1
|
Barr ZK, Werner T, Tilsner J. Heavy Metal-Associated Isoprenylated Plant Proteins (HIPPs) at Plasmodesmata: Exploring the Link between Localization and Function. PLANTS (BASEL, SWITZERLAND) 2023; 12:3015. [PMID: 37631227 PMCID: PMC10459601 DOI: 10.3390/plants12163015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/09/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023]
Abstract
Heavy metal-associated isoprenylated plant proteins (HIPPs) are a metallochaperone-like protein family comprising a combination of structural features unique to vascular plants. HIPPs possess both one or two heavy metal-binding domains and an isoprenylation site, facilitating a posttranslational protein lipid modification. Recent work has characterized individual HIPPs across numerous different species and provided evidence for varied functionalities. Interestingly, a significant number of HIPPs have been identified in proteomes of plasmodesmata (PD)-nanochannels mediating symplastic connectivity within plant tissues that play pivotal roles in intercellular communication during plant development as well as responses to biotic and abiotic stress. As characterized functions of many HIPPs are linked to stress responses, plasmodesmal HIPP proteins are potentially interesting candidate components of signaling events at or for the regulation of PD. Here, we review what is known about PD-localized HIPP proteins specifically, and how the structure and function of HIPPs more generally could link to known properties and regulation of PD.
Collapse
Affiliation(s)
- Zoe Kathleen Barr
- Biomedical Sciences Research Complex, University of St Andrews, BMS Building, North Haugh, St Andrews, Fife KY16 9ST, UK;
- Cell & Molecular Sciences, The James Hutton Institute, Dundee DD2 5DA, UK
| | - Tomáš Werner
- Department of Biology, University of Graz, Schubertstraße 51, 8010 Graz, Austria
| | - Jens Tilsner
- Biomedical Sciences Research Complex, University of St Andrews, BMS Building, North Haugh, St Andrews, Fife KY16 9ST, UK;
- Cell & Molecular Sciences, The James Hutton Institute, Dundee DD2 5DA, UK
| |
Collapse
|
2
|
Samarina L, Wang S, Malyukova L, Bobrovskikh A, Doroshkov A, Koninskaya N, Shkhalakhova R, Matskiv A, Fedorina J, Fizikova A, Manakhova K, Loshkaryova S, Tutberidze T, Ryndin A, Khlestkina E. Long-term cold, freezing and drought: overlapping and specific regulatory mechanisms and signal transduction in tea plant ( Camellia sinensis (L.) Kuntze). FRONTIERS IN PLANT SCIENCE 2023; 14:1145793. [PMID: 37235017 PMCID: PMC10206121 DOI: 10.3389/fpls.2023.1145793] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/11/2023] [Indexed: 05/28/2023]
Abstract
Introduction Low temperatures and drought are two main environmental constraints reducing the yield and geographical distribution of horticultural crops worldwide. Understanding the genetic crosstalk between stress responses has potential importance for crop improvement. Methods In this study, Illumina RNA-seq and Pac-Bio genome resequencing were used to annotate genes and analyze transcriptome dynamics in tea plants under long-term cold, freezing, and drought. Results The highest number of differentially expressed genes (DEGs) was identified under long-term cold (7,896) and freezing (7,915), with 3,532 and 3,780 upregulated genes, respectively. The lowest number of DEGs was observed under 3-day drought (47) and 9-day drought (220), with five and 112 genes upregulated, respectively. The recovery after the cold had 6.5 times greater DEG numbers as compared to the drought recovery. Only 17.9% of cold-induced genes were upregulated by drought. In total, 1,492 transcription factor genes related to 57 families were identified. However, only 20 transcription factor genes were commonly upregulated by cold, freezing, and drought. Among the 232 common upregulated DEGs, most were related to signal transduction, cell wall remodeling, and lipid metabolism. Co-expression analysis and network reconstruction showed 19 genes with the highest co-expression connectivity: seven genes are related to cell wall remodeling (GATL7, UXS4, PRP-F1, 4CL, UEL-1, UDP-Arap, and TBL32), four genes are related to calcium-signaling (PXL1, Strap, CRT, and CIPK6), three genes are related to photo-perception (GIL1, CHUP1, and DnaJ11), two genes are related to hormone signaling (TTL3 and GID1C-like), two genes are involved in ROS signaling (ERO1 and CXE11), and one gene is related to the phenylpropanoid pathway (GALT6). Discussion Based on our results, several important overlapping mechanisms of long-term stress responses include cell wall remodeling through lignin biosynthesis, o-acetylation of polysaccharides, pectin biosynthesis and branching, and xyloglucan and arabinogalactan biosynthesis. This study provides new insight into long-term stress responses in woody crops, and a set of new target candidate genes were identified for molecular breeding aimed at tolerance to abiotic stresses.
Collapse
Affiliation(s)
- Lidiia Samarina
- Federal Research Centre the Subtropical Scientific Centre, Russian Academy of Sciences, Sochi, Russia
- Center of Genetics and Life Sciences, Sirius University of Science and Technology, Sirius, Russia
| | - Songbo Wang
- Federal Research Centre the Subtropical Scientific Centre, Russian Academy of Sciences, Sochi, Russia
| | - Lyudmila Malyukova
- Federal Research Centre the Subtropical Scientific Centre, Russian Academy of Sciences, Sochi, Russia
| | - Alexandr Bobrovskikh
- Institute of Cytology and Genetics Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
| | - Alexey Doroshkov
- Institute of Cytology and Genetics Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
| | - Natalia Koninskaya
- Federal Research Centre the Subtropical Scientific Centre, Russian Academy of Sciences, Sochi, Russia
| | - Ruset Shkhalakhova
- Federal Research Centre the Subtropical Scientific Centre, Russian Academy of Sciences, Sochi, Russia
| | - Alexandra Matskiv
- Federal Research Centre the Subtropical Scientific Centre, Russian Academy of Sciences, Sochi, Russia
| | - Jaroslava Fedorina
- Federal Research Centre the Subtropical Scientific Centre, Russian Academy of Sciences, Sochi, Russia
- Center of Genetics and Life Sciences, Sirius University of Science and Technology, Sirius, Russia
| | - Anastasia Fizikova
- Federal Research Centre the Subtropical Scientific Centre, Russian Academy of Sciences, Sochi, Russia
- Center of Genetics and Life Sciences, Sirius University of Science and Technology, Sirius, Russia
| | - Karina Manakhova
- Federal Research Centre the Subtropical Scientific Centre, Russian Academy of Sciences, Sochi, Russia
- Center of Genetics and Life Sciences, Sirius University of Science and Technology, Sirius, Russia
| | - Svetlana Loshkaryova
- Federal Research Centre the Subtropical Scientific Centre, Russian Academy of Sciences, Sochi, Russia
| | - Tsiala Tutberidze
- Federal Research Centre the Subtropical Scientific Centre, Russian Academy of Sciences, Sochi, Russia
| | - Alexey Ryndin
- Federal Research Centre the Subtropical Scientific Centre, Russian Academy of Sciences, Sochi, Russia
| | - Elena Khlestkina
- Center of Genetics and Life Sciences, Sirius University of Science and Technology, Sirius, Russia
- Federal Research Center, N. I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR), Saint Petersburg, Russia
| |
Collapse
|
3
|
Andov B, Boulaflous-Stevens A, Pain C, Mermet S, Voisin M, Charrondiere C, Vanrobays E, Tutois S, Evans DE, Kriechbaumer V, Tatout C, Graumann K. In Depth Topological Analysis of Arabidopsis Mid-SUN Proteins and Their Interaction with the Membrane-Bound Transcription Factor MaMYB. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091787. [PMID: 37176845 PMCID: PMC10180911 DOI: 10.3390/plants12091787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/20/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023]
Abstract
Mid-SUN proteins are a neglected family of conserved type III membrane proteins of ancient origin with representatives in plants, animals, and fungi. Previous higher plant studies have associated them with functions at the nuclear envelope and the endoplasmic reticulum (ER). In this study, high-resolution confocal light microscopy is used to explore the localisation of SUN3 and SUN4 in the perinuclear region, to explore topology, and to study the role of mid-SUNs on endoplasmic reticulum morphology. The role of SUN3 in the ER is reinforced by the identification of a protein interaction between SUN3 and the ER membrane-bound transcription factor maMYB. The results highlight the importance of mid-SUNs as functional components of the ER and outer nuclear membrane.
Collapse
Affiliation(s)
- Bisa Andov
- Department of Biological and Molecular Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford OX3 0BP, UK
| | | | - Charlotte Pain
- Department of Biological and Molecular Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford OX3 0BP, UK
| | - Sarah Mermet
- CNRS, Inserm, GReD Clermont-Ferrand, Université Clermont Auvergne, 63001 Clermont-Ferrand, France
| | - Maxime Voisin
- CNRS, Inserm, GReD Clermont-Ferrand, Université Clermont Auvergne, 63001 Clermont-Ferrand, France
| | - Camille Charrondiere
- CNRS, Inserm, GReD Clermont-Ferrand, Université Clermont Auvergne, 63001 Clermont-Ferrand, France
| | - Emmanuel Vanrobays
- CNRS, Inserm, GReD Clermont-Ferrand, Université Clermont Auvergne, 63001 Clermont-Ferrand, France
| | - Sylvie Tutois
- CNRS, Inserm, GReD Clermont-Ferrand, Université Clermont Auvergne, 63001 Clermont-Ferrand, France
| | - David E Evans
- Department of Biological and Molecular Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford OX3 0BP, UK
| | - Verena Kriechbaumer
- Department of Biological and Molecular Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford OX3 0BP, UK
| | - Christophe Tatout
- CNRS, Inserm, GReD Clermont-Ferrand, Université Clermont Auvergne, 63001 Clermont-Ferrand, France
| | - Katja Graumann
- Department of Biological and Molecular Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford OX3 0BP, UK
| |
Collapse
|
4
|
Montpetit J, Clúa J, Hsieh YF, Vogiatzaki E, Müller J, Abel S, Strasser R, Poirier Y. Endoplasmic reticulum calnexins participate in the primary root growth response to phosphate deficiency. PLANT PHYSIOLOGY 2023; 191:1719-1733. [PMID: 36567484 PMCID: PMC10022610 DOI: 10.1093/plphys/kiac595] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
Accumulation of incompletely folded proteins in the endoplasmic reticulum (ER) leads to ER stress, activates ER protein degradation pathways, and upregulates genes involved in protein folding. This process is known as the unfolded protein response (UPR). The role of ER protein folding in plant responses to nutrient deficiencies is unclear. We analyzed Arabidopsis (Arabidopsis thaliana) mutants affected in ER protein quality control and established that both CALNEXIN (CNX) genes function in the primary root response to phosphate (Pi) deficiency. CNX1 and CNX2 are homologous ER lectins promoting protein folding of N-glycosylated proteins via the recognition of the GlcMan9GlcNAc2 glycan. Growth of cnx1-1 and cnx2-2 single mutants was similar to that of the wild type under high and low Pi conditions, but the cnx1-1 cnx2-2 double mutant showed decreased primary root growth under low Pi conditions due to reduced meristematic cell division. This phenotype was specific to Pi deficiency; the double mutant responded normally to osmotic and salt stress. Expression of CNX2 mutated in amino acids involved in binding the GlcMan9GlcNAc2 glycan failed to complement the cnx1-1 cnx2-2 mutant. The root growth phenotype was Fe-dependent and was associated with root apoplastic Fe accumulation. Two genes involved in Fe-dependent inhibition of primary root growth under Pi deficiency, the ferroxidase LOW PHOSPHATE 1 (LPR1) and P5-type ATPase PLEIOTROPIC DRUG RESISTANCE 2 (PDR2) were epistatic to CNX1/CNX2. Overexpressing PDR2 failed to complement the cnx1-1 cnx2-2 root phenotype. The cnx1-1 cnx2-2 mutant showed no evidence of UPR activation, indicating a limited effect on ER protein folding. CNX might process a set of N-glycosylated proteins specifically involved in the response to Pi deficiency.
Collapse
Affiliation(s)
- Jonatan Montpetit
- Department of Plant Molecular Biology, Biophore Building, University of Lausanne, 1015 Lausanne, Switzerland
| | - Joaquín Clúa
- Department of Plant Molecular Biology, Biophore Building, University of Lausanne, 1015 Lausanne, Switzerland
| | - Yi-Fang Hsieh
- Department of Plant Molecular Biology, Biophore Building, University of Lausanne, 1015 Lausanne, Switzerland
| | - Evangelia Vogiatzaki
- Department of Plant Molecular Biology, Biophore Building, University of Lausanne, 1015 Lausanne, Switzerland
| | - Jens Müller
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, 06120 Halle, Germany
| | - Steffen Abel
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, 06120 Halle, Germany
| | - Richard Strasser
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, A-1190 Vienna, Austria
| | - Yves Poirier
- Department of Plant Molecular Biology, Biophore Building, University of Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
5
|
Hu W, Liu J, Liu T, Zhu C, Wu F, Jiang C, Wu Q, Chen L, Lu H, Shen G, Zheng H. Exogenous calcium regulates the growth and development of Pinus massoniana detecting by physiological, proteomic, and calcium-related genes expression analysis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 196:1122-1136. [PMID: 36907700 DOI: 10.1016/j.plaphy.2023.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/02/2023] [Accepted: 03/05/2023] [Indexed: 06/18/2023]
Abstract
Pinus massoniana is an important industrial crop tree species commonly used for timber and wood pulp for papermaking, rosin, and turpentine. This study investigated the effects of exogenous calcium (Ca) on P. massoniana seedling growth, development, and various biological processes and revealed the underlying molecular mechanisms. The results showed that Ca deficiency led to severe inhibition of seedling growth and development, whereas adequate exogenous Ca markedly improved growth and development. Many physiological processes were regulated by exogenous Ca. The underlying mechanisms involved diverse Ca-influenced biological processes and metabolic pathways. Calcium deficiency inhibited or impaired these pathways and processes, whereas sufficient exogenous Ca improved and benefited these cellular events by regulating several related enzymes and proteins. High levels of exogenous Ca facilitated photosynthesis and material metabolism. Adequate exogenous Ca supply relieved oxidative stress that occurred at low Ca levels. Enhanced cell wall formation, consolidation, and cell division also played a role in exogenous Ca-improved P. massoniana seedling growth and development. Calcium ion homeostasis and Ca signal transduction-related gene expression were also activated at high exogenous Ca levels. Our study facilitates the elucidation of the potential regulatory role of Ca in P. massoniana physiology and biology and is of guiding significance in Pinaceae plant forestry.
Collapse
Affiliation(s)
- Wenjun Hu
- Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China.
| | - Jiyun Liu
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, 361005, Fujian, China.
| | - Tingwu Liu
- School of Life Science, Huaiyin Normal University, Huai'an, 223300, Jiangsu, China.
| | - Chunquan Zhu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, Zhejiang, China.
| | - Feihua Wu
- Department of Horticulture, Foshan University, Foshan, 528051, Guangdong, China.
| | - Chenkai Jiang
- Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China.
| | - Qian Wu
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, 361005, Fujian, China.
| | - Lin Chen
- Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China.
| | - Hongling Lu
- Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China.
| | - Guoxin Shen
- Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China.
| | - Hailei Zheng
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, 361005, Fujian, China.
| |
Collapse
|
6
|
Wang Y, Samarina L, Mallano AI, Tong W, Xia E. Recent progress and perspectives on physiological and molecular mechanisms underlying cold tolerance of tea plants. FRONTIERS IN PLANT SCIENCE 2023; 14:1145609. [PMID: 36866358 PMCID: PMC9971632 DOI: 10.3389/fpls.2023.1145609] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
Tea is one of the most consumed and widely planted beverage plant worldwide, which contains many important economic, healthy, and cultural values. Low temperature inflicts serious damage to tea yields and quality. To cope with cold stress, tea plants have evolved a cascade of physiological and molecular mechanisms to rescue the metabolic disorders in plant cells caused by the cold stress; this includes physiological, biochemical changes and molecular regulation of genes and associated pathways. Understanding the physiological and molecular mechanisms underlying how tea plants perceive and respond to cold stress is of great significance to breed new varieties with improved quality and stress resistance. In this review, we summarized the putative cold signal sensors and molecular regulation of the CBF cascade pathway in cold acclimation. We also broadly reviewed the functions and potential regulation networks of 128 cold-responsive gene families of tea plants reported in the literature, including those particularly regulated by light, phytohormone, and glycometabolism. We discussed exogenous treatments, including ABA, MeJA, melatonin, GABA, spermidine and airborne nerolidol that have been reported as effective ways to improve cold resistance in tea plants. We also present perspectives and possible challenges for functional genomic studies on cold tolerance of tea plants in the future.
Collapse
Affiliation(s)
- Yanli Wang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Lidia Samarina
- Federal Research Centre the Subtropical Scientific Centre, The Russian Academy of Sciences, Sochi, Russia
| | - Ali Inayat Mallano
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Wei Tong
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Enhua Xia
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| |
Collapse
|
7
|
Zhu S, Xing C, Li R, Cheng Z, Deng M, Luo Y, Li H, Zhang G, Sheng Y, Peng H, Wang Z. Proteomic profiling of plasma exosomes from patients with B-cell acute lymphoblastic leukemia. Sci Rep 2022; 12:11975. [PMID: 35831551 PMCID: PMC9279438 DOI: 10.1038/s41598-022-16282-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 07/07/2022] [Indexed: 11/30/2022] Open
Abstract
We aimed to comprehensively investigate the proteomic profile and underlying biological function of exosomal proteins associated with B-cell acute lymphoblastic leukemia. Exosomes were isolated from plasma samples collected from five patients with B-ALL and five healthy individuals, and their protein content was quantitatively analyzed by liquid chromatography with tandem mass spectrometry. A total of 342 differentially expressed proteins were identified in patients with B-ALL. The DEPs were mainly associated with protein metabolic processes and protein activity regulation and were significantly enriched in the Notch and autophagy pathways. Furthermore, we found that ADAM17 and ATG3 were upregulated in patients with B-ALL and enriched in the Notch and autophagy pathways, respectively. Further western blot analysis of exosomes collected from additional 18 patients with B-ALL and 10 healthy controls confirmed that both ADAM17 and ATG3 were overexpressed in exosomes derived from patients with B-ALL (p < 0.001). The areas under the curves of ADAM17 and ATG3 were 0.989 and 0.956, respectively, demonstrating their diagnostic potential. In conclusion, ADAM17 and ATG3 in plasma-derived exosomes may contribute to the progression of B-ALL by regulating the Notch and autophagy pathways. Hence, these proteins may represent valuable diagnostic biomarkers and therapeutic targets for B-ALL.
Collapse
Affiliation(s)
- Shicong Zhu
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Cheng Xing
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Institute of Molecular Hematology, Central South University, Changsha, Hunan, China
| | - Ruijuan Li
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Institute of Molecular Hematology, Central South University, Changsha, Hunan, China
| | - Zhao Cheng
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Institute of Molecular Hematology, Central South University, Changsha, Hunan, China
| | - Mingyang Deng
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Institute of Molecular Hematology, Central South University, Changsha, Hunan, China
| | - Yunya Luo
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Institute of Molecular Hematology, Central South University, Changsha, Hunan, China
| | - Heng Li
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Institute of Molecular Hematology, Central South University, Changsha, Hunan, China
| | - Guangsen Zhang
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Institute of Molecular Hematology, Central South University, Changsha, Hunan, China
| | - Yue Sheng
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Institute of Molecular Hematology, Central South University, Changsha, Hunan, China
| | - Hongling Peng
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Institute of Molecular Hematology, Central South University, Changsha, Hunan, China
| | - Zhihua Wang
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China. .,Institute of Molecular Hematology, Central South University, Changsha, Hunan, China.
| |
Collapse
|
8
|
Jiang D, He Y, Zhou X, Cao Z, Pang L, Zhong S, Jiang L, Li R. Arabidopsis HOPS subunit VPS41 carries out plant-specific roles in vacuolar transport and vegetative growth. PLANT PHYSIOLOGY 2022; 189:1416-1434. [PMID: 35417008 PMCID: PMC9237685 DOI: 10.1093/plphys/kiac167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 02/25/2022] [Indexed: 05/27/2023]
Abstract
The homotypic fusion and protein sorting (HOPS) complex is a conserved, multi-subunit tethering complex in eukaryotic cells. In yeast and mammalian cells, the HOPS subunit vacuolar protein sorting-associated protein 41 (VPS41) is recruited to late endosomes after Ras-related protein 7 (Rab7) activation and is essential for vacuole fusion. However, whether VPS41 plays conserved roles in plants is not clear. Here, we demonstrate that in the model plant Arabidopsis (Arabidopsis thaliana), VPS41 localizes to distinct condensates in root cells in addition to its reported localization at the tonoplast. The formation of condensates does not rely on the known upstream regulators but depends on VPS41 self-interaction and is essential for vegetative growth regulation. Genetic evidence indicates that VPS41 is required for both homotypic vacuole fusion and cargo sorting from the adaptor protein complex 3, Rab5, and Golgi-independent pathways but is dispensable for the Rab7 cargo inositol transporter 1. We also show that VPS41 has HOPS-independent functions in vacuolar transport. Taken together, our findings indicate that Arabidopsis VPS41 is a unique subunit of the HOPS complex that carries out plant-specific roles in both vacuolar transport and developmental regulation.
Collapse
Affiliation(s)
- Dong Jiang
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, School of Life Sciences, Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yilin He
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Xiangui Zhou
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, School of Life Sciences, Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zhiran Cao
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, School of Life Sciences, Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen 518055, China
| | - Lei Pang
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, School of Life Sciences, Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen 518055, China
| | - Sheng Zhong
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences at the College of Life Sciences, Peking University, Beijing 100871, China
| | - Liwen Jiang
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Ruixi Li
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, School of Life Sciences, Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
9
|
Kirk P, Amsbury S, German L, Gaudioso-Pedraza R, Benitez-Alfonso Y. A comparative meta-proteomic pipeline for the identification of plasmodesmata proteins and regulatory conditions in diverse plant species. BMC Biol 2022; 20:128. [PMID: 35655273 PMCID: PMC9164936 DOI: 10.1186/s12915-022-01331-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 05/16/2022] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND A major route for cell-to-cell signalling in plants is mediated by cell wall-embedded pores termed plasmodesmata forming the symplasm. Plasmodesmata regulate the plant development and responses to the environment; however, our understanding of what factors or regulatory cues affect their structure and permeability is still limited. In this paper, a meta-analysis was carried out for the identification of conditions affecting plasmodesmata transport and for the in silico prediction of plasmodesmata proteins in species for which the plasmodesmata proteome has not been experimentally determined. RESULTS Using the information obtained from experimental proteomes, an analysis pipeline (named plasmodesmata in silico proteome 1 or PIP1) was developed to rapidly generate candidate plasmodesmata proteomes for 22 plant species. Using the in silico proteomes to interrogate published transcriptomes, gene interaction networks were identified pointing to conditions likely affecting plasmodesmata transport capacity. High salinity, drought and osmotic stress regulate the expression of clusters enriched in genes encoding plasmodesmata proteins, including those involved in the metabolism of the cell wall polysaccharide callose. Experimental determinations showed restriction in the intercellular transport of the symplasmic reporter GFP and enhanced callose deposition in Arabidopsis roots exposed to 75-mM NaCl and 3% PEG (polyethylene glycol). Using PIP1 and transcriptome meta-analyses, candidate plasmodesmata proteins for the legume Medicago truncatula were generated, leading to the identification of Medtr1g073320, a novel receptor-like protein that localises at plasmodesmata. Expression of Medtr1g073320 affects callose deposition and the root response to infection with the soil-borne bacteria rhizobia in the presence of nitrate. CONCLUSIONS Our study shows that combining proteomic meta-analysis and transcriptomic data can be a valuable tool for the identification of new proteins and regulatory mechanisms affecting plasmodesmata function. We have created the freely accessible pipeline PIP1 as a resource for the screening of experimental proteomes and for the in silico prediction of PD proteins in diverse plant species.
Collapse
Affiliation(s)
- Philip Kirk
- Centre for Plant Science, School of Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Sam Amsbury
- Plants, Photosynthesis and Soil, School of Biosciences, University of Sheffield, Sheffield, S10 2TN, UK
| | - Liam German
- Centre for Plant Science, School of Biology, University of Leeds, Leeds, LS2 9JT, UK
| | | | | |
Collapse
|
10
|
Yu B, Wu Q, Li X, Zeng R, Min Q, Huang J. GLUTAMATE RECEPTOR-like gene OsGLR3.4 is required for plant growth and systemic wound signaling in rice (Oryza sativa). THE NEW PHYTOLOGIST 2022; 233:1238-1256. [PMID: 34767648 DOI: 10.1111/nph.17859] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 11/03/2021] [Indexed: 05/15/2023]
Abstract
Recent studies have revealed the physiological roles of glutamate receptor-like channels (GLRs) in Arabidopsis; however, the functions of GLRs in rice remain largely unknown. Here, we show that knockout of OsGLR3.4 in rice leads to brassinosteroid (BR)-regulated growth defects and reduced BR sensitivity. Electrophoretic mobility shift assays and transient transactivation assays indicated that OsGLR3.4 is the downstream target of OsBZR1. Further, agonist profile assays showed that multiple amino acids can trigger transient Ca2+ influx in an OsGLR3.4-dependent manner, indicating that OsGLR3.4 is a Ca2+ -permeable channel. Meanwhile, the study of internode cells demonstrated that OsGLR3.4-mediated Ca2+ flux is required for actin filament organization and vesicle trafficking. Following root injury, the triggering of both slow wave potentials (SWPs) in leaves and the jasmonic acid (JA) response are impaired in osglr3.4 mutants, indicating that OsGLR3.4 is required for root-to-shoot systemic wound signaling in rice. Brassinosteroid treatment enhanced SWPs and OsJAZ8 expression in root-wounded plants, suggesting that BR signaling synergistically regulates the OsGLR3.4-mediated systemic wound response. In summary, this article describes a mechanism of OsGLR3.4-mediated cell elongation and long-distance systemic wound signaling in plants and provides new insights into the contribution of GLRs to plant growth and responses to mechanical wounding.
Collapse
Affiliation(s)
- Bo Yu
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, 174 Shazheng Street, Chongqing, China
| | - Qi Wu
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, 174 Shazheng Street, Chongqing, China
| | - Xingxing Li
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, 174 Shazheng Street, Chongqing, China
| | - Rongfeng Zeng
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, 174 Shazheng Street, Chongqing, China
| | - Qian Min
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, 174 Shazheng Street, Chongqing, China
| | - Junli Huang
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, 174 Shazheng Street, Chongqing, China
| |
Collapse
|
11
|
Kirk P, Benitez-Alfonso Y. Plasmodesmata Structural Components and Their Role in Signaling and Plant Development. Methods Mol Biol 2022; 2457:3-22. [PMID: 35349130 DOI: 10.1007/978-1-0716-2132-5_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Plasmodesmata are plant intercellular channels that mediate the transport of small and large molecules including RNAs and transcription factors (TFs) that regulate plant development. In this review, we present current research on plasmodesmata form and function and discuss the main regulatory pathways. We show the progress made in the development of approaches and tools to dissect the plasmodesmata proteome in diverse plant species and discuss future perspectives and challenges in this field of research.
Collapse
Affiliation(s)
- Philip Kirk
- Centre for Plant Science, School of Biology, University of Leeds, Leeds, UK
| | | |
Collapse
|
12
|
Xie C, Shang Q, Mo C, Xiao Y, Wang G, Xie J, Jiang D, Xiao X. Early Secretory Pathway-Associated Proteins SsEmp24 and SsErv25 Are Involved in Morphogenesis and Pathogenicity in a Filamentous Phytopathogenic Fungus. mBio 2021; 12:e0317321. [PMID: 34933451 PMCID: PMC8689567 DOI: 10.1128/mbio.03173-21] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 11/15/2021] [Indexed: 12/28/2022] Open
Abstract
Proper protein secretion is critical for fungal development and pathogenesis. However, the potential roles of proteins involved in the early secretory pathway are largely undescribed in filamentous fungi. p24 proteins are cargo receptors that cycle between the endoplasmic reticulum (ER) and Golgi apparatus in the early secretory pathway and recruit cargo proteins to nascent vesicles. This study characterized the function of two p24 family proteins (SsEmp24 and SsErv25) in a phytopathogenic fungus, Sclerotinia sclerotiorum. Both SsEmp24 and SsErv25 were upregulated during the early stages of S. sclerotiorum infection. ΔSsEmp24 mutant and ΔSsErv25 mutant displayed abnormal vegetative growth and sclerotium formation, were defective in infection cushion formation, and showed lower virulence on host plants. ΔSsEmp24 mutant had a more severe abnormal phenotype than ΔSsErv25 mutant, implying that SsEmp24 could play a central role in the early secretory pathway. Similar to their Saccharomyces cerevisiae counterparts, SsEmp24 interacted with SsErv25 and predominantly colocalized in the ER or nuclear envelope. The absence of SsEmp24 or SsErv25 led to defective in protein secretion in S. sclerotiorum, including the pathogenicity-related extracellular hydrolytic enzymes and effectors. It is proposed that SsEmp24 and SsErv25, components in the early secretory pathway, are involved in modulating morphogenesis and pathogenicity in S. sclerotiorum by mediating protein secretion. IMPORTANCE Understanding the reproduction and pathogenesis mechanism of phytopathogens could provide new opinions to effectively control fungal diseases. Although it has been known that effectors and extracellular hydrolytic enzymes secreted by phytopathogenic fungi play important roles in fungus-host interactions, the secretion system for the delivery of virulence factors to the host is still largely undescribed. Although the role of the early secretory pathway-associated p24 proteins in S. cerevisiae has been well characterized, the function of these proteins in filamentous fungi was scarcely known prior to this study. The present research provides evidence that p24 proteins participate in the reproduction and pathogenesis of phytopathogenic fungi through the mediation of protein secretion. This research advances our understanding of p24 proteins in filamentous phytopathogenic fungi. In addition, the candidate cargos of the two p24 proteins, SsEmp24 and SsErv25, were screened out by comparative proteomics, which could aid the identification of novel development and virulence-associated factors in phytopathogenic fungi.
Collapse
Affiliation(s)
- Chong Xie
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei Province, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Qingna Shang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei Province, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, China
- Hubei Hongshan Laboratory, Wuhan, Hubei Province, China
| | - Chenmi Mo
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei Province, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Yannong Xiao
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Gaofeng Wang
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Jiatao Xie
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei Province, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, China
- Hubei Hongshan Laboratory, Wuhan, Hubei Province, China
| | - Daohong Jiang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei Province, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, China
- Hubei Hongshan Laboratory, Wuhan, Hubei Province, China
| | - Xueqiong Xiao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei Province, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, China
| |
Collapse
|
13
|
Ambastha V, Matityahu I, Tidhar D, Leshem Y. RabA2b Overexpression Alters the Plasma-Membrane Proteome and Improves Drought Tolerance in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2021; 12:738694. [PMID: 34691115 PMCID: PMC8526897 DOI: 10.3389/fpls.2021.738694] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 09/13/2021] [Indexed: 06/07/2023]
Abstract
Rab proteins are small GTPases that are important in the regulation of vesicle trafficking. Through data mining, we identified RabA2b to be stress responsive, though little is known about the involvement of RabA in plant responses to abiotic stresses. Analysis of the RabA2b native promoter showed strong activity during osmotic stress, which required the stress hormone Abscisic acid (ABA) and was restricted to the vasculature. Sequence analysis of the promoter region identified predicted binding motifs for several ABA-responsive transcription factors. We cloned RabA2b and overexpressed it in Arabidopsis. The resulting transgenic plants were strikingly drought resistant. The reduced water loss observed in detached leaves of the transgenic plants could not be explained by stomatal aperture or density, which was similar in all the genotypes. Subcellular localization studies detected strong colocalization between RabA2b and the plasma membrane (PM) marker PIP2. Further studies of the PM showed, for the first time, a distinguished alteration in the PM proteome as a result of RabA2b overexpression. Proteomic analysis of isolated PM fractions showed enrichment of stress-coping proteins as well as cell wall/cuticle modifiers in the transgenic lines. Finally, the cuticle permeability of transgenic leaves was significantly reduced compared to the wild type, suggesting that it plays a role in its drought resistant properties. Overall, these data provide new insights into the roles and modes of action of RabA2b during water stresses, and indicate that increased RabA2b mediated PM trafficking can affect the PM proteome and increase drought tolerance.
Collapse
Affiliation(s)
- Vivek Ambastha
- Department of Plant Sciences, MIGAL – Galilee Research Institute, Kiryat Shmona, Israel
| | - Ifat Matityahu
- Department of Plant Sciences, MIGAL – Galilee Research Institute, Kiryat Shmona, Israel
| | - Dafna Tidhar
- Department of Plant Sciences, MIGAL – Galilee Research Institute, Kiryat Shmona, Israel
- Faculty of Sciences and Technology, Tel-Hai College, Upper Galilee, Israel
| | - Yehoram Leshem
- Department of Plant Sciences, MIGAL – Galilee Research Institute, Kiryat Shmona, Israel
- Faculty of Sciences and Technology, Tel-Hai College, Upper Galilee, Israel
| |
Collapse
|
14
|
Voitsekhovskaja OV, Melnikova AN, Demchenko KN, Ivanova AN, Dmitrieva VA, Maksimova AI, Lohaus G, Tomos AD, Tyutereva EV, Koroleva OA. Leaf Epidermis: The Ambiguous Symplastic Domain. FRONTIERS IN PLANT SCIENCE 2021; 12:695415. [PMID: 34394148 PMCID: PMC8358407 DOI: 10.3389/fpls.2021.695415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/24/2021] [Indexed: 06/13/2023]
Abstract
The ability to develop secondary (post-cytokinetic) plasmodesmata (PD) is an important evolutionary advantage that helps in creating symplastic domains within the plant body. Developmental regulation of secondary PD formation is not completely understood. In flowering plants, secondary PD occur exclusively between cells from different lineages, e.g., at the L1/L2 interface within shoot apices, or between leaf epidermis (L1-derivative), and mesophyll (L2-derivative). However, the highest numbers of secondary PD occur in the minor veins of leaf between bundle sheath cells and phloem companion cells in a group of plant species designated "symplastic" phloem loaders, as opposed to "apoplastic" loaders. This poses a question of whether secondary PD formation is upregulated in general in symplastic loaders. Distribution of PD in leaves and in shoot apices of two symplastic phloem loaders, Alonsoa meridionalis and Asarina barclaiana, was compared with that in two apoplastic loaders, Solanum tuberosum (potato) and Hordeum vulgare (barley), using immunolabeling of the PD-specific proteins and transmission electron microscopy (TEM), respectively. Single-cell sampling was performed to correlate sugar allocation between leaf epidermis and mesophyll to PD abundance. Although the distribution of PD in the leaf lamina (except within the vascular tissues) and in the meristem layers was similar in all species examined, far fewer PD were found at the epidermis/epidermis and mesophyll/epidermis boundaries in apoplastic loaders compared to symplastic loaders. In the latter, the leaf epidermis accumulated sugar, suggesting sugar import from the mesophyll via PD. Thus, leaf epidermis and mesophyll might represent a single symplastic domain in Alonsoa meridionalis and Asarina barclaiana.
Collapse
Affiliation(s)
- Olga V. Voitsekhovskaja
- Komarov Botanical Institute, Russian Academy of Sciences, Saint Petersburg, Russia
- Department of Plant Biochemistry, Albrecht von Haller Institute for Plant Sciences, Göttingen, Germany
| | - Anna N. Melnikova
- Komarov Botanical Institute, Russian Academy of Sciences, Saint Petersburg, Russia
- Saint Petersburg State University, Saint Petersburg, Russia
| | - Kirill N. Demchenko
- Komarov Botanical Institute, Russian Academy of Sciences, Saint Petersburg, Russia
| | - Alexandra N. Ivanova
- Komarov Botanical Institute, Russian Academy of Sciences, Saint Petersburg, Russia
- Saint Petersburg State University, Saint Petersburg, Russia
| | - Valeria A. Dmitrieva
- Komarov Botanical Institute, Russian Academy of Sciences, Saint Petersburg, Russia
| | | | - Gertrud Lohaus
- Department of Plant Biochemistry, Albrecht von Haller Institute for Plant Sciences, Göttingen, Germany
- Molecular Plant Research/Plant Biochemistry, School of Mathematics and Natural Sciences, University of Wuppertal, Wuppertal, Germany
| | - A. Deri Tomos
- School of Biological Sciences, Bangor University, Bangor, United Kingdom
| | - Elena V. Tyutereva
- Komarov Botanical Institute, Russian Academy of Sciences, Saint Petersburg, Russia
| | - Olga A. Koroleva
- School of Biological Sciences, Bangor University, Bangor, United Kingdom
| |
Collapse
|
15
|
Bettaieb I, Hamdi J, Bouktila D. Genome-wide analysis of HSP90 gene family in the Mediterranean olive ( Olea europaea subsp. europaea) provides insight into structural patterns, evolution and functional diversity. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2020; 26:2301-2318. [PMID: 33268931 PMCID: PMC7688888 DOI: 10.1007/s12298-020-00888-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 09/01/2020] [Accepted: 09/22/2020] [Indexed: 05/09/2023]
Abstract
Plants regularly experience multiple abiotic and biotic pressures affecting their normal development. The 90-kDa heat shock protein (HSP90) plays a dynamic role in countering abiotic and biotic stresses via a plethora of functional mechanisms. The HSP90 has been investigated in many plant species. However, there is little information available about this gene family in the cultivated Mediterranean olive tree, Olea europaea subsp. europaea var. europaea. In the current study, we systematically performed genome-wide identification and characterization of the HSP90 gene family in O. europaea var. europaea (OeHSP90s). Twelve regular OeHSP90s were identified, which were phylogenetically grouped into two major clusters and four sub-clusters, showing five paralogous gene pairs evolving under purifying selection. All of the 12 proteins contained a Histidine kinase-like ATPase (HATPase_c) domain, justifying the role played by HSP90 proteins in ATP binding and hydrolysis. The predicted 3D structure of OeHSP90 proteins provided information to understand their functions at the biochemical level. Consistent with their phylogenetic relationships, OeHSP90 members were predicted to be localized in different cellular compartments, suggesting their involvement in various subcellular processes. In consonance with their spatial organization, olive HSP90 family members were found to share similar motif arrangements and similar number of exons. We found that OeHSP90 promoters contained various cis-acting elements associated with light responsiveness, hormone signaling pathways and reaction to various stress conditions. In addition, expression sequence tags (ESTs) analysis offered a view of OeHSP90 tissue- and developmental stage specific pattern of expression. Proteins interacting with OeHSP90s were predicted and their potential roles were discussed. Overall, our results offer premises for further investigation of the implication of HSP90 genes in the physiological processes of the olive and its adaptation to stresses.
Collapse
Affiliation(s)
- Inchirah Bettaieb
- Laboratoire LR11ES41 Génétique, Biodiversité & Valorisation des Bioressources, Institut Supérieur de Biotechnologie de Monastir, Université de Monastir, Monastir, Tunisia
| | - Jihen Hamdi
- Laboratoire LR11ES41 Génétique, Biodiversité & Valorisation des Bioressources, Institut Supérieur de Biotechnologie de Monastir, Université de Monastir, Monastir, Tunisia
| | - Dhia Bouktila
- Laboratoire LR11ES41 Génétique, Biodiversité & Valorisation des Bioressources, Institut Supérieur de Biotechnologie de Monastir, Université de Monastir, Monastir, Tunisia
- Institut Supérieur de Biotechnologie de Béja, Université de Jendouba, Béja, Tunisia
| |
Collapse
|
16
|
Intercellular trafficking via plasmodesmata: molecular layers of complexity. Cell Mol Life Sci 2020; 78:799-816. [PMID: 32920696 PMCID: PMC7897608 DOI: 10.1007/s00018-020-03622-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 07/28/2020] [Accepted: 08/13/2020] [Indexed: 12/12/2022]
Abstract
Plasmodesmata are intercellular pores connecting together most plant cells. These structures consist of a central constricted form of the endoplasmic reticulum, encircled by some cytoplasmic space, in turn delimited by the plasma membrane, itself ultimately surrounded by the cell wall. The presence and structure of plasmodesmata create multiple routes for intercellular trafficking of a large spectrum of molecules (encompassing RNAs, proteins, hormones and metabolites) and also enable local signalling events. Movement across plasmodesmata is finely controlled in order to balance processes requiring communication with those necessitating symplastic isolation. Here, we describe the identities and roles of the molecular components (specific sets of lipids, proteins and wall polysaccharides) that shape and define plasmodesmata structural and functional domains. We highlight the extensive and dynamic interactions that exist between the plasma/endoplasmic reticulum membranes, cytoplasm and cell wall domains, binding them together to effectively define plasmodesmata shapes and purposes.
Collapse
|
17
|
Groves NR, McKenna JF, Evans DE, Graumann K, Meier I. A nuclear localization signal targets tail-anchored membrane proteins to the inner nuclear envelope in plants. J Cell Sci 2019; 132:jcs226134. [PMID: 30858196 DOI: 10.1242/jcs.226134] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 02/26/2019] [Indexed: 01/08/2023] Open
Abstract
Protein targeting to the inner nuclear membrane (INM) is one of the least understood protein targeting pathways. INM proteins are important for chromatin organization, nuclear morphology and movement, and meiosis, and have been implicated in human diseases. In opisthokonts, one mechanism for INM targeting is transport factor-mediated trafficking, in which nuclear localization signals (NLSs) function in nuclear import of transmembrane proteins. To explore whether this pathway exists in plants, we fused the SV40 NLS to a plant ER tail-anchored protein and showed that the GFP-tagged fusion protein was significantly enriched at the nuclear envelope (NE) of leaf epidermal cells. Airyscan subdiffraction limited confocal microscopy showed that this protein displays a localization consistent with an INM protein. Nine different monopartite and bipartite NLSs from plants and opisthokonts, fused to a chimeric tail-anchored membrane protein, were all sufficient for NE enrichment, and both monopartite and bipartite NLSs were sufficient for trafficking to the INM. Tolerance for different linker lengths and protein conformations suggests that INM trafficking rules might differ from those in opisthokonts. The INM proteins developed here can be used to target new functionalities to the plant nuclear periphery. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Norman R Groves
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA
| | - Joseph F McKenna
- Department of Biological and Medical Sciences, Oxford Brookes, Oxford OX3 0BP, UK
| | - David E Evans
- Department of Biological and Medical Sciences, Oxford Brookes, Oxford OX3 0BP, UK
| | - Katja Graumann
- Department of Biological and Medical Sciences, Oxford Brookes, Oxford OX3 0BP, UK
| | - Iris Meier
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA
- Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
18
|
Laibach N, Schmidl S, Müller B, Bergmann M, Prüfer D, Schulze Gronover C. Small rubber particle proteins from Taraxacum brevicorniculatum promote stress tolerance and influence the size and distribution of lipid droplets and artificial poly(cis-1,4-isoprene) bodies. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 93:1045-1061. [PMID: 29377321 DOI: 10.1111/tpj.13829] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 12/12/2017] [Accepted: 01/03/2018] [Indexed: 05/27/2023]
Abstract
Natural rubber biosynthesis occurs on rubber particles, i.e. organelles resembling small lipid droplets localized in the laticifers of latex-containing plant species, such as Hevea brasiliensis and Taraxacum brevicorniculatum. The latter expresses five small rubber particle protein (SRPP) isoforms named TbSRPP1-5, the most abundant proteins in rubber particles. These proteins maintain particle stability and are therefore necessary for rubber biosynthesis. TbSRPP1-5 were transiently expressed in Nicotiana benthamiana protoplasts and the proteins were found to be localized on lipid droplets and in the endoplasmic reticulum, with TbSRPP1 and TbSRPP3 also present in the cytosol. Bimolecular fluorescence complementation confirmed pairwise interactions between all proteins except TbSRPP2. The corresponding genes showed diverse expression profiles in young T. brevicorniculatum plants exposed to abiotic stress, and all except TbSRPP4 and TbSRPP5 were upregulated. Young Arabidopsis thaliana plants that overexpressed TbSRPP2 and TbSRPP3 tolerated drought stress better than wild-type plants. Furthermore, we used rubber particle extracts and standards to investigate the affinity of the TbSRPPs for different phospholipids, revealing a preference for negatively charged head groups and 18:2/16:0 fatty acid chains. This finding may explain the effect of TbSRPP3-5 on the dispersity of artificial poly(cis-1,4-isoprene) bodies and on the lipid droplet distribution we observed in N. benthamiana leaves. Our data provide insight into the assembly of TbSRPPs on rubber particles, their role in rubber particle structure, and the link between rubber biosynthesis and lipid droplet-associated stress responses, suggesting that SRPPs form the basis of evolutionarily conserved intracellular complexes in plants.
Collapse
Affiliation(s)
- Natalie Laibach
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Schlossplatz 8, 48143, Münster, Germany
| | - Sina Schmidl
- University of Muenster, Institute of Plant Biology and Biotechnology, Schlossplatz 8, 48143, Münster, Germany
| | - Boje Müller
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Schlossplatz 8, 48143, Münster, Germany
| | - Maike Bergmann
- University of Muenster, Institute of Plant Biology and Biotechnology, Schlossplatz 8, 48143, Münster, Germany
| | - Dirk Prüfer
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Schlossplatz 8, 48143, Münster, Germany
- University of Muenster, Institute of Plant Biology and Biotechnology, Schlossplatz 8, 48143, Münster, Germany
| | - Christian Schulze Gronover
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Schlossplatz 8, 48143, Münster, Germany
| |
Collapse
|
19
|
Xie W, Nielsen ME, Pedersen C, Thordal-Christensen H. A Split-GFP Gateway Cloning System for Topology Analyses of Membrane Proteins in Plants. PLoS One 2017; 12:e0170118. [PMID: 28085941 PMCID: PMC5234810 DOI: 10.1371/journal.pone.0170118] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 12/29/2016] [Indexed: 11/18/2022] Open
Abstract
To understand the function of membrane proteins, it is imperative to know their topology. For such studies, a split green fluorescent protein (GFP) method is useful. GFP is barrel-shaped, consisting of 11 β-sheets. When the first ten β-sheets (GFP1-10) and the 11th β-sheet (GFP11) are expressed from separate genes they will self-assembly and reconstitute a fluorescent GFP protein. However, this will only occur when the two domains co-localize in the same cellular compartment. We have developed an easy-to-use Gateway vector set for determining on which side of the membrane the N- and C-termini are located. Two vectors were designed for making N- and C-terminal fusions between the membrane proteins-of-interest and GFP11, while another three plasmids were designed to express GFP1-10 in either the cytosol, the endoplasmic reticulum (ER) lumen or the apoplast. We tested functionality of the system by applying the vector set for the transmembrane domain, CNXTM, of the ER membrane protein, calnexin, after transient expression in Nicotiana benthamiana leaves. We observed GFP signal from the ER when we reciprocally co-expressed GFP11-CNXTM with GFP1-10-HDEL and CNXTM-GFP with cytosolic GFP1-10. The opposite combinations did not result in GFP signal emission. This test using the calnexin ER-membrane domain demonstrated its C-terminus to be in the cytosol and its N-terminus in the ER lumen. This result confirmed the known topology of calnexin, and we therefore consider this split-GFP system highly useful for ER membrane topology studies. Furthermore, the vector set provided is useful for detecting the topology of proteins on other membranes in the cell, which we confirmed for a plasma membrane syntaxin. The set of five Ti-plasmids are easily and efficiently used for Gateway cloning and transient transformation of N. benthamiana leaves.
Collapse
Affiliation(s)
- Wenjun Xie
- Plant Defence Genetics, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, Denmark
| | - Mads Eggert Nielsen
- Plant Defence Genetics, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, Denmark
| | - Carsten Pedersen
- Plant Defence Genetics, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, Denmark
| | - Hans Thordal-Christensen
- Plant Defence Genetics, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, Denmark
| |
Collapse
|
20
|
Nick P. Membranes of unification. PROTOPLASMA 2017; 254:1-2. [PMID: 27900484 DOI: 10.1007/s00709-016-1050-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 11/22/2016] [Indexed: 06/06/2023]
Affiliation(s)
- Peter Nick
- Institut für Botanik I, Universität Karlsruhe, Kaiserstraße 2, 76128, Karlsruhe, Germany.
| |
Collapse
|
21
|
Zhi Y, Taylor MC, Campbell PM, Warden AC, Shrestha P, El Tahchy A, Rolland V, Vanhercke T, Petrie JR, White RG, Chen W, Singh SP, Liu Q. Comparative Lipidomics and Proteomics of Lipid Droplets in the Mesocarp and Seed Tissues of Chinese Tallow ( Triadica sebifera). FRONTIERS IN PLANT SCIENCE 2017; 8:1339. [PMID: 28824675 PMCID: PMC5541829 DOI: 10.3389/fpls.2017.01339] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 07/18/2017] [Indexed: 05/04/2023]
Abstract
Lipid droplets (LDs) are composed of a monolayer of phospholipids (PLs), surrounding a core of non-polar lipids that consist mostly of triacylglycerols (TAGs) and to a lesser extent diacylglycerols. In this study, lipidome analysis illustrated striking differences in non-polar lipids and PL species between LDs derived from Triadica sebifera seed kernels and mesocarp. In mesocarp LDs, the most abundant species of TAG contained one C18:1 and two C16:0 and fatty acids, while TAGs containing three C18 fatty acids with higher level of unsaturation were dominant in the seed kernel LDs. This reflects the distinct differences in fatty acid composition of mesocarp (palmitate-rich) and seed-derived oil (α-linoleneate-rich) in T. sebifera. Major PLs in seed LDs were found to be rich in polyunsaturated fatty acids, in contrast to those with relatively shorter carbon chain and lower level of unsaturation in mesocarp LDs. The LD proteome analysis in T. sebifera identified 207 proteins from mesocarp, and 54 proteins from seed kernel, which belong to various functional classes including lipid metabolism, transcription and translation, trafficking and transport, cytoskeleton, chaperones, and signal transduction. Oleosin and lipid droplets associated proteins (LDAP) were found to be the predominant proteins associated with LDs in seed and mesocarp tissues, respectively. We also show that LDs appear to be in close proximity to a number of organelles including the endoplasmic reticulum, mitochondria, peroxisomes, and Golgi apparatus. This comparative study between seed and mesocarp LDs may shed some light on the structure of plant LDs and improve our understanding of their functionality and cellular metabolic networks in oleaginous plant tissues.
Collapse
Affiliation(s)
- Yao Zhi
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhan, China
- CSIRO Agriculture and FoodCanberra, ACT, Australia
| | | | | | | | | | | | | | | | | | | | - Wenli Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhan, China
- *Correspondence: Wenli Chen
| | | | - Qing Liu
- CSIRO Agriculture and FoodCanberra, ACT, Australia
- Qing Liu
| |
Collapse
|