1
|
Khampa N, Boontanon SK, Aroonsrimorakot S, Boontanon N. Combo chloro-photosynthetic device and applications for greenhouse gas reduction campaign and smart agriculture. Heliyon 2024; 10:e31552. [PMID: 38831824 PMCID: PMC11145496 DOI: 10.1016/j.heliyon.2024.e31552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 05/13/2024] [Accepted: 05/17/2024] [Indexed: 06/05/2024] Open
Abstract
The increasing carbon dioxide (CO2) levels in the air pose a direct threat to all living organisms and the environment. Leveraging the ability of plants to absorb CO2 is one of the most effective methods for countering these rising CO2 levels. The present study aimes to develop a combo photosynthetic and chlorophyll-a sensor based on Non-Dispersive Infrared (NDIR) spectroscopy and an optical method. This sensor enables simultaneous, intensive measurement of net photosynthesis and chlorophyll-a content and yields accurate information. Comparative analysis of the efficacy of the sensors to that of a commercial instrument demonstrated that the measurement values obtained from the developed photosynthetic and chlorophyll-a sensors were not significantly different from those acquired with the commercial instrument (portable photosynthesis system LI-6400) and chlorophyll metre (SPAD-502), with a 95 % confidence level. Furthermore, the developed photosynthetic sensor could be used as a new correlation unit for chlorophyll-a content and net photosynthesis. Therefore, the sensor can be used to propose effective plantation processes to reduce atmospheric CO2 levels and in smart farming systems to control the quality of yields.
Collapse
Affiliation(s)
- Natsuda Khampa
- Faculty of Environment and Resource Studies, Mahidol University, 999 Phutthamonthon Sai 4 Road, Salaya, Phutthamonthon, Nakhon Pathom, 73170 Thailand
| | - Suwanna Kitpati Boontanon
- Department of Civil and Environmental Engineering, Faculty of Engineering, Mahidol University, 25/25 Phutthamonthon Sai 4 Road, Salaya, Phutthamonthon, Nakhon Pathom, 73170 Thailand
| | - Sayam Aroonsrimorakot
- Faculty of Environment and Resource Studies, Mahidol University, 999 Phutthamonthon Sai 4 Road, Salaya, Phutthamonthon, Nakhon Pathom, 73170 Thailand
| | - Narin Boontanon
- Faculty of Environment and Resource Studies, Mahidol University, 999 Phutthamonthon Sai 4 Road, Salaya, Phutthamonthon, Nakhon Pathom, 73170 Thailand
- Research Center and Technology Development for Environmental Innovation, Faculty of Environment and Resource Studies, Mahidol University, 999 Phutthamonthon Sai 4 Road, Salaya, Phutthamonthon, Nakhon Pathom, 73170 Thailand
| |
Collapse
|
2
|
Falcioni R, Chicati ML, de Oliveira RB, Antunes WC, Hasanuzzaman M, Demattê JAM, Nanni MR. Decreased Photosynthetic Efficiency in Nicotiana tabacum L. under Transient Heat Stress. PLANTS (BASEL, SWITZERLAND) 2024; 13:395. [PMID: 38337928 PMCID: PMC10856914 DOI: 10.3390/plants13030395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024]
Abstract
Heat stress is an abiotic factor that affects the photosynthetic parameters of plants. In this study, we examined the photosynthetic mechanisms underlying the rapid response of tobacco plants to heat stress in a controlled environment. To evaluate transient heat stress conditions, changes in photochemical, carboxylative, and fluorescence efficiencies were measured using an infrared gas analyser (IRGA Licor 6800) coupled with chlorophyll a fluorescence measurements. Our findings indicated that significant disruptions in the photosynthetic machinery occurred at 45 °C for 6 h following transient heat treatment, as explained by 76.2% in the principal component analysis. The photosynthetic mechanism analysis revealed that the dark respiration rate (Rd and Rd*CO2) increased, indicating a reduced potential for carbon fixation during plant growth and development. When the light compensation point (LCP) increased as the light saturation point (LSP) decreased, this indicated potential damage to the photosystem membrane of the thylakoids. Other photosynthetic parameters, such as AMAX, VCMAX, JMAX, and ΦCO2, also decreased, compromising both photochemical and carboxylative efficiencies in the Calvin-Benson cycle. The energy dissipation mechanism, as indicated by the NPQ, qN, and thermal values, suggested that a photoprotective strategy may have been employed. However, the observed transitory damage was a result of disruption of the electron transport rate (ETR) between the PSII and PSI photosystems, which was initially caused by high temperatures. Our study highlights the impact of rapid temperature changes on plant physiology and the potential acclimatisation mechanisms under rapid heat stress. Future research should focus on exploring the adaptive mechanisms involved in distinguishing mutants to improve crop resilience against environmental stressors.
Collapse
Affiliation(s)
- Renan Falcioni
- Department of Agronomy, State University of Maringá, Av. Colombo, 5790, Maringá 87020-900, PR, Brazil; (M.L.C.); (R.B.d.O.); (W.C.A.); (M.R.N.)
- Department of Biotechnology, Genetic and Cellular Biology, State University of Maringá, Av. Colombo, 5790, Maringá 87020-900, PR, Brazil
| | - Marcelo Luiz Chicati
- Department of Agronomy, State University of Maringá, Av. Colombo, 5790, Maringá 87020-900, PR, Brazil; (M.L.C.); (R.B.d.O.); (W.C.A.); (M.R.N.)
| | - Roney Berti de Oliveira
- Department of Agronomy, State University of Maringá, Av. Colombo, 5790, Maringá 87020-900, PR, Brazil; (M.L.C.); (R.B.d.O.); (W.C.A.); (M.R.N.)
| | - Werner Camargos Antunes
- Department of Agronomy, State University of Maringá, Av. Colombo, 5790, Maringá 87020-900, PR, Brazil; (M.L.C.); (R.B.d.O.); (W.C.A.); (M.R.N.)
| | - Mirza Hasanuzzaman
- Department of Agronomy, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh;
| | - José A. M. Demattê
- Department of Soil Science, Luiz de Queiroz College of Agriculture, University of São Paulo, Av. Pádua Dias, 11, Piracicaba 13418-260, SP, Brazil;
| | - Marcos Rafael Nanni
- Department of Agronomy, State University of Maringá, Av. Colombo, 5790, Maringá 87020-900, PR, Brazil; (M.L.C.); (R.B.d.O.); (W.C.A.); (M.R.N.)
| |
Collapse
|
3
|
Contrasting Metabolisms in Green and White Leaf Sectors of Variegated Pelargonium zonale—An Integrative Transcriptomic and Metabolomic Study. Int J Mol Sci 2023; 24:ijms24065288. [PMID: 36982362 PMCID: PMC10048803 DOI: 10.3390/ijms24065288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/22/2023] [Accepted: 03/02/2023] [Indexed: 03/12/2023] Open
Abstract
The photosynthetically active green leaf (GL) and non-active white leaf (WL) tissues of variegated Pelargonium zonale provide an excellent model system for studying processes associated with photosynthesis and sink-source interactions, enabling the same microenvironmental conditions. By combining differential transcriptomics and metabolomics, we identified the main differences between these two metabolically contrasting tissues. Genes related to photosynthesis and associated pigments, the Calvin–Benson cycle, fermentation, and glycolysis were strongly repressed in WL. On the other hand, genes related to nitrogen and protein metabolism, defence, cytoskeletal components (motor proteins), cell division, DNA replication, repair and recombination, chromatin remodelling, and histone modifications were upregulated in WL. A content of soluble sugars, TCA intermediates, ascorbate, and hydroxybenzoic acids was lower, while the concentration of free amino acids (AAs), hydroxycinnamic acids, and several quercetin and kaempferol glycosides was higher in WL than in GL. Therefore, WL presents a carbon sink and depends on photosynthetic and energy-generating processes in GL. Furthermore, the upregulated nitrogen metabolism in WL compensates for the insufficient energy from carbon metabolism by providing alternative respiratory substrates. At the same time, WL serves as nitrogen storage. Overall, our study provides a new genetic data resource for the use of this excellent model system and for ornamental pelargonium breeding and contributes to uncovering molecular mechanisms underlying variegation and its adaptive ecological value.
Collapse
|
4
|
Cell-penetrating peptide for targeted macromolecule delivery into plant chloroplasts. Appl Microbiol Biotechnol 2022; 106:5249-5259. [PMID: 35821432 DOI: 10.1007/s00253-022-12053-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 06/24/2022] [Accepted: 06/26/2022] [Indexed: 12/30/2022]
Abstract
Reports on chloroplast-targeted protein delivery using cell-penetrating peptides are scarce. In this study, a novel peptide-based macromolecule delivery strategy targeting chloroplasts was successfully developed in wheat mesophyll protoplasts. A peptide derived from the signal sequence of the chloroplast-targeted protein of ferredoxin-thioredoxin reductase catalytic chain of Spinacia oleracea with UniProtKB Id-P41348 exhibits properties of cellular internalization. DNase I was efficiently delivered into the chloroplast using 10 μM cTP with an efficiency of more than 90%. This cell-penetrating peptide-mediated approach offers various advantages over the existing chloroplast targeting methods, such as non-invasiveness, biocompatibility, low-toxicity, and target-specific delivery. The present study shows that peptide-based strategies hold tremendous potential in the field of chloroplast biotechnology. KEY POINTS: • Screening of database of chloroplast targeting peptides in order to develop an efficient cell-penetrating peptide termed as cTP. • cTP efficiently crosses the cell barrier and demonstrated chloroplast-localization. • cTP can be incorporated as a promising strategy for delivering macromolecules for crop improvement.
Collapse
|
5
|
Sanjaya A, Muramatsu R, Sato S, Suzuki M, Sasaki S, Ishikawa H, Fujii Y, Asano M, Itoh RD, Kanamaru K, Ohbu S, Abe T, Kazama Y, Fujiwara MT. Arabidopsis EGY1 Is Critical for Chloroplast Development in Leaf Epidermal Guard Cells. PLANTS (BASEL, SWITZERLAND) 2021; 10:1254. [PMID: 34205501 PMCID: PMC8235790 DOI: 10.3390/plants10061254] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/14/2021] [Accepted: 06/17/2021] [Indexed: 11/16/2022]
Abstract
In Arabidopsis thaliana, the Ethylene-dependent Gravitropism-deficient and Yellow-green 1 (EGY1) gene encodes a thylakoid membrane-localized protease involved in chloroplast development in leaf mesophyll cells. Recently, EGY1 was also found to be crucial for the maintenance of grana in mesophyll chloroplasts. To further explore the function of EGY1 in leaf tissues, we examined the phenotype of chloroplasts in the leaf epidermal guard cells and pavement cells of two 40Ar17+ irradiation-derived mutants, Ar50-33-pg1 and egy1-4. Fluorescence microscopy revealed that fully expanded leaves of both egy1 mutants showed severe chlorophyll deficiency in both epidermal cell types. Guard cells in the egy1 mutant exhibited permanent defects in chloroplast formation during leaf expansion. Labeling of plastids with CaMV35S or Protodermal Factor1 (PDF1) promoter-driven stroma-targeted fluorescent proteins revealed that egy1 guard cells contained the normal number of plastids, but with moderately reduced size, compared with wild-type guard cells. Transmission electron microscopy further revealed that the development of thylakoids was impaired in the plastids of egy1 mutant guard mother cells, guard cells, and pavement cells. Collectively, these observations demonstrate that EGY1 is involved in chloroplast formation in the leaf epidermis and is particularly critical for chloroplast differentiation in guard cells.
Collapse
Affiliation(s)
- Alvin Sanjaya
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, Kioicho, Chiyoda, Tokyo 102-8554, Japan
| | - Ryohsuke Muramatsu
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, Kioicho, Chiyoda, Tokyo 102-8554, Japan
| | - Shiho Sato
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, Kioicho, Chiyoda, Tokyo 102-8554, Japan
| | - Mao Suzuki
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, Kioicho, Chiyoda, Tokyo 102-8554, Japan
| | - Shun Sasaki
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, Kioicho, Chiyoda, Tokyo 102-8554, Japan
| | - Hiroki Ishikawa
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, Kioicho, Chiyoda, Tokyo 102-8554, Japan
| | - Yuki Fujii
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, Kioicho, Chiyoda, Tokyo 102-8554, Japan
| | - Makoto Asano
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, Kioicho, Chiyoda, Tokyo 102-8554, Japan
| | - Ryuuichi D Itoh
- Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Okinawa 903-0213, Japan
| | - Kengo Kanamaru
- Faculty of Agriculture, Kobe University, Nada, Kobe 657-8501, Japan
| | - Sumie Ohbu
- RIKEN Nishina Center, Wako, Saitama 351-0198, Japan
| | - Tomoko Abe
- RIKEN Nishina Center, Wako, Saitama 351-0198, Japan
| | - Yusuke Kazama
- RIKEN Nishina Center, Wako, Saitama 351-0198, Japan
- Faculty of Bioscience and Biotechnology, Fukui Prefectural University, Eiheiji, Fukui 910-1195, Japan
| | - Makoto T Fujiwara
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, Kioicho, Chiyoda, Tokyo 102-8554, Japan
- RIKEN Nishina Center, Wako, Saitama 351-0198, Japan
| |
Collapse
|
6
|
Li M, Guo G, Pidon H, Melzer M, Prina AR, Börner T, Stein N. ATP-Dependent Clp Protease Subunit C1, HvClpC1, Is a Strong Candidate Gene for Barley Variegation Mutant luteostrians as Revealed by Genetic Mapping and Genomic Re-sequencing. FRONTIERS IN PLANT SCIENCE 2021; 12:664085. [PMID: 33936155 PMCID: PMC8086601 DOI: 10.3389/fpls.2021.664085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 03/29/2021] [Indexed: 06/12/2023]
Abstract
Implementation of next-generation sequencing in forward genetic screens greatly accelerated gene discovery in species with larger genomes, including many crop plants. In barley, extensive mutant collections are available, however, the causative mutations for many of the genes remains largely unknown. Here we demonstrate how a combination of low-resolution genetic mapping, whole-genome resequencing and comparative functional analyses provides a promising path toward candidate identification of genes involved in plastid biology and/or photosynthesis, even if genes are located in recombination poor regions of the genome. As a proof of concept, we simulated the prediction of a candidate gene for the recently cloned variegation mutant albostrians (HvAST/HvCMF7) and adopted the approach for suggesting HvClpC1 as candidate gene for the yellow-green variegation mutant luteostrians.
Collapse
Affiliation(s)
- Mingjiu Li
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
| | - Ganggang Guo
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hélène Pidon
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
| | - Michael Melzer
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
| | - Alberto R. Prina
- Institute of Genetics ‘Ewald A. Favret’ (IGEAF), INTA CICVyA/Argentina, Hurlingham, Buenos Aires, Argentina
| | - Thomas Börner
- Molecular Genetics, Institute of Biology, Humboldt University, Berlin, Germany
| | - Nils Stein
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
- Center for Integrated Breeding Research (CiBreed), Department of Crop Sciences, Georg-August-University, Göttingen, Germany
| |
Collapse
|
7
|
Wu G, Li S, Li X, Liu Y, Zhao S, Liu B, Zhou H, Lin H. A Functional Alternative Oxidase Modulates Plant Salt Tolerance in Physcomitrella patens. PLANT & CELL PHYSIOLOGY 2019; 60:1829-1841. [PMID: 31119292 DOI: 10.1093/pcp/pcz099] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 05/14/2019] [Indexed: 05/13/2023]
Abstract
Alternative oxidase (AOX) has been reported to be involved in mitochondrial function and redox homeostasis, thus playing an essential role in plant growth as well as stress responses. However, its biological functions in nonseed plants have not been well characterized. Here, we report that AOX participates in plant salt tolerance regulation in moss Physcomitrella patens (P. patens). AOX is highly conserved and localizes to mitochondria in P. patens. We observed that PpAOX rescued the impaired cyanide (CN)-resistant alternative (Alt) respiratory pathway in Arabidopsis thaliana (Arabidopsis) aox1a mutant. PpAOX transcription and Alt respiration were induced upon salt stress in P. patens. Using homologous recombination, we generated PpAOX-overexpressing lines (PpAOX OX). PpAOX OX plants exhibited higher Alt respiration and lower total reactive oxygen species accumulation under salt stress condition. Strikingly, we observed that PpAOX OX plants displayed decreased salt tolerance. Overexpression of PpAOX disturbed redox homeostasis in chloroplasts. Meanwhile, chloroplast structure was adversely affected in PpAOX OX plants in contrast to wild-type (WT) P. patens. We found that photosynthetic activity in PpAOX OX plants was also lower compared with that in WT. Together, our work revealed that AOX participates in plant salt tolerance in P. patens and there is a functional link between mitochondria and chloroplast under challenging conditions.
Collapse
Affiliation(s)
- Guochun Wu
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Sha Li
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Xiaochuan Li
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yunhong Liu
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Shuangshuang Zhao
- Key Laboratory of Plant Stress, Life Science College, Shandong Normal University, Jinan, China
| | - Baohui Liu
- School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Huapeng Zhou
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Honghui Lin
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| |
Collapse
|
8
|
Van Dingenen J, Blomme J, Gonzalez N, Inzé D. Plants grow with a little help from their organelle friends. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:6267-6281. [PMID: 27815330 DOI: 10.1093/jxb/erw399] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Chloroplasts and mitochondria are indispensable for plant development. They not only provide energy and carbon sources to cells, but also have evolved to become major players in a variety of processes such as amino acid metabolism, hormone biosynthesis and cellular signalling. As semi-autonomous organelles, they contain a small genome that relies largely on nuclear factors for its maintenance and expression. An intensive crosstalk between the nucleus and the organelles is therefore essential to ensure proper functioning, and the nuclear genes encoding organellar proteins involved in photosynthesis and oxidative phosphorylation are obviously crucial for plant growth. Organ growth is determined by two main cellular processes: cell proliferation and cell expansion. Here, we review how plant growth is affected in mutants of organellar proteins that are differentially expressed during leaf and root development. Our findings indicate a clear role for organellar proteins in plant organ growth, primarily during cell proliferation. However, to date, the role of the nuclear-encoded organellar proteins in the cellular processes driving organ growth has not been investigated in much detail. We therefore encourage researchers to extend their phenotypic characterization beyond macroscopic features in order to get a better view on how chloroplasts and mitochondria regulate the basic processes of cell proliferation and cell expansion, essential to driving growth.
Collapse
Affiliation(s)
- Judith Van Dingenen
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Jonas Blomme
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Nathalie Gonzalez
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Dirk Inzé
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| |
Collapse
|
9
|
Vidović M, Morina F, Prokić L, Milić-Komić S, Živanović B, Jovanović SV. Antioxidative response in variegated Pelargonium zonale leaves and generation of extracellular H 2O 2 in (peri)vascular tissue induced by sunlight and paraquat. JOURNAL OF PLANT PHYSIOLOGY 2016; 206:25-39. [PMID: 27688091 DOI: 10.1016/j.jplph.2016.07.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 07/19/2016] [Accepted: 07/20/2016] [Indexed: 06/06/2023]
Abstract
In this study we exposed variegated leaves of Pelargonium zonale to strong sunlight (>1100μmolm-2s-1 of photosynthetically active radiation) with and without paraquat (Pq), with the aim to elucidate the mechanisms of H2O2 regulation in green and white tissues with respect to the photosynthetically-dependent generation of reactive oxygen species (ROS). Sunlight induced marked accumulation of H2O2 in the apoplast of vascular and (peri)vascular tissues only in green sectors. This effect was enhanced by the addition of Pq. In the presence of diphenyl iodide, an NADPH oxidase inhibitor, H2O2 accumulation was abolished. Distinct light-induced responses were observed: in photosynthetic cells, sunlight rapidly provoked ascorbate (Asc) biosynthesis and an increase of glutathione reductase (GR) and catalase activities, while in non-photosynthetic cells, early up-regulation of soluble ascorbate peroxidase, dehydroascorbate reductase (DHAR) and GR activities was observed. Paraquat addition stimulated DHAR and GR activities in green sectors, while in white sectors activities of monodehydroascorbate reductase, DHAR and class III peroxidases, as well as Asc content rapidly increased. Differential antioxidative responses in the two tissues in the frame of their contrasting metabolisms, and the possible role of (peri)vascular H2O2 in signaling were discussed.
Collapse
Affiliation(s)
- Marija Vidović
- Department of Life Sciences, Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11030 Belgrade, Serbia.
| | - Filis Morina
- Department of Life Sciences, Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11030 Belgrade, Serbia.
| | - Ljiljana Prokić
- Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia.
| | - Sonja Milić-Komić
- Department of Life Sciences, Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11030 Belgrade, Serbia.
| | - Bojana Živanović
- Department of Life Sciences, Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11030 Belgrade, Serbia.
| | - Sonja Veljović Jovanović
- Department of Life Sciences, Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11030 Belgrade, Serbia.
| |
Collapse
|
10
|
Yu J, Zhang J, Zhao Q, Liu Y, Chen S, Guo H, Shi L, Dai S. Proteomic Analysis Reveals the Leaf Color Regulation Mechanism in Chimera Hosta "Gold Standard" Leaves. Int J Mol Sci 2016; 17:346. [PMID: 27005614 PMCID: PMC4813207 DOI: 10.3390/ijms17030346] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2015] [Revised: 02/09/2016] [Accepted: 03/01/2016] [Indexed: 11/28/2022] Open
Abstract
Leaf color change of variegated leaves from chimera species is regulated by fine-tuned molecular mechanisms. Hosta "Gold Standard" is a typical chimera Hosta species with golden-green variegated leaves, which is an ideal material to investigate the molecular mechanisms of leaf variegation. In this study, the margin and center regions of young and mature leaves from Hosta "Gold Standard", as well as the leaves from plants after excess nitrogen fertilization were studied using physiological and comparative proteomic approaches. We identified 31 differentially expressed proteins in various regions and development stages of variegated leaves. Some of them may be related to the leaf color regulation in Hosta "Gold Standard". For example, cytosolic glutamine synthetase (GS1), heat shock protein 70 (Hsp70), and chloroplastic elongation factor G (cpEF-G) were involved in pigment-related nitrogen synthesis as well as protein synthesis and processing. By integrating the proteomics data with physiological results, we revealed the metabolic patterns of nitrogen metabolism, photosynthesis, energy supply, as well as chloroplast protein synthesis, import and processing in various leaf regions at different development stages. Additionally, chloroplast-localized proteoforms involved in nitrogen metabolism, photosynthesis and protein processing implied that post-translational modifications were crucial for leaf color regulation. These results provide new clues toward understanding the mechanisms of leaf color regulation in variegated leaves.
Collapse
Affiliation(s)
- Juanjuan Yu
- Development Center of Plant Germplasm Resources, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai 200234, China.
- Alkali Soil Natural Environmental Science Center, Northeast Forestry University, Key Laboratory of Saline-alkali Vegetation Ecology Restoration in Oil Field, Ministry of Education, Harbin 150040, China.
| | - Jinzheng Zhang
- Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.
| | - Qi Zhao
- Development Center of Plant Germplasm Resources, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai 200234, China.
| | - Yuelu Liu
- Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.
| | - Sixue Chen
- Department of Biology, Genetics Institute, Plant Molecular and Cellular Biology Program, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL 32610, USA.
| | - Hongliang Guo
- Food Engineering College, Harbin University of Commerce, Harbin 150028, China.
| | - Lei Shi
- Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.
| | - Shaojun Dai
- Development Center of Plant Germplasm Resources, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai 200234, China.
| |
Collapse
|
11
|
Vidović M, Morina F, Milić S, Albert A, Zechmann B, Tosti T, Winkler JB, Jovanović SV. Carbon allocation from source to sink leaf tissue in relation to flavonoid biosynthesis in variegated Pelargonium zonale under UV-B radiation and high PAR intensity. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2015; 93:44-55. [PMID: 25661975 DOI: 10.1016/j.plaphy.2015.01.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 01/26/2015] [Indexed: 05/07/2023]
Abstract
We studied the specific effects of high photosynthetically active radiation (PAR, 400-700 nm) and ecologically relevant UV-B radiation (0.90 W m(-2)) on antioxidative and phenolic metabolism by exploiting the green-white leaf variegation of Pelargonium zonale plants. This is a suitable model system for examining "source-sink" interactions within the same leaf. High PAR intensity (1350 μmol m(-2) s(-1)) and UV-B radiation induced different responses in green and white leaf sectors. High PAR intensity had a greater influence on green tissue, triggering the accumulation of phenylpropanoids and flavonoids with strong antioxidative function. Induced phenolics, together with ascorbate, ascorbate peroxidase (APX, EC 1.11.1.11) and catalase (CAT, EC 1.11.1.6) provided efficient defense against potential oxidative pressure. UV-B-induced up-regulation of non-phenolic H2O2 scavengers in green leaf sectors was greater than high PAR-induced changes, indicating a UV-B role in antioxidative defense under light excess; on the contrary, minimal effects were observed in white tissue. However, UV-B radiation had greater influence on phenolics in white leaf sections compared to green ones, inducing accumulation of phenolic glycosides whose function was UV-B screening rather than antioxidative. By stimulation of starch and sucrose breakdown and carbon allocation in the form of soluble sugars from "source" (green) tissue to "sink" (white) tissue, UV-B radiation compensated the absence of photosynthetic activity and phenylpropanoid and flavonoid biosynthesis in white sectors.
Collapse
Affiliation(s)
- Marija Vidović
- Institute for Multidisciplinary Research, University of Belgrade, Kneza Viseslava 1, 11000 Belgrade, Serbia.
| | - Filis Morina
- Institute for Multidisciplinary Research, University of Belgrade, Kneza Viseslava 1, 11000 Belgrade, Serbia.
| | - Sonja Milić
- Institute for Multidisciplinary Research, University of Belgrade, Kneza Viseslava 1, 11000 Belgrade, Serbia.
| | - Andreas Albert
- Research Unit Environmental Simulation, Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany.
| | - Bernd Zechmann
- Baylor University, Center for Microscopy and Imaging, One Bear Place #97046, Waco, TX 76798-7046, USA.
| | - Tomislav Tosti
- Faculty of Chemistry, University of Belgrade, PO Box 51, 11001 Belgrade, Serbia.
| | - Jana Barbro Winkler
- Research Unit Environmental Simulation, Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany.
| | - Sonja Veljović Jovanović
- Institute for Multidisciplinary Research, University of Belgrade, Kneza Viseslava 1, 11000 Belgrade, Serbia.
| |
Collapse
|
12
|
Abadie C, Lamothe M, Mauve C, Gilard F, Tcherkez G. Leaf green-white variegation is advantageous under N deprivation in Pelargonium×hortorum. FUNCTIONAL PLANT BIOLOGY : FPB 2015; 42:543-551. [PMID: 32480699 DOI: 10.1071/fp14250] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 02/09/2015] [Indexed: 06/11/2023]
Abstract
Variegation (patchy surface area with different colours) is a common trait of plant leaves. In green-white variegated leaves, two tissues with contrasted primary carbon metabolisms (autotrophic in green and heterotrophic in white tissues) are juxtaposed. It is generally believed that variegation is detrimental to growth due to the lower photosynthetic surface area. However, the common occurrence of leaf variegation in nature raises the question of a possible advantage under certain circumstances. Here, we examined growth and metabolism of variegated Pelargonium×hortorum L.H.Bailey using metabolomics techniques under N deprivation. Our results showed that variegated plants tolerate N deficiency much better, i.e. do not stop leaf biomass production after 9 weeks of N deprivation, even though the growth of green plants is eventually arrested and leaf senescence is triggered. Metabolic analysis indicates that white areas are naturally enriched in arginine, which decreases a lot upon N deprivation, probably to feed green areas. This process may compensate for the lower proteolysis enhancement in green areas and thus contribute to maintaining photosynthetic activity. We conclude that under our experimental conditions, leaf variegation was advantageous under prolonged N deprivation.
Collapse
Affiliation(s)
- Cyril Abadie
- Institut de Biologie des Plantes, CNRS UMR 8618, Université Paris-Sud, 91405 Orsay cedex, France
| | - Marlène Lamothe
- Plateforme Métabolisme-Métabolome, Université Paris-Sud, 91405 Orsay cedex, France
| | - Caroline Mauve
- Plateforme Métabolisme-Métabolome, Université Paris-Sud, 91405 Orsay cedex, France
| | - Françoise Gilard
- Plateforme Métabolisme-Métabolome, Université Paris-Sud, 91405 Orsay cedex, France
| | - Guillaume Tcherkez
- Institut de Biologie des Plantes, CNRS UMR 8618, Université Paris-Sud, 91405 Orsay cedex, France
| |
Collapse
|
13
|
Ma J, Li XQ. Organellar genome copy number variation and integrity during moderate maturation of roots and leaves of maize seedlings. Curr Genet 2015; 61:591-600. [PMID: 25782449 DOI: 10.1007/s00294-015-0482-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 03/01/2015] [Accepted: 03/03/2015] [Indexed: 01/30/2023]
Abstract
Little information is available about organellar genome copy numbers and integrity in plant roots, although it was reported recently that the plastid and mitochondrial genomes were damaged under light, resulting in non-functional fragments in green seedling leaves in a maize line. In the present study, we investigated organellar genome copy numbers and integrity, after assessing the cellular ploidy, in seedling leaves and roots of two elite maize (Zea mays) cultivars using both long-fragment polymerase chain reaction (long-PCR) and real-time quantitative polymerase chain reaction (qPCR, a type of short-PCR). Since maize leaf and root cells are mainly diploid according to chromosome number counting and the literature, the DNA amount ratio between the organellar genomes and the nuclear genome could be used to estimate average organellar genome copy numbers per cell. In the present study, both long-PCR and qPCR analyses found that green leaves had dramatically more plastid DNA and less mitochondrial DNA than roots had in both cultivars. The similarity in results from long-PCR and qPCR suggests that green leaves and roots during moderate maturation have largely intact plastid and mitochondrial genomes. The high resolution of qPCR led to the detection of an increase in copies in the plastid genome and a decrease in copies in the analyzed mitochondrial sub-genomes during the moderate maturation of seedling leaves and roots. These results suggest that green seedling leaves and roots of these two maize cultivars during moderate maturation had essentially intact organellar genomes, an increased copy number of the plastid genome, and decreased copy numbers of certain mitochondrial sub-genomes.
Collapse
Affiliation(s)
- Jin Ma
- Potato Research Centre, Agriculture and Agri-Food Canada, 850 Lincoln Road, P.O. Box 20280, Fredericton, NB, E3B 4Z7, Canada
| | - Xiu-Qing Li
- Potato Research Centre, Agriculture and Agri-Food Canada, 850 Lincoln Road, P.O. Box 20280, Fredericton, NB, E3B 4Z7, Canada.
| |
Collapse
|
14
|
Bobik K, Burch-Smith TM. Chloroplast signaling within, between and beyond cells. FRONTIERS IN PLANT SCIENCE 2015; 6:781. [PMID: 26500659 PMCID: PMC4593955 DOI: 10.3389/fpls.2015.00781] [Citation(s) in RCA: 136] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 09/10/2015] [Indexed: 05/18/2023]
Abstract
The most conspicuous function of plastids is the oxygenic photosynthesis of chloroplasts, yet plastids are super-factories that produce a plethora of compounds that are indispensable for proper plant physiology and development. Given their origins as free-living prokaryotes, it is not surprising that plastids possess their own genomes whose expression is essential to plastid function. This semi-autonomous character of plastids requires the existence of sophisticated regulatory mechanisms that provide reliable communication between them and other cellular compartments. Such intracellular signaling is necessary for coordinating whole-cell responses to constantly varying environmental cues and cellular metabolic needs. This is achieved by plastids acting as receivers and transmitters of specific signals that coordinate expression of the nuclear and plastid genomes according to particular needs. In this review we will consider the so-called retrograde signaling occurring between plastids and nuclei, and between plastids and other organelles. Another important role of the plastid we will discuss is the involvement of plastid signaling in biotic and abiotic stress that, in addition to influencing retrograde signaling, has direct effects on several cellular compartments including the cell wall. We will also review recent evidence pointing to an intriguing function of chloroplasts in regulating intercellular symplasmic transport. Finally, we consider an intriguing yet less widely known aspect of plant biology, chloroplast signaling from the perspective of the entire plant. Thus, accumulating evidence highlights that chloroplasts, with their complex signaling pathways, provide a mechanism for exquisite regulation of plant development, metabolism and responses to the environment. As chloroplast processes are targeted for engineering for improved productivity the effect of such modifications on chloroplast signaling will have to be carefully considered in order to avoid unintended consequences on plant growth and development.
Collapse
Affiliation(s)
| | - Tessa M. Burch-Smith
- *Correspondence: Tessa M. Burch-Smith, Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, 1414 Cumberland Avenue, M407 Walters Life Science, Knoxville, TN 37932, USA,
| |
Collapse
|
15
|
Zubo YO, Potapova TV, Yamburenko MV, Tarasenko VI, Konstantinov YM, Börner T. Inhibition of the electron transport strongly affects transcription and transcript levels in Arabidopsis mitochondria. Mitochondrion 2014; 19 Pt B:222-30. [PMID: 24699356 DOI: 10.1016/j.mito.2014.03.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 03/17/2014] [Accepted: 03/24/2014] [Indexed: 12/14/2022]
Abstract
Mitochondrial transcription rate and RNA steady-state levels were examined in shoots of Arabidopsis seedlings. The shoots were treated with inhibitors of complex III and IV of the cytochrome pathway (CP) and with an inhibitor of the alternative oxidase (AOX) of the mitochondrial electron transport chain. The inhibition of AOX and CP complexes III and IV affected transcription and transcript levels in different ways. CP and AOX inhibitors had opposite effects. Our data support the idea that the redox state of the electron transport chain is involved in the regulation of mitochondrial gene expression at transcriptional and post-transcriptional levels.
Collapse
Affiliation(s)
- Yan O Zubo
- Institute of Biology-Genetics, Humboldt University, Chaussestr. 117, 10115 Berlin, Germany
| | - Tatyana V Potapova
- Institute of Biology-Genetics, Humboldt University, Chaussestr. 117, 10115 Berlin, Germany; The Siberian Institute of Plant Physiology and Biochemistry SB RAS, Lermontova St., 132, Irkutsk 664033, Russia
| | - Maria V Yamburenko
- Institute of Biology-Genetics, Humboldt University, Chaussestr. 117, 10115 Berlin, Germany
| | - Vladislav I Tarasenko
- The Siberian Institute of Plant Physiology and Biochemistry SB RAS, Lermontova St., 132, Irkutsk 664033, Russia
| | - Yuri M Konstantinov
- Institute of Biology-Genetics, Humboldt University, Chaussestr. 117, 10115 Berlin, Germany; The Siberian Institute of Plant Physiology and Biochemistry SB RAS, Lermontova St., 132, Irkutsk 664033, Russia; The Irkutsk State University, Sukhe-Batar St., 5, Irkutsk 664033, Russia
| | - Thomas Börner
- Institute of Biology-Genetics, Humboldt University, Chaussestr. 117, 10115 Berlin, Germany.
| |
Collapse
|
16
|
Oldenburg DJ, Kumar RA, Bendich AJ. The amount and integrity of mtDNA in maize decline with development. PLANTA 2013; 237:603-17. [PMID: 23229060 DOI: 10.1007/s00425-012-1802-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Accepted: 10/26/2012] [Indexed: 05/10/2023]
Abstract
In maize and other grasses there is a developmental gradient from the meristematic cells at the base of the stalk to the differentiated cells at the leaf tip. This gradient presents an opportunity to investigate changes in mitochondrial DNA (mtDNA) that accompany growth under light and dark conditions, as done previously for plastid DNA. Maize mtDNA was analyzed by DAPI-DNA staining of individual mitochondria, gel electrophoresis/blot hybridization, and real-time qPCR. Both the amount and integrity of the mtDNA were found to decline with development. There was a 20-fold decline in mtDNA copy number per cell from the embryo to the light-grown leaf blade. The amount of DNA per mitochondrial particle was greater in dark-grown leaf blade (24 copies, on average) than in the light (2 copies), with some mitochondria lacking any detectable DNA. Three factors that influence the demise of mtDNA during development are considered: (1) the decision to either repair or degrade mtDNA molecules that are damaged by the reactive oxygen species produced as byproducts of respiration; (2) the generation of ATP by photophosphorylation in chloroplasts, reducing the need for respiratory-competent mitochondria; and (3) the shift in mitochondrial function from energy-generating respiration to photorespiration during the transition from non-green to green tissue.
Collapse
Affiliation(s)
- Delene J Oldenburg
- Department of Biology, University of Washington, Seattle, WA 98195-5325, USA.
| | | | | |
Collapse
|
17
|
Tcherkez G, Gu Rard F, Gilard FO, Lamothe MN, Mauve C, Gout E, Bligny R. Metabolomic characterisation of the functional division of nitrogen metabolism in variegated leaves. FUNCTIONAL PLANT BIOLOGY : FPB 2012; 39:959-967. [PMID: 32480845 DOI: 10.1071/fp12189] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Accepted: 08/30/2012] [Indexed: 06/11/2023]
Abstract
Many horticultural and natural plant species have variegated leaves, that is, patchy leaves with green and non-green or white areas. Specific studies on the metabolism of variegated leaves are scarce and although white (non-green) areas have been assumed to play the role of a 'nitrogen store', there is no specific studies showing the analysis of nitrogenous metabolites and the dynamics of nitrogen assimilation. Here, we examined the metabolism of variegated leaves of Pelargonium×hortorum. We show that white areas have a larger N:C ratio, more amino acids, with a clear accumulation of arginine. Metabolomic analyses revealed clear differences in the chemical composition, suggesting contrasted metabolic commitments such as an enhancement of alkaloid biosynthesis in white areas. Using isotopic labelling followed by nuclear magnetic resonance or liquid chromatography/mass spectrometry, we further showed that in addition to glutamine, tyrosine and tryptophan, N metabolism forms ornithine in green area and huge amounts of arginine in white areas. Fine isotopic measurements with isotope ratio mass spectrometry indicated that white and green areas exchange nitrogenous molecules but nitrogen export from green areas is quantitatively much more important. The biological significance of the metabolic exchange between leaf areas is briefly discussed.
Collapse
Affiliation(s)
- Guillaume Tcherkez
- Institut de Biologie des Plantes, CNRS UMR8618, Université Paris-Sud, 91405 Orsay cedex, France
| | - Florence Gu Rard
- Plateforme Métabolisme-Métabolome, IFR87, Batiment 630, Université Paris-Sud, 91405 Orsay cedex, France
| | - Fran Oise Gilard
- Plateforme Métabolisme-Métabolome, IFR87, Batiment 630, Université Paris-Sud, 91405 Orsay cedex, France
| | - Marl Ne Lamothe
- Plateforme Métabolisme-Métabolome, IFR87, Batiment 630, Université Paris-Sud, 91405 Orsay cedex, France
| | - Caroline Mauve
- Plateforme Métabolisme-Métabolome, IFR87, Batiment 630, Université Paris-Sud, 91405 Orsay cedex, France
| | - Elisabeth Gout
- Laboratoire de Physiologie Cellulaire Végétale, CEA-Grenoble, 17 rue des Martyrs, 38054 Grenoble cedex 9, France
| | - Richard Bligny
- Laboratoire de Physiologie Cellulaire Végétale, CEA-Grenoble, 17 rue des Martyrs, 38054 Grenoble cedex 9, France
| |
Collapse
|