Unit of Systems Microbiology, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Alexandra Schuetz
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda , MD, United States
- Department of Retrovirology, Armed Forces Research Institute of Medical Sciences-United States Component, Bangkok, Thailand
| | - Marcus J. Schultz
- Mahidol–Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Department of Intensive Care & Laboratory of Experimental Intensive Care and Anesthesiology (L.E.I.C.A), Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, Oxford University, Oxford, United Kingdom
| | - Asada Leelahavanichkul
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence on Translational Research in Inflammatory and Immunology (CETRII), Department of Microbiology, Chulalongkorn University, Bangkok, Thailand
- *Correspondence: Wiwat Chancharoenthana, ; Asada Leelahavanichkul,
| |
Collapse
|
14
|
Tabassum R, Basit A, Alvi IA, Asif M, Ur Rehman S. TSP, a virulent Podovirus, can control the growth of Staphylococcus aureus for 12 h. Sci Rep 2022; 12:10008. [PMID: 35705576 PMCID: PMC9200855 DOI: 10.1038/s41598-022-13584-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 05/03/2022] [Indexed: 11/23/2022] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a prevailing nosocomial pathogen that is increasingly isolated in community settings. It shows resistance against all beta-lactam drugs and has acquired mechanisms to resist other groups of antibiotics. To tackle this emerging issue of MRSA, there is an urgent need for antibiotic alternatives, and utilizing lytic bacteriophages is one of the most promising therapeutic approaches. In the present study, a lytic bacteriophage TSP was isolated from hospital wastewater against MRSA. The phage efficiently inhibited bacterial growth for up to 12 h at MOI of 1 and 10. TSP phage showed activity against various isolates of MRSA and MSSA, isolated from different clinical samples, with variable antibiotic susceptibility patterns. The bacteriophage TSP showed stability at varying temperatures (25 °C, 37 °C) and pH values (5–9), while its maximum storage stability was observed at 4 °C. It had a short latent period (20 min) and burst size of 103 ± 5pfu/infected cells. TSP genome sequence and restriction analysis revealed that its genome has a linear confirmation and length of 17,987 bp with an average GC content of 29.7%. According to comparative genomic analysis and phylogenetic tree,TSP phage can be considered a member of genus “P68viruses”. The strong lytic activity and short latent period in addition to its lytic nature makes it a good candidate for phage therapy against MRSA infections, if it proves to be effective in in-vivo studies.
Collapse
Affiliation(s)
- Rabia Tabassum
- Institute of Microbiology and Molecular Genetics, University of the Punjab, Lahore, Pakistan
| | - Abdul Basit
- Institute of Microbiology and Molecular Genetics, University of the Punjab, Lahore, Pakistan
| | - Iqbal Ahmed Alvi
- Department of Microbiology, Hazara University, Mansehra, KPK, Pakistan
| | - Muhammad Asif
- Institute of Microbiology and Molecular Genetics, University of the Punjab, Lahore, Pakistan.,Department of Pathology, King Edward Medical University, Lahore, Pakistan
| | - Shafiq Ur Rehman
- Institute of Microbiology and Molecular Genetics, University of the Punjab, Lahore, Pakistan.
| |
Collapse
|
15
|
Isolation, Characterization, and Genomic Analysis of Three Novel E. coli Bacteriophages That Effectively Infect E. coli O18. Microorganisms 2022; 10:microorganisms10030589. [PMID: 35336164 PMCID: PMC8954371 DOI: 10.3390/microorganisms10030589] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/01/2022] [Accepted: 03/04/2022] [Indexed: 01/27/2023] Open
Abstract
Escherichia coli (E. coli) is one of the most common pathogenic bacteria worldwide. Avian pathogenic E. coli (APEC) causes severe systemic disease in poultry (Colibacillosis), and accordingly, has an extreme risk to the poultry industry and public health worldwide. Due to the increased rate of multi-drug resistance among these bacteria, it is necessary to find an alternative therapy to antibiotics to treat such infections. Bacteriophages are considered one of the best solutions. This study aimed to isolate, characterize, and evaluate the potential use of isolated bacteriophages to control E. coli infections in poultry. Three novel phages against E. coli O18 were isolated from sewage water and characterized in vitro. The genome size of the three phages was estimated to be 44,776 bp, and the electron microscopic analysis showed that they belonged to the Siphoviridae family, in the order Caudovirales. Phages showed good tolerance to a broad range of pH and temperature. The complete genomes of three phages were sequenced and deposited into the GenBank database. The closely related published genomes of Escherichia phages were identified using BLASTn alignment and phylogenetic trees. The prediction of the open reading frames (ORFs) identified protein-coding genes that are responsible for functions that have been assigned such as cell lysis proteins, DNA packaging proteins, structural proteins, and DNA replication/transcription/repair proteins.
Collapse
|
16
|
Ilyas SZ, Tariq H, Basit A, Tahir H, Haider Z, Rehman SU. SGP-C: A Broad Host Range Temperate Bacteriophage; Against Salmonella gallinarum. Front Microbiol 2022; 12:768931. [PMID: 35095790 PMCID: PMC8790156 DOI: 10.3389/fmicb.2021.768931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/03/2021] [Indexed: 11/13/2022] Open
Abstract
Salmonella gallinarum is a poultry restricted-pathogen causing fowl-typhoid disease in adult birds with mortality rates up-to 80% and exhibit resistance against commonly used antibiotics. In this current study, a temperate broad host range bacteriophage SGP-C was isolated against S. gallinarum from poultry digesta. It showed infection ability in all the 15 tested field strains of S. gallinarum. The SGP-C phage produced circular, turbid plaques with alternate rings. Its optimum activity was observed at pH 7.0 and 37-42°C, with a latent period of 45 min and burst size of 187 virions/bacterial cell. The SGP-C lysogens, SGPC-L5 and SGPC-L6 exhibited super-infection immunity against the same phage, an already reported feature of lysogens. A virulence index of 0.5 and 0.001 as MV50 of SGP-C suggests its moderate virulence. The genome of SGP-C found circular double stranded DNA of 42 Kbp with 50.04% GC content, which encodes 63 ORFs. The presence of repressor gene at ORF49, and absence of tRNA sequence in SGP-C genome indicates its lysogenic nature. Furthermore, from NGS analysis of lysogens we propose that SGP-C genome might exist either as an episome, or both as integrated and temporary episome in the host cell and warrants further studies. Phylogenetic analysis revealed its similarity with Salmonella temperate phages belonging to family Siphoviridae. The encoded proteins by SGP-C genome have not showed homology with any known toxin and virulence factor. Although plenty of lytic bacteriophages against this pathogen are already reported, to our knowledge SGP-C is the first lysogenic phage against S. gallinarum reported so far.
Collapse
Affiliation(s)
| | | | | | | | | | - Shafiq ur Rehman
- Institute of Microbiology and Molecular Genetics, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
17
|
Harada LK, Silva EC, Rossi FP, Cieza B, Oliveira TJ, Pereira C, Tomazetto G, Silva BB, Squina FM, Vila MM, Setubal JC, Ha T, da Silva AM, Balcão VM. Characterization and in vitro testing of newly isolated lytic bacteriophages for the biocontrol of Pseudomonas aeruginosa. Future Microbiol 2022; 17:111-141. [PMID: 34989245 DOI: 10.2217/fmb-2021-0027] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Aim: Two lytic phages were isolated using P. aeruginosa DSM19880 as host and fully characterized. Materials & methods: Phages were characterized physicochemically, biologically and genomically. Results & conclusion: Host range analysis revealed that the phages also infect some multidrug-resistant (MDR) P. aeruginosa clinical isolates. Increasing MOI from 1 to 1000 significantly increased phage efficiency and retarded bacteria regrowth, but phage ph0034 (reduction of 7.5 log CFU/ml) was more effective than phage ph0031 (reduction of 5.1 log CFU/ml) after 24 h. Both phages belong to Myoviridae family. Genome sequencing of phages ph0031 and ph0034 showed that they do not carry toxin, virulence, antibiotic resistance and integrase genes. The results obtained are highly relevant in the actual context of bacterial resistance to antibiotics.
Collapse
Affiliation(s)
- Liliam K Harada
- PhageLab - Laboratory of Biofilms & Bacteriophages, University of Sorocaba, Sorocaba/SP, Brazil
| | - Erica C Silva
- PhageLab - Laboratory of Biofilms & Bacteriophages, University of Sorocaba, Sorocaba/SP, Brazil
| | - Fernando Pn Rossi
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Basilio Cieza
- Department of Biophysics & Biophysical Chemistry, Johns Hopkins University, Baltimore, MD, USA
| | - Thais J Oliveira
- PhageLab - Laboratory of Biofilms & Bacteriophages, University of Sorocaba, Sorocaba/SP, Brazil
| | - Carla Pereira
- Department of Biology & CESAM, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - Geizecler Tomazetto
- Department of Engineering, Biological & Chemical Engineering Section (BCE), Aarhus University, Aarhus, Denmark
| | - Bianca B Silva
- PhageLab - Laboratory of Biofilms & Bacteriophages, University of Sorocaba, Sorocaba/SP, Brazil
| | - Fabio M Squina
- PhageLab - Laboratory of Biofilms & Bacteriophages, University of Sorocaba, Sorocaba/SP, Brazil
| | - Marta Mdc Vila
- PhageLab - Laboratory of Biofilms & Bacteriophages, University of Sorocaba, Sorocaba/SP, Brazil
| | - João C Setubal
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Taekjip Ha
- Department of Biophysics & Biophysical Chemistry, Johns Hopkins University, Baltimore, MD, USA
| | - Aline M da Silva
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Victor M Balcão
- PhageLab - Laboratory of Biofilms & Bacteriophages, University of Sorocaba, Sorocaba/SP, Brazil.,Department of Biology & CESAM, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| |
Collapse
|
18
|
Kazantseva OA, Buzikov RM, Pilipchuk TA, Valentovich LN, Kazantsev AN, Kalamiyets EI, Shadrin AM. The Bacteriophage Pf-10-A Component of the Biopesticide "Multiphage" Used to Control Agricultural Crop Diseases Caused by Pseudomonas syringae. Viruses 2021; 14:42. [PMID: 35062246 PMCID: PMC8779105 DOI: 10.3390/v14010042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 11/16/2022] Open
Abstract
Phytopathogenic pseudomonads are widespread in the world and cause a wide range of plant diseases. In this work, we describe the Pseudomonas phage Pf-10, which is a part of the biopesticide "Multiphage" used for bacterial diseases of agricultural crops caused by Pseudomonas syringae. The Pf-10 chromosome is a dsDNA molecule with two direct terminal repeats (DTRs). The phage genomic DNA is 39,424 bp long with a GC-content of 56.5%. The Pf-10 phage uses a packaging mechanism based on T7-like short DTRs, and the length of each terminal repeat is 257 bp. Electron microscopic analysis has shown that phage Pf-10 has the podovirus morphotype. Phage Pf-10 is highly stable at pH values from 5 to 10 and temperatures from 4 to 60 °C and has a lytic activity against Pseudomonas strains. Phage Pf-10 is characterized by fast adsorption rate (80% of virions attach to the host cells in 10 min), but has a relatively small number of progeny (37 ± 8.5 phage particles per infected cell). According to the phylogenetic analysis, phage Pf-10 can be classified as a new phage species belonging to the genus Pifdecavirus, subfamily Studiervirinae, family Autographiviridae, order Caudovirales.
Collapse
Affiliation(s)
- Olesya A. Kazantseva
- Laboratory of Bacteriophage Biology, G. K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Federal Research Center, 142290 Pushchino, Russia;
| | - Rustam M. Buzikov
- Laboratory of Bacteriophage Biology, G. K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Federal Research Center, 142290 Pushchino, Russia;
| | - Tatsiana A. Pilipchuk
- Institute of Microbiology, The National Academy of Sciences of Belarus, 220141 Minsk, Belarus; (T.A.P.); (L.N.V.); (E.I.K.)
| | - Leonid N. Valentovich
- Institute of Microbiology, The National Academy of Sciences of Belarus, 220141 Minsk, Belarus; (T.A.P.); (L.N.V.); (E.I.K.)
- Faculty of Biology, Belarusian State University, 220030 Minsk, Belarus
| | - Andrey N. Kazantsev
- P. N. Lebedev Physical Institute of the Russian Academy of Sciences, Pushchino Radio Astronomy Observatory, 142290 Pushchino, Russia;
| | - Emilia I. Kalamiyets
- Institute of Microbiology, The National Academy of Sciences of Belarus, 220141 Minsk, Belarus; (T.A.P.); (L.N.V.); (E.I.K.)
| | - Andrey M. Shadrin
- Laboratory of Bacteriophage Biology, G. K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Federal Research Center, 142290 Pushchino, Russia;
| |
Collapse
|
19
|
Li P, Zhang Y, Yan F, Zhou X. Characteristics of a Bacteriophage, vB_Kox_ZX8, Isolated From Clinical Klebsiella oxytoca and Its Therapeutic Effect on Mice Bacteremia. Front Microbiol 2021; 12:763136. [PMID: 34925270 PMCID: PMC8678519 DOI: 10.3389/fmicb.2021.763136] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 11/04/2021] [Indexed: 12/13/2022] Open
Abstract
Klebsiella oxytoca is an important nosocomial and community-acquired opportunistic pathogenic Klebsiella and has become the second most prevalent strain in the clinic after K. pneumoniae. However, there have been few reports of bacteriophages used for treating K. oxytoca. In this study, a novel bacteriophage, vB_Kox_ZX8, which specifically infects K. oxytoca AD3, was isolated for the first time from human fecal samples. The biological characteristics of vB_Kox_ZX8 showed an incubation period of 10 min, a burst size of 74 PFU/cell, and a stable pH range of 3-11. Genomic bioinformatics studies of vB_Kox_ZX8 showed that it belongs to the genus Przondovirus, subfamily Studiervirinae, family Autographiviridae. The genome of vB_Kox_ZX8 is 39,398 bp in length and contains 46 putative open reading frames encoding functional proteins, such as DNA degradation, packaging, structural, lysin-holin, and hypothetical proteins. We further investigated the efficacy of vB_Kox_ZX8 phage in the treatment of mice with bacteremia caused by K. oxytoca infection. The results showed that vB_Kox_ZX8 (5 × 109 PFU/mouse) injected intraperitoneally alone was metabolized rapidly in BALB/c mice, and no significant side effects were observed in the control and treatment groups. Importantly, intraperitoneal injection with a single dose of phage vB_Kox_ZX8 (5 × 107 PFU/mouse) for 1 h post-infection saved 100% of BALB/c mice from bacteremia induced by intraperitoneal challenge with a minimum lethal dose of K. oxytoca AD3. However, all negative control mice injected with PBS alone died. Owing to its good safety, narrow host infectivity, high lysis efficiency in vitro, and good in vivo therapeutic effect, phage vB_Kox_ZX8 has the potential to be an excellent antibacterial agent for clinical K. oxytoca-caused infections.
Collapse
Affiliation(s)
- Ping Li
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Yangheng Zhang
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Fuhua Yan
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Xin Zhou
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
| |
Collapse
|
20
|
Khan MSI, Gao X, Liang K, Mei S, Zhan J. Virulent Drexlervirial Bacteriophage MSK, Morphological and Genome Resemblance With Rtp Bacteriophage Inhibits the Multidrug-Resistant Bacteria. Front Microbiol 2021; 12:706700. [PMID: 34504479 PMCID: PMC8421802 DOI: 10.3389/fmicb.2021.706700] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 06/14/2021] [Indexed: 11/13/2022] Open
Abstract
Phage-host interactions are likely to have the most critical aspect of phage biology. Phages are the most abundant and ubiquitous infectious acellular entities in the biosphere, where their presence remains elusive. Here, the novel Escherichia coli lytic bacteriophage, named MSK, was isolated from the lysed culture of E. coli C (phix174 host). The genome of phage MSK was sequenced, comprising 45,053 bp with 44.8% G + C composition. In total, 73 open reading frames (ORFs) were predicted, out of which 24 showed a close homology with known functional proteins, including one tRNA-arg; however, the other 49 proteins with no proven function in the genome database were called hypothetical. Electron Microscopy and genome characterization have revealed that MSK phage has a rosette-like tail tip. There were, in total, 46 ORFs which were homologous to the Rtp genome. Among these ORFs, the tail fiber protein with a locus tag of MSK_000019 was homologous to Rtp 43 protein, which determines the host specificity. The other protein, MSK_000046, encodes lipoprotein (cor gene); that protein resembles Rtp 45, responsible for preventing adsorption during cell lysis. Thirteen MSK structural proteins were identified by SDS-PAGE analysis. Out of these, 12 were vital structural proteins, and one was a hypothetical protein. Among these, the protein terminase large (MSK_000072) subunit, which may be involved in DNA packaging and proposed packaging strategy of MSK bacteriophage genome, takes place through headful packaging using the pac-sites. Biosafety assessment of highly stable phage MSK genome analysis has revealed that the phage did not possess virulence genes, which indicates proper phage therapy. MSK phage potentially could be used to inhibit the multidrug-resistant bacteria, including AMP, TCN, and Colistin. Further, a comparative genome and lifestyle study of MSK phage confirmed the highest similarity level (87.18% ANI). These findings suggest it to be a new lytic isolated phage species. Finally, Blast and phylogenetic analysis of the large terminase subunit and tail fiber protein put it in Rtp viruses' genus of family Drexlerviridae.
Collapse
Affiliation(s)
- Muhammad Saleem Iqbal Khan
- Department of Biochemistry, Cancer Institute of the Second Affiliated Hospital (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiangzheng Gao
- Department of Biochemistry, Cancer Institute of the Second Affiliated Hospital (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), School of Medicine, Zhejiang University, Hangzhou, China
| | - Keying Liang
- Department of Biochemistry, Cancer Institute of the Second Affiliated Hospital (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), School of Medicine, Zhejiang University, Hangzhou, China
| | - Shengsheng Mei
- Department of Biochemistry, Cancer Institute of the Second Affiliated Hospital (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), School of Medicine, Zhejiang University, Hangzhou, China
| | - Jinbiao Zhan
- Department of Biochemistry, Cancer Institute of the Second Affiliated Hospital (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
21
|
Basit A, Qadir S, Qureshi S, Rehman SU. Cloning and expression analysis of fused holin-endolysin from RL bacteriophage; Exhibits broad activity against multi drug resistant pathogens. Enzyme Microb Technol 2021; 149:109846. [PMID: 34311883 DOI: 10.1016/j.enzmictec.2021.109846] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/02/2021] [Accepted: 06/06/2021] [Indexed: 01/20/2023]
Abstract
Antibiotic resistance has become a major risk to community health over last few years because of antibiotics overuse around the globe and lack of new antibiotics development. Phages and their lytic enzymes are considered as an effective alternative of antibiotics to control drug resistant bacterial pathogens. Endolysins prove to be a promising class of antibacterials due to their specificity and less chances of resistance development in bacterial pathogens. Though large number of endolysins has been reported against gram positive bacteria, very few reported against gram negative bacteria due to the presence of outer membrane, which acts as physical barrier against endolysin attack to peptidoglycan. In the current study, we have expressed endolysin (RL_Lys) and holin fused at the N terminus of endolysin (RL_Hlys) from RL phage infecting multi drug resistant (MDR) Pseudomonas aeruginosa. Both endolysin variants were found active against wide range of MDR strains P. aeruginosa, Klebsella pneumonia, Salmonella Sp. and Methicillin Resistant Staphylococcus aureus (MRSA). Broth reduction assay showed that RL_Hlys is more active than RL_Lys due to presence of holin, which assist the endolysin access towards cell wall. The protein ligand docking and molecular dynamic simulation results showed that C- terminus region of endolysin play vital role in cell wall binding and even in the absence of holin, hydrolyze a broad range of gram negative bacterial pathogens. The significant activity of RL-Lys and RL_Hlys against a broad range of MDR gram negative and positive bacterial pathogens makes them good candidates for antibiotic alternatives.
Collapse
Affiliation(s)
- Abdul Basit
- Institute of Microbiology and Molecular Genetics, University of the Punjab, Lahore, 54590, Pakistan.
| | - Sania Qadir
- Institute of Microbiology and Molecular Genetics, University of the Punjab, Lahore, 54590, Pakistan.
| | - Sara Qureshi
- Institute of Microbiology and Molecular Genetics, University of the Punjab, Lahore, 54590, Pakistan.
| | - Shafiq Ur Rehman
- Institute of Microbiology and Molecular Genetics, University of the Punjab, Lahore, 54590, Pakistan.
| |
Collapse
|
22
|
Asif M, Naseem H, Alvi IA, Basit A, Rehman SU. Characterization of a lytic EBP bacteriophage with large size genome against Enterobacter cloacae. APMIS 2021; 129:461-469. [PMID: 33950561 DOI: 10.1111/apm.13138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 04/05/2021] [Indexed: 11/28/2022]
Abstract
Enterobacter cloacae (E. cloacae) is an emerging nosocomial pathogen that had acquired antibiotic resistance against multiple classes of antibiotics. The current study was aimed to isolate and characterize lytic bacteriophage against E. cloacae. The bacteriophage EBP was isolated from a sewage water sample using E. cloacae as a host strain by double-layer agar technique. EBP was found stabile at a wide range of temperatures (25, 37, 60, and 80°C) and pH (5, 6, 7, 8, and 9) with antibacterial activity up to 24 h of infection. The latent period of EBP was 20 min with a burst size of 252 phages per cell. It showed a narrow host range and infected 12/21 (57%) isolates of E. cloacae tested. It has helical symmetry with a head size of 105 and 120 nm long tail with contractile sheath. The EBP has 179.1 kb long double-stranded DNA genome with 44.8% GC content. Majority of identified ORFs (187/281) were encoding putative proteins with unknown function. Necessary replication enzymes, structural proteins, and lytic enzymes were detected in the genome of EBP. Phylogenetic analysis revealed that EBP closely resembles with Coronobacter phage vB_CsaM_IeN, vB_CsaM_IeE, vB_CsaM_IeB, and Citrobacter phage Margaery. Based on electron microscopy and molecular characterization, EBP was classified as a Myoviridae phage.
Collapse
Affiliation(s)
- Muhammad Asif
- Institute of Microbiology and Molecular Genetics, University of the Punjab, Lahore, Pakistan, 54590, Pakistan.,Department of Pathology, King Edward Medical University, Lahore, Pakistan
| | - Hafsa Naseem
- Institute of Microbiology and Molecular Genetics, University of the Punjab, Lahore, Pakistan, 54590, Pakistan
| | - Iqbal Ahmad Alvi
- Institute of Microbiology and Molecular Genetics, University of the Punjab, Lahore, Pakistan, 54590, Pakistan.,Department of Microbiology, Hazara University, Mansehra, Pakistan
| | - Abdul Basit
- Institute of Microbiology and Molecular Genetics, University of the Punjab, Lahore, Pakistan, 54590, Pakistan
| | - Shafiq-Ur- Rehman
- Institute of Microbiology and Molecular Genetics, University of the Punjab, Lahore, Pakistan, 54590, Pakistan
| |
Collapse
|
23
|
AL-Ishaq RK, Skariah S, Büsselberg D. Bacteriophage Treatment: Critical Evaluation of Its Application on World Health Organization Priority Pathogens. Viruses 2020; 13:v13010051. [PMID: 33396965 PMCID: PMC7823271 DOI: 10.3390/v13010051] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/23/2020] [Accepted: 12/28/2020] [Indexed: 01/21/2023] Open
Abstract
Bacteriophages represent an effective, natural, and safe strategy against bacterial infections. Multiple studies have assessed phage therapy’s efficacy and safety as an alternative approach to combat the emergence of multi drug-resistant pathogens. This systematic review critically evaluates and summarizes published articles on phages as a treatment option for Staphylococcus aureus, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Enterococcus faecalis infection models. It also illustrates appropriate phage selection criteria, as well as recommendations for successful therapy. Published studies included in this review were identified through EMBASE, PubMed, and Web of Science databases and were published in the years between 2010 to 2020. Among 1082 identified articles, 29 studies were selected using specific inclusion and exclusion criteria and evaluated. Most studies (93.1%) showed high efficacy and safety for the tested phages, and a few studies also examined the effect of phage therapy combined with antibiotics (17.2%) and resistance development (27.6%). Further clinical studies, phage host identification, and regulatory processes are required to evaluate phage therapy’s safety and efficacy and advance their clinical use.
Collapse
|
24
|
Ahammad T, Drew DL, Sahu ID, Khan RH, Butcher BJ, Serafin RA, Galende AP, McCarrick RM, Lorigan GA. Conformational Differences Are Observed for the Active and Inactive Forms of Pinholin S 21 Using DEER Spectroscopy. J Phys Chem B 2020; 124:11396-11405. [PMID: 33289567 DOI: 10.1021/acs.jpcb.0c09081] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Bacteriophages have evolved with an efficient host cell lysis mechanism to terminate the infection cycle and release the new progeny virions at the optimum time, allowing adaptation with the changing host and environment. Among the lytic proteins, holin controls the first and rate-limiting step of host cell lysis by permeabilizing the inner membrane at an allele-specific time known as "holin triggering". Pinholin S21 is a prototype holin of phage Φ21 which makes many nanoscale holes and destroys the proton motive force, which in turn activates the signal anchor release (SAR) endolysin system to degrade the peptidoglycan layer of the host cell and destruction of the outer membrane by the spanin complex. Like many others, phage Φ21 has two holin proteins: active pinholin and antipinholin. The antipinholin form differs only by three extra amino acids at the N-terminus; however, it has a different structural topology and conformation with respect to the membrane. Predefined combinations of active pinholin and antipinholin fine-tune the lysis timing through structural dynamics and conformational changes. Previously, the dynamics and topology of active pinholin and antipinholin were investigated (Ahammad et al. JPCB 2019, 2020) using continuous wave electron paramagnetic resonance (CW-EPR) spectroscopy. However, detailed structural studies and direct comparison of these two forms of pinholin S21 are absent in the literature. In this study, the structural topology and conformations of active pinholin (S2168) and inactive antipinholin (S2168IRS) in DMPC (1,2-dimyristoyl-sn-glycero-3-phosphocholine) proteoliposomes were investigated using the four-pulse double electron-electron resonance (DEER) EPR spectroscopic technique to measure distances between transmembrane domains 1 and 2 (TMD1 and TMD2). Five sets of interlabel distances were measured via DEER spectroscopy for both the active and inactive forms of pinholin S21. Structural models of the active pinholin and inactive antipinholin forms in DMPC proteoliposomes were obtained using the experimental DEER distances coupled with the simulated annealing software package Xplor-NIH. TMD2 of S2168 remains in the lipid bilayer, and TMD1 is partially externalized from the bilayer with some residues located on the surface. However, both TMDs remain incorporated in the lipid bilayer for the inactive S2168IRS form. This study demonstrates, for the first time, clear structural topology and conformational differences between the two forms of pinholin S21. This work will pave the way for further studies of other holin systems using the DEER spectroscopic technique and will give structural insight into these biological clocks in molecular detail.
Collapse
Affiliation(s)
- Tanbir Ahammad
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Daniel L Drew
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Indra D Sahu
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States.,Natural Science Division, Campbellsville University, Campbellsville, Kentucky 42718, United States
| | - Rasal H Khan
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Brandon J Butcher
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Rachel A Serafin
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Alberto P Galende
- Natural Science Division, Campbellsville University, Campbellsville, Kentucky 42718, United States
| | - Robert M McCarrick
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Gary A Lorigan
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| |
Collapse
|
25
|
A single dose of a virulent bacteriophage vB PaeP-SaPL, rescues bacteremic mice infected with multi drug resistant Pseudomonas aeruginosa. Virus Res 2020; 292:198250. [PMID: 33259872 DOI: 10.1016/j.virusres.2020.198250] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 11/04/2020] [Accepted: 11/24/2020] [Indexed: 12/27/2022]
Abstract
Multidrug resistant bacterial infections are difficult to treat and contribute to high morbidity and mortality. The phage vB PaeP-SaPL was isolated from a sewage drain (Lahore, Pakistan) against Pseudomonas aeruginosa PA-1 (NCBI Accession number MG763232). SaPL produced circular, transparent plaques, 4-5 mm in diameter and showed broad host range infecting 57 % of tested MDR P. aeruginosa clinical isolates (N = 38), while no infectivity was observed against any tested strains of other genera. SaPL inhibited PA-1 growth until 24 h post infection at MOI of 1. The SaPL showed stability at varying temperature and pH, with optimum stability at pH 7 and 45 °C. The latent period of SaPL was 20 min with burst size of 155 virions. The genome of SaPL was double stranded DNA of 45,796 bps having 63 CDS (13 for known proteins and 50 for hypothetical proteins) with a GC content of 52 %. The termini analysis revealed that SaPL genome ends are redundant and permuted. The packaging strategy used by SaPL was a headful (pac) strategy like P1 phage. Survivability of PA-1 challenged mice, treated with SaPL (100 %) was statistically significant (P < 0.05) than in untreated challenged mice (0%). Based on its efficacy in reducing bacterial growth, selective infectivity against majority of P. aeruginosa strains and its ability to increase survivability in PA-1 challenged mice, SaPL is proposed to be a potential candidate for bacteriophage therapy against difficult to treat MDR P. aeruginosa infections.
Collapse
|
26
|
Górski A, Borysowski J, Międzybrodzki R. Sepsis, Phages, and COVID-19. Pathogens 2020; 9:E844. [PMID: 33076482 PMCID: PMC7602634 DOI: 10.3390/pathogens9100844] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/09/2020] [Accepted: 10/13/2020] [Indexed: 12/17/2022] Open
Abstract
Phage therapy has emerged as a potential novel treatment of sepsis for which no decisive progress has been achieved thus far. Obviously, phages can help eradicate local bacterial infection and bacteremia that may occur in a syndrome. For example, phages may be helpful in correcting excessive inflammatory responses and aberrant immunity that occur in sepsis. Data from animal studies strongly suggest that phages may indeed be an efficient means of therapy for experimentally induced sepsis. In recent years, a number of reports have appeared describing the successful treatment of patients with sepsis. Moreover, novel data on the anti-viral potential of phages may be interpreted as suggesting that phages could be used as an adjunct therapy in severe COVID-19. Thus, clinical trials assessing the value of phage therapy in sepsis, including viral sepsis, are urgently needed.
Collapse
Affiliation(s)
- Andrzej Górski
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences (HIIET PAS), 53-114 Wrocław, Poland; (A.G.); (R.M.)
- Phage Therapy Unit, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences (HIIET PAS), 53-114 Wrocław, Poland
- Department of Clinical Immunology, Infant Jesus Clinical Hospital, 02-006 Warsaw, Poland
| | - Jan Borysowski
- Department of Clinical Immunology, Transplantation Institute, Medical University of Warsaw, 02-006 Warsaw, Poland
| | - Ryszard Międzybrodzki
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences (HIIET PAS), 53-114 Wrocław, Poland; (A.G.); (R.M.)
- Phage Therapy Unit, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences (HIIET PAS), 53-114 Wrocław, Poland
- Department of Clinical Immunology, Transplantation Institute, Medical University of Warsaw, 02-006 Warsaw, Poland
| |
Collapse
|
27
|
Brix A, Cafora M, Aureli M, Pistocchi A. Animal Models to Translate Phage Therapy to Human Medicine. Int J Mol Sci 2020; 21:ijms21103715. [PMID: 32466194 PMCID: PMC7279175 DOI: 10.3390/ijms21103715] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/21/2020] [Accepted: 05/22/2020] [Indexed: 12/13/2022] Open
Abstract
Phagotherapy, the use of bacteriophages to fight bacterial infections as an alternative to antibiotic treatments, has become of increasing interest in the last years. This is mainly due to the diffusion of multi-drug resistant (MDR) bacterial infections that constitute a serious issue for public health. Phage therapy is gaining favor due to its success in agriculture and veterinary treatments and its extensive utilization for human therapeutic protocols in the Eastern world. In the last decades, some clinical trials and compassionate treatments have also been performed in the Western world, indicating that phage therapy is getting closer to its introduction in standard therapy protocols. However, several questions concerning the use of phages in human therapeutic treatments are still present and need to be addressed. In this review, we illustrate the state of art of phage therapy and examine the role of animal models to translate these treatments to humans.
Collapse
Affiliation(s)
- Alessia Brix
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, LITA, Via Fratelli Cervi 93, Segrate, 20090 Milano, Italy; (A.B.); (M.C.); (M.A.)
| | - Marco Cafora
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, LITA, Via Fratelli Cervi 93, Segrate, 20090 Milano, Italy; (A.B.); (M.C.); (M.A.)
- Dipartimento di Scienze Cliniche e Comunità, Università degli Studi di Milano, Via San Barnaba 8, 20122 Milano, Italy
| | - Massimo Aureli
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, LITA, Via Fratelli Cervi 93, Segrate, 20090 Milano, Italy; (A.B.); (M.C.); (M.A.)
| | - Anna Pistocchi
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, LITA, Via Fratelli Cervi 93, Segrate, 20090 Milano, Italy; (A.B.); (M.C.); (M.A.)
- Correspondence:
| |
Collapse
|