1
|
Fang K, Lu P, Cheng W, Yu B. Kilohertz high-frequency electrical stimulation ameliorate hyperalgesia by modulating transient receptor potential vanilloid-1 and N-methyl-D-aspartate receptor-2B signaling pathways in chronic constriction injury of sciatic nerve mice. Mol Pain 2024; 20:17448069231225810. [PMID: 38148592 PMCID: PMC10851768 DOI: 10.1177/17448069231225810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/30/2023] [Accepted: 12/12/2023] [Indexed: 12/28/2023] Open
Abstract
The number of patients with neuropathic pain is increasing in recent years, but drug treatments for neuropathic pain have a low success rate and often come with significant side effects. Consequently, the development of innovative therapeutic strategies has become an urgent necessity. Kilohertz High Frequency Electrical Stimulation (KHES) offers pain relief without inducing paresthesia. However, the specific therapeutic effects of KHES on neuropathic pain and its underlying mechanisms remain ambiguous, warranting further investigation. In our previous study, we utilized the Gene Expression Omnibus (GEO) database to identify datasets related to neuropathic pain mice. The majority of the identified pathways were found to be associated with inflammatory responses. From these pathways, we selected the transient receptor potential vanilloid-1 (TRPV1) and N-methyl-D-aspartate receptor-2B (NMDAR2B) pathway for further exploration. Mice were randomly divided into four groups: a Sham group, a Sham/KHES group, a chronic constriction injury of the sciatic nerve (CCI) group, and a CCI/KHES stimulation group. KHES administered 30 min every day for 1 week. We evaluated the paw withdrawal threshold (PWT) and thermal withdrawal latency (TWL). The expression of TRPV1 and NMDAR2B in the spinal cord were analyzed using quantitative reverse-transcriptase polymerase chain reaction, Western blot, and immunofluorescence assay. KHES significantly alleviated the mechanical and thermal allodynia in neuropathic pain mice. KHES effectively suppressed the expression of TRPV1 and NMDAR2B, consequently inhibiting the activation of glial fibrillary acidic protein (GFAP) and ionized calcium binding adapter molecule 1 (IBA1) in the spinal cord. The administration of the TRPV1 pathway activator partially reversed the antinociceptive effects of KHES, while the TRPV1 pathway inhibitor achieved analgesic effects similar to KHES. KHES inhibited the activation of spinal dorsal horn glial cells, especially astrocytes and microglia, by inhibiting the activation of the TRPV1/NMDAR2B signaling pathway, ultimately alleviating neuropathic pain.
Collapse
Affiliation(s)
- Kexin Fang
- Department of Anesthesia and Pain Rehabilitation, Yangzhi Affiliated Rehabilitation Hospital of Tongji University, Shanghai, China
- Tongji University School of Medicine, Shanghai, China
| | - Peixin Lu
- Department of Anesthesia and Pain Rehabilitation, Yangzhi Affiliated Rehabilitation Hospital of Tongji University, Shanghai, China
- Tongji University School of Medicine, Shanghai, China
| | - Wen Cheng
- Department of Anesthesia and Pain Rehabilitation, Yangzhi Affiliated Rehabilitation Hospital of Tongji University, Shanghai, China
- Tongji University School of Medicine, Shanghai, China
| | - Bin Yu
- Department of Anesthesia and Pain Rehabilitation, Yangzhi Affiliated Rehabilitation Hospital of Tongji University, Shanghai, China
- Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
2
|
Israel JE, St Pierre S, Ellis E, Hanukaai JS, Noor N, Varrassi G, Wells M, Kaye AD. Ketamine for the Treatment of Chronic Pain: A Comprehensive Review. Health Psychol Res 2021; 9:25535. [PMID: 34746491 DOI: 10.52965/001c.25535] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 07/06/2021] [Indexed: 12/14/2022] Open
Abstract
Background Chronic pain significantly worsens the quality of life. Unlike neuropathic, musculoskeletal, postoperative pain, and cancer pain, chronic primary pain cannot be explained by an underlying disease or condition, making its treatment arduous. Objectives This manuscript intends to provide a comprehensive review of the use of ketamine as a treatment option for specific chronic pain conditions. Study Design A review article. Setting A review of the literature. Methods A search was done on PubMed for relevant articles. Results A comprehensive review of the current understanding of chronic pain and the treatment of specific chronic pain conditions with ketamine. Limitations Literature is scarce regarding the use of ketamine for the treatment of chronic pain. Conclusion First-line treatment for many chronic pain conditions includes NSAIDs, antidepressants, anticonvulsants, and opioids. However, these treatment methods are unsuccessful in a subset of patients. Ketamine has been explored in randomized controlled trials (RCTs) as an alternative treatment option, and it has been demonstrated to improve pain symptoms, patient satisfaction, and quality of life. Conditions highlighted in this review include neuropathic pain, fibromyalgia, complex regional pain syndrome (CRPS), phantom limb pain (PLP), cancer pain, and post-thoracotomy pain syndrome. This review will discuss conditions, such as neuropathic pain, fibromyalgia, complex regional pain syndrome, and more and ketamine's efficacy and its supplementary benefits in the chronic pain patient population. As the opioid crisis in the United States continues to persist, this review aims to understand better multimodal analgesia, which can improve how chronic pain is managed.
Collapse
Affiliation(s)
| | | | - Emily Ellis
- Louisiana State University Health Shreveport
| | | | | | | | | | - Alan D Kaye
- Louisiana State University Health Shreveport
| |
Collapse
|
3
|
Li H, Li J, Guan Y, Wang Y. The emerging role of kainate receptor functional dysregulation in pain. Mol Pain 2021; 17:1744806921990944. [PMID: 33567997 PMCID: PMC7883153 DOI: 10.1177/1744806921990944] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Pain is a serious clinical challenge, and is associated with a significant reduction in quality of life and high financial costs for affected patients. Research efforts have been made to explore the etiological basis of pain to guide the future treatment of patients suffering from pain conditions. Findings from studies using KA (kainate) receptor agonist, antagonists and receptor knockout mice suggested that KA receptor dysregulation and dysfunction may govern both peripheral and central sensitization in the context of pain. Additional evidence showed that KA receptor dysfunction may disrupt the finely-tuned process of glutamic acid transmission, thereby contributing to the onset of a range of pathological contexts. In the present review, we summarized major findings in recent studies which examined the roles of KA receptor dysregulation in nociceptive transmission and in pain. This timely overview of current knowledge will help to provide a framework for future developing novel therapeutic strategies to manage pain.
Collapse
Affiliation(s)
- Huili Li
- Department of Anesthesiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Junfa Li
- Department of Neurobiology, Capital Medical University, Beijing, China
| | - Yun Guan
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yun Wang
- Department of Anesthesiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
4
|
Controlling the "Opioid Epidemic": A Novel Chemical Entity (NCE) to Reduce or Supplant Opiate Use for Chronic Pain. ACTA ACUST UNITED AC 2020; 5. [PMID: 33117893 PMCID: PMC7591148 DOI: 10.20900/jpbs.20200022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We report on the ongoing project “A Novel Therapeutic to Ameliorate Chronic Pain and Reduce Opiate Use.” Over 100 million adults in the U.S. suffer from intermittent or constant chronic pain, and chronic pain affects at least 10% of the world’s population. The primary pharmaceuticals for treatment of chronic pain have been natural or synthetic opioids and the use of opioids for pain treatment has resulted in what has been called an “epidemic” of opioid abuse, addiction and lethal overdoses. We have, through a process of rational drug design, generated a novel chemical entity (NCE) and have given it the name Kindolor. Kindolor is a non-opiate, non-addicting molecule that was developed specifically to simultaneously control the aberrant activity of three targets on the peripheral sensory system that are integral in the development and propagation of chronic pain. In our initial preclinical studies, we demonstrated the efficacy of Kindolor to reduce or eliminate chronic pain in five animal models. The overall goal of the project is to complete the investigational new drug (IND)-enabling preclinical studies of Kindolor, and once IND approval is gained, we will proceed to the clinical Phase Ia and 1b safety studies and a Phase 2a efficacy study. The work is in its second year, and the present report describes progress toward our overall goal of bringing our compound to a full Phase 2 ready stage.
Collapse
|
5
|
Westlund KN, Lu Y, Zhang L, Pappas TC, Zhang WR, Taglialatela G, McIlwrath SL, McNearney TA. Tyrosine Kinase Inhibitors Reduce NMDA NR1 Subunit Expression, Nuclear Translocation, and Behavioral Pain Measures in Experimental Arthritis. Front Physiol 2020; 11:440. [PMID: 32536874 PMCID: PMC7267073 DOI: 10.3389/fphys.2020.00440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 04/08/2020] [Indexed: 11/17/2022] Open
Abstract
In the lumbar spinal cord dorsal horn, release of afferent nerve glutamate activates the neurons that relay information about injury pain. Here, we examined the effects of protein tyrosine kinase (PTK) inhibition on NMDA receptor NR1 subunit protein expression and subcellular localization in an acute experimental arthritis model. PTK inhibitors genistein and lavendustin A reduced cellular histological translocation of NMDA NR1 in the spinal cord occurring after the inflammatory insult and the nociceptive behavioral responses to heat. The PTK inhibitors were administered into lumbar spinal cord by microdialysis, and secondary heat hyperalgesia was determined using the Hargreaves test. NMDA NR1 cellular protein expression and nuclear translocation were determined by immunocytochemical localization with light and electron microscopy, as well as with Western blot analysis utilizing both C- and N-terminal antibodies. Genistein and lavendustin A (but not inactive lavendustin B or diadzein) effectively reduced (i) pain related behavior, (ii) NMDA NR1 subunit expression increases in spinal cord, and (iii) the shift of NR1 from a cell membrane to a nuclear localization. Genistein pre-treatment reduced these events that occur in vivo within 4 h after inflammatory insult to the knee joint with kaolin and carrageenan (k/c). Cycloheximide reduced glutamate activated upregulation of NR1 content confirming synthesis of new protein in response to the inflammatory insult. In addition to this in vivo data, genistein or staurosporin inhibited upregulation of NMDA NR1 protein and nuclear translocation in vitro after treatment of human neuroblastoma clonal cell cultures (SH-SY5Y) with glutamate or NMDA (4 h). These studies provide evidence that inflammatory activation of peripheral nerves initiates increase in NMDA NR1 in the spinal cord coincident with development of pain related behaviors through glutamate non-receptor, PTK dependent cascades.
Collapse
Affiliation(s)
- Karin N Westlund
- Research Division, New Mexico VA Health Care System, Albuquerque, NM, United States.,Anesthesiology, University of New Mexico Health Sciences Center, Albuquerque, NM, United States.,Neuroscience and Cell Biology, University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Ying Lu
- Neuroscience and Cell Biology, University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Liping Zhang
- Neuroscience and Cell Biology, University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Todd C Pappas
- Neuroscience and Cell Biology, University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Wen-Ru Zhang
- Neuroscience and Cell Biology, University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Giulio Taglialatela
- Neuroscience and Cell Biology, University of Texas Medical Branch at Galveston, Galveston, TX, United States.,Neurology, University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Sabrina L McIlwrath
- Research Division, New Mexico VA Health Care System, Albuquerque, NM, United States
| | - Terry A McNearney
- Neuroscience and Cell Biology, University of Texas Medical Branch at Galveston, Galveston, TX, United States.,Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, TX, United States.,Internal Medicine, University of Texas Medical Branch at Galveston, Galveston, TX, United States
| |
Collapse
|
6
|
Qiu Q, Sun L, Wang XM, Lo ACY, Wong KL, Gu P, Wong SCS, Cheung CW. Propofol produces preventive analgesia via GluN2B-containing NMDA Receptor/ERK1/2 Signaling Pathway in a rat model of inflammatory pain. Mol Pain 2018; 13:1744806917737462. [PMID: 28969472 PMCID: PMC5644366 DOI: 10.1177/1744806917737462] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Abstract Propofol, an intravenous anesthetic, has been shown to offer superior analgesic effect clinically. Whether propofol has preventive analgesic property remains unexplored. The present study investigated the antinociceptive effect of propofol and underlying molecular and cellular mechanisms via pre-emptive administration in a formalin-induced inflammatory pain model in rats. Male adult Sprague–Dawley rats were randomly allocated into four groups: naïve (Group Naïve), formalin injection only (Group Formalin), and formalin injection at 30 min (Group P-30 min) or 2 h (Group P-2 h) after intravenous infusion of propofol (0.6 mg kg−1 min−1) for 1 h. Nociceptive responses and protein expression of phosphorylated- or pan-GluN2B, ERK1/2, p38 mitogen-activated protein kinase, and c-Jun N-terminal kinase in the spinal dorsal horn were evaluated. Alteration of intracellular Ca2+ concentration induced by N-methyl-D-aspartate (NMDA) receptor agonists with or without pre-treatment of propofol was measured using fluorometry in SH-SY5Y cells while neuronal activation in the spinal dorsal horn by immunofluorescence. Pre-emptive propofol reduced pain with a delayed response to formalin and a reduction in hypersensitivity that lasted at least for 2 h. The formalin-induced activation of spinal GluN2B and ERK1/2 but not p38 or c-Jun N-terminal kinase was also diminished by propofol treatment. Preconditioning treatment with 3 µM and 10 µM of propofol inhibited Ca2+ influx mediated through NMDA receptors in SH-SY5Y cells. Propofol also reduced the neuronal expression of c-Fos and p-ERK induced by formalin. This study shows that pre-emptive administration of propofol produces preventive analgesic effects on inflammatory pain through regulating neuronal GluN2B-containing NMDA receptor and ERK1/2 pathway in the spinal dorsal horn.
Collapse
Affiliation(s)
- Qiu Qiu
- Laboratory and Clinical Research Institute for Pain, Department of Anaesthesiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Liting Sun
- Laboratory and Clinical Research Institute for Pain, Department of Anaesthesiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Xiao-Min Wang
- Laboratory and Clinical Research Institute for Pain, Department of Anaesthesiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Amy C Y Lo
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Kar Lok Wong
- Department of Anesthesiology, and Institute of Clinical Medical Sciences, and Research Group of Cardiovascular Biology, China Medical University and Hospital, Taichung, Taiwan
| | - Pan Gu
- Laboratory and Clinical Research Institute for Pain, Department of Anaesthesiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Sau Ching Stanley Wong
- Laboratory and Clinical Research Institute for Pain, Department of Anaesthesiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | | |
Collapse
|
7
|
Wang LJ, Wang Y, Chen MJ, Tian ZP, Lu BH, Mao KT, Zhang L, Zhao L, Shan LY, Li L, Si JQ. Effects of niflumic acid on γ-aminobutyric acid-induced currents in isolated dorsal root ganglion neurons of neuropathic pain rats. Exp Ther Med 2017; 14:1373-1380. [PMID: 28810599 PMCID: PMC5526125 DOI: 10.3892/etm.2017.4666] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Accepted: 04/10/2017] [Indexed: 12/15/2022] Open
Abstract
Niflumic acid (NFA) is a type of non-steroidal anti-inflammatory drug. Neuropathic pain is caused by a decrease in presynaptic inhibition mediated by γ-aminobutyric acid (GABA). In the present study, a whole-cell patch-clamp technique and intracellular recording were used to assess the effect of NFA on GABA-induced inward current in dorsal root ganglion (DRG) neurons of a chronic constriction injury (CCI) model. It was observed that 1–1,000 µmol/l GABA induced a concentration-dependent inward current in DRG neurons. Compared with pseudo-operated rats, the thermal withdrawal latency (TWL) of CCI rats significantly decreased (P<0.01); however, the TWLs of each NFA group (50 and 300 µmol/l) were significantly longer than that of the CCI group (P<0.01). In the CCI group, the response evoked by GABA (10−6-10−3 mol/l) was reduced in a concentration dependent manner compared with a normal control group (P<0.01), and the current amplitudes of CCI rats activated by the same concentrations of GABA (10−6-10−3 mol/l) were significantly decreased compared with the control group (P<0.05). The inward currents activated by 100 µmol/l GABA were suppressed by treatment with 1, 10 and 100 µmol/l NFA (5.32±3.51, 33.8±5.20, and 52.2±6.32%, respectively; P<0.05). The inverse potentials of GABA-induced currents were 9.87±1.32 and 9.64±1.24 mV with and without NFA, respectively (P<0.05). Pre-treatment with NFA exerted a strong inhibitory effect on the peak value of GABA-induced current, and the GABA-induced response was inhibited by the same concentrations of NFA (1, 10 and 100 µmol/l) in the control and CCI groups (P<0.05). The results suggest that NFA reduced the primary afferent depolarization (PAD) associated with neuropathic pain and mediated by the GABAA receptor. NFA may regulate neuropathic pain by inhibiting dorsal root reflexes, which are triggered PAD.
Collapse
Affiliation(s)
- Li-Jie Wang
- Department of Physiology, Shihezi University Medical College, Shihezi, Xinjiang 832002, P.R. China
| | - Yang Wang
- Department of Physiology, Shihezi University Medical College, Shihezi, Xinjiang 832002, P.R. China.,The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University Medical College, Shihezi, Xinjiang 832002, P.R. China.,Department of Physiology, Wuhan University School of Basic Medical Sciences, Wuhan, Hubei 430071, P.R. China
| | - Meng-Jie Chen
- Department of Physiology, Shihezi University Medical College, Shihezi, Xinjiang 832002, P.R. China
| | - Zhen-Pu Tian
- Department of Physiology, Shihezi University Medical College, Shihezi, Xinjiang 832002, P.R. China
| | - Bi-Han Lu
- Department of Physiology, Shihezi University Medical College, Shihezi, Xinjiang 832002, P.R. China
| | - Ke-Tao Mao
- Department of Physiology, Shihezi University Medical College, Shihezi, Xinjiang 832002, P.R. China.,The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University Medical College, Shihezi, Xinjiang 832002, P.R. China
| | - Liang Zhang
- Department of Physiology, Shihezi University Medical College, Shihezi, Xinjiang 832002, P.R. China.,The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University Medical College, Shihezi, Xinjiang 832002, P.R. China
| | - Lei Zhao
- Department of Physiology, Shihezi University Medical College, Shihezi, Xinjiang 832002, P.R. China.,The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University Medical College, Shihezi, Xinjiang 832002, P.R. China
| | - Li-Ya Shan
- Department of Physiology, Shihezi University Medical College, Shihezi, Xinjiang 832002, P.R. China.,The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University Medical College, Shihezi, Xinjiang 832002, P.R. China
| | - Li Li
- Department of Physiology, Shihezi University Medical College, Shihezi, Xinjiang 832002, P.R. China.,The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University Medical College, Shihezi, Xinjiang 832002, P.R. China
| | - Jun-Qiang Si
- Department of Physiology, Shihezi University Medical College, Shihezi, Xinjiang 832002, P.R. China.,The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University Medical College, Shihezi, Xinjiang 832002, P.R. China.,Department of Physiology, Wuhan University School of Basic Medical Sciences, Wuhan, Hubei 430071, P.R. China.,Department of Physiology, Huazhong University of Science and Technology, Wuhan, Hubei 430070, P.R. China
| |
Collapse
|
8
|
Donaldson LF, Beazley-Long N. Alternative RNA splicing: contribution to pain and potential therapeutic strategy. Drug Discov Today 2016; 21:1787-1798. [PMID: 27329269 PMCID: PMC5405051 DOI: 10.1016/j.drudis.2016.06.017] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 05/31/2016] [Accepted: 06/14/2016] [Indexed: 12/19/2022]
Abstract
Alternative pre-mRNA splicing generates multiple proteins from a single gene. Control of alternative splicing is a likely therapy in cancer and other disorders. Key molecules in pain pathways – GPCRs and channels – are alternatively spliced. It is proposed that alternative splicing may be a therapeutic target in pain.
Since the sequencing of metazoan genomes began, it has become clear that the number of expressed proteins far exceeds the number of genes. It is now estimated that more than 98% of human genes give rise to multiple proteins through alternative pre-mRNA splicing. In this review, we highlight the known alternative splice variants of many channels, receptors, and growth factors that are important in nociception and pain. Recently, pharmacological control of alternative splicing has been proposed as potential therapy in cancer, wet age-related macular degeneration, retroviral infections, and pain. Thus, we also consider the effects that known splice variants of molecules key to nociception/pain have on nociceptive processing and/or analgesic action, and the potential for control of alternative pre-mRNA splicing as a novel analgesic strategy.
Collapse
Affiliation(s)
- Lucy F Donaldson
- School of Life Sciences and Arthritis Research UK Pain Centre, University of Nottingham, Nottingham NG7 2UH, UK.
| | - Nicholas Beazley-Long
- School of Life Sciences and Arthritis Research UK Pain Centre, University of Nottingham, Nottingham NG7 2UH, UK
| |
Collapse
|
9
|
Tabakoff B, Ren W, Vanderlinden L, Snell LD, Matheson CJ, Wang ZJ, Levinson R, Smothers CT, Woodward JJ, Honse Y, Lovinger D, Rush AM, Sather WA, Gustafson DL, Hoffman PL. A novel substituted aminoquinoline selectively targets voltage-sensitive sodium channel isoforms and NMDA receptor subtypes and alleviates chronic inflammatory and neuropathic pain. Eur J Pharmacol 2016; 784:1-14. [PMID: 27158117 DOI: 10.1016/j.ejphar.2016.05.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 05/03/2016] [Accepted: 05/04/2016] [Indexed: 12/19/2022]
Abstract
Recent understanding of the systems that mediate complex disease states, has generated a search for molecules that simultaneously modulate more than one component of a pathologic pathway. Chronic pain syndromes are etiologically connected to functional changes (sensitization) in both peripheral sensory neurons and in the central nervous system (CNS). These functional changes involve modifications of a significant number of components of signal generating, signal transducing and signal propagating pathways. Our analysis of disease-related changes which take place in sensory neurons during sensitization led to the design of a molecule that would simultaneously inhibit peripheral NMDA receptors and voltage sensitive sodium channels. In the current report, we detail the selectivity of N,N-(diphenyl)-4-ureido-5,7-dichloro-2-carboxy-quinoline (DCUKA) for action at NMDA receptors composed of different subunit combinations and voltage sensitive sodium channels having different α subunits. We show that DCUKA is restricted to the periphery after oral administration, and that circulating blood levels are compatible with its necessary concentrations for effects at the peripheral cognate receptors/channels that were assayed in vitro. Our results demonstrate that DCUKA, at concentrations circulating in the blood after oral administration, can modulate systems which are upregulated during peripheral sensitization, and are important for generating and conducting pain information to the CNS. Furthermore, we demonstrate that DCUKA ameliorates the hyperalgesia of chronic pain without affecting normal pain responses in neuropathic and inflammation-induced chronic pain models.
Collapse
Affiliation(s)
- Boris Tabakoff
- Lohocla Research Corporation, Colorado Bioscience Building, 12635 East Montview Blvd., Suite 128, Aurora, CO 80045, USA; Department of Pharmaceutical Sciences, Skaggs School of Pharmacy & Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Campus Box: C238 12850, E. Montview Blvd., Aurora, CO 80045, USA.
| | - Wenhua Ren
- Lohocla Research Corporation, Colorado Bioscience Building, 12635 East Montview Blvd., Suite 128, Aurora, CO 80045, USA.
| | - Lauren Vanderlinden
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy & Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Campus Box: C238 12850, E. Montview Blvd., Aurora, CO 80045, USA.
| | - Lawrence D Snell
- Lohocla Research Corporation, Colorado Bioscience Building, 12635 East Montview Blvd., Suite 128, Aurora, CO 80045, USA.
| | - Christopher J Matheson
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy & Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Campus Box: C238 12850, E. Montview Blvd., Aurora, CO 80045, USA.
| | - Ze-Jun Wang
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, 12800 E. 19 Ave., Aurora, CO 80045 USA.
| | - Rock Levinson
- Department of Physiology & Biophysics, University of Colorado Anschutz Medical Campus, 12800 E. 19th Ave., Aurora, CO 80045, USA.
| | - C Thetford Smothers
- Department of Neurosciences and Department of Psychiatry, Medical University of South Carolina, 171 Ashley Ave., Charleston, SC 29425, USA.
| | - John J Woodward
- Department of Neurosciences and Department of Psychiatry, Medical University of South Carolina, 171 Ashley Ave., Charleston, SC 29425, USA.
| | - Yumiko Honse
- Clinical and Biological Research Unit, NIAAA, 12420 Parklawn Dr., MSC 8115, Bethesda, MD 20892-8115, USA.
| | - David Lovinger
- Clinical and Biological Research Unit, NIAAA, 12420 Parklawn Dr., MSC 8115, Bethesda, MD 20892-8115, USA.
| | | | - William A Sather
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, 12800 E. 19 Ave., Aurora, CO 80045 USA.
| | - Daniel L Gustafson
- UCCC Pharmacology Shared Resource, Colorado State University, Veterinary Teaching Hospital, A CC246, 300 West Drake Road, Fort Collins, CO 80023, USA.
| | - Paula L Hoffman
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, 12800 E. 19 Ave., Aurora, CO 80045 USA.
| |
Collapse
|
10
|
Shen Y, Xu L, Liu M, Lei Y, Gu X, Ma Z. The effects of an intraperitoneal single low dose of ketamine in attenuating the postoperative skin/muscle incision and retraction-induced pain related to the inhibition of N-methyl-d-aspartate receptors in the spinal cord. Neurosci Lett 2016; 616:211-7. [DOI: 10.1016/j.neulet.2015.12.045] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Revised: 11/18/2015] [Accepted: 12/17/2015] [Indexed: 10/22/2022]
|
11
|
Zhao S, Liu FF, Wu YM, Jiang YQ, Guo YX, Wang XL. Upregulation of spinal NMDA receptors mediates hydrogen sulfide-induced hyperalgesia. J Neurol Sci 2016; 363:176-81. [PMID: 27000247 DOI: 10.1016/j.jns.2016.02.058] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 02/04/2016] [Accepted: 02/23/2016] [Indexed: 01/23/2023]
Abstract
Hydrogen sulfide (H2S) is an endogenous neurotransmitter that importantly regulates various physiological and pathological events including pain signal transduction. In this study, we investigated the role of spinal NMDA receptors in the nociception induced by intraplantar injection of NaHS, an H2S donor. Intraplantar injection of NaHS into hindpaw significantly decreased the paw withdrawal threshold (PWT) in contralateral hindpaw. However, intraplantar formalin injection did not produce PWT in contralateral hindpaw. Intrathecal injection of methemoglobin, a H2S scavenger, abolished hyperalgesia induced by NaHS. In addition, NaHS-induced hyperalgesia was partly, but significantly, attenuated by intrathecal injection of hydroxylamine, a cystathionine-β-synthase (CBS) inhibitor. RT-PCR and western blotting analysis revealed that NR2B mRNA and protein levels were increased in the spinal dorsal horn, but not in dorsal root ganglion (DRG) in rats subjected to NaHS intraplantar injection. Collectively, these data suggest that peripheral injection of H2S donor causes hyperalgesia through increase in NR2B expression and production of H2S in the spinal cord.
Collapse
Affiliation(s)
- Shuang Zhao
- Department of Anesthesiology, The Third Hospital of HeBei Medical University, China
| | - Fei-Fei Liu
- Department of Anesthesiology, The Third Hospital of HeBei Medical University, China
| | - Yu-Ming Wu
- Department of Physiology, HeBei Medical University, Shijiazhuang, HeBei 050017, China
| | - Yu-Qing Jiang
- Department of Anesthesiology, The Third Hospital of HeBei Medical University, China
| | - Yue-Xian Guo
- Department of Anesthesiology, The Third Hospital of HeBei Medical University, China
| | - Xiu-Li Wang
- Department of Anesthesiology, The Third Hospital of HeBei Medical University, China.
| |
Collapse
|
12
|
Li G, Yang J, Ling S. Formaldehyde exposure alters miRNA expression profiles in the olfactory bulb. Inhal Toxicol 2015; 27:387-93. [PMID: 26161908 DOI: 10.3109/08958378.2015.1062580] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
It has been reported that inhaling formaldehyde (FA) causes damage to the central nervous system. However, it is unclear whether FA can disturb the function of the olfactory bulb. Using a microarray, we found that FA inhalation altered the miRNA expression profile. Functional enrichment analysis of the predicted targets of the changed miRNA showed that the enrichment canonical pathways and networks associated with cancer and transcriptional regulation. FA exposure disrupts miRNA expression profiles within the olfactory bulb.
Collapse
Affiliation(s)
- Guifa Li
- Institute of Neuroscience, Medical College, Zhejiang University , Hangzhou , P.R. China
| | | | | |
Collapse
|
13
|
Miranda A, Mickle A, Bruckert M, Kannampalli P, Banerjee B, Sengupta JN. NMDA receptor mediates chronic visceral pain induced by neonatal noxious somatic stimulation. Eur J Pharmacol 2014; 744:28-35. [PMID: 25281204 DOI: 10.1016/j.ejphar.2014.09.034] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 09/22/2014] [Accepted: 09/23/2014] [Indexed: 12/29/2022]
Abstract
NMDA receptors (NMDAR) are important in the development and maintenance of central sensitization. Our objective was to investigate the role of spinal neurons and NMDAR in the maintenance of chronic visceral pain. Neonatal rats were injected with acidic saline adjusted to pH 4.0 in the gastrocnemius muscle every other day for 12 days. In adult rats, NR1 and NR2B subunits were examined in the lumbo-sacral (LS) spinal cord. A baseline, visceromotor response (VMR) to graded colorectal distension (CRD) was recorded before and after administration of the NMDA antagonist, CGS-19755. Extracellular recordings were performed from CRD-sensitive LS spinal neurons and pelvic nerve afferents (PNA) before and after CGS-19755. Rats that received pH 4.0 saline injections demonstrated a significant increase in the expression NR2B subunits and VMR response to CRD>20 mmHg. CGS-19755 (i.v. or i.t.) had no effect in naïve rats, but significantly decreased the response to CRD in pH 4.0 saline injected rats. CGS-19755 had no effect on the spontaneous firing of SL-A, but decreased that of SL-S. Similarly, CGS-19755 attenuates the responses of SL-S neurons to CRD, but had no effect on SL-A neurons or on the response characteristics of PNA fibers. Neonatal noxious somatic stimulation results in chronic visceral hyperalgesia and sensitizes a specific subpopulation of CRD-sensitive spinal neurons. The sensitization of these SL-S spinal neurons is attenuated by the NMDAR antagonist. The results of this study suggest that spinal NMDARs play an important role in the development of hyperalgesia early in life.
Collapse
Affiliation(s)
- Adrian Miranda
- Division of Gastroenterology, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, United States.
| | - Aaron Mickle
- Division of Gastroenterology, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, United States
| | - Mitchell Bruckert
- Division of Gastroenterology, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, United States
| | - Pradeep Kannampalli
- Division of Gastroenterology and Hepatology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, United States
| | - Banani Banerjee
- Division of Gastroenterology and Hepatology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, United States
| | - Jyoti N Sengupta
- Division of Gastroenterology, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, United States; Division of Gastroenterology and Hepatology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, United States
| |
Collapse
|
14
|
Abstract
The perception of pain in children is easily influenced by environmental factors and psychological comorbidities that are known to play an important role in its origin and response to therapy. Chronic abdominal pain is one of the most commonly treated conditions in modern pediatric gastroenterology and is the hallmark of 'functional' disorders that include irritable bowel syndrome, functional dyspepsia, and functional abdominal pain. The development of pharmacological therapies for these disorders in adults and children has been limited by the lack of understanding of the putative, pathophysiological mechanisms that underlie them. Peripheral and central pain-signaling mechanisms are known to be involved in chronic pain originating from the gastrointestinal tract, but few therapies have been developed to target specific pathways or enhance correction of the underlying pathophysiology. The responses to therapy have been variable, potentially reflecting the heterogeneity of the disorders for which they are used. Only a few small, randomized clinical trials have evaluated the benefit of pain medications for chronic abdominal pain in children and thus, the decision on the most appropriate treatment is often based on adult studies and empirical data. This review discusses the most common, non-narcotic pharmacological treatments for chronic abdominal pain in children and includes a thorough review of the literature to support or refute their use. Because of the dearth of pediatric studies, the focus is on pharmacological and alternative therapies where there is sufficient evidence of benefit in either adults or children with chronic abdominal pain.
Collapse
Affiliation(s)
- Adrian Miranda
- Division of Gastroenterology and Hepatology, Department of Pediatrics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA,
| | | |
Collapse
|
15
|
Tong Z, Han C, Luo W, Wang X, Li H, Luo H, Zhou J, Qi J, He R. Accumulated hippocampal formaldehyde induces age-dependent memory decline. AGE (DORDRECHT, NETHERLANDS) 2013; 35:583-96. [PMID: 22382760 PMCID: PMC3636394 DOI: 10.1007/s11357-012-9388-8] [Citation(s) in RCA: 128] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2011] [Accepted: 01/31/2012] [Indexed: 05/25/2023]
Abstract
Aging is an important factor in memory decline in aged animals and humans and in Alzheimer's disease and is associated with the impairment of hippocampal long-term potentiation (LTP) and down-regulation of NR1/NR2B expression. Gaseous formaldehyde exposure is known to induce animal memory loss and human cognitive decline; however, it is unclear whether the concentrations of endogenous formaldehyde are elevated in the hippocampus and how excess formaldehyde affects LTP and memory formation during the aging process. In the present study, we report that hippocampal formaldehyde accumulated in memory-deteriorating diseases such as age-related dementia. Spatial memory performance was gradually impaired in normal Sprague-Dawley rats by persistent intraperitoneal injection with formaldehyde. Furthermore, excess formaldehyde treatment suppressed the hippocampal LTP formation by blocking N-methyl-D-aspartate (NMDA) receptor. Chronic excess formaldehyde treatment over a period of 30 days markedly decreased the viability of the hippocampus and down-regulated the expression of the NR1 and NR2B subunits of the NMDA receptor. Our results indicate that excess endogenous formaldehyde is a critical factor in memory loss in age-related memory-deteriorating diseases.
Collapse
Affiliation(s)
- Zhiqian Tong
- />State Key Laboratory of Brain and Cognitive Sciences, Institute of Biophysics, Chinese Academy of Sciences, Graduate University of the Chinese Academy of Sciences, Beijing, 100101 China
| | - Chanshuai Han
- />State Key Laboratory of Brain and Cognitive Sciences, Institute of Biophysics, Chinese Academy of Sciences, Graduate University of the Chinese Academy of Sciences, Beijing, 100101 China
| | - Wenhong Luo
- />Central Laboratory, Shantou University Medical College, Guangdong, 515041 China
| | - Xiaohui Wang
- />Department of Neurobiology and National Key Discipline of Physiology, Shanxi Medical University, Taiyuan, 030001 China
| | - Hui Li
- />Central Laboratory, Shantou University Medical College, Guangdong, 515041 China
| | - Hongjun Luo
- />Central Laboratory, Shantou University Medical College, Guangdong, 515041 China
| | - Jiangning Zhou
- />University of Science and Technology of China, Anhui, 230026 China
| | - Jinshun Qi
- />Department of Neurobiology and National Key Discipline of Physiology, Shanxi Medical University, Taiyuan, 030001 China
| | - Rongqiao He
- />State Key Laboratory of Brain and Cognitive Sciences, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China
- />Key Lab of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101 China
| |
Collapse
|
16
|
Anderson EM, Neubert JK, Caudle RM. Long-term changes in reward-seeking following morphine withdrawal are associated with altered N-methyl-D-aspartate receptor 1 splice variants in the amygdala. Neuroscience 2012; 223:45-55. [PMID: 22863572 DOI: 10.1016/j.neuroscience.2012.07.037] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Revised: 07/11/2012] [Accepted: 07/20/2012] [Indexed: 12/23/2022]
Abstract
The NR1 subunit of the NMDA receptor can be alternatively spliced by the insertion or removal of the N1, C1, C2, or C2' regions. Morphine dependence and withdrawal were previously demonstrated to lower N1 and C2' in the accumbens and lower N1, C1, and C2' in the amygdala (AMY). Withdrawal has also been demonstrated to increase motivational and anxiety/stress behaviors in rats. We tested the hypothesis that NR1 splicing would be associated with these behaviors during an extended withdrawal period of 2 months. Motivation was measured using an operant orofacial assay at non-aversive temperatures (37°C) while anxiety and stress were measured by examining this behavior at aversive temperatures (46°C). Lower C1 and C2 expression levels were observed in the AMY in a subset of the population of withdrawn rats even after 2 months of morphine withdrawal. These subsets were associated with a hypersensitivity to adverse conditions which may reflect long-term alterations in the withdrawn population.
Collapse
Affiliation(s)
- E M Anderson
- Department of Neuroscience, University of Florida College of Medicine, McKnight Brain Institute, Gainesville, FL 32610, USA.
| | | | | |
Collapse
|
17
|
Jeon HJ, Han SR, Lim KH, Won KA, Bae YC, Ahn DK. Intracisternal administration of NR2 subunit antagonists attenuates the nociceptive behavior and p-p38 MAPK expression produced by compression of the trigeminal nerve root. Mol Pain 2011; 7:46. [PMID: 21651766 PMCID: PMC3123587 DOI: 10.1186/1744-8069-7-46] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Accepted: 06/08/2011] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND We investigated the role of the central NMDA receptor NR2 subunits in the modulation of nociceptive behavior and p-p38 MAPK expression in a rat model with compression of the trigeminal nerve root. To address this possibility, changes in air-puff thresholds and pin-prick scores were determined following an intracisternal administration of NR2 subunit antagonists. We also examined effects of NR2 subunit antagonists on the p-p38 MAPK expression. RESULTS Experiments were carried out using male Sprague-Dawley rats weighing (200-230 g). Compression of the trigeminal nerve root was performed under pentobarbital sodium (40 mg/kg) anesthesia. Compression of the trigeminal nerve root produced distinct nociceptive behavior such as mechanical allodynia and hyperalgesia. Intracisternal administration of 10 or 20 μg of D-AP5 significantly increased the air-puff threshold and decreased the pin-prick scores in a dose-dependent manner. The intracisternal administration of PPPA (1, 10 μg), or PPDA (5, 10 μg) increased the air-puff threshold and decreased the pin-prick scores ipsilateral as well as contralateral to the compression of the trigeminal root. Compression of the trigeminal nerve root upregulated the expression of p-p38 MAPK in the ipsilateral medullary dorsal horn which was diminished by D-AP5, PPPA, PPDA, but not Ro25-6981. CONCLUSIONS Our findings suggest that central NMDA receptor NR2 subunits play an important role in the central processing of trigeminal neuralgia-like nociception in rats with compression of the trigeminal nerve root. Our data further indicate that the targeted blockade of NR2 subunits is a potentially important new treatments strategy for trigeminal neuralgia-like nociception.
Collapse
Affiliation(s)
- Hye J Jeon
- Department of Oral Physiology, School of Dentistry, Kyungpook National University, Daegu, Korea.
| | | | | | | | | | | |
Collapse
|
18
|
Peripheral administration of NR2 antagonists attenuates orofacial formalin-induced nociceptive behavior in rats. Prog Neuropsychopharmacol Biol Psychiatry 2011; 35:982-6. [PMID: 21295101 DOI: 10.1016/j.pnpbp.2011.01.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2010] [Revised: 01/26/2011] [Accepted: 01/26/2011] [Indexed: 11/23/2022]
Abstract
The present study investigated the role of the peripheral NR2 subunits of N-methyl-d-aspartatic acid (NMDA) receptors in inflammatory orofacial pain. Experiments were carried out using adult male Sprague-Dawley rats weighing 220 to 280 g. Formalin (5%, 50 μl) was applied subcutaneously to the vibrissa pad. For each animal, the number of noxious behavioral responses, including rubbing or scratching of the facial region proximal to the injection site, was recorded for 9 sequential 5 min intervals. NR2 subunit antagonists were injected subcutaneously at 20 min prior to formalin injection. The subcutaneous injection of 100 or 200 μg of memantine significantly suppressed the number of scratches in the second phase of the behavioral responses to formalin. The subcutaneous injection of 0.25, 2.5, or 25 μg of 5,7-dichlorokynurenic acid also produced significant antinociceptive effects in the second phase. The subcutaneous injection of AP-5 at high dose produced significant antinociceptive effects in the second phase. The subcutaneous injection of PPPA and Ro 25-6981 both significantly suppressed the number of scratches in the second phase. The antinociceptive doses of memantine (200 μg), 5,7-dichlorokynurenic acid (25 μg), AP-5 (20 μg), PPPA (2.5 μg), or Ro 25-6981 (50 μg) injected into the contralateral hind paw did not affect the number of scratches in both the first and second phases. Moreover, the peripheral administration of NR2 subunit antagonists, including other NMDA receptor blockers, did not produce any motor dysfunction. These results indicate that a targeted blockade of peripheral NR2 receptors is a potentially important new method of treating inflammatory pain in the orofacial area.
Collapse
|
19
|
Involvement of spinal NR2B-containing NMDA receptors in oxaliplatin-induced mechanical allodynia in rats. Mol Pain 2011; 7:8. [PMID: 21247499 PMCID: PMC3033350 DOI: 10.1186/1744-8069-7-8] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Accepted: 01/20/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Oxaliplatin is a platinum-based chemotherapy drug characterized by the development of acute and chronic peripheral neuropathies. The chronic neuropathy is a dose-limiting toxicity. We previously reported that repeated administration of oxaliplatin induced cold hyperalgesia in the early phase and mechanical allodynia in the late phase in rats. In the present study, we investigated the involvement of NR2B-containing N-methyl-D-aspartate (NMDA) receptors in oxaliplatin-induced mechanical allodynia in rats. RESULTS Repeated administration of oxaliplatin (4 mg/kg, i.p., twice a week) caused mechanical allodynia in the fourth week, which was reversed by intrathecal injection of MK-801 (10 nmol) and memantine (1 μmol), NMDA receptor antagonists. Similarly, selective NR2B antagonists Ro25-6981 (300 nmol, i.t.) and ifenprodil (50 mg/kg, p.o.) significantly attenuated the oxaliplatin-induced pain behavior. In addition, the expression of NR2B protein and mRNA in the rat spinal cord was increased by oxaliplatin on Day 25 (late phase) but not on Day 5 (early phase). Moreover, we examined the involvement of nitric oxide synthase (NOS) as a downstream target of NMDA receptor. L-NAME, a non-selective NOS inhibitor, and 7-nitroindazole, a neuronal NOS (nNOS) inhibitor, significantly suppressed the oxaliplatin-induced pain behavior. The intensity of NADPH diaphorase staining, a histochemical marker for NOS, in the superficial layer of spinal dorsal horn was obviously increased by oxaliplatin, and this increased intensity was reversed by intrathecal injection of Ro25-6981. CONCLUSION These results indicated that spinal NR2B-containing NMDA receptors are involved in the oxaliplatin-induced mechanical allodynia.
Collapse
|
20
|
Genetic deletion of the adenosine A(2A) receptor in mice reduces the changes in spinal cord NMDA receptor binding and glucose uptake caused by a nociceptive stimulus. Neurosci Lett 2010; 479:297-301. [PMID: 20570711 DOI: 10.1016/j.neulet.2010.05.084] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Revised: 05/26/2010] [Accepted: 05/27/2010] [Indexed: 11/20/2022]
Abstract
Mice lacking the adenosine A(2A) receptor are less sensitive to nociceptive stimuli, and A(2A) receptor antagonists have antinociceptive effects. We have previously shown a marked reduction in the behavioural responses to formalin injection in A(2A) receptor knockout mice. This may be due to the presence of pronociceptive A(2A) receptors on sensory nerves, and if so spinal cords from A(2A) receptor knockout mice may have altered neurochemical responses to a nociceptive stimulus. We tested this hypothesis by studying two parameters known to change with spinal cord activity, NMDA glutamate receptor binding and [(14)C]-2-deoxyglucose uptake, following intraplantar formalin injection in wild-type and A(2A) receptor knockout mice. In naïve untreated A(2A) knockout mice [(14)C]-2-deoxyglucose uptake in all regions of the spinal cord was significantly lower compared to the wild-type, similar to the reduced NMDA receptor binding that we have previously observed. Following formalin treatment, there was an decrease in [(3)H]-MK801 binding to NMDA receptors and an increase in [(14)C]-2-deoxyglucose uptake in the spinal cords of wild-type mice, and these changes were significantly reduced in the A(2A) knockout mice. In addition to altered behavioural responses, there are therefore corresponding reductions in spinal cord neurochemical changes induced by formalin in mice lacking adenosine A(2A) receptors. These observations support the hypothesis that activation of A(2A) receptors enhances nociceptive input into the spinal cord and suggests a possible role for A(2A) antagonists as analgesics.
Collapse
|
21
|
Recio-Pinto E, Castillo C. Peripheral N-methyl-D-aspartate receptors as possible targets for chronic pain treatment. ACTA ACUST UNITED AC 2010. [DOI: 10.1053/j.trap.2010.04.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
22
|
Larsson M. Ionotropic glutamate receptors in spinal nociceptive processing. Mol Neurobiol 2009; 40:260-88. [PMID: 19876771 DOI: 10.1007/s12035-009-8086-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Accepted: 09/29/2009] [Indexed: 02/07/2023]
Abstract
Glutamate is the predominant excitatory transmitter used by primary afferent synapses and intrinsic neurons in the spinal cord dorsal horn. Accordingly, ionotropic glutamate receptors mediate basal spinal transmission of sensory, including nociceptive, information that is relayed to supraspinal centers. However, it has become gradually more evident that these receptors are also crucially involved in short- and long-term plasticity of spinal nociceptive transmission, and that such plasticity have an important role in the pain hypersensitivity that may result from tissue or nerve injury. This review will cover recent findings on pre- and postsynaptic regulation of synaptic function by ionotropic glutamate receptors in the dorsal horn and how such mechanisms contribute to acute and chronic pain.
Collapse
Affiliation(s)
- Max Larsson
- Department of Anatomy and Centre for Molecular Biology and Neuroscience, University of Oslo, Norway.
| |
Collapse
|
23
|
Xiao C, Huang Y, Dong M, Hu J, Hou S, Castellino FJ, Prorok M, Dai Q. NR2B-selective conantokin peptide inhibitors of the NMDA receptor display enhanced antinociceptive properties compared to non-selective conantokins. Neuropeptides 2008; 42:601-9. [PMID: 18992939 PMCID: PMC2621068 DOI: 10.1016/j.npep.2008.09.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2008] [Revised: 08/14/2008] [Accepted: 09/11/2008] [Indexed: 11/22/2022]
Abstract
NR2B-selective inhibitors show lower side-effects in preclinical pain models than non-selective NMDA receptor (NMDAR) antagonists, but it is unclear whether the improved safety of NR2B-selective inhibitors is due to their subtype selectivity or to a unique mode of inhibition of the receptor. In this study, the analgesic effects of intracerebral bolus injections of conantokin peptides with different NMDAR subunit selectivity were determined in mice by the standard hot-plate test, and following stimuli with acetic acid, formalin and complete Freund's adjuvant (CFA). In the standard hot-plate model, con-G[S16Y], a NR2B-selective inhibitor, showed the highest analgesic activity among conantokin peptides tested. In the acetic acid- and CFA-induced pain models, con-G[S16Y] and, to a lesser extent, con-G exhibited higher analgesic activity compared to non-selective inhibitors, such as con-R[1-17]. In the formalin test, while all conantokin peptides could partially suppress the first phase response, only con-G[S16Y] and con-G significantly inhibited the second phase response and suppressed paw edema. Our results suggest that the antinociceptive action of the conantokins may be related to their NR2B-selectivity and that these peptides may be useful as both neurobiological tools for probing mechanisms of nociception and as therapeutic agents for pain relief.
Collapse
Affiliation(s)
- Cai Xiao
- Institute of Biotechnology, Beijing 100071, China
| | | | - Mingxin Dong
- Institute of Biotechnology, Beijing 100071, China
| | - Jie Hu
- Institute of Biotechnology, Beijing 100071, China
| | | | - Francis J. Castellino
- Department of Chemistry and Biochemistry and the W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Mary Prorok
- Department of Chemistry and Biochemistry and the W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, Indiana 46556, USA
- To whom correspondence should be addressed: Institute of Biotechnology, Beijing 100071, China. Tel: 86-10-66948897; Fax: 86-10-63833521; E-mail: , Department of Chemistry and Biochemistry, University of Notre Dame, Indiana 46556, USA. Tel.: 001-574-6319120; Fax: 001-574-6314414;
| | - Qiuyun Dai
- Institute of Biotechnology, Beijing 100071, China
- To whom correspondence should be addressed: Institute of Biotechnology, Beijing 100071, China. Tel: 86-10-66948897; Fax: 86-10-63833521; E-mail: , Department of Chemistry and Biochemistry, University of Notre Dame, Indiana 46556, USA. Tel.: 001-574-6319120; Fax: 001-574-6314414;
| |
Collapse
|
24
|
Lu Z, Li CM, Qiao Y, Yan Y, Yang X. Effect of inhaled formaldehyde on learning and memory of mice. INDOOR AIR 2008; 18:77-83. [PMID: 18333987 DOI: 10.1111/j.1600-0668.2008.00524.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
UNLABELLED In this study, we investigated the effect of inhaled formaldehyde on learning and memory capacity. After exposure to 0 (control), 1 and 3 mg/m(3) of gaseous formaldehyde respectively, the behavior of mice in a Morris water maze, the expression of NR1, NR2B mRNA and oxidative damage levels in mice brain were analyzed. The water maze performance, the activities of dismutase superoxide (SOD) and levels of glutathione (GSH) decreased significantly in 3 mg/m(3) group (P < 0.01, compared with control group); while malondialdehyde (MDA) contents and expression of NR1 and NR2B genes increased significantly after exposure to 3 mg/m(3) of gaseous formaldehyde (P < 0.05, <0.01, <0.01, compared with control group). These findings indicate that inhaled formaldehyde negatively affects learning and memory at 3 mg/m(3) of gaseous formaldehyde but not at lower levels. Oxidative stress-induced neuron damages in the brain may be the possible mechanism for these effects. PRACTICAL IMPLICATIONS This study indicates that inhaled formaldehyde starts to negatively affect learning and memory at a middle concentration of formaldehyde without interference of other indoor air pollutants. Oxidative damage, and the alteration of NMDA receptor expression, which were induced by formaldehyde inhalation, may be the possible mechanism for gaseous formaldehyde-induced neurotoxicity.
Collapse
Affiliation(s)
- Z Lu
- College of Life Science, Central China Normal University, Wuhan, China
| | | | | | | | | |
Collapse
|
25
|
Iwata H, Takasusuki T, Yamaguchi S, Hori Y. NMDA receptor 2B subunit-mediated synaptic transmission in the superficial dorsal horn of peripheral nerve-injured neuropathic mice. Brain Res 2007; 1135:92-101. [PMID: 17198690 DOI: 10.1016/j.brainres.2006.12.014] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2006] [Revised: 12/02/2006] [Accepted: 12/07/2006] [Indexed: 02/06/2023]
Abstract
Previous research has shown that peripheral inflammation and peripheral nerve injury alter the properties of NMDA receptors in the spinal dorsal horn. However, there is no direct evidence that demonstrates the influence of peripheral nerve injury on NMDA receptor-mediated synaptic transmission in the spinal dorsal horn. Using whole cell tight-seal methods, NMDA receptor-mediated excitatory postsynaptic currents (NMDA EPSCs) were recorded from superficial dorsal horn neurons in adult mouse spinal cord slices. Peripheral nerve injury-induced changes in the pharmacological and electrophysiological properties of synaptic NMDA receptors were studied. The ratio of the amplitude of NMDA EPSCs to that of non-NMDA EPSCs was larger in nerve-ligated neuropathic mice than in sham-operated control mice. The decay phase of the NMDA EPSCs was slower in nerve-ligated neuropathic mice. The NR2B subunit-specific NMDA receptor antagonist ifenprodil (10 microM) reduced the amplitude of the NMDA EPSCs and shortened their decay phase. The sensitivity of NMDA EPSCs to ifenprodil was significantly larger in nerve-ligated neuropathic mice than in sham-operated control mice. Single-cell RT-PCR analysis performed on superficial dorsal horn neurons showed that the incidence of NR2A mRNA-expressing neurons was reduced in nerve-ligated neuropathic mice. This result, together with the electrophysiological findings, suggests that the subunit composition of the subsynaptic NMDA receptors in the superficial dorsal horn was altered by peripheral nerve injury. Pharmacological and electrophysiological changes observed in the present experiments might be the underlying causes of the hyperalgesia and allodynia induced by peripheral nerve injury and inflammation.
Collapse
Affiliation(s)
- Hideaki Iwata
- Department of Physiology and Biological Information, Dokkyo Medical University School of Medicine, Kitakobayashi 880, Mibu, Tochigi 321-0293, Japan
| | | | | | | |
Collapse
|
26
|
Zeng J, Thomson LM, Aicher SA, Terman GW. Primary afferent NMDA receptors increase dorsal horn excitation and mediate opiate tolerance in neonatal rats. J Neurosci 2006; 26:12033-42. [PMID: 17108177 PMCID: PMC6674867 DOI: 10.1523/jneurosci.2530-06.2006] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Repeated exposure to opiates produces analgesic tolerance, which limits their clinical usefulness. Whole-cell voltage-clamped lamina I cells in spinal slices from opiate-tolerant neonatal rats show an increase in miniature, spontaneous, and primary afferent-evoked EPSCs when compared with lamina I cells from opiate-naive rat spinal slices. This increased excitation can be blocked by the NMDA receptor (NMDAR) antagonist APV, apparently acting at NMDARs on primary afferents. Consistent with these results, electron microscopy demonstrates an increased incidence of NMDARs in substance P-containing spinal dorsal horn primary afferent terminals in opiate-tolerant rats. Moreover, superfusion of spinal slices from opiate-tolerant rats with NMDA produces a reversible increase in miniature EPSC (mEPSC) frequency in contrast to a decrease in mEPSC frequency produced by NMDA in opiate-naive slices. Finally, NMDAR antagonists inhibit the expression of opiate tolerance both in inhibiting EPSCs in spinal slices and in inhibiting behavioral nociceptive responses to heat. NMDAR antagonists have been reported in many studies to inhibit morphine analgesic tolerance. Our studies suggest that an increase in primary afferent NMDAR expression and activity mediates a hypersensitivity to noxious stimuli and causes the inhibition of opiate efficacy, which defines tolerance.
Collapse
MESH Headings
- Afferent Pathways/drug effects
- Afferent Pathways/metabolism
- Afferent Pathways/ultrastructure
- Aging/physiology
- Analgesics, Opioid/pharmacology
- Animals
- Animals, Newborn
- Cell Differentiation/physiology
- Drug Tolerance/physiology
- Excitatory Postsynaptic Potentials/drug effects
- Excitatory Postsynaptic Potentials/physiology
- Ganglia, Spinal/drug effects
- Ganglia, Spinal/metabolism
- Ganglia, Spinal/ultrastructure
- Microscopy, Immunoelectron
- Neurons, Afferent/drug effects
- Neurons, Afferent/metabolism
- Neurons, Afferent/ultrastructure
- Nociceptors/drug effects
- Nociceptors/metabolism
- Pain/drug therapy
- Pain/metabolism
- Pain/physiopathology
- Patch-Clamp Techniques
- Posterior Horn Cells/drug effects
- Posterior Horn Cells/metabolism
- Posterior Horn Cells/ultrastructure
- Presynaptic Terminals/drug effects
- Presynaptic Terminals/metabolism
- Presynaptic Terminals/ultrastructure
- Rats
- Rats, Sprague-Dawley
- Receptors, N-Methyl-D-Aspartate/drug effects
- Receptors, N-Methyl-D-Aspartate/metabolism
- Spinal Nerve Roots/drug effects
- Spinal Nerve Roots/metabolism
- Substance P/metabolism
- Synaptic Transmission/drug effects
- Synaptic Transmission/physiology
Collapse
Affiliation(s)
- Jinsong Zeng
- Department of Anesthesiology and the Graduate Program in Neurobiology and Behavior, University of Washington School of Medicine, Seattle, Washington 98195, USA
| | | | | | | |
Collapse
|
27
|
Abstract
Pain is an important survival and protection mechanism for animals. However, chronic/persistent pain may be differentiated from normal physiological pain in that it confers no obvious advantage. An accumulating body of pharmacological, electrophysiological, and behavioral evidence is emerging in support of the notion that glutamate receptors play a crucial role in pain pathways and that modulation of glutamate receptors may have potential for therapeutic utility in several categories of persistent pain, including neuropathic pain resulting from injury and/or disease of central (e.g., spinal cord injury) or peripheral nerves (e.g., diabetic neuropathy, radiculopathy) and inflammatory or joint-related pain (e.g., rheumatoid arthritis, osteoarthritis). This review focuses on the role of glutamate receptors, including both ionotropic (AMPA, NMDA and kainate) and metabotropic (mGlu1-8) receptors in persistent pain states with particular emphasis on their expression patterns in nociceptive pathways and their potential as targets for pharmacological intervention strategies.
Collapse
Affiliation(s)
- David Bleakman
- Neuroscience Division, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA.
| | | | | |
Collapse
|
28
|
Guo JD, Wang H, Zhang YQ, Zhao ZQ. Distinct effects of D-serine on spinal nociceptive responses in normal and carrageenan-injected rats. Biochem Biophys Res Commun 2006; 343:401-6. [PMID: 16546123 DOI: 10.1016/j.bbrc.2006.02.156] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2006] [Accepted: 02/25/2006] [Indexed: 11/30/2022]
Abstract
Single unit extracellular recordings from dorsal horn neurons were performed with glass micropipettes in pentobarbital-anesthetized rats. A total of 60 wide dynamic range (WDR) neurons were obtained from 34 rats. In normal rats (20/34), spinally administered D-serine (10 nmol), a putative endogenous agonist of glycine site of NMDA receptors, significantly enhanced the C- but not Abeta-, and Adelta-fiber responses of WDR neurons in the spinal dorsal horn. When 1 nmol of the glycine site antagonist 7-chlorokynurenic acid (7-CK) was co-administered with 10 nmol D-serine, the facilitation of D-serine on C-fiber response was completely blocked. 7-CK (1 nmol) alone failed to influence Abeta-, Adelta-, and C-fiber responses of WDR neurons. In contrast, in carrageenan-injected rats (14/34), 10 nmol D-serine had no effect on C-fiber response, while 1 nmol 7-CK per se markedly depressed C-fiber response of WDR neurons. These findings suggest that under physiological conditions, glycine sites in the spinal cord were available but became saturated following peripheral inflammation. Thus, increased endogenous d-serine or glycine may be involved in nociceptive transmission by modulating NMDA receptor activities. The glycine site of NMDA receptors may become a target for the prevention of inflammatory pain.
Collapse
Affiliation(s)
- Ji-Dong Guo
- Institute of Neurobiology, Fudan University, Shanghai 200433, China
| | | | | | | |
Collapse
|
29
|
Shi X, Li X, Clark JD. Formalin injection causes a coordinated spinal cord CO/NO-cGMP signaling system response. Mol Pain 2005; 1:33. [PMID: 16297238 PMCID: PMC1310513 DOI: 10.1186/1744-8069-1-33] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2005] [Accepted: 11/18/2005] [Indexed: 12/02/2022] Open
Abstract
Background The CO/NO-cGMP signalling system participates in the regulation of many physiological processes. The roles this system plays in spinal cord nociceptive signalling are particularly important. While individual components have been examined in isolation, little study has been dedicated to understanding the regulation and functioning of the system as a whole. Results In these studies we examined the time course of expression of 13 genes coding for components of this system including isoforms of the heme oxygenase (HO), nitric oxide synthase (NOS), soluble guanylate cyclase (sGC), cGMP dependent protein kinase (PKG) and phosphodiesterase (PDE) enzyme systems. Of the 13 genes studied, 11 had spinal cord mRNA levels elevated at one or more time points up to 48 hours after hindpaw formalin injection. Of the 11 with elevated mRNA, 8 had elevated protein levels 48 hours after formalin injection when mechanical allodynia was maximal. No component had an increased protein level which did not have an increased mRNA level at one or more time points. Injection of morphine 10 mg/kg prior to formalin completely abolished the acute nociceptive behaviours, but did not alter the degree of sensitivity which developed in the formalin treated hind paws during the subsequent 48 hours. Morphine treatment did, however, eliminate formalin induced increases in enzyme protein levels. Conclusion Our results indicate that the expression of the components of the CO/NO-cGMP signalling system seems to be coordinated in such a way that a generalized multi-level enhancement rather than a tightly limited step specific response occurs with noxious stimulation. Furthermore, the analgesic morphine administered prior to noxious stimulation can prevent long-term changes in gene expression though not necessarily nociceptive sensitisation.
Collapse
Affiliation(s)
- Xiaoyou Shi
- Stanford University Department of Anesthesiology, Stanford, CA, USA
| | - Xiangqi Li
- Stanford University Department of Anesthesiology, Stanford, CA, USA
| | - J David Clark
- Stanford University Department of Anesthesiology, Stanford, CA, USA
- Veterans Affairs Palo Alto Healthcare System, Palo Alto, CA, USA
| |
Collapse
|
30
|
Caudle RM, Perez FM, Del Valle-Pinero AY, Iadarola MJ. Spinal cord NR1 serine phosphorylation and NR2B subunit suppression following peripheral inflammation. Mol Pain 2005; 1:25. [PMID: 16137337 PMCID: PMC1208948 DOI: 10.1186/1744-8069-1-25] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2005] [Accepted: 09/02/2005] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Spinal cord N-methyl-D-aspartate (NMDA) receptors are intimately involved in the development and maintenance of central sensitization. However, the mechanisms mediating the altered function of the NMDA receptors are not well understood. In this study the role of phosphorylation of NR1 splice variants and NR2 subunits was examined following hind paw inflammation in rats. We further examined the level of expression of these proteins following the injury. RESULTS Lumbar spinal cord NR1 subunits were found to be phosphorylated on serine residues within two hours of the induction of hind paw inflammation with carrageenan. The enhanced NR1 serine phosphorylation reversed within six hours. No phosphorylation on NR1 threonine or tyrosine residues was observed. Likewise, no NR2 subunit phosphorylation was observed on serine, threonine or tyrosine residues. An analysis of NR1 and NR2 protein expression demonstrated no change in the levels of NR1 splice variants or NR2A following the inflammation. However, spinal cord NR2B expression was depressed by the hind paw inflammation. The expression of NR2B remained depressed for more than one week following initiation of the inflammation. CONCLUSION These data suggest that NR1 serine phosphorylation leads to an initial increase in NMDA receptor activity in the spinal cord following peripheral injury. The suppression of NR2B expression suggests compensation for the enhanced nociceptive activity. These data indicate that spinal cord NMDA receptors are highly dynamic in the development, maintenance and recovery from central sensitization following an injury. Thus, chronic pain therapies targeted to NMDA receptors should be designed for the exact configuration of NMDA receptor subunits and post-translational modifications present during specific stages of the disease.
Collapse
Affiliation(s)
- Robert M Caudle
- Department of Oral and Maxillofacial Surgery and Diagnostic Sciences, University of Florida College of Dentistry, Gainesville, FL 32610, USA
- Department of Neuroscience, University of Florida College of Medicine, McKnight Brain Institute, Gainesville, FL 32610, USA
| | - Federico M Perez
- Department of Oral and Maxillofacial Surgery and Diagnostic Sciences, University of Florida College of Dentistry, Gainesville, FL 32610, USA
| | - Arseima Y Del Valle-Pinero
- Department of Neuroscience, University of Florida College of Medicine, McKnight Brain Institute, Gainesville, FL 32610, USA
| | - Michael J Iadarola
- Pain and Neurosensory Mechanisms Branch, National Institutes of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
31
|
Guo JD, Wang H, Zhang YQ, Zhao ZQ. Alterations of membrane properties and effects of d-serine on NMDA-induced current in rat anterior cingulate cortex neurons after monoarthritis. Neurosci Lett 2005; 384:245-9. [PMID: 15916854 DOI: 10.1016/j.neulet.2005.04.096] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2005] [Revised: 04/26/2005] [Accepted: 04/27/2005] [Indexed: 10/25/2022]
Abstract
Accumulated evidence implicates the anterior cingulate cortex (ACC) in pain processing. The activation of the NMDA receptor requires the occupation of both the glutamate site and the glycine site. d-Serine released by astrocytes is presumed to be an endogenous ligand for the glycine site of the NMDA receptor. Using whole-cell patch clamp recording, membrane characteristics and effects of exogenous d-serine on NMDA-evoked currents were examined in neurons in ACC slices from normal and complete Freund's adjuvant-induced monoarthritic rats. Neurons from rats with monoarthritis exhibited more depolarized membrane potential, lower firing threshold, lower input resistance and higher slope conductance compared with normal rats. The NMDA-evoked currents were enhanced by d-serine (20 microM) in both normal (135.3+/-4.3% of control, p < 0.01) and arthritic (157.9 +/- 9.7% of control, p < 0.01) rats, respectively. The effect of d-serine was greater in arthritic rats than control rats (p < 0.05). These results suggest that inflammatory pain increased the excitability of ACC neurons, and that the NMDA receptor glycine sites in the ACC neurons were not saturated in either normal or inflammatory pain states.
Collapse
Affiliation(s)
- Ji-Dong Guo
- Institute of Neurobiology, Fudan University, 220 Han Dan Road, Shanghai 200433, China
| | | | | | | |
Collapse
|
32
|
Pauly T, Schlicksupp A, Neugebauer R, Kuhse J. Synaptic targeting of N-methyl-D-aspartate receptor splice variants is regulated differentially by receptor activity. Neuroscience 2005; 131:99-111. [PMID: 15680695 DOI: 10.1016/j.neuroscience.2004.10.039] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/15/2004] [Indexed: 11/19/2022]
Abstract
The formation of postsynaptic clusters of various ligand-gated ion channels is regulated by receptor activity. Here we describe the developmental- and activity-dependent modification of N-methyl-D-aspartate (NMDA) receptor clustering in spinal cord neurons in vitro detected by immunofluorescence analysis using subunit and splice variant specific antibodies. NMDA receptors form synaptic and extrasynaptic clusters with sequential changes in subunit composition during in vitro development. During the first week of in vitro culture, a NR1 splice variant containing the C2-carboxy terminus and lacking the N1-cassette and the NR2B subunit are the prevailing components of receptor clusters at synaptic and extrasynaptic sites. After 3 weeks in culture (days in vitro [DIV] 22), the numbers of postsynaptic receptor clusters with N1-containing NR1 splice variants and NR2A subunits are upregulated. At DIV22, C2-specific clusters are abundant and are predominantly localized at postsynaptic sites, whereas the total number of C2'-clusters in dendrites is much lower and these clusters are localized mostly extrasynaptically. However, upon chronic inhibition of NMDA receptor activity in DIV8 and DIV22 cultures with MK801, the number of postsynaptic NR1-C2' subunit clusters is strongly upregulated. In contrast, numbers of NR1-C2 clusters are only modestly increased in DIV8 and not changed in DIV22 cultures upon MK801 treatment, suggesting a specific role of NR1 carboxy-terminal sequences in the activity-dependent synaptic targeting of NMDA receptor clusters of spinal cord neurons.
Collapse
Affiliation(s)
- T Pauly
- Department of Anatomy and Cellular Neurobiology, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | | | | | | |
Collapse
|
33
|
Brandt MR, Cummons TA, Potestio L, Sukoff SJ, Rosenzweig-Lipson S. Effects of the N-methyl-D-aspartate receptor antagonist perzinfotel [EAA-090; [2-(8,9-dioxo-2,6-diazabicyclo[5.2.0]non-1(7)-en-2-yl)-ethyl]phosphonic acid] on chemically induced thermal hypersensitivity. J Pharmacol Exp Ther 2005; 313:1379-86. [PMID: 15764736 DOI: 10.1124/jpet.105.084467] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Perzinfotel [EAA-090; [2-(8,9-dioxo-2,6-diazabicyclo[5.2.0]non-1(7)-en-2-yl)-ethyl]phosphonic acid] is a selective, competitive N-methyl-D-aspartate (NMDA) receptor antagonist with high affinity for the glutamate site. The current study evaluated whether perzinfotel would have antinociceptive effects or block thermal hypersensitivity associated with the administration of chemical irritants in rats. Perzinfotel lacked antinociceptive effects but dose- and time-dependently blocked prostaglandin E(2) (PGE(2))- and capsaicin-induced thermal hypersensitivity in a warm-water tail-withdrawal assay in rats. Doses of 10 mg/kg intraperitoneal or 100 mg/kg oral blocked PGE(2)-induced hypersensitivity by 60 to 80%. The magnitude of reversal was greater than other negative modulators of the NMDA receptor studied, such as uncompetitive channel blockers (e.g., memantine, dizocilpine, and ketamine), a NR2B selective antagonist (e.g., ifenprodil), and other glutamate antagonists [e.g., selfotel, 3-(2-carboxypiperazin-4-yl)propyl-1-phosphonic acid (CPP), D,L-(E)-2-amino-4-propyl-5-phosphono-3-pentenoic acid (CGP-39653)], up to doses that suppressed operant rates of responding. In contrast to other negative modulators of the NMDA receptor studied, which typically decreased operant rates of responding at doses that lacked antinociceptive effects, perzinfotel did not modify response rates at doses that blocked irritant-induced thermal hypersensitivity. Collectively, these studies demonstrate that perzinfotel has therapeutic ratios for effectiveness versus adverse effects superior to those seen with other competitive and uncompetitive NMDA receptor antagonists studied.
Collapse
Affiliation(s)
- Michael R Brandt
- Neuroscience Discovery Research, Wyeth Research, Princeton, New Jersey, USA.
| | | | | | | | | |
Collapse
|
34
|
Petrenko AB, Yamakura T, Baba H, Shimoji K. The role of N-methyl-D-aspartate (NMDA) receptors in pain: a review. Anesth Analg 2003; 97:1108-1116. [PMID: 14500166 DOI: 10.1213/01.ane.0000081061.12235.55] [Citation(s) in RCA: 438] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
There is accumulating evidence to implicate the importance of N-methyl-D-aspartate (NMDA) receptors to the induction and maintenance of central sensitization during pain states. However, NMDA receptors may also mediate peripheral sensitization and visceral pain. NMDA receptors are composed of NR1, NR2 (A, B, C, and D), and NR3 (A and B) subunits, which determine the functional properties of native NMDA receptors. Among NMDA receptor subtypes, the NR2B subunit-containing receptors appear particularly important for nociception, thus leading to the possibility that NR2B-selective antagonists may be useful in the treatment of chronic pain.
Collapse
Affiliation(s)
- Andrei B Petrenko
- From the Department of Anesthesiology, Niigata University School of Medicine, Asahimachi 1-757, Niigata 951-8510, Japan
| | | | | | | |
Collapse
|