1
|
Whole-genome sequencing and analysis of Streptomyces strains producing multiple antinematode drugs. BMC Genomics 2022; 23:610. [PMID: 35996099 PMCID: PMC9396898 DOI: 10.1186/s12864-022-08847-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 08/16/2022] [Indexed: 11/18/2022] Open
Abstract
Background Nematodes are parasitic animals that cause over 100 billion US dollars loss in agricultural business. The whole-genomes of two Streptomyces strains, Streptomyces spectabilis KCTC9218T and Streptomyces sp. AN091965, were sequenced. Both strains produce spectinabilin, an antinematode drug. Its secondary metabolism was examined to aid the development of an efficient nematicidal drug-producing host strain. Results The whole-genome sequences of S. spectabilis KCTC9218T and Streptomyces sp. AN091965 were analyzed using PacBio and Illumina sequencing platforms, and assembled using hybrid methodology. The total contig lengths for KCTC9218T and AN091965 were 9.97 Mb and 9.84 Mb, respectively. A total of 8,374 and 8,054 protein-coding genes, as well as 39 and 45 secondary metabolite biosynthetic gene clusters were identified in KCTC9218T and AN091965, respectively. 18.4 ± 6.45 mg/L and 213.89 ± 21.30 mg/L of spectinabilin were produced by S. spectabilis KCTC9218T and Streptomyces sp. AN091965, respectively. Pine wilt disease caused by nematode was successfully prevented by lower concentration of spectinabilin injection than that of abamectin recommended by its manufacturer. Production of multiple antinematode drugs, including spectinabilin, streptorubin B, and undecylprodigiosin was observed in both strains using high-resolution liquid chromatography mass spectrometry (LC–MS) analysis. Conclusions Whole-genome sequencing of spectinabilin-producing strains, coupled with bioinformatics and mass spectrometry analyses, revealed the production of multiple nematicidal drugs in the KCTC9218T and AN091965 strains. Especially, Streptomyces sp. AN091965 showed high production level of spectinabilin, and this study provides crucial information for the development of potential nematicidal drug producers. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08847-4.
Collapse
|
2
|
Okakpu OK, Dillman AR. Review of the Role of Parasitic Nematode Excretory/Secretory Proteins in Host Immunomodulation. J Parasitol 2022; 108:199-208. [DOI: 10.1645/21-33] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Affiliation(s)
- Ogadinma K. Okakpu
- University of California, Riverside 900 University Avenue, Riverside, California 92521
| | - Adler R. Dillman
- University of California, Riverside 900 University Avenue, Riverside, California 92521
| |
Collapse
|
3
|
Spatial interactions between two nematode species along the intestine of the wood mouse Apodemus sylvaticus from woodland and grassland sites in southern England. J Helminthol 2021; 95:e57. [PMID: 34607615 DOI: 10.1017/s0022149x21000468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The distributions of the nematode parasites Heligmosomoides polygyrus and Syphacia stroma were quantified in three equal-length sections along the intestine of wood mice (Apodemus sylvaticus) trapped in three different locations in the south of England. The distribution of H. polygyrus did not change in the presence of S. stroma, this species being largely confined to the anterior third of the intestine, whether S. stroma was or was not present. However, while in single infections with S. stroma, worms were equally distributed in the anterior and middle sections of the intestine, in the presence of H. polygyrus, a higher percentage of worms was located in the middle section. This was a dose-dependent response by S. stroma to increasing worm burdens with H. polygyrus, and even relatively low intensities of infection with H. polygyrus (e.g. ≤10 worms) were sufficient to cause a posterior redistribution of S. stroma into the middle section. A similar posterior shift in the percentage distribution of S. stroma in the intestine was evident in juvenile and mature mice of both sexes, and in mice from all three study sites. The ecological significance of these results is discussed.
Collapse
|
4
|
Zhang L, Ocansey DKW, Liu L, Olovo CV, Zhang X, Qian H, Xu W, Mao F. Implications of lymphatic alterations in the pathogenesis and treatment of inflammatory bowel disease. Biomed Pharmacother 2021; 140:111752. [PMID: 34044275 DOI: 10.1016/j.biopha.2021.111752] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/06/2021] [Accepted: 05/19/2021] [Indexed: 02/07/2023] Open
Abstract
Inflammatory bowel disease (IBD) is characterized by intense immune dysregulation, gut microbiota imbalance, and intestinal epithelium destruction. Among the factors that contribute to the pathogenesis of IBD, lymphatics have received less attention, hence less studied, characterized, and explored. However, in recent years, the role of the lymphatic system in gastrointestinal pathophysiology continues to be highlighted. This paper examines the implications of lymphatic changes in IBD pathogenesis related to immune cells, gut microbiota, intestinal and mesenteric epithelial barrier integrity, and progression to colorectal cancer (CRC). Therapeutic targets of lymphatics in IBD studies are also presented. Available studies indicate that lymph nodes and other secondary lymphatic tissues, provide highly specialized microenvironments for mounting effective immune responses and that lymphatic integrity plays a significant role in small intestine homeostasis, where the lymphatic vasculature effectively controls tissue edema, leukocyte exit, bacterial antigen, and inflammatory chemokine clearance. In IBD, there are functional and morphological alterations in intestinal and mesenteric lymphatic vessels (more profoundly in Crohn's disease [CD] compared to ulcerative colitis [UC]), including lymphangiogenesis, lymphangiectasia, lymphadenopathy, and lymphatic vasculature blockade, affecting not only immunity but gut microbiota and epithelial barrier integrity. While increased lymphangiogenesis is primarily associated with a good prognosis of IBD, increased lymphangiectasia, lymphadenopathy, and lymphatic vessel occlusion correlate with poor prognosis. IBD therapies that target the lymphatic system seek to increase lymphangiogenesis via induction of lymphangiogenic factors and inhibition of its antagonists. The resultant increased lymphatic flow coupled with other anti-inflammatory activities restores gut homeostasis.
Collapse
Affiliation(s)
- Lu Zhang
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, PR China
| | - Dickson Kofi Wiredu Ocansey
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, PR China; Directorate of University Health Services, University of Cape Coast, Cape Coast, Ghana
| | - Lianqin Liu
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, PR China
| | - Chinasa Valerie Olovo
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, PR China; Department of Microbiology, University of Nigeria, Nsukka 410001, Nigeria
| | - Xu Zhang
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, PR China
| | - Hui Qian
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, PR China
| | - Wenrong Xu
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, PR China
| | - Fei Mao
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, PR China.
| |
Collapse
|
5
|
Immunomodulatory effect of Syphacia obvelata in treatment of experimental DSS-induced colitis in mouse model. Sci Rep 2019; 9:19127. [PMID: 31836772 PMCID: PMC6911064 DOI: 10.1038/s41598-019-55552-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 11/29/2019] [Indexed: 02/08/2023] Open
Abstract
The ability of helminth parasite infections to manipulate the immune system of their host towards T regulatory responses has been proposed to suppress the inflammatory response. The aim of this study was to investigate the protective and therapeutic effect of Syphacia obvelata in the treatment of experimental DSS -induced colitis. 50 male C57BL/6 mice were divided into 5 groups: healthy uninfected controls, DSS colitis, receiving only S. obv, preventive (S. obv + DSS) and therapeutic group (DSS + S.obv). Colitis intensity was investigated by measuring body weight changes, stool consistency/bleeding and colon length. To evaluate the immune responses induced by this nematode, TNF-α, IL-10, IL-17, IFN-γ and expressing of FoxP3+ T cells were measured in mesenteric lymph nodes and Peyer’s patches cells. Mice in preventive and therapeutic groups treated with S. obv egg significantly ameliorated the severity of the DSS colitis, indicated by the reduced disease manifestations, improved histopathological scores correlated with the up regulation of Treg responses and down regulation of proinflammatory cytokines. S. obv can prevention and reverse on-going murine DSS colitis. The data suggest that induction of Tregs and change in cytokine profiles during helminthic therapies were responsible for reversed inflammatory events in IBD.
Collapse
|
6
|
Rodrigues VF, Bahia MPS, Cândido NR, Moreira JMP, Oliveira VG, Araújo ES, Rodrigues Oliveira JL, Rezende MDC, Correa A, Negrão-Corrêa D. Acute infection with Strongyloides venezuelensis increases intestine production IL-10, reduces Th1/Th2/Th17 induction in colon and attenuates Dextran Sulfate Sodium-induced colitis in BALB/c mice. Cytokine 2018; 111:72-83. [PMID: 30118915 DOI: 10.1016/j.cyto.2018.08.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 07/26/2018] [Accepted: 08/06/2018] [Indexed: 12/15/2022]
Abstract
Helminth infection can reduce the severity of inflammatory bowel disease. However, the modulatory mechanisms elicited by helminth infection are not yet fully understood and vary depending on the experimental model. Herein we evaluated the effect of acute infection of BALB/c mice with Strongyloides venezuelensis on the clinical course of ulcerative colitis induced by Dextran Sulfate Sodium (DSS) treatment of these animals. For the experiments, S. venezuelensis-infected BALB/c mice were treated orally with 4% DSS solution for seven days. As controls, we used untreated S. venezuelensis infected, DSS-treated uninfected, and untreated/uninfected BALB/c mice. During DSS treatment, mice from the different groups were compared with regards to the clinical signs related to the severity of colitis and intestinal inflammation. Mice acutely infected with S. venezulensis and treated with DSS had reduced clinical score, shortening of the colon, and tissue inflammation. Moreover, DSS-treated and infected mice showed reduced IL-4, INF-γ, and IL-17 levels and increase of IL-10 production in the colon and/or in the supernatant of mesenteric lymph nodes cell cultures that resulted in lower eosinophil peroxidase and myeloperoxidase activity in colon homogenates, when compared with DSS-treated uninfected mice. DSS-treated infected mice also preserved the intestine architecture and had normal differentiation of goblet cells and mucus production in the colon mucosa. In conclusion, the data indicate that the clinical improvement reported in DSS-treated infected mice was accompanied by the lower production of Th1/Th2/Th17 pro-inflammatory cytokines, stimulation of IL-10, and induction of mucosal repair mechanisms.
Collapse
Affiliation(s)
- Vanessa Fernandes Rodrigues
- Departments of Parasitology, Biological Science Institute of the Federal University of Minas Gerais - UFMG, Belo Horizonte, MG, Brazil
| | - Márcia Paulliny Soares Bahia
- Departments of Parasitology, Biological Science Institute of the Federal University of Minas Gerais - UFMG, Belo Horizonte, MG, Brazil
| | - Núbia Rangel Cândido
- Departments of Parasitology, Biological Science Institute of the Federal University of Minas Gerais - UFMG, Belo Horizonte, MG, Brazil
| | - João Marcelo Peixoto Moreira
- Departments of Parasitology, Biological Science Institute of the Federal University of Minas Gerais - UFMG, Belo Horizonte, MG, Brazil
| | - Vinicius Gustavo Oliveira
- Departments of Parasitology, Biological Science Institute of the Federal University of Minas Gerais - UFMG, Belo Horizonte, MG, Brazil
| | - Emília Souza Araújo
- Departments of Parasitology, Biological Science Institute of the Federal University of Minas Gerais - UFMG, Belo Horizonte, MG, Brazil
| | - Jailza Lima Rodrigues Oliveira
- Departments of Parasitology, Biological Science Institute of the Federal University of Minas Gerais - UFMG, Belo Horizonte, MG, Brazil
| | - Michelle de Carvalho Rezende
- Departments of Parasitology, Biological Science Institute of the Federal University of Minas Gerais - UFMG, Belo Horizonte, MG, Brazil
| | - Ary Correa
- Departments of Microbiology, Biological Science Institute of the Federal University of Minas Gerais - UFMG, Belo Horizonte, MG, Brazil
| | - Deborah Negrão-Corrêa
- Departments of Parasitology, Biological Science Institute of the Federal University of Minas Gerais - UFMG, Belo Horizonte, MG, Brazil.
| |
Collapse
|
7
|
Vlčková K, Pafčo B, Petrželková KJ, Modrý D, Todd A, Yeoman CJ, Torralba M, Wilson BA, Stumpf RM, White BA, Nelson KE, Leigh SR, Gomez A. Relationships Between Gastrointestinal Parasite Infections and the Fecal Microbiome in Free-Ranging Western Lowland Gorillas. Front Microbiol 2018; 9:1202. [PMID: 29963018 PMCID: PMC6013710 DOI: 10.3389/fmicb.2018.01202] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 05/16/2018] [Indexed: 12/17/2022] Open
Abstract
Relationships between gastrointestinal parasites (GIPs) and the gastrointestinal microbiome (GIM) are widely discussed topics across mammalian species due to their possible impact on the host's health. GIPs may change the environment determining alterations in GIM composition. We evaluated the associations between GIP infections and fecal microbiome composition in two habituated and two unhabituated groups of wild western lowland gorillas (Gorilla g. gorilla) from Dzanga Sangha Protected Areas, Central African Republic. We examined 43 fecal samples for GIPs and quantified strongylid nematodes. We characterized fecal microbiome composition through 454 pyrosequencing of the V1-V3 region of the bacterial 16S rRNA gene. Entamoeba spp. infections were associated with significant differences in abundances of bacterial taxa that likely play important roles in nutrition and metabolism for the host, besides being characteristic members of the gorilla gut microbiome. We did not observe any relationships between relative abundances of several bacterial taxa and strongylid egg counts. Based on our findings, we suggest that there is a significant relationship between fecal microbiome and Entamoeba infection in wild gorillas. This study contributes to the overall knowledge about factors involved in modulating GIM communities in great apes.
Collapse
Affiliation(s)
- Klára Vlčková
- Department of Pathology and Parasitology, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czechia.,Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czechia
| | - Barbora Pafčo
- Department of Pathology and Parasitology, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czechia
| | - Klára J Petrželková
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czechia.,Liberec Zoo, Liberec, Czechia.,Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czechia
| | - David Modrý
- Department of Pathology and Parasitology, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czechia.,Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czechia.,Central European Institute for Technology (CEITEC), University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czechia
| | - Angelique Todd
- WWF, Dzanga Sangha Protected Areas, Bangui, Central African Republic
| | - Carl J Yeoman
- Department of Animal and Range Sciences, Montana State University, Bozeman, MT, United States
| | | | - Brenda A Wilson
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States.,Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Rebecca M Stumpf
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States.,Department of Anthropology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Bryan A White
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Karen E Nelson
- J. Craig Venter Institute, Rockville, MD, United States.,J. Craig Venter Institute, La Jolla, CA, United States
| | - Steven R Leigh
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States.,Department of Anthropology, University of Colorado at Boulder, Boulder, CO, United States
| | - Andres Gomez
- Department of Animal Science, University of Minnesota, St Paul, MN, United States
| |
Collapse
|
8
|
Han T, Wang M, Zhang G, Han D, Li X, Liu G, Li X, Wang Z. Gastrointestinal nematodes infections and anthelmintic resistance in grazing sheep in the Eastern Inner Mongolia in China. Acta Parasitol 2017; 62:815-822. [PMID: 29035859 DOI: 10.1515/ap-2017-0098] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 08/09/2017] [Indexed: 11/15/2022]
Abstract
Gastrointestinal nematodes (GIN) are a crucial restraint to grazing sheep production worldwide. This study was conducted to determine the infections and anthelmintic resistance (AR) of GIN in pasture-based sheep in the Eastern Inner Mongolia, China. GIN eggs were tested from 600 grazing sheep feces of 10 farms using saturated saline flotation method and McMaster's method. The egg hatch test (EHT) and the faecal egg count reduction test (FECRT) were used to evaluate resistance of GIN to anthelmintics. We found that the average infection rate was 79.2% (range: 45%-100%). The grand mean faecal egg count (FEC) was 1813.2 eggs per gram (EPG) (range: 0-32400 EPG). There were significant differences in GIN infection among different breeds of sheep. The sequence of infection intensity and infection rate were Small fat tail > Ujimqin > Ju Ud (p<0.05). The 50% effective doses (ED50) of albendazole(ABZ) and levamisole (LMS) for expelling were 5.670 µg/mL and 0.302 µg/mL, respectively. The percentage reductions of avermectin (AVM), ivermectin (IVM), ABZ and LMS were 81.28%, 86.49%, 76.21% and 96.59%, respectively. The most predominant parasite genus in all four anthelmintics was Haemonchus. In these tested areas, mixed infections of GIN in grazing sheep were very common. AR, especially in Haemonchus, was a serious problem in these sheep flocks. Thus, actions are urgently required to taken to mitigate the worsening situation.
Collapse
|
9
|
Wang M, Wu L, Weng R, Zheng W, Wu Z, Lv Z. Therapeutic potential of helminths in autoimmune diseases: helminth-derived immune-regulators and immune balance. Parasitol Res 2017; 116:2065-2074. [PMID: 28664463 DOI: 10.1007/s00436-017-5544-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Accepted: 06/21/2017] [Indexed: 12/22/2022]
Abstract
Helminths have accompanied human throughout history by releasing immune-evasion molecules that could counteract an aberrant immune response within the host. In the past decades, helminth infections are becoming less prevalent possibly due to the developed sanitation. Meanwhile, the incidence of autoimmune diseases is increasing, which cannot be exclusively explained by the changes of susceptibility genes. While the hygiene hypothesis casts light on the problem. The infections of helminths are believed to interact with and regulate human immunity with the byproduct of suppressing the autoimmune diseases. Thus, helminths are potential to treat or cure the autoimmune diseases. The therapeutic progresses and possible immune suppression mechanisms are illustrated in the review. The helminths that are studied most intensively include Heligmosomoides polygyrus, Hymenolepis diminuta, Schistosoma mansoni, Trichinella spiralis, and Trichuris suis. Special attentions are paid on the booming animal models and clinical trials that are to detect the efficiency of immune-modulating helminth-derived molecules on autoimmune diseases. These trials provide us with a prosperous clinical perspective, but the precise mechanism of the down-regulatory immune response remains to be clarified. More efforts are needed to be dedicated until these parasite-derived immune modulators could be used in clinic to treat or cure the autoimmune diseases under a standard management.
Collapse
Affiliation(s)
- Meng Wang
- Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou, 510080, China.,Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China
| | - Linxiang Wu
- Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou, 510080, China.,Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China
| | - Rennan Weng
- Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou, 510080, China.,Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China
| | - Weihong Zheng
- Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou, 510080, China.,Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China
| | - Zhongdao Wu
- Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou, 510080, China.,Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, 510080, China
| | - Zhiyue Lv
- Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou, 510080, China. .,Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China. .,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, 510080, China.
| |
Collapse
|
10
|
Endharti AT, Baskoro AD, Norahmawati E. Therapeutic effect of soluble worm protein acting as immune regulatory on colitis. Asian Pac J Trop Biomed 2017. [DOI: 10.1016/j.apjtb.2016.11.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
11
|
Parasitic Nematode Immunomodulatory Strategies: Recent Advances and Perspectives. Pathogens 2016; 5:pathogens5030058. [PMID: 27649248 PMCID: PMC5039438 DOI: 10.3390/pathogens5030058] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 09/02/2016] [Accepted: 09/12/2016] [Indexed: 01/02/2023] Open
Abstract
More than half of the described species of the phylum Nematoda are considered parasitic, making them one of the most successful groups of parasites. Nematodes are capable of inhabiting a wide variety of niches. A vast array of vertebrate animals, insects, and plants are all identified as potential hosts for nematode parasitization. To invade these hosts successfully, parasitic nematodes must be able to protect themselves from the efficiency and potency of the host immune system. Innate immunity comprises the first wave of the host immune response, and in vertebrate animals it leads to the induction of the adaptive immune response. Nematodes have evolved elegant strategies that allow them to evade, suppress, or modulate host immune responses in order to persist and spread in the host. Nematode immunomodulation involves the secretion of molecules that are capable of suppressing various aspects of the host immune response in order to promote nematode invasion. Immunomodulatory mechanisms can be identified in parasitic nematodes infecting insects, plants, and mammals and vary greatly in the specific tactics by which the parasites modify the host immune response. Nematode-derived immunomodulatory effects have also been shown to affect, negatively or positively, the outcome of some concurrent diseases suffered by the host. Understanding nematode immunomodulatory actions will potentially reveal novel targets that will in turn lead to the development of effective means for the control of destructive nematode parasites.
Collapse
|
12
|
The genome ofStrongyloidesspp. gives insights into protein families with a putative role in nematode parasitism. Parasitology 2016; 144:343-358. [DOI: 10.1017/s0031182016001554] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
SUMMARYParasitic nematodes are important and abundant parasites adapted to live a parasitic lifestyle, with these adaptations all aimed at facilitating their survival and reproduction in their hosts. The recently sequenced genomes of fourStrongyloidesspecies, gastrointestinal parasites of humans and other animals, alongside transcriptomic and proteomic analysis of free-living and parasitic stages of their life cycles have revealed a number of protein families with a putative role in their parasitism. Many of these protein families have also been associated with parasitism in other parasitic nematode species, suggesting that these proteins may play a fundamental role in nematode parasitism more generally. Here, we review key protein families that have a putative role inStrongyloides’ parasitism – acetylcholinesterases, astacins, aspartic proteases, prolyl oligopeptidases, proteinase inhibitors (trypsin inhibitors and cystatins), SCP/TAPS and transthyretin-like proteins – and the evidence for their key, yet diverse, roles in the parasitic lifestyle.
Collapse
|
13
|
Vukman KV, Lalor R, Aldridge A, O'Neill SM. Mast cells: new therapeutic target in helminth immune modulation. Parasite Immunol 2016; 38:45-52. [PMID: 26577605 DOI: 10.1111/pim.12295] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 11/02/2015] [Indexed: 02/06/2023]
Abstract
Helminth infection and their secreted antigens have a protective role in many immune-mediated inflammatory disorders such as inflammatory bowel disease, rheumatoid arthritis and multiple sclerosis. However, studies have focused primarily on identifying immune protective mechanisms of helminth infection and their secreted molecules on dendritic cells and macrophages. Given that mast cells have been shown to be implicated in the pathogenesis and progression of many inflammatory disorders, their role should also be examined and considered as cellular target for helminth-based therapies. As there is a dearth of studies examining the interaction of helminth-derived antigens and mast cells, this review will focus on the role of mast cells during helminth infection and examine our current understanding of the involvement of mast cells in TH 1/TH 17-mediated immune disorders. In this context, potential mechanisms by which helminths could target the TH 1/TH 17 promoting properties of mast cells can be identified to unveil novel therapeutic mast cell driven targets in combating these inflammatory disorders.
Collapse
Affiliation(s)
- K V Vukman
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Nagyvarad ter 4., H-1089, Budapest, Hungry.,Parasite Immune Modulation Group, School of Biotechnology, Faculty of Science and Health, Dublin City University, Glasnevin, Dublin, Ireland
| | - R Lalor
- Parasite Immune Modulation Group, School of Biotechnology, Faculty of Science and Health, Dublin City University, Glasnevin, Dublin, Ireland
| | - A Aldridge
- Parasite Immune Modulation Group, School of Biotechnology, Faculty of Science and Health, Dublin City University, Glasnevin, Dublin, Ireland
| | - S M O'Neill
- Parasite Immune Modulation Group, School of Biotechnology, Faculty of Science and Health, Dublin City University, Glasnevin, Dublin, Ireland
| |
Collapse
|
14
|
Shepherd C, Navarro S, Wangchuk P, Wilson D, Daly NL, Loukas A. Identifying the immunomodulatory components of helminths. Parasite Immunol 2015; 37:293-303. [PMID: 25854639 DOI: 10.1111/pim.12192] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 03/18/2015] [Indexed: 12/13/2022]
Abstract
Immunomodulatory components of helminths offer great promise as an entirely new class of biologics for the treatment of inflammatory diseases. Here, we discuss the emerging themes in helminth-driven immunomodulation in the context of therapeutic drug discovery. We broadly define the approaches that are currently applied by researchers to identify these helminth molecules, highlighting key areas of potential exploitation that have been mostly neglected thus far, notably small molecules. Finally, we propose that the investigation of immunomodulatory compounds will enable the translation of current and future research efforts into potential treatments for autoimmune and allergic diseases, while at the same time yielding new insights into the molecular interface of host-parasite biology.
Collapse
Affiliation(s)
- C Shepherd
- Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Qld, Australia
| | | | | | | | | | | |
Collapse
|
15
|
Mohammadi R, Hosseini-Safa A, Ehsani Ardakani MJ, Rostami-Nejad M. The relationship between intestinal parasites and some immune-mediated intestinal conditions. GASTROENTEROLOGY AND HEPATOLOGY FROM BED TO BENCH 2015; 8:123-31. [PMID: 25926937 PMCID: PMC4403024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 02/03/2015] [Indexed: 11/16/2022]
Abstract
Over the last decades, the incidence of infestation by minor parasites has decreased in developed countries. Infectious agents can also suppress autoimmune and allergic disorders. Some investigations show that various protozoa and helminthes are connected with the main immune-mediated intestinal conditions including celiac disease (CD), inflammatory bowel diseases (IBD) and irritable bowel syndrome (IBS). Celiac disease is a digestive and autoimmune disorder that can damage the small intestine and characterized by a multitude gastrointestinal (GI) and extra GI symptoms. IBD (including ulcerative colitis and Crohn's disease) is a group of inflammatory conditions of the small intestine and colon. The etiology of IBD is unknown, but it may be related to instability in the intestinal microflora that leading to an immoderate inflammatory response to commensal microbiota. Irritable bowel syndrome (IBS) is a common, long-term condition of the digestive system. Bloating, diarrhoea and/or constipation are nonspecific symptoms of IBS. Various studies have shown that some intestinal parasites can effect on immune system of infected hosts and in some cases, they are able to modify and change the host's immune responses, particularly in autoimmune disorders like celiac disease and IBD. The main objective of this review is to investigate the relationship between intestinal parasites and different inflammatory bowel disorders.
Collapse
Affiliation(s)
- Rasoul Mohammadi
- Department of Medical Parasitology and Mycology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran,
| | - Ahmad Hosseini-Safa
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Mohammad Rostami-Nejad
- Gastroenterology and Liver Diseases Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
16
|
Whelan RA, Rausch S, Ebner F, Günzel D, Richter JF, Hering NA, Schulzke JD, Kühl AA, Keles A, Janczyk P, Nöckler K, Wieler LH, Hartmann S. A transgenic probiotic secreting a parasite immunomodulator for site-directed treatment of gut inflammation. Mol Ther 2014; 22:1730-40. [PMID: 24985163 DOI: 10.1038/mt.2014.125] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 06/25/2014] [Indexed: 12/20/2022] Open
Abstract
New treatment strategies for inflammatory bowel disease are needed and parasitic nematode infections or application of helminth components improve clinical and experimental gut inflammation. We genetically modified the probiotic bacterium Escherichia coli Nissle 1917 to secrete the powerful nematode immunomodulator cystatin in the gut. This treatment was tested in a murine colitis model and on post-weaning intestinal inflammation in pigs, an outbred model with a gastrointestinal system similar to humans. Application of the transgenic probiotic significantly decreased intestinal inflammation in murine acute colitis, associated with increased frequencies of Foxp3(+) Tregs, suppressed local interleukin (IL)-6 and IL-17A production, decreased macrophage inflammatory protein-1α/β, monocyte chemoattractant protein -1/3, and regulated upon activation, normal T-cell expressed, and secreted expression and fewer inflammatory macrophages in the colon. High dosages of the transgenic probiotic were well tolerated by post-weaning piglets. Despite being recognized by T cells, secreted cystatin did not lead to changes in cytokine expression or macrophage activation in the colon. However, colon transepithelial resistance and barrier function were significantly improved in pigs receiving the transgenic probotic and post-weaning colon inflammation was reduced. Thus, the anti-inflammatory efficiency of a probiotic can be improved by a nematode-derived immunoregulatory transgene. This treatment regimen should be further investigated as a potential therapeutic option for inflammatory bowel disease.
Collapse
Affiliation(s)
- Rose A Whelan
- Center for Infection Medicine, Institute of Immunology, Freie Universität Berlin, Berlin, Germany
| | - Sebastian Rausch
- Center for Infection Medicine, Institute of Immunology, Freie Universität Berlin, Berlin, Germany
| | - Friederike Ebner
- Center for Infection Medicine, Institute of Immunology, Freie Universität Berlin, Berlin, Germany
| | - Dorothee Günzel
- Institute of Clinical Physiology, Charité-University Medicine Berlin, Berlin, Germany
| | - Jan F Richter
- 1] Institute of Clinical Physiology, Charité-University Medicine Berlin, Berlin, Germany [2] Current address: Institute for Anatomy II, Friedrich-Schiller-University, Jena, Germany
| | - Nina A Hering
- Department of Gastroenterology, Division of Nutritional Medicine, Charité-University Medicine Berlin, Berlin, Germany
| | - Jörg-Dieter Schulzke
- Department of Gastroenterology, Division of Nutritional Medicine, Charité-University Medicine Berlin, Berlin, Germany
| | - Anja A Kühl
- Department of Internal Medicine, Rheumatology and Clinical Immunology/Research Center ImmunoSciences (RCIS), Charité-University Medicine Berlin, Berlin, Germany
| | - Ahmed Keles
- Institute of Clinical Physiology, Charité-University Medicine Berlin, Berlin, Germany
| | - Pawel Janczyk
- Unit for Molecular Diagnostics, Genetics and Pathogen Characterisation, Department of Biological Safety Federal Institute for Risk Assessment, Berlin, Germany
| | - Karsten Nöckler
- Unit for Molecular Diagnostics, Genetics and Pathogen Characterisation, Department of Biological Safety Federal Institute for Risk Assessment, Berlin, Germany
| | - Lothar H Wieler
- Institute for Microbiology and Animal Health, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Susanne Hartmann
- Center for Infection Medicine, Institute of Immunology, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
17
|
Yang X, Yang Y, Wang Y, Zhan B, Gu Y, Cheng Y, Zhu X. Excretory/secretory products from Trichinella spiralis adult worms ameliorate DSS-induced colitis in mice. PLoS One 2014; 9:e96454. [PMID: 24788117 PMCID: PMC4008629 DOI: 10.1371/journal.pone.0096454] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2013] [Accepted: 04/08/2014] [Indexed: 12/19/2022] Open
Abstract
Background Many evidences show the inverse correlation between helminth infection and allergic or autoimmune diseases. Identification and characterization of the active helminth-derived products responsible for the beneficial effects on allergic or inflammatory diseases will provide another feasible approach to treat these diseases. Methods and Findings Colitis was induced in C57BL/6 mice by giving 3% DSS orally for 7 days. During this period, the mice were treated daily with the excretory/secretory products from T. spiralis adult worms (AES) intraperitoneally. The severity of colitis was monitored by measuring body weight, stool consistency or bleeding, colon length and inflammation. To determine the T. spiralis AES product-induced immunological response, Th1, Th2, Th17 and regulatory cytokine profiles were measured in lymphocytes isolated from colon, mesenteric lymph nodes (MLN), and the spleen of treated mice. The CD4+ CD25+ FOXP3+ regulatory T cells (Tregs) were also measured in the spleens and MLN of treated mice. Mice treated with AES significantly ameliorated the severity of the DSS-induced colitis indicated by the reduced disease manifestations, improved macroscopic and microscopic inflammation correlated with the up-regulation of Treg response (increased regulatory cytokines IL-10, TGF-beta and regulatory T cells) and down-regulation of pro-inflammatory cytokines (IFN-gamma, IL-6 and IL-17) in the spleens, MLN and colon of treated mice. Conclusions Our results provide direct evidences that T. spiralis AES have a therapeutic potential for alleviating inflammatory colitis in mice. This effect is possibly mediated by the immunomodulation of regulatory T cells to produce regulatory and anti-inflammatory cytokines and inhibit pro-inflammatory cytokines.
Collapse
Affiliation(s)
- Xiaodi Yang
- Department of Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
- Department of Microbiology and Parasitology, Bengbu Medical College; Anhui Key Laboratory of Infection and Immunity, Bengbu, Anhui, China
| | - Yaping Yang
- Department of Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yunyun Wang
- Department of Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Bin Zhan
- Section of Tropical Medicine, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Yuan Gu
- Department of Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yuli Cheng
- Department of Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xinping Zhu
- Department of Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
- * E-mail:
| |
Collapse
|
18
|
Heylen M, Ruyssers NE, Gielis EM, Vanhomwegen E, Pelckmans PA, Moreels TG, De Man JG, De Winter BY. Of worms, mice and man: an overview of experimental and clinical helminth-based therapy for inflammatory bowel disease. Pharmacol Ther 2014; 143:153-67. [PMID: 24603369 DOI: 10.1016/j.pharmthera.2014.02.011] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 02/25/2014] [Indexed: 12/17/2022]
Abstract
The incidence of inflammatory and autoimmune disorders is highest in well-developed countries which is directly related to their higher hygienic standards: it is suggested that the lack of exposure to helminths contributes to the susceptibility for immune-related diseases. Epidemiological, experimental and clinical data support the idea that helminths provide protection against immune-mediated diseases such as inflammatory bowel disease (IBD). The most likely mechanism for the suppression of immune responses by helminths is the release of helminth-derived immunomodulatory molecules. This article reviews the experimental and clinical studies investigating the therapeutic potential of helminth-based therapy in IBD and also focuses on the current knowledge of its immunomodulatory mechanisms of action highlighting innate as well as adaptive immune mechanisms. Identifying the mechanisms by which these helminths and helminth-derived molecules modulate the immune system will help in creating novel drugs for the treatment of IBD and other disorders that result from an overactive immune response.
Collapse
Affiliation(s)
- Marthe Heylen
- Laboratory of Experimental Medicine and Pediatrics, Division of Gastroenterology, University of Antwerp, Antwerp, Belgium
| | - Nathalie E Ruyssers
- Laboratory of Experimental Medicine and Pediatrics, Division of Gastroenterology, University of Antwerp, Antwerp, Belgium
| | - Els M Gielis
- Laboratory of Experimental Medicine and Pediatrics, Division of Gastroenterology, University of Antwerp, Antwerp, Belgium
| | - Els Vanhomwegen
- Laboratory of Experimental Medicine and Pediatrics, Division of Gastroenterology, University of Antwerp, Antwerp, Belgium
| | - Paul A Pelckmans
- Laboratory of Experimental Medicine and Pediatrics, Division of Gastroenterology, University of Antwerp, Antwerp, Belgium; Antwerp University Hospital, Division of Gastroenterology & Hepatology, Antwerp, Belgium
| | - Tom G Moreels
- Laboratory of Experimental Medicine and Pediatrics, Division of Gastroenterology, University of Antwerp, Antwerp, Belgium; Antwerp University Hospital, Division of Gastroenterology & Hepatology, Antwerp, Belgium
| | - Joris G De Man
- Laboratory of Experimental Medicine and Pediatrics, Division of Gastroenterology, University of Antwerp, Antwerp, Belgium
| | - Benedicte Y De Winter
- Laboratory of Experimental Medicine and Pediatrics, Division of Gastroenterology, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
19
|
Esmat S, El Nady M, Elfekki M, Elsherif Y, Naga M. Epidemiological and clinical characteristics of inflammatory bowel diseases in Cairo, Egypt. World J Gastroenterol 2014; 20:814-821. [PMID: 24574754 PMCID: PMC3921490 DOI: 10.3748/wjg.v20.i3.814] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 11/21/2013] [Accepted: 12/04/2013] [Indexed: 02/06/2023] Open
Abstract
AIM: To study the natural history, patterns and clinical characteristics of inflammatory bowel diseases (IBD) in Egypt.
METHODS: We designed a case-series study in the gastroenterology centre of the Internal Medicine department of Cairo University, which is a tertiary care referral centre in Egypt. We included all patients in whom the diagnosis of ulcerative colitis (UC) or Crohn’s disease (CD) was confirmed by clinical, laboratory, endoscopic, histological and/or radiological criteria over the 15 year period from 1995 to 2009, and we studied their sociodemographic and clinical characteristics. Endoscopic examinations were performed by 2 senior experts. This hospital centre serves patients from Cairo, as well as patients referred from all other parts of Egypt. Our centre received 24156 patients over the described time period for gastro-intestinal consultations and/or interventions.
RESULTS: A total of 157 patients with established IBD were included in this study. Of these, 135 patients were diagnosed with UC (86% of the total), and 22 patients, with CD (14% of the total). The mean ages at diagnosis were 27.3 and 29.7, respectively. Strikingly, we noticed a marked increase in the frequency of both UC and CD diagnoses during the most recent 10 years of the 15 year period studied. Regarding the gender distribution, the male:female ratio was 1:1.15 for UC and 2.6:1 for CD. The mean duration of follow up for patients with UC was 6.2 ± 5.18 years, while the mean duration of follow up for patients with CD was 5.52 ± 2.83 years. For patients with UC we found no correlation between the severity of the disease and the presence of extraintestinal manifestations. Eleven patients had surgical interventions during the studied years: 4 cases of total colectomy and 7 cases of anal surgery.
CONCLUSION: We observed a ratio of 6:1 for UC to CD in our series. The incidence of IBD seems to be rising in Egypt.
Collapse
|
20
|
Taghipour N, Aghdaei HA, Haghighi A, Mossafa N, Tabaei SJS, Rostami-Nejad M. Potential treatment of inflammatory bowel disease: a review of helminths therapy. GASTROENTEROLOGY AND HEPATOLOGY FROM BED TO BENCH 2014; 7:9-16. [PMID: 25436093 PMCID: PMC4017549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 12/18/2013] [Indexed: 10/25/2022]
Abstract
An inflammatory bowel disease (IBD) is most common in highly industrialized Western countries but uncommon in less developed areas of the world where helminths are frequent. The hygiene hypothesis proposes that the recent increase in allergic and autoimmune diseases is due to modern highly hygienic life styles and medical conditions. Loss of routine exposure to parasitic helminths, as a result of increasing lifestyle-associated factors, may be one factor leading to the increased disease prevalence. In animal models and clinical trials of IBD, gastrointestinal nematodes colonization suppresses intestinal inflammation through multiple mechanisms including induction of innate and adaptive regulatory circuits. Studies using helminths like Trichuris suis or Necator americanus showed that these helminths are safe and may be effective therapeutic approaches for the control of IBD and other immune diseases. The aim of present review was to exploring the therapeutic use of helminths for the control of IBD.
Collapse
Affiliation(s)
- Niloofar Taghipour
- Gastroenterology and Liver Diseases Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran,Department of Medical Parasitology & Mycology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Asadzadeh Aghdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Haghighi
- Department of Medical Parasitology & Mycology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nariman Mossafa
- Department of Immunology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyyed Javad Seyyed Tabaei
- Department of Medical Parasitology & Mycology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Rostami-Nejad
- Gastroenterology and Liver Diseases Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
21
|
Rausch S, Held J, Fischer A, Heimesaat MM, Kühl AA, Bereswill S, Hartmann S. Small intestinal nematode infection of mice is associated with increased enterobacterial loads alongside the intestinal tract. PLoS One 2013; 8:e74026. [PMID: 24040152 PMCID: PMC3769368 DOI: 10.1371/journal.pone.0074026] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 07/25/2013] [Indexed: 01/04/2023] Open
Abstract
Parasitic nematodes are potent modulators of immune reactivity in mice and men. Intestinal nematodes live in close contact with commensal gut bacteria, provoke biased Th2 immune responses upon infection, and subsequently lead to changes in gut physiology. We hypothesized that murine nematode infection is associated with distinct changes of the intestinal bacterial microbiota composition. We here studied intestinal inflammatory and immune responses in mice following infection with the hookworm Heligmosomoidespolygyrusbakeri and applied cultural and molecular techniques to quantitatively assess intestinal microbiota changes in the ileum, cecum and colon. At day 14 post nematode infection, mice harbored significantly higher numbers of γ-Proteobacteria/Enterobacteriaceae and members of the Bacteroides/Prevotella group in their cecum as compared to uninfected controls. Abundance of Gram-positive species such as Lactobacilli, Clostridia as well as the total bacterial load was not affected by worm infection. The altered microbiota composition was independent of the IL-4/-13 – STAT6 signaling axis, as infected IL-4Rα-/- mice showed a similar increase in enterobacterial loads. In conclusion, infection with an enteric nematode is accompanied by distinct intestinal microbiota changes towards higher abundance of gram-negative commensal species at the small intestinal site of infection (and inflammation), but also in the parasite-free large intestinal tract. Further studies should unravel the impact of nematode-induced microbiota changes in inflammatory bowel disease to allow for a better understanding of how theses parasites interfere with intestinal inflammation and bacterial communities in men.
Collapse
MESH Headings
- Animals
- Bacterial Load
- Cytokines/biosynthesis
- Enterobacteriaceae/classification
- Enterobacteriaceae/genetics
- Enterobacteriaceae/growth & development
- Female
- Interleukin-4 Receptor alpha Subunit/genetics
- Interleukin-4 Receptor alpha Subunit/metabolism
- Intestinal Diseases, Parasitic/immunology
- Intestinal Diseases, Parasitic/microbiology
- Intestinal Mucosa/microbiology
- Intestinal Mucosa/parasitology
- Intestinal Mucosa/pathology
- Intestine, Small/immunology
- Intestine, Small/microbiology
- Intestine, Small/parasitology
- Intestine, Small/pathology
- Mice
- Mice, Knockout
- Microbiota
- Nematode Infections/immunology
- Nematode Infections/microbiology
- Nematode Infections/parasitology
- RNA, Bacterial
- RNA, Ribosomal, 16S
- Signal Transduction
Collapse
Affiliation(s)
- Sebastian Rausch
- Institute of Immunology, Department of Veterinary Medicine, Freie Universität, Berlin, Germany
- * E-mail:
| | - Josephin Held
- Department of Neuropathology, Charité - University Medicine Berlin, Berlin, Germany
| | - André Fischer
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin, Berlin, Germany
| | - Markus M. Heimesaat
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin, Berlin, Germany
| | - Anja A. Kühl
- Department of Internal Medicine, Rheumatology and Clinical Immunology/Research Center ImmunoSciences (RCIS), Charité - University Medicine Berlin, Berlin, Germany
| | - Stefan Bereswill
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin, Berlin, Germany
| | - Susanne Hartmann
- Institute of Immunology, Department of Veterinary Medicine, Freie Universität, Berlin, Germany
| |
Collapse
|
22
|
Graepel R, Leung G, Wang A, Villemaire M, Jirik FR, Sharkey KA, McDougall JJ, McKay DM. Murine autoimmune arthritis is exaggerated by infection with the rat tapeworm, Hymenolepis diminuta. Int J Parasitol 2013; 43:593-601. [PMID: 23583716 DOI: 10.1016/j.ijpara.2013.02.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2012] [Revised: 02/15/2013] [Accepted: 02/19/2013] [Indexed: 01/21/2023]
Abstract
Infection with helminth parasites triggers strong and stereotypic immune responses in humans and mice, which can protect against specific experimentally-induced autoimmune diseases. We have shown that infection with the rat tapeworm, Hymenolepis diminuta, confers a protective effect on FCA-induced joint inflammation. Here, we investigated the effect of a prophylactic infection with H. diminuta on the K/BxN-serum model of polyarthritis in BALB/c mice. Mice were infected with 10 cysticercoids of H. diminuta by oral gavage and 8 days later arthritis was induced by i.p. injection of K/BxN arthritogenic serum. Joint swelling and pain measurements were recorded throughout a 13 day time course. At necropsy, joints and blood serum were collected. K/BxN-treated mice developed joint inflammation in the front paws, hind paws and knees as shown by increased swelling, mechanical allodynia and myeloperoxidase activity. Mice infected with H. diminuta had more severe disease, with increased eosinophil peroxidase activity in their paws and greater inflammatory infiltrate and synovitis in the knee joints. Hymenolepis diminuta-infected mice displayed significant increases in serum levels of C5a and mast cell protease-1 compared with K/BxN-serum only treatment, the latter being indicative of mast cell activation. In contrast to the protective effect of infection with H. diminuta in FCA-induced monoarthritis, infection with this helminth exacerbated K/BxN serum-induced polyarthritis in BALB/c mice. This correlated with increases in C5a and mast cell activation: factors critical in the development of K/BxN-induced arthritis. Thus, while data accumulate from animal models showing that infection with helminth parasites may be beneficial for a variety of auto-inflammatory diseases, our findings demonstrate the potential for helminths to exacerbate disease. Hence care is needed when helminth therapy is translated into a clinical setting.
Collapse
Affiliation(s)
- Rabea Graepel
- Gastrointestinal Research Group, Department of Physiology & Pharmacology, The Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Vukman KV, Adams PN, Metz M, Maurer M, O’Neill SM. Fasciola hepaticaTegumental Coat Impairs Mast Cells’ Ability To Drive Th1 Immune Responses. THE JOURNAL OF IMMUNOLOGY 2013; 190:2873-9. [DOI: 10.4049/jimmunol.1203011] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
24
|
Reynolds LA, Filbey KJ, Maizels RM. Immunity to the model intestinal helminth parasite Heligmosomoides polygyrus. Semin Immunopathol 2012; 34:829-46. [PMID: 23053394 PMCID: PMC3496515 DOI: 10.1007/s00281-012-0347-3] [Citation(s) in RCA: 150] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Accepted: 09/13/2012] [Indexed: 02/07/2023]
Abstract
Heligmosomoides polygyrus is a natural intestinal parasite of mice, which offers an excellent model of the immunology of gastrointestinal helminth infections of humans and livestock. It is able to establish long-term chronic infections in many strains of mice, exerting potent immunomodulatory effects that dampen both protective immunity and bystander reactions to allergens and autoantigens. Immunity to the parasite develops naturally in some mouse strains and can be induced in others through immunization; while the mechanisms of protective immunity are not yet fully defined, both antibodies and a host cellular component are required, with strongest evidence for a role of alternatively activated macrophages. We discuss the balance between resistance and susceptibility in this model system and highlight new themes in innate and adaptive immunity, immunomodulation, and regulation of responsiveness in helminth infection.
Collapse
Affiliation(s)
- Lisa A. Reynolds
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, EH9 3JT UK
| | - Kara J. Filbey
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, EH9 3JT UK
| | - Rick M. Maizels
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, EH9 3JT UK
- Institute of Immunology and Infection Research, University of Edinburgh, West Mains Road, Edinburgh, EH9 3JT UK
| |
Collapse
|