1
|
Araújo KC, Souza BC, Carvalho ECD, Freire RS, Teixeira AS, Muniz CR, Martins FR, Oliveira RS, Eller CB, Soares AA. The multiple roles of trichomes in two Croton species. PLANT, CELL & ENVIRONMENT 2024; 47:1685-1700. [PMID: 38282477 DOI: 10.1111/pce.14829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 01/05/2024] [Accepted: 01/10/2024] [Indexed: 01/30/2024]
Abstract
Trichomes are common in plants from dry environments, and despite their recognized role in protection and defense, little is known about their role as absorptive structures and in other aspects of leaf ecophysiology. We combine anatomical and ecophysiological data to evaluate how trichomes affect leaf gas exchange and water balance during drought. We studied two congeneric species with pubescent leaves which co-occur in Brazilian Caatinga: Croton blanchetianus (dense trichomes) and Croton adenocalyx (sparse trichomes). We found a novel foliar water uptake (FWU) pathway in C. blanchetianus composed of stellate trichomes and underlying epidermal cells and sclereids that interconnect the trichomes from both leaf surfaces. The water absorbed by these trichomes is redistributed laterally by pectin protuberances on mesophyll cell walls. This mechanism enables C. blanchetianus leaves to absorb water more efficiently than C. adenocalyx. Consequently, the exposure of C. blanchetianus to dew during drought improved its leaf gas exchange and water status more than C. adenocalyx. C. blanchetianus trichomes also increase their leaf capacity to reflect light and maintain lower temperatures during drought. Our results emphasize the multiple roles that trichomes might have on plant functioning and the importance of FWU for the ecophysiology of Caatinga plants during drought.
Collapse
Affiliation(s)
- Karina Crisóstomo Araújo
- Graduate Program in Ecology and Natural Resources, Department of Biology, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Bruno Cruz Souza
- Graduate Program in Ecology and Natural Resources, Department of Biology, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Ellen Cristina Dantas Carvalho
- Graduate Program in Ecology and Natural Resources, Department of Biology, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Rosemeyre Souza Freire
- Centro de Ciências, Central Analítica, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Adunias Santos Teixeira
- Departament of Agricultural Engineering, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | | | - Fernando Roberto Martins
- Department of Plant Biology, Institute of Biology, CP6109, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Rafael Silva Oliveira
- Department of Plant Biology, Institute of Biology, CP6109, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Cleiton Breder Eller
- Graduate Program in Ecology and Natural Resources, Department of Biology, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Arlete Aparecida Soares
- Graduate Program in Ecology and Natural Resources, Department of Biology, Federal University of Ceará, Fortaleza, Ceará, Brazil
| |
Collapse
|
2
|
Ye K, Dong C, Hu B, Yuan J, Sun J, Li Z, Deng F, Fakher B, Wang L, Pan C, Aslam M, Qin Y, Cheng Y. The genome size, chromosome number and the seed adaption to long-distance dispersal of Ipomoea pes-caprae (L.). FRONTIERS IN PLANT SCIENCE 2023; 14:1074935. [PMID: 36938054 PMCID: PMC10017971 DOI: 10.3389/fpls.2023.1074935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Ipomoeapes-caprae (L.) (IPC) is a common species in tropical and subtropical coastal areas and one of the world's most widely distributed plants. It has attracted researchers for its outstanding biological, ecological and medicinal values. It has been reported that the genetic diversity of IPCs located on different continents is very low because of their frequent gene flow. During the long journey of evolution, every aspect of the plant morphologies has evolved to the best adaptivity to the environment, seeking their survival and progeny expansion. However, the fundamental genetic characteristics of IPC and how their seed adapted to the success of population expansion remain unknown. In this study, the fundamental genetic characteristics, including the genome size and the chromosome number of IPC, were investigated. The results showed that IPC's genome size is approximately 0.98-1.08 GB, and the chromosome number is 2n=30, providing the basic information for further genome analysis. In order to decipher the long-distance dispersal secret of this species, the fruit and seed developments, seed morphology, and seed germination were extensively investigated and described. The results showed an exquisite adaptive mechanism of IPC seeds to fulfil the population expansion via ocean currents. The large cavity inside the seeds and the dense tomenta on the surface provide the buoyancy force for the seeds to float on the seawater. The hard seed coats significantly obstructed the water absorption, thus preventing the seed from germination during the dispersal. Meanwhile, the fully developed embryos of IPC also have physiological dormancy. The physical and physiological characteristics of IPC seeds provide insight into the mechanism of their long-distance dispersal across the oceans. Moreover, based on morphological observation and semi-section microscopy, the development pattern of IPC glander trichomes was described, and their physiological functions were also discussed.
Collapse
Affiliation(s)
- Kangzhuo Ye
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Pingtan Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Chunxing Dong
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Pingtan Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Bin Hu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Pingtan Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jieyu Yuan
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jin Sun
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zixian Li
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Fang Deng
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Beenish Fakher
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Lulu Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Chenglang Pan
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou, China
| | - Mohammad Aslam
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuan Qin
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Pingtan Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yan Cheng
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Pingtan Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
3
|
Machado SR, de Deus Bento KB, Canaveze Y, Rodrigues TM. Peltate trichomes in the dormant shoot apex of Metrodorea nigra, a Rutaceae species with rhythmic growth. PLANT BIOLOGY (STUTTGART, GERMANY) 2023; 25:161-175. [PMID: 36278887 DOI: 10.1111/plb.13480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
In Metrodorea nigra, a Rutaceae species with rhythmic growth, the shoot apex in the dormant stage is enclosed by modified stipules. The young organs are fully covered with peltate secretory trichomes, and these structures remain immersed in a hyaline exudate within a hood-shaped structure. Our study focused on the morpho-functional characterization of the peltate trichomes and cytological events associated with secretion. Shoot apices were collected during both dormant and active stages and processed for anatomical, cytochemical and ultrastructural studies. Trichomes initiate secretion early on, remain active throughout leaf development, but collapse as the leaves expand; at which time secretory cavities start differentiation in the mesophyll and secretion increases as the leaf reaches full expansion. The subcellular apparatus of the trichome head cells is consistent with hydrophilic and lipophilic secretion. Secretion involves two vesicle types: the smaller vesicles are PATAg-positive (periodic acid/thiocarbohydrazide/silver proteinate) for carbohydrates and the larger ones are PATAg-negative. In the first phase of secretory activity, the vesicles containing polysaccharides discharge their contents through exocytosis with the secretion accumulating beneath the cuticle, which detaches from the cell wall. Later, a massive discharge of lipophilic substances (lipids and terpenes/phenols) results in their accumulation between the wall and cuticle. Release of the secretions occurs throughout the cuticular microchannels. Continued protection of the leaves throughout shoot development is ensured by replacement of the collapsed secretory trichomes by oil-secreting cavities. Our findings provide new perspectives for understanding secretion regulation in shoot apices of woody species with rhythmic growth.
Collapse
Affiliation(s)
- S R Machado
- Center of Electron Microscopy (CME), Institute of Biosciences of Botucatu (IBB), São Paulo State University (UNESP), Botucatu City, SP, Brazil
| | - K B de Deus Bento
- Postgraduate Program in Plant Biology Interunits, Paulo State University (UNESP), Botucatu City, SP, Brazil
| | - Y Canaveze
- Department of Botany, Institute of Biology, Federal University of Rio de Janeiro, Rio de Janeiro City, RJ, Brazil
| | - T M Rodrigues
- Department of Biostatistics, Plant Biology, Parasitology and Zoology, Institute of Biosciences - IBB, São Paulo State University - UNESP, Botucatu City, SP, Brazil
| |
Collapse
|
4
|
Ninmanont P, Wongchai C, Pfeiffer W, Chaidee A. Salt stress of two rice varieties: root border cell response and multi-logistic quantification. PROTOPLASMA 2021; 258:1119-1131. [PMID: 33677735 DOI: 10.1007/s00709-021-01629-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 02/19/2021] [Indexed: 06/12/2023]
Abstract
How to capture the rice varieties salt stress sensitivity? Here, we measure responses of root border cells (1 day, ± 60 mM NaCl) and apply multi-logistic quantification of growth variables (21 days, ± 60 mM NaCl) to two rice varieties, salt-sensitive IR29 and tolerant Pokkali. Thus, logistic models determine the maximum response velocities (Vmax) and times of half-maximum (T0) for root border cell (RBC) and growth parameters. Thereof, seven variables show logistic models (0.58 < R ≤ 1) and monotonous responses in both Pokkali and IR29: root to shoot ratio by water content, primary root length, shoot water, adventitious root number, shoot dry and fresh weight, and root dry weight. Moreover, the regression to lognormal distribution (R = 0.99) of these seven Vmax fractionated by T0 represents the rice variety's comprehensive response. Its quotient IR29/Pokkali is peaking at 98-fold higher velocity of IR29, thus capturing the variety's sensitivity. Consequently, our finding of 66-fold higher Vmax of primary root length response of IR29 indicates an essential salt sensor in the root, including RBC. Finally, the effects of salt stress on RBC confirm multi-logistic quantification, showing 36% decrease of RBC mucilage layer in IR29, without change in Pokkali. Inversely, RBC number of Pokkali increases 43% without change in IR29. Briefly, this suggests both RBC and multi-logistic quantification for the screening for salt tolerance in two thousand rice varieties.
Collapse
Affiliation(s)
- Ployphilin Ninmanont
- Center of Excellence in Environment and Plant Physiology, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Chatchawal Wongchai
- Division of Biology, School of Science, University of Phayao, Phayao, 56000, Thailand
| | - Wolfgang Pfeiffer
- Fachbereich Biowissenschaften, Universität Salzburg, 5020, Salzburg, Austria
| | - Anchalee Chaidee
- Center of Excellence in Environment and Plant Physiology, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
5
|
Schreel JDM, Leroux O, Goossens W, Brodersen C, Rubinstein A, Steppe K. Identifying the pathways for foliar water uptake in beech (Fagus sylvatica L.): a major role for trichomes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:769-780. [PMID: 32279362 DOI: 10.1111/tpj.14770] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/20/2020] [Accepted: 03/27/2020] [Indexed: 05/27/2023]
Abstract
Foliar water uptake (FWU), the direct uptake of water into leaves, is a global phenomenon, having been observed in an increasing number of plant species. Despite the growing recognition of its functional relevance, our understanding of how FWU occurs and which foliar surface structures are implicated, is limited. In the present study, fluorescent and ionic tracers, as well as microcomputed tomography, were used to assess potential pathways for water entry in leaves of beech, a widely distributed tree species from European temperate regions. Although none of the tracers entered the leaf through the stomatal pores, small amounts of silver precipitation were observed in some epidermal cells, indicating moderate cuticular uptake. Trichomes, however, were shown to absorb and redistribute considerable amounts of ionic and fluorescent tracers. Moreover, microcomputed tomography indicated that 72% of empty trichomes refilled during leaf surface wetting and microscopic investigations revealed that trichomes do not have a cuticle but are covered with a pectin-rich cell wall layer. Taken together, our findings demonstrate that foliar trichomes, which exhibit strong hygroscopic properties as a result of their structural and chemical design, constitute a major FWU pathway in beech.
Collapse
Affiliation(s)
- Jeroen D M Schreel
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000, Ghent, Belgium
| | - Olivier Leroux
- Department of Biology, Faculty of Sciences, Ghent University, K.L. Ledeganckstraat 35, 9000, Ghent, Belgium
| | - Willem Goossens
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000, Ghent, Belgium
| | - Craig Brodersen
- School of Forestry and Environmental Studies, Yale University, New Haven, CT, 06511, USA
| | - Adriana Rubinstein
- School of Forestry and Environmental Studies, Yale University, New Haven, CT, 06511, USA
| | - Kathy Steppe
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000, Ghent, Belgium
| |
Collapse
|
6
|
Schreel JDM, Steppe K. Foliar Water Uptake in Trees: Negligible or Necessary? TRENDS IN PLANT SCIENCE 2020; 25:590-603. [PMID: 32407698 DOI: 10.1016/j.tplants.2020.01.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 01/06/2020] [Accepted: 01/15/2020] [Indexed: 06/11/2023]
Abstract
Foliar water uptake (FWU) has been identified as a mechanism commonly used by trees and other plants originating from various biomes. However, many questions regarding the pathways and the implications of FWU remain, including its ability to mitigate climate change-driven drought. Therefore, answering these questions is of primary importance to adequately address and comprehend drought stress responses and associated growth. In this review, we discuss the occurrence, pathways, and consequences of FWU, with a focus predominantly on tree species. Subsequently, we highlight the tight coupling between FWU and foliar fertilizer applications, discuss FWU in a changing climate, and conclude with the importance of including FWU in mechanistic vegetation models.
Collapse
Affiliation(s)
- Jeroen D M Schreel
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Gent, Belgium.
| | - Kathy Steppe
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Gent, Belgium.
| |
Collapse
|
7
|
Silveira AF, Mercadante-Simões MO, Ribeiro LM, Nunes YRF, Duarte LP, Lula IS, de Aguilar MG, de Sousa GF. Mucilaginous Secretions in the Xylem and Leaf Apoplast of the Swamp Palm Mauritia flexuosa L.f. (Arecaceae). MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2020; 26:609-621. [PMID: 32495729 DOI: 10.1017/s1431927620001543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Mauritia flexuosa palms inhabit wetland environments in the dry, seasonal Brazilian savanna (Cerrado) and produce mucilaginous secretions in the stem and petiole that have a medicinal value. The present study sought to characterize the chemical natures of those secretions and to describe the anatomical structures involved in their synthesis. Chemical analyzes of the secretions, anatomical, histochemical analyses, and electron microscopy studies were performed on the roots, stipes, petioles, and leaf blades. Stipe and petiole secretions are similar, and rich in cell wall polysaccharides and pectic compounds such as rhamnose, arabinose, xylose, mannose, galactose, and glucose, which are hydrophilic largely due to their hydroxyl and carboxylate groups. Mucilaginous secretions accumulate in the lumens of vessel elements and sclerenchyma fibers of the root, stipe, petiole, and foliar veins; their synthesis involves cell wall loosening and the activities of dictyosomes. The outer faces of the cell walls of the parenchyma tissue in the mesophyll expand to form pockets that rupture and release pectocellulose substances into the intercellular spaces. The presence of mucilage in the xylem, extending from the roots to the leaf veins and continuous with the leaf apoplast, and sub-stomatal chambers suggest a strategy for plant water economy.
Collapse
Affiliation(s)
- Alessandra Flávia Silveira
- Plant Anatomy Laboratory, General Biology Department, State University of Montes Claros, Montes Claros39401-089, Brazil
| | | | - Leonardo Monteiro Ribeiro
- Plant Micropropagation Laboratory, General Biology Department, State University of Montes Claros, Montes Claros39401-089, Brazil
| | - Yule Roberta Ferreira Nunes
- Plant Ecology Laboratory, General Biology Department, State University of Montes Claros, Montes Claros39401-089, Brazil
| | - Lucienir Pains Duarte
- Medicinal Plants Study Center, Chemistry Department, Federal University of Minas Gerais, Belo Horizonte31270-901, Brazil
| | - Ivana Silva Lula
- Medicinal Plants Study Center, Chemistry Department, Federal University of Minas Gerais, Belo Horizonte31270-901, Brazil
| | - Mariana Guerra de Aguilar
- Medicinal Plants Study Center, Chemistry Department, Federal University of Minas Gerais, Belo Horizonte31270-901, Brazil
| | - Grasiely Faria de Sousa
- Medicinal Plants Study Center, Chemistry Department, Federal University of Minas Gerais, Belo Horizonte31270-901, Brazil
| |
Collapse
|
8
|
Ahn S, Lee SJ. Nano/Micro Natural Patterns of Hydrogels against Water Loss. ACS APPLIED BIO MATERIALS 2020; 3:1293-1304. [PMID: 35019330 DOI: 10.1021/acsabm.9b01177] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Water loss can be delayed by trapping it within a polymeric network, i.e. hydrogel. However, the dynamic response of natural materials has not been explained to maintain water levels relatively constant against varying environmental conditions. In this study, patterned polymeric materials formed on plant seeds are observed to provide effective water retention ability against repeated dehydration-rehydration procedures. The perpendicular line pattern (layer-by-layer stack) of the polymer films induces lateral line patterns (surface lines) by a typical wrinkling mechanism, which contributes to the characteristic water interaction. The anisotropic line patterns on the seed surface generate more hydrophilic properties over the isotropic patterns against drying-out. The matric potential (Ψm) of water through the line patterned gel matrix generally shows higher efficiency over isotropically patterned gels. Anisotropic lines (i.e., wrinkles) are one of the most abundant patterning procedures, thus they are a more advantageous function occurring in natural systems. This study sheds light on material design technologies to control water interaction in porous materials for various applications.
Collapse
Affiliation(s)
- Sungsook Ahn
- Berkeley Laboratory, Berkeley, California 94720, United States
| | - Sang Joon Lee
- Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang 37673, Korea
| |
Collapse
|
9
|
Gong XW, Lü GH, He XM, Sarkar B, Yang XD. High Air Humidity Causes Atmospheric Water Absorption via Assimilating Branches in the Deep-Rooted Tree Haloxylon ammodendron in an Arid Desert Region of Northwest China. FRONTIERS IN PLANT SCIENCE 2019; 10:573. [PMID: 31156661 PMCID: PMC6530360 DOI: 10.3389/fpls.2019.00573] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 04/16/2019] [Indexed: 05/30/2023]
Abstract
Atmospheric water is one of the main water resources for plants in arid ecosystems. However, whether deep-rooted, tomentum-less desert trees can absorb atmospheric water via aerial organs and transport the water into their bodies remains poorly understood. In the present study, a woody, deep-rooted, tomentum-less plant, Haloxylon ammodendron (C.A. Mey.) Bunge, was selected as the experimental object to investigate the preconditions for and consequences of foliar water uptake. Plant water status, gas exchange, and 18O isotopic signatures of the plant were investigated following a typical rainfall pulse and a high-humidity exposure experiment. The results showed that a high content of atmospheric water was the prerequisite for foliar water uptake by H. ammodendron in the arid desert region. After atmospheric water was absorbed via the assimilating branches, which perform the function of leaves due to leaf degeneration, the plant transported the water to the secondary branches and trunk stems, but not to the taproot xylem or the soil, based on the 18O isotopic signatures of the specimen. Foliar water uptake altered the plant water status and gas exchange-related traits, i.e., water potential, stomatal conductance, transpiration rate, and instantaneous water use efficiency. Our results suggest that atmospheric water might be a subsidiary water resource for sustaining the survival and growth of deep-rooted plants in arid desert regions. These findings contribute to the knowledge of plant water physiology and restoration of desert plants in the arid regions of the planet.
Collapse
Affiliation(s)
- Xue-Wei Gong
- Key Laboratory of Oasis Ecology, Xinjiang University, Urumqi, China
- College of Resources and Environmental Sciences, Xinjiang University, Urumqi, China
| | - Guang-Hui Lü
- Key Laboratory of Oasis Ecology, Xinjiang University, Urumqi, China
- College of Resources and Environmental Sciences, Xinjiang University, Urumqi, China
- Institute of Arid Ecology and Environment, Xinjiang University, Urumqi, China
| | - Xue-Min He
- Key Laboratory of Oasis Ecology, Xinjiang University, Urumqi, China
- College of Resources and Environmental Sciences, Xinjiang University, Urumqi, China
- Institute of Arid Ecology and Environment, Xinjiang University, Urumqi, China
| | - Binoy Sarkar
- Department of Animal and Plant Sciences, The University of Sheffield, Sheffield, United Kingdom
- Future Industries Institute, University of South Australia, Mawson Lakes, SA, Australia
| | - Xiao-Dong Yang
- Key Laboratory of Oasis Ecology, Xinjiang University, Urumqi, China
- College of Resources and Environmental Sciences, Xinjiang University, Urumqi, China
| |
Collapse
|
10
|
Boanares D, Isaias RRMS, de Sousa HC, Kozovits AR. Strategies of leaf water uptake based on anatomical traits. PLANT BIOLOGY (STUTTGART, GERMANY) 2018; 20:848-856. [PMID: 29673051 DOI: 10.1111/plb.12832] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 04/06/2018] [Indexed: 06/08/2023]
Abstract
The ability of leaves to absorb fog water can positively contribute to the water and carbon balance of plants in montane ecosystems, especially in periods of soil water deficit. However, the ecophysiological traits and mechanisms responsible for variations in the speed and total water absorption capacity of leaves are still poorly known. This study investigated leaf anatomical attributes of seven species occurring in seasonal tropical high-altitude ecosystems (rocky outcrop and forest), which could explain differences in leaf water uptake (LWU) capacities. We tested the hypothesis that different sets of anatomical leaf attributes will be more marked in plant individuals living under these contrasting environmental conditions. Anatomical variations will affect the initial rate of water absorption and the total storage capacity, resulting in different strategies for using the water supplied by fog events. Water absorption by leaves was inferred indirectly, based on leaf anatomical structure and visual observation of the main access routes (using an apoplastic marker), the diffusion of water through the cuticle, and non-glandular or glandular trichomes in all species. The results suggest that three LWU strategies coexist in the species studied. The different anatomical patterns influenced the speed and maximum LWU capacity. The three LWU strategies can provide different adaptive advantages to adjust to temporal and spatial variations of water availability in these tropical high-altitude environments.
Collapse
Affiliation(s)
- D Boanares
- Department of Biodiversity, Evolution and Environment, Federal University of Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - R R M S Isaias
- Department of Botany, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - H C de Sousa
- Department of Biodiversity, Evolution and Environment, Federal University of Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - A R Kozovits
- Department of Biodiversity, Evolution and Environment, Federal University of Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| |
Collapse
|
11
|
Bentrup FW. Water ascent in trees and lianas: the cohesion-tension theory revisited in the wake of Otto Renner. PROTOPLASMA 2017; 254:627-633. [PMID: 27491484 PMCID: PMC5591614 DOI: 10.1007/s00709-016-1009-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 07/21/2016] [Indexed: 05/26/2023]
Abstract
The cohesion-tension theory of water ascent (C-T) has been challenged over the past decades by a large body of experimental evidence obtained by means of several minimum or non-invasive techniques. The evidence strongly suggests that land plants acquire water through interplay of several mechanisms covered by the multi-force theory of (U. Zimmermann et al. New Phytologist 162: 575-615, 2004). The diversity of mechanisms includes, for instance, water acquisition by inverse transpiration and thermodynamically uphill transmembrane water secretion by cation-chloride cotransporters (L.H. Wegner, Progress in Botany 76:109-141, 2014). This whole plant perspective was opened by Otto Renner at the beginning of the last century who supported experimentally the strictly xylem-bound C-T mechanism, yet anticipated that the water ascent involves both the xylem conduit and parenchyma tissues. The survey also illustrates the known paradigm that new techniques generate new insights, as well as a paradigm experienced by Max Planck that a new scientific idea is not welcomed by the community instantly.
Collapse
|
12
|
Liu Y, Li X, Chen G, Li M, Liu M, Liu D. Epidermal Micromorphology and Mesophyll Structure of Populus euphratica Heteromorphic Leaves at Different Development Stages. PLoS One 2015; 10:e0137701. [PMID: 26356300 PMCID: PMC4565707 DOI: 10.1371/journal.pone.0137701] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Accepted: 08/19/2015] [Indexed: 11/18/2022] Open
Abstract
Leaf epidermal micromorphology and mesophyll structure during the development of Populus euphratica heteromorphic leaves, including linear, lanceolate, ovate, dentate ovate, dentate rhombic, dentate broad-ovate and dentate fan-shaped leaves, were studied by using electron and light microscopy. During development of heteromorphic leaves, epidermal appendages (wax crystals and trichomes) and special cells (mucilage cells and crystal idioblasts) increased in all leaf types while chloroplast ultrastructure and stomatal characters show maximum photosynthetic activity in dentate ovate and rhombic leaves. Also, functional analysis by subordinate function values shows that the maximum adaptability to adverse stress was exhibited in the broad type of mature leaves. The 12 heteromorphic leaf types are classified into three major groups by hierarchical cluster analysis: young, developing and mature leaves. Mature leaves can effectively obtain the highest stress resistance by combining the protection of xerophytic anatomy from drought stress, regulation of water uptake in micro-environment by mucilage and crystal idioblasts, and assistant defense of transpiration reduction through leaf epidermal appendages, which improves photosynthetic activity under arid desert conditions. Our data confirms that the main leaf function is differentiated during the developing process of heteromorphic leaves.
Collapse
Affiliation(s)
- Yubing Liu
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions of Gansu Province, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
- Shapotou Desert Research & Experiment Station, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
| | - Xinrong Li
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions of Gansu Province, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
- Shapotou Desert Research & Experiment Station, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
| | - Guoxiong Chen
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions of Gansu Province, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
- Shapotou Desert Research & Experiment Station, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
| | - Mengmeng Li
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions of Gansu Province, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
- Shapotou Desert Research & Experiment Station, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
| | - Meiling Liu
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions of Gansu Province, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
- Shapotou Desert Research & Experiment Station, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
| | - Dan Liu
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions of Gansu Province, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
- Shapotou Desert Research & Experiment Station, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
| |
Collapse
|
13
|
Wegner LH. A thermodynamic analysis of the feasibility of water secretion into xylem vessels against a water potential gradient. FUNCTIONAL PLANT BIOLOGY : FPB 2015; 42:828-835. [PMID: 32480725 DOI: 10.1071/fp15077] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 06/20/2015] [Indexed: 06/11/2023]
Abstract
A series of recent publications has launched a debate on trans-membrane water secretion into root xylem vessels against a water potential gradient, energised by a cotransport with salts (e.g. KCl) that follow their chemical potential gradient. Cation-chloride-cotransporter -type transporters that function in this way in mammalian epithelia were detected in root stelar cells bordering on xylem vessels. Using literature data on barley (Hordeum vulgare L.) seedlings, one study confirmed that K+ and Cl- gradients across stelar cell membranes favour salt efflux. Moreover, the energetic costs of putative water secretion into the xylem (required for maintaining ionic gradients) would amount to just 0.12% of the energy captured by photosynthetic C assimilation if transpirational water flow relied exclusively on this mechanism. Here, a detailed thermodynamic analysis of water secretion into xylem vessels is undertaken, including an approach that exploits its analogy to a desalinisation process. Water backflow due to the passive hydraulic conductivity of stelar cell membranes is also considered. By comparing free energy consumption by putative water secretion with (i) the free energy pool provided by root respiration and (ii) stelar ATPase activity, the feasibility of this mechanism is confirmed but is shown to depend critically on the plant's energy status.
Collapse
Affiliation(s)
- Lars H Wegner
- Karlsruhe Institute of Technology, Institute for Pulsed Power and Microwave Technology (IHM), Campus North, Building 630, Hermann v. Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany. Email
| |
Collapse
|
14
|
Raven JA, Doblin MA. Active water transport in unicellular algae: where, why, and how. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:6279-6292. [PMID: 25205578 DOI: 10.1093/jxb/eru360] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The occurrence of active water transport (net transport against a free energy gradient) in photosynthetic organisms has been debated for several decades. Here, active water transport is considered in terms of its roles, where it is found, and the mechanisms by which it could occur. First there is a brief consideration of the possibility of active water transport into plant xylem in the generation of root pressure and the refilling of embolized xylem elements, and from an unsaturated atmosphere into terrestrial organisms living in habitats with limited availability of liquid water. There is then a more detailed consideration of volume and osmotic regulation in wall-less freshwater unicells, and the possibility of generation of buoyancy in marine phytoplankton such as large-celled diatoms. Calculations show that active water transport is a plausible mechanism to assist cells in upwards vertical movements, requires less energy than synthesis of low-density organic solutes, and potentially on a par with excluding certain ions from the vacuole.
Collapse
Affiliation(s)
- John A Raven
- Division of Plant Sciences, University of Dundee at the James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK School of Plant Biology, University of Western Australia, M048, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Martina A Doblin
- Plant Functional Biology and Climate Change Cluster (C3), University of Technology Sydney, PO Box 123, NSW 2007, Australia
| |
Collapse
|
15
|
Bader MKF, Ehrenberger W, Bitter R, Stevens J, Miller BP, Chopard J, Rüger S, Hardy GESJ, Poot P, Dixon KW, Zimmermann U, Veneklaas EJ. Spatio-temporal water dynamics in mature Banksia menziesii trees during drought. PHYSIOLOGIA PLANTARUM 2014; 152:301-315. [PMID: 24547765 DOI: 10.1111/ppl.12170] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 01/16/2014] [Indexed: 06/03/2023]
Abstract
Southwest Australian Banksia woodlands are highly diverse plant communities that are threatened by drought- or temperature-induced mortality due to the region's changing climate. We examined water relations in dominant Banksia menziesii R. Br. trees using magnetic leaf patch clamp pressure (ZIM-) probes that allow continuous, real-time monitoring of leaf water status. Multiple ZIM-probes across the crown were complemented by traditional ecophysiological measurements. During summer, early stomatal downregulation of transpiration prevented midday balancing pressures from exceeding 2.5 MPa. Diurnal patterns of ZIM-probe and pressure chamber readings agreed reasonably well, however, ZIM-probes recorded short-term dynamics, which are impossible to capture using a pressure chamber. Simultaneous recordings of three ZIM-probes evenly spaced along leaf laminas revealed intrafoliar turgor gradients, which, however, did not develop in a strictly basi- or acropetal fashion and varied with cardinal direction. Drought stress manifested as increasing daily signal amplitude (low leaf water status) and occasionally as rising baseline at night (delayed rehydration). These symptoms occurred more often locally than across the entire crown. Microclimate effects on leaf water status were strongest in crown regions experiencing peak morning radiation (East and North). Extreme spring temperatures preceded the sudden death of B. menziesii trees, suggesting a temperature- or humidity-related tipping point causing rapid hydraulic failure as evidenced by collapsing ZIM-probe readings from an affected tree. In a warmer and drier future, increased frequency of B. menziesii mortality will result in significantly altered community structure and ecosystem function.
Collapse
Affiliation(s)
- Martin K-F Bader
- School of Plant Biology and Centre of Excellence for Climate Change, Woodland & Forest Health, University of Western Australia, Crawley, WA, 6009, Australia; New Zealand Forest Research Institute (SCION), Te Papa Tipu Innovation Park, Rotorua, 3010, New Zealand
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Wegner LH. Root pressure and beyond: energetically uphill water transport into xylem vessels? JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:381-93. [PMID: 24311819 DOI: 10.1093/jxb/ert391] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The thermodynamics of root pressure remains an enigma up to the present day. Water is transported radially into xylem vessels, under some conditions even when the xylem sap is more dilute than the ambient medium (soil solution). It is suggested here that water secretion across the plasma membrane of xylem parenchyma cells is driven by a co-transport of water and solutes as previously shown for mammalian epithelia (Zeuthen T. 2010. Water-transporting proteins. Journal of Membrane Biology 234, 57-73.). This process could drive volume flow 'energetically uphill', against the free energy gradient of water. According to the model, solutes released by xylem parenchyma cells are subsequently retrieved from the sap at the expense of metabolic energy to maintain the concentration gradient that drives the water secretion. Transporters of the CCC type known to mediate water secretion in mammalian cells have also been found in Arabidopsis and in rice. The mechanism proposed here for root pressure could also explain refilling of embolized vessels. Moreover, it could contribute to long-distance water transport in trees when the cohesion-tension mechanism of water ascent fails. This is discussed with respect to the old and the more recent literature on these subjects.
Collapse
Affiliation(s)
- Lars H Wegner
- Karlsruhe Institute of Technology, Institute of Botany I, and Institute of Pulsed Power and Microwave Technology, Campus North, Building 630, Hermann-v-Helmholtz Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
17
|
Cassana FF, Dillenburg LR. The periodic wetting of leaves enhances water relations and growth of the long-lived conifer Araucaria angustifolia. PLANT BIOLOGY (STUTTGART, GERMANY) 2013; 15:75-83. [PMID: 22672733 DOI: 10.1111/j.1438-8677.2012.00600.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The importance of foliar absorption of water and atmospheric solutes in conifers was recognised in the 1970s, and the importance of fog as a water source in forest environments has been recently demonstrated. Araucaria angustifolia (Araucariaceae) is an emergent tree species that grows in montane forests of southern Brazil, where rainfall and fog are frequent events, leading to frequent wetting of the leaves. Despite anatomical evidence in favour of leaf water absorption, there is no information on the existence and physiological significance of a such process. In this study, we test the hypothesis that the use of atmospheric water by leaves takes place and is physiologically relevant for the species, by comparing growth, water relations and nutritional status between plants grown under two conditions of soil water (well-watered and water-stressed plants) and three types of leaf spraying (none, water and nutrient solution spray). Leaf spraying had a greater effect in improving plant water relations when plants were under water stress. Plant growth was more responsive to water available to the leaves than to the roots, and was equally increased by both types of leaf spraying, with no interaction with soil water status. Spraying leaves with nutrient solution increased shoot ramification and raised the concentrations of N, P, K, Zn, Cu and Fe in the roots. Our results provide strong indications that water and nutrients are indeed absorbed by leaves of A. angustifolia, and that this process might be as important as water uptake by its roots.
Collapse
Affiliation(s)
- F F Cassana
- Laboratório de Ecofisiologia Vegetal, Departamento de Botânica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | | |
Collapse
|
18
|
Burkhardt J, Basi S, Pariyar S, Hunsche M. Stomatal penetration by aqueous solutions--an update involving leaf surface particles. THE NEW PHYTOLOGIST 2012; 196:774-787. [PMID: 22985197 DOI: 10.1111/j.1469-8137.2012.04307.x] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Accepted: 07/29/2012] [Indexed: 05/23/2023]
Abstract
The recent visualization of stomatal nanoparticle uptake ended a 40-yr-old paradigm. Assuming clean, hydrophobic leaf surfaces, the paradigm considered stomatal liquid water transport to be impossible as a result of water surface tension. However, real leaves are not clean, and deposited aerosols may change hydrophobicity and water surface tension. Droplets containing NaCl, NaClO(3), (NH(4))(2) SO(4), glyphosate, an organosilicone surfactant or various combinations thereof were evaporated on stomatous abaxial and astomatous adaxial surfaces of apple (Malus domestica) leaves. The effects on photosynthesis, necrosis and biomass were determined. Observed using an environmental scanning electron microscope, NaCl and NaClO(3) crystals on hydrophobic tomato (Solanum lycopersicum) cuticles underwent several humidity cycles, causing repeated deliquescence and efflorescence of the salts. All physiological parameters were more strongly affected by abaxial than adaxial treatments. Spatial expansion and dendritic crystallization of the salts occurred and cuticular hydrophobicity was decreased more rapidly by NaClO(3) than NaCl. The results confirmed the stomatal uptake of aqueous solutions. Humidity fluctuations promote the spatial expansion of salts into the stomata. The ion-specific effects point to the Hofmeister series: chaotropic ions reduce surface tension, probably contributing to the defoliant action of NaClO(3), whereas the salt spray tolerance of coastal plants is probably linked to the kosmotropic nature of chloride ions.
Collapse
Affiliation(s)
- Juergen Burkhardt
- Institute of Crop Science and Resource Conservation, Plant Nutrition Group, University of Bonn, Karlrobert-Kreiten-Str. 13, D-53115, Bonn, Germany
| | - Sabin Basi
- Institute of Crop Science and Resource Conservation, Horticultural Science Group, University of Bonn, Auf dem Hügel 6, D-53121, Bonn, Germany
| | - Shyam Pariyar
- Institute of Crop Science and Resource Conservation, Plant Nutrition Group, University of Bonn, Karlrobert-Kreiten-Str. 13, D-53115, Bonn, Germany
| | - Mauricio Hunsche
- Institute of Crop Science and Resource Conservation, Horticultural Science Group, University of Bonn, Auf dem Hügel 6, D-53121, Bonn, Germany
| |
Collapse
|
19
|
Deng W, Jeng DS, Toorop PE, Squire GR, Iannetta PPM. A mathematical model of mucilage expansion in myxospermous seeds of Capsella bursa-pastoris (shepherd's purse). ANNALS OF BOTANY 2012; 109:419-27. [PMID: 22112439 PMCID: PMC3268541 DOI: 10.1093/aob/mcr296] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
BACKGROUND AND AIMS Myxospermy is a term which describes the ability of a seed to produce mucilage upon hydration. The mucilage is mainly comprised of plant cell-wall polysaccharides which are deposited during development of those cells that comprise the seed coat (testa). Myxospermy is more prevalent among those plant species adapted to surviving on arid sandy soils, though its significance in determining the ecological fitness of plants is unclear. In this study, the first mathematical model of myxospermous seed mucilage expansion is presented based on seeds of the model plant species Capsella bursa-pastoris (shepherd's purse). METHODS The structures underpinning the expansion process were described using light, electron and time-lapse confocal micrographs. The data and experimental observations were used to create a mathematical model of myxospermous seed mucilage expansion based on diffusion equations. KEY RESULTS The mucilage expansion was rapid, taking 5 s, during which the cell mucilage volume increased 75-fold. At the level of the seed, this represented a 6-fold increase in seed volume and a 2·5-fold increase in seed surface area. These increases were shown to be a function of water uptake (16 g water g(-1) mucilage dry weight), and relaxation of the polymers which comprised the mucilage. In addition, the osmotic pressure of the seed mucilage, estimated by assessing the mucilage expansion of seeds hydrated in solutions of varying osmotic pressure, was -0·54 MPa (equivalent to 0·11 M or 6·6 g L(-1) NaCl). CONCLUSIONS The results showed that the mucilage may be characterized as hydrogel and seed-mucilage expansion may be modelled using the diffusion equation described. The potential of myxospermous seeds to affect the ecological services provided by soil is discussed briefly.
Collapse
Affiliation(s)
- Wenni Deng
- Division of Civil Engineering, University of Dundee, UK.
| | | | | | | | | |
Collapse
|
20
|
Is leaf water repellency related to vapor pressure deficit and crown exposure in tropical forests? ACTA OECOLOGICA-INTERNATIONAL JOURNAL OF ECOLOGY 2010. [DOI: 10.1016/j.actao.2010.10.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
|
22
|
Yang Q, Xiao HL, Zhao LJ, Xiao SC, Zhou MX, Li CZ, Zhao L. Research progress on water uptake through foliage. ACTA ACUST UNITED AC 2010. [DOI: 10.1016/j.chnaes.2010.04.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
23
|
Zimmermann U, Rüger S, Shapira O, Westhoff M, Wegner LH, Reuss R, Gessner P, Zimmermann G, Israeli Y, Zhou A, Schwartz A, Bamberg E, Zimmermann D. Effects of environmental parameters and irrigation on the turgor pressure of banana plants measured using the non-invasive, online monitoring leaf patch clamp pressure probe. PLANT BIOLOGY (STUTTGART, GERMANY) 2010; 12:424-436. [PMID: 20522178 DOI: 10.1111/j.1438-8677.2009.00235.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Turgor pressure provides a sensitive indicator for irrigation scheduling. Leaf turgor pressure of Musa acuminate was measured by using the so-called leaf patch clamp pressure probe, i.e. by application of an external, magnetically generated and constantly retained clamp pressure to a leaf patch and determination of the attenuated output pressure P(p) that is highly correlated with the turgor pressure. Real-time recording of P(p) values was made using wireless telemetric transmitters, which send the data to a receiver base station where data are logged and transferred to a GPRS modem linked to an Internet server. Probes functioned over several months under field and laboratory conditions without damage to the leaf patch. Measurements showed that the magnetic-based probe could monitor very sensitively changes in turgor pressure induced by changes in microclimate (temperature, relative humidity, irradiation and wind) and irrigation. Irrigation effects could clearly be distinguished from environmental effects. Interestingly, oscillations in stomatal aperture, which occurred frequently below turgor pressures of 100 kPa towards noon at high transpiration or at high wind speed, were reflected in the P(p) values. The period of pressure oscillations was comparable with the period of oscillations in transpiration and photosynthesis. Multiple probe readings on individual leaves and/or on several leaves over the entire height of the plants further emphasised the great impact of this non-invasive turgor pressure sensor system for elucidating the dynamics of short- and long-distance water transport in higher plants.
Collapse
Affiliation(s)
- U Zimmermann
- Lehrstuhl für Biotechnologie, Biozentrum, Universität Würzburg, Würzburg, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Edmond Ghanem M, Han RM, Classen B, Quetin-Leclerq J, Mahy G, Ruan CJ, Qin P, Pérez-Alfocea F, Lutts S. Mucilage and polysaccharides in the halophyte plant species Kosteletzkya virginica: localization and composition in relation to salt stress. JOURNAL OF PLANT PHYSIOLOGY 2010; 167:382-392. [PMID: 19962213 DOI: 10.1016/j.jplph.2009.10.012] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Revised: 10/01/2009] [Accepted: 10/02/2009] [Indexed: 05/28/2023]
Abstract
Mucilage is thought to play a role in salinity tolerance in certain halophytic species by regulating water ascent and ion transport. The localization and composition of mucilage in the halophyte Kosteletzkya virginica was therefore investigated. Plants were grown in a hydroponic system in the presence or absence of 100mM NaCl and regularly harvested for growth parameter assessment and mucilage analysis with the gas liquid chromatography method. NaCl treatment stimulated shoot growth and biomass accumulation, had little effect on shoot and root water content, and reduced leaf water potential (Psi(w)), osmotic potential (Psi(s)) as well as stomatal conductance (g(s)). Mucilage increased in shoot, stems and roots in response to salt stress. Furthermore, changes were also observed in neutral monosaccharide components. Levels of rhamnose and uronic acid increased with salinity. Staining with a 0.5% alcian blue solution revealed the presence of mucopolyssacharides in xylem vessels and salt-induced mucilaginous precipitates on the leaf abaxial surface. Determination of ion concentrations showed that a significant increase of Na(+) and a decrease of K(+) and Ca(2+) simultaneously occurred in tissues and in mucilage under salt stress. Considering the high proportion of rhamnose and uronic acid in stem mucilage, we suggest that the pectic polysaccharide could be involved in Na(+) fixation, though only a minor fraction of accumulated sodium appeared to be firmly bound to mucilage.
Collapse
Affiliation(s)
- Michel Edmond Ghanem
- Groupe de Recherche en Physiologie Végétale, Université catholique de Louvain (UCL), Croix du Sud 5 Bte 13, 1348 Louvain-la-Neuve, Belgium.
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Westhoff M, Reuss R, Zimmermann D, Netzer Y, Gessner A, Gessner P, Zimmermann G, Wegner LH, Bamberg E, Schwartz A, Zimmermann U. A non-invasive probe for online-monitoring of turgor pressure changes under field conditions. PLANT BIOLOGY (STUTTGART, GERMANY) 2009; 11:701-12. [PMID: 19689778 DOI: 10.1111/j.1438-8677.2008.00170.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
An advanced non-invasive, field-suitable and inexpensive leaf patch clamp pressure probe for online-monitoring of the water relations of intact leaves is described. The probe measures the attenuated output patch clamp pressure, P(p), of a clamped leaf in response to an externally applied input pressure, P(clamp). P(clamp) is generated magnetically. P(p) is sensed by a pressure sensor integrated into the magnetic clamp. The magnitude of P(p) depends on the transfer function, T(f), of the leaf cells. T(f) consists of a turgor pressure-independent (related to the compression of the cuticle, cell walls and other structural elements) and a turgor pressure-dependent term. T(f) is dimensionless and assumes values between 0 and 1. Theory shows that T(f) is a power function of cell turgor pressure P(c). Concomitant P(p) and P(c) measurements on grapevines confirmed the relationship between T(f) and P(c). P(p) peaked if P(c) approached zero and assumed low values if P(c) reached maximum values. The novel probe was successfully tested on leaves of irrigated and non-irrigated grapevines under field conditions. Data show that slight changes in the microclimate and/or water supply (by irrigation or rain) are reflected very sensitively in P(p).
Collapse
Affiliation(s)
- M Westhoff
- Lehrstuhl für Biotechnologie, Biozentrum, Universität Würzburg, Würzburg, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Westhoff M, Zimmermann D, Schneider H, Wegner LH, Gessner P, Jakob P, Bamberg E, Shirley S, Bentrup FW, Zimmermann U. Evidence for discontinuous water columns in the xylem conduit of tall birch trees. PLANT BIOLOGY (STUTTGART, GERMANY) 2009; 11:307-327. [PMID: 19470103 DOI: 10.1111/j.1438-8677.2008.00124.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The continuity of the xylem water columns was studied on 17- to 23-m tall birch trees (trunk diameter about 23 cm; first branching above 10 m) all year round. Fifty-one trees were felled, and 5-cm thick slices or 2-m long boles were taken at regular, relatively short intervals over the entire height of the trees. The filling status of the vessels was determined by (i) xylem sap extraction from trunk and branch pieces (using the gas bubble-based jet-discharge method and centrifugation) and from trunk boles (using gravity discharge); (ii) (1)H nuclear magnetic resonance imaging of slice pieces; (iii) infusion experiments (dye, (86)Rb(+), D(2)O) on intact trees and cut branches; and (iv) xylem pressure measurements. This broad array of techniques disclosed no evidence for continuous water-filled columns, as postulated by the Cohesion-Tension theory, for root to apex directed mass transport. Except in early spring (during the xylem refilling phase) and after extremely heavy rainfall during the vegetation period, cohesive/mobile water was found predominantly at intermediate heights of the trunks but not at the base or towards the top of the tree. Similar results were obtained for branches. Furthermore, upper branches generally contained more cohesive/mobile water than lower branches. The results suggest that water lifting occurs by short-distance (capillary, osmotic and/or transpiration-bound) tension gradients as well as by mobilisation of water in the parenchymatic tissues and the heartwood, and by moisture uptake through lenticels.
Collapse
Affiliation(s)
- M Westhoff
- Lehrstuhl für Biotechnologie, Biozentrum, Universität Würzburg, Würzburg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Westhoff M, Zimmermann D, Zimmermann G, Gessner P, Wegner LH, Bentrup FW, Zimmermann U. Distribution and function of epistomatal mucilage plugs. PROTOPLASMA 2009; 235:101-105. [PMID: 19145400 DOI: 10.1007/s00709-008-0029-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2008] [Accepted: 12/17/2008] [Indexed: 05/27/2023]
Abstract
Investigation of 67 gymnosperm and angiosperm species belonging to 25 orders shows that epistomatal mucilage plugs are a widespread phenomenon. Measurements of the leaf water status by using the leaf patch clamp pressure technique suggest that the mucilage plugs are involved in moisture uptake and buffering leaf cells against complete turgor pressure loss at low humidity.
Collapse
Affiliation(s)
- M Westhoff
- Lehrstuhl für Biotechnologie, Biozentrum, Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | | | | | | | | | | | | |
Collapse
|
28
|
Zimmermann D, Reuss R, Westhoff M, Gessner P, Bauer W, Bamberg E, Bentrup FW, Zimmermann U. A novel, non-invasive, online-monitoring, versatile and easy plant-based probe for measuring leaf water status. JOURNAL OF EXPERIMENTAL BOTANY 2008; 59:3157-67. [PMID: 18689442 PMCID: PMC2504341 DOI: 10.1093/jxb/ern171] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2008] [Revised: 05/23/2008] [Accepted: 05/27/2008] [Indexed: 05/18/2023]
Abstract
A high-precision pressure probe is described which allows non-invasive online-monitoring of the water relations of intact leaves. Real-time recording of the leaf water status occurred by data transfer to an Internet server. The leaf patch clamp pressure probe measures the attenuated pressure, P(p), of a leaf patch in response to a constant clamp pressure, P(clamp). P(p) is sensed by a miniaturized silicone pressure sensor integrated into the device. The magnitude of P(p) is dictated by the transfer function of the leaf, T(f), which is a function of leaf patch volume and ultimately of cell turgor pressure, P(c), as shown theoretically. The power function T(f)=f(P(c)) theoretically derived was experimentally confirmed by concomitant P(p) and P(c) measurements on intact leaflets of the liana Tetrastigma voinierianum under greenhouse conditions. Simultaneous P(p) recordings on leaflets up to 10 m height above ground demonstrated that changes in T(f) induced by P(c) changes due to changes of microclimate and/or of the irrigation regime were sensitively reflected in corresponding changes of P(p). Analysis of the data show that transpirational water loss during the morning hours was associated with a transient rise in turgor pressure gradients within the leaflets. Subsequent recovery of turgescence during the afternoon was much faster than the preceding transpiration-induced water loss if the plants were well irrigated. Our data show the enormous potential of the leaf patch clamp pressure probe for leaf water studies including unravelling of the hydraulic communication between neighbouring leaves and over long distances within tall plants (trees).
Collapse
Affiliation(s)
- D Zimmermann
- Abteilung für Biophysikalische Chemie, Max-Planck-Institut für Biophysik, Max-von-Laue-Str. 3, D-60439 Frankfurt a. M., Germany.
| | | | | | | | | | | | | | | |
Collapse
|