1
|
Schibalski RS, Shulha AS, Tsao BP, Palygin O, Ilatovskaya DV. The role of polyamine metabolism in cellular function and physiology. Am J Physiol Cell Physiol 2024; 327:C341-C356. [PMID: 38881422 PMCID: PMC11427016 DOI: 10.1152/ajpcell.00074.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/07/2024] [Accepted: 06/07/2024] [Indexed: 06/18/2024]
Abstract
Polyamines are molecules with multiple amino groups that are essential for cellular function. The major polyamines are putrescine, spermidine, spermine, and cadaverine. Polyamines are important for posttranscriptional regulation, autophagy, programmed cell death, proliferation, redox homeostasis, and ion channel function. Their levels are tightly controlled. High levels of polyamines are associated with proliferative pathologies such as cancer, whereas low polyamine levels are observed in aging, and elevated polyamine turnover enhances oxidative stress. Polyamine metabolism is implicated in several pathophysiological processes in the nervous, immune, and cardiovascular systems. Currently, manipulating polyamine levels is under investigation as a potential preventive treatment for several pathologies, including aging, ischemia/reperfusion injury, pulmonary hypertension, and cancer. Although polyamines have been implicated in many intracellular mechanisms, our understanding of these processes remains incomplete and is a topic of ongoing investigation. Here, we discuss the regulation and cellular functions of polyamines, their role in physiology and pathology, and emphasize the current gaps in knowledge and potential future research directions.
Collapse
Affiliation(s)
- Ryan S Schibalski
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia, United States
| | - Anastasia S Shulha
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia, United States
| | - Betty P Tsao
- Division of Rheumatology & Immunology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Oleg Palygin
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Daria V Ilatovskaya
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia, United States
| |
Collapse
|
2
|
Tian S, Liu W, Liu B, Ye F, Xu Z, Wan Q, Li Y, Zhang X. Mechanistic study of C 5F 10O-induced lung toxicity in rats: An eco-friendly insulating gas alternative to SF 6. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:170271. [PMID: 38262248 DOI: 10.1016/j.scitotenv.2024.170271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/23/2023] [Accepted: 01/17/2024] [Indexed: 01/25/2024]
Abstract
The global warming and other environmental problems caused by SF6 emissions can be reduced due to the widespread use of eco-friendly insulating gas, perfluoropentanone (C5F10O). However, there is an exposure risk to populations in areas near C5F10O equipment, so it is important to clarify its biosafety and pathogenesis before large-scale application. In this paper, histopathology, transcriptomics, 4D-DIA proteomics, and LC-MS metabolomics of rats exposed to 2000 ppm and 6000 ppm C5F10O are analyzed to reveal the mechanisms of toxicity and health risks. Histopathological shows that inflammatory cell infiltration, epithelial cell hyperplasia, and alveolar atrophy accompanied by alveolar wall thickening are present in both low-dose and high-dose groups. Analysis of transcriptomic and 4D-DIA proteomic show that Cell cycle and DNA replication can be activated by both 2000 ppm and 6000 ppm C5F10O to induce cell proliferation. In addition, it also leads to the activation of pathways such as Antigen processing and presentation, Cell adhesion molecules and Complement and coagulation cascades, T cell receptor signal path, Th1 and T cell receptor signal path, Th1 and Th2 cell differentiation, complement and coagulation cascades. Finally, LC-MS metabolomics analysis confirms that the metabolic pathways associated with glycerophospholipids, arachidonic acid, and linoleic acid are disrupted and become more severe with increasing doses. The mechanism of lung toxicity caused by C5F10O is systematically expounded based on the multi-omics analysis and provided biosafety references for further promotion and application of C5F10O.
Collapse
Affiliation(s)
- Shuangshuang Tian
- Hubei Engineering Research Center for Safety Monitoring of New Energy and Power Grid Equipment, Hubei University of Technology, Wuhan 430068, China
| | - Weihao Liu
- Hubei Engineering Research Center for Safety Monitoring of New Energy and Power Grid Equipment, Hubei University of Technology, Wuhan 430068, China
| | - Benli Liu
- Hubei Engineering Research Center for Safety Monitoring of New Energy and Power Grid Equipment, Hubei University of Technology, Wuhan 430068, China
| | - Fanchao Ye
- Hubei Engineering Research Center for Safety Monitoring of New Energy and Power Grid Equipment, Hubei University of Technology, Wuhan 430068, China
| | - Zhenjie Xu
- School of Life Sciences, Westlake University, Hangzhou, China
| | - Qianqian Wan
- Zhongnan Hospital, Wuhan University, Wuhan, China.
| | - Yi Li
- School of Electrical Engineering and Automation, Wuhan University, Wuhan, China
| | - Xiaoxing Zhang
- Hubei Engineering Research Center for Safety Monitoring of New Energy and Power Grid Equipment, Hubei University of Technology, Wuhan 430068, China; School of Electrical Engineering and Automation, Wuhan University, Wuhan, China.
| |
Collapse
|
3
|
Hu Y, Jiang W. Mannose and glycine: Metabolites with potentially causal implications in chronic kidney disease pathogenesis. PLoS One 2024; 19:e0298729. [PMID: 38354117 PMCID: PMC10866514 DOI: 10.1371/journal.pone.0298729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 01/29/2024] [Indexed: 02/16/2024] Open
Abstract
BACKGROUND Chronic Kidney Disease (CKD) represents a global health challenge, with its etiology and underlying mechanisms yet to be fully elucidated. Integrating genomics with metabolomics can offer insights into the putatively causal relationships between serum metabolites and CKD. METHODS Utilizing bidirectional Mendelian Randomization (MR), we assessed the putatively causal associations between 486 serum metabolites and CKD. Genetic data for these metabolites were sourced from comprehensive genome-wide association studies, and CKD data were obtained from the CKDGen Consortium. RESULTS Our analysis identified four metabolites with a robust association with CKD risk, of which mannose and glycine showed the most reliable causal relationships. Pathway analysis spotlighted five significant metabolic pathways, notably including "Methionine Metabolism" and "Arginine and Proline Metabolism", as key contributors to CKD pathogenesis. CONCLUSION This study underscores the potential of certain serum metabolites as biomarkers for CKD and illuminates pivotal metabolic pathways in CKD's pathogenesis. Our findings lay the groundwork for potential therapeutic interventions and warrant further research for validation.
Collapse
Affiliation(s)
- Yongzheng Hu
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Wei Jiang
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
4
|
Holeček M. Aspartic Acid in Health and Disease. Nutrients 2023; 15:4023. [PMID: 37764806 PMCID: PMC10536334 DOI: 10.3390/nu15184023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/12/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Aspartic acid exists in L- and D-isoforms (L-Asp and D-Asp). Most L-Asp is synthesized by mitochondrial aspartate aminotransferase from oxaloacetate and glutamate acquired by glutamine deamidation, particularly in the liver and tumor cells, and transamination of branched-chain amino acids (BCAAs), particularly in muscles. The main source of D-Asp is the racemization of L-Asp. L-Asp transported via aspartate-glutamate carrier to the cytosol is used in protein and nucleotide synthesis, gluconeogenesis, urea, and purine-nucleotide cycles, and neurotransmission and via the malate-aspartate shuttle maintains NADH delivery to mitochondria and redox balance. L-Asp released from neurons connects with the glutamate-glutamine cycle and ensures glycolysis and ammonia detoxification in astrocytes. D-Asp has a role in brain development and hypothalamus regulation. The hereditary disorders in L-Asp metabolism include citrullinemia, asparagine synthetase deficiency, Canavan disease, and dicarboxylic aminoaciduria. L-Asp plays a role in the pathogenesis of psychiatric and neurologic disorders and alterations in BCAA levels in diabetes and hyperammonemia. Further research is needed to examine the targeting of L-Asp metabolism as a strategy to fight cancer, the use of L-Asp as a dietary supplement, and the risks of increased L-Asp consumption. The role of D-Asp in the brain warrants studies on its therapeutic potential in psychiatric and neurologic disorders.
Collapse
Affiliation(s)
- Milan Holeček
- Department of Physiology, Faculty of Medicine in Hradec Králové, Charles University, Šimkova 870, 500 03 Hradec Králové, Czech Republic
| |
Collapse
|
5
|
Busnatu ȘS, Andronic O, Pană MA, Stoian AP, Scafa-Udriște A, Păun N, Stanciu S. Oral Arginine Supplementation in Healthy Individuals Performing Regular Resistance Training. Healthcare (Basel) 2023; 11:healthcare11020182. [PMID: 36673550 PMCID: PMC9891176 DOI: 10.3390/healthcare11020182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 12/27/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Resistance exercise training is well documented as having cardiovascular benefits, but paradoxically, it seems to increase arterial stiffness, favoring the development of high blood pressure. The present study investigates the potential effects of oral supplementation with arginine in healthy individuals performing exercise resistance training. We studied 70 non-smoking male subjects between the ages of 30 and 45 with normal or mildly increased blood pressure on ambulatory monitoring (for 24 h) and normal blood samples and echocardiography, who performed regular resistance exercise training for at least five years with a minimum of three workouts per week. They were divided into two groups in a random manner: 35 males were placed in the arginine group (AG) that followed a 6-month supplementation of their regular diets with 5 g of oral arginine powder taken before their exercise workout, and the control (non-arginine) group (NAG) consisted of 35 males. All subjects underwent body composition analysis, 24 h blood pressure monitoring and pulse wave analysis at enrollment and at six months. After six months of supplementation, blood pressure values did not change in the NAG, while in the AG, we found a decrease of 5.6 mmHg (p < 0.05) in mean systolic blood pressure and a decrease of 4.5 mmHg (p < 0.05) in diastolic values. There was also a 0.62% increase in muscle mass in the AG vs. the NAG (p < 0.05), while the body fat decreased by 1% (p < 0.05 in AG vs. NAG). Overall, the AG gained twice the amount of muscle mass and lost twice as much body fat as the NAG. No effects on the mean weighted average heart rate were recorded in the subjects. The results suggest that oral supplementation with arginine can improve blood pressure and body composition, potentially counteracting the stress induced by resistance exercise training. Supplementation with arginine can be a suitable adjuvant for these health benefits in individuals undertaking regular resistance training.
Collapse
Affiliation(s)
- Ștefan-Sebastian Busnatu
- Department of Cardiology, Carol Davila University of Medicine and Pharmacy, Bagdasar-Arseni Emergency Hospital, 050474 Bucharest, Romania
| | - Octavian Andronic
- Department of Cardiology, Carol Davila University of Medicine and Pharmacy, University Emergency Hospital of Bucharest, 050098 Bucharest, Romania
| | - Maria-Alexandra Pană
- Department of Cardiology, Carol Davila University of Medicine and Pharmacy, Bagdasar-Arseni Emergency Hospital, 050474 Bucharest, Romania
- Correspondence:
| | - Anca Pantea Stoian
- Department of Diabetes, Nutrition and Metabolic Diseases, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Alexandru Scafa-Udriște
- Department of Cardio-Thoracic, Carol Davila University of Medicine and Pharmacy, Emergency Clinical Hospital, 014461 Bucharest, Romania
| | - Nicolae Păun
- Department of Cardiology, Carol Davila University of Medicine and Pharmacy, Theodor Burghele Clinical Hospital, 020021 Bucharest, Romania
| | - Silviu Stanciu
- Department of Cardiology, Carol Davila University of Medicine and Pharmacy, Central Military Hospital, 010825 Bucharest, Romania
| |
Collapse
|
6
|
Chen Q, Yang W, Gong W, Chen X, Zhu Z, Chen H. Advanced Sensing Strategies Based on Different Types of Biomarkers toward Early Diagnosis of H. pylori. Crit Rev Anal Chem 2023; 54:2277-2289. [PMID: 36598423 DOI: 10.1080/10408347.2022.2163585] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Helicobacter pylori (H. pylori) is a bacterium that can colonize human gastric epithelial cells and cause H. pylori infection, closely related to many gastric diseases. Compared with conventional H. pylori detection methods, emerging diagnostic approaches (such as biosensors) have become potentially more effective alternatives due to their high sensitivity, good selectivity and noninvasiveness. This review begins with a brief overview of H. pylori infection, the processes that lead to diseases, and current diagnostic methods. Subsequently, advanced biosensors in different target-based for diagnosing H. pylori infection are focused, including the detection of H. pylori-related nucleic acid, H. pylori-related protein (such as the cytotoxin, urease), and intact H. pylori. In addition, prospects for the development of H. pylori detection methods are also discussed in the end.
Collapse
Affiliation(s)
- Qiang Chen
- School of Medicine, Shanghai University, Shanghai, PR China
| | - Wenyi Yang
- School of Life Sciences, Shanghai University, Shanghai, PR China
| | - Weihua Gong
- Department of Oncology, Chongming Branch of Shanghai Tenth People's Hospital, Shanghai, PR China
| | - Xiaobing Chen
- Department of Oncology, the Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, PR China
| | - Zhongzheng Zhu
- Department of Oncology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, PR China
| | - Hongxia Chen
- School of Life Sciences, Shanghai University, Shanghai, PR China
| |
Collapse
|
7
|
Atmanspacher F, Schreckenberg R, Wolf A, Grgic I, Schlüter KD. Effect of Metabolic Adaptation by Voluntary Running Wheel Activity and Aldosterone Inhibition on Renal Function in Female Spontaneously Hypertensive Rats. Cells 2022; 11:cells11243954. [PMID: 36552716 PMCID: PMC9777552 DOI: 10.3390/cells11243954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/29/2022] [Accepted: 12/01/2022] [Indexed: 12/13/2022] Open
Abstract
Metabolic effects of physical activity may be reno-protective in the context of hypertension, although exercise stresses kidneys. Aldosterone participates in renal disease in hypertension, but exercise affects the plasma concentration of aldosterone. This study was designed to evaluate whether physical activity and pharmacological treatment by aldosterone have additive effects on renal protection in hypertensive rats. Female spontaneously hypertensive rats (SHR) or normotensive Wistar rats performed voluntary running wheel activity alone or in combination with aldosterone blockade (spironolactone). The following groups were studied: young and pre-hypertensive SHR (n = 5 sedentary; n = 10 running wheels, mean body weight 129 g), 10-month-old Wistar rats (n = 6 sedentary; n = 6 running wheels, mean body weight 263 g), 10-month-old SHRs (n = 18 sedentary, mean body weight 224 g; n = 6 running wheels, mean body weight 272 g; n = 6 aldosterone, mean body weight 219 g; n = 6 aldosterone and running wheels, mean body weight 265 g). Another group of SHRs had free access to running wheels for 6 months and kept sedentary for the last 3 months (n = 6, mean body weight 240 g). Aldosterone was given for the last 4 months. SHRs from the running groups had free access to running wheels beginning at the age of 6 weeks. Renal function was analyzed by microalbuminuria (Alb/Cre), urinary secretion of kidney injury molecule-1 (uKim-1), and plasma blood urea nitrogen (BUN) concentration. Molecular adaptation of the kidney to hypertension and its modification by spironolactone and/or exercise were analyzed by real-time PCR, immunoblots, and histology. After six months of hypertension, rats had increased Alb/Cre and BUN but normal uKim-1. Voluntary free running activity normalized BUN but not Alb/Cre, whereas spironolactone reduced Alb/Cre but not BUN. Exercise constitutively increased renal expression of proprotein convertase subtilisin/kexin type 9 (PCSK9; mRNA and protein) and arginase-2 (mRNA). Spironolactone reduced these effects. uKim-1 increased in rats performing voluntary running wheel activity exercise irrespectively of blood pressure and aldosterone blockade. We observed independent but no additive effects of aldosterone blockade and physical activity on renal function and on molecules potentially affecting renal lipid metabolism.
Collapse
Affiliation(s)
- Felix Atmanspacher
- Physiologisches Institut, Justus-Liebig-Universität Gießen, 35392 Gießen, Germany
| | - Rolf Schreckenberg
- Physiologisches Institut, Justus-Liebig-Universität Gießen, 35392 Gießen, Germany
| | - Annemarie Wolf
- Physiologisches Institut, Justus-Liebig-Universität Gießen, 35392 Gießen, Germany
| | - Ivica Grgic
- Klinik für Nephrologie und Transplantationsmedizin, Philipps Universität Marburg, 35043 Marburg, Germany
| | - Klaus-Dieter Schlüter
- Physiologisches Institut, Justus-Liebig-Universität Gießen, 35392 Gießen, Germany
- Correspondence:
| |
Collapse
|
8
|
Wurihan, Aodungerle, Bilige, Lili, Sirguleng, Aduqinfu, Bai M. Metabonomics study of liver and kidney subacute toxicity induced by garidi-5 in rats. CHINESE HERBAL MEDICINES 2022; 14:422-431. [PMID: 36118012 PMCID: PMC9476469 DOI: 10.1016/j.chmed.2022.05.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 04/08/2022] [Accepted: 05/10/2022] [Indexed: 11/28/2022] Open
Abstract
Objective Metabonomics was used to analyze and explore the biomarkers and possible mechanisms of liver and kidney subacute toxicity induced by garidi-5 in rats. Methods Taking garidi-5 as the target drug and SD rats as the research objects, each administration group except the normal group was intragastric administration of the corresponding drug solution for 28 d. The serum, liver and kidney samples of rats were detected by metabolomics and characterized by principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA) to identify the sensitive markers and metabolic pathways of liver and kidney subacute toxicity. Results Metabolomics analysis showed that compared with the normal group (Z), the 52, 64 and 54 different metabolites were identified in the serum, liver and kidney samples of garidi-5 high dose group (GG), which were mainly enriched in ABC transporters, arginine and proline metabolism, nicotinate and nicotinamide metabolism, central carbon metabolism in cancer pathways. Conclusion The preliminarily suggested that garidi-5 can damage the liver and kidney by affecting the ABC transporters, arginine and proline metabolism, nicotinate and nicotinamide metabolism pathways, etc. Trimethylamine N-oxide, l-pyroglutamic acid, glycine-betaine, xanthine, glutathione, l-leucine, cytidine, l-arginine, spermidine, urea, 5-aminovaleric acid, creatine, l-glutamic acid, 1-methylnicotinamide and S-adenosyl-l-methionine can be used as potential biomarkers of liver and kidney toxicity sensitivity.
Collapse
|
9
|
Theodorou AA, Zinelis PT, Malliou VJ, Chatzinikolaou PN, Margaritelis NV, Mandalidis D, Geladas ND, Paschalis V. Acute L-Citrulline Supplementation Increases Nitric Oxide Bioavailability but Not Inspiratory Muscle Oxygenation and Respiratory Performance. Nutrients 2021; 13:nu13103311. [PMID: 34684312 PMCID: PMC8537281 DOI: 10.3390/nu13103311] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/17/2021] [Accepted: 09/20/2021] [Indexed: 11/16/2022] Open
Abstract
The present study aimed to investigate whether acute L-citrulline supplementation would affect inspiratory muscle oxygenation and respiratory performance. Twelve healthy males received 6 g of L-citrulline or placebo in a double-blind crossover design. Pulmonary function (i.e., forced expired volume in 1 s, forced vital capacity and their ratio), maximal inspiratory pressure (MIP), fractional exhaled nitric oxide (NO•), and sternocleidomastoid muscle oxygenation were measured at baseline, one hour post supplementation, and after an incremental resistive breathing protocol to task failure of the respiratory muscles. The resistive breathing task consisted of 30 inspirations at 70% and 80% of MIP followed by continuous inspirations at 90% of MIP until task failure. Sternocleidomastoid muscle oxygenation was assessed using near-infrared spectroscopy. One-hour post-L-citrulline supplementation, exhaled NO• was significantly increased (19.2%; p < 0.05), and this increase was preserved until the end of the resistive breathing (16.4%; p < 0.05). In contrast, no difference was observed in the placebo condition. Pulmonary function and MIP were not affected by the L-citrulline supplementation. During resistive breathing, sternocleidomastoid muscle oxygenation was significantly reduced, with no difference noted between the two supplementation conditions. In conclusion, a single ingestion of 6 g L-citrulline increased NO• bioavailability but not the respiratory performance and inspiratory muscle oxygenation.
Collapse
Affiliation(s)
- Anastasios A. Theodorou
- Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia 1516, Cyprus
- Correspondence:
| | - Panagiotis T. Zinelis
- School of Physical Education and Sport Science, National and Kapodistrian University of Athens, 17237 Athens, Greece; (P.T.Z.); (V.J.M.); (D.M.); (N.D.G.); (V.P.)
| | - Vassiliki J. Malliou
- School of Physical Education and Sport Science, National and Kapodistrian University of Athens, 17237 Athens, Greece; (P.T.Z.); (V.J.M.); (D.M.); (N.D.G.); (V.P.)
| | - Panagiotis N. Chatzinikolaou
- Department of Physical Education and Sport Science at Serres, Aristotle University of Thessaloniki, 61122 Serres, Greece; (P.N.C.); (N.V.M.)
| | - Nikos V. Margaritelis
- Department of Physical Education and Sport Science at Serres, Aristotle University of Thessaloniki, 61122 Serres, Greece; (P.N.C.); (N.V.M.)
- Dialysis Unit, 424 General Military Hospital of Thessaloniki, 56429 Thessaloniki, Greece
| | - Dimitris Mandalidis
- School of Physical Education and Sport Science, National and Kapodistrian University of Athens, 17237 Athens, Greece; (P.T.Z.); (V.J.M.); (D.M.); (N.D.G.); (V.P.)
| | - Nickos D. Geladas
- School of Physical Education and Sport Science, National and Kapodistrian University of Athens, 17237 Athens, Greece; (P.T.Z.); (V.J.M.); (D.M.); (N.D.G.); (V.P.)
| | - Vassilis Paschalis
- School of Physical Education and Sport Science, National and Kapodistrian University of Athens, 17237 Athens, Greece; (P.T.Z.); (V.J.M.); (D.M.); (N.D.G.); (V.P.)
| |
Collapse
|
10
|
Ansermet C, Centeno G, Lagarrigue S, Nikolaeva S, Yoshihara HA, Pradervand S, Barras J, Dattner N, Rotman S, Amati F, Firsov D. Renal tubular arginase-2 participates in the formation of the corticomedullary urea gradient and attenuates kidney damage in ischemia-reperfusion injury in mice. Acta Physiol (Oxf) 2020; 229:e13457. [PMID: 32072766 DOI: 10.1111/apha.13457] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/17/2020] [Accepted: 02/18/2020] [Indexed: 12/13/2022]
Abstract
AIM Arginase 2 (ARG2) is a mitochondrial enzyme that catalyses hydrolysis of l-arginine into urea and l-ornithine. In the kidney, ARG2 is localized to the S3 segment of the proximal tubule. It has been shown that expression and activity of this enzyme are upregulated in a variety of renal pathologies, including ischemia-reperfusion (IR) injury. However, the (patho)physiological role of ARG2 in the renal tubule remains largely unknown. METHODS We addressed this question in mice with conditional knockout of Arg2 in renal tubular cells (Arg2lox/lox /Pax8-rtTA/LC1 or, cKO mice). RESULTS We demonstrate that cKO mice exhibit impaired urea concentration and osmolality gradients along the corticomedullary axis. In a model of unilateral ischemia-reperfusion injury (UIRI) with an intact contralateral kidney, ischemia followed by 24 hours of reperfusion resulted in significantly more pronounced histological damage in ischemic kidneys from cKO mice compared to control and sham-operated mice. In parallel, UIRI-subjected cKO mice exhibited a broad range of renal functional abnormalities, including albuminuria and aminoaciduria. Fourteen days after UIRI, the cKO mice exhibited complex phenotype characterized by significantly lower body weight, increased plasma levels of early predictive markers of kidney disease progression (asymmetric dimethylarginine and symmetric dimethylarginine), impaired mitochondrial function in the ischemic kidney but no difference in kidney fibrosis as compared to control mice. CONCLUSION Collectively, these results establish the role of ARG2 in the formation of corticomedullary urea and osmolality gradients and suggest that this enzyme attenuates kidney damage in ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Camille Ansermet
- Department of Pharmacology and Toxicology University of Lausanne Lausanne Switzerland
| | - Gabriel Centeno
- Department of Pharmacology and Toxicology University of Lausanne Lausanne Switzerland
| | - Sylviane Lagarrigue
- Department of Physiology & Institute of Sport Sciences University of Lausanne Lausanne Switzerland
| | - Svetlana Nikolaeva
- Department of Pharmacology and Toxicology University of Lausanne Lausanne Switzerland
- Institute of Evolutionary Physiology and Biochemistry St‐Petersburg Russia
| | - Hikari A. Yoshihara
- Institute of Physics Ecole Polytechnique Fédérale de Lausanne Lausanne Switzerland
| | - Sylvain Pradervand
- Genomic Technologies Facility University of Lausanne Lausanne Switzerland
| | - Jean‐Luc Barras
- Service of Clinical Pathology Lausanne University Hospital Institute of Pathology Lausanne Switzerland
| | - Nicolas Dattner
- Service of Clinical Pathology Lausanne University Hospital Institute of Pathology Lausanne Switzerland
| | - Samuel Rotman
- Service of Clinical Pathology Lausanne University Hospital Institute of Pathology Lausanne Switzerland
| | - Francesca Amati
- Department of Physiology & Institute of Sport Sciences University of Lausanne Lausanne Switzerland
| | - Dmitri Firsov
- Department of Pharmacology and Toxicology University of Lausanne Lausanne Switzerland
| |
Collapse
|
11
|
Klawitter J, Klawitter J, Pennington A, Kirkpatrick B, Roda G, Kotecha NC, Thurman JM, Christians U. Cyclophilin D knockout protects the mouse kidney against cyclosporin A-induced oxidative stress. Am J Physiol Renal Physiol 2019; 317:F683-F694. [PMID: 31188033 DOI: 10.1152/ajprenal.00417.2018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Mitochondrial dysfunction and oxidative stress have been implicated in cyclosporin A (CsA)-induced nephrotoxicity. CsA interacts with cyclophilin D (CypD), an essential component of the mitochondrial permeability transition pore and regulator of cell death processes. Controversial reports have suggested that CypD deletion may or may not protect cells against oxidative stress-induced cell death. In the present study, we treated wild-type (WT) mice and mice lacking CypD [peptidylprolyl isomerase F knockout (Ppif-/-) mice] with CsA to test the role and contribution of CypD to the widely described CsA-induced renal toxicity and oxidative stress. Our results showed an increase in the levels of several known uremic toxins as well as the oxidative stress markers PGF2α and 8-isoprostane in CsA-treated WT animals but not in Ppif-/- animals. Similarly, a decline in S-adenosylmethionine and the resulting methylation potential indicative of DNA hypomethylation were observed only in CsA-treated WT mice. This confirms previous reports of the protective effects of CypD deletion on the mouse kidney mediated through a stronger resistance of these animals to oxidative stress and DNA methylation damage. However, a negative effect of CsA on the glycolysis and overall energy metabolism in Ppif-/- mice also indicated that additional, CypD-parallel pathways are involved in the toxic effects of CsA on the kidney. In summary, CsA-mediated induction of oxidative stress is associated with CypD, with CypD deletion providing a protective effect, whereas the reduction of energy production observed upon CsA exposure did not depend on the animals' CypD status.
Collapse
Affiliation(s)
- Jelena Klawitter
- Clinical Research and Development, Department of Anesthesiology, University of Colorado Denver, Aurora, Colorado
- Division of Nephrology and Hypertension, Department of Medicine, University of Colorado Denver, Aurora, Colorado
| | - Jost Klawitter
- Clinical Research and Development, Department of Anesthesiology, University of Colorado Denver, Aurora, Colorado
| | - Alexander Pennington
- Clinical Research and Development, Department of Anesthesiology, University of Colorado Denver, Aurora, Colorado
| | - Bruce Kirkpatrick
- Clinical Research and Development, Department of Anesthesiology, University of Colorado Denver, Aurora, Colorado
| | - Galen Roda
- Clinical Research and Development, Department of Anesthesiology, University of Colorado Denver, Aurora, Colorado
| | - Nidhi C Kotecha
- Clinical Research and Development, Department of Anesthesiology, University of Colorado Denver, Aurora, Colorado
| | - Joshua M Thurman
- Division of Nephrology and Hypertension, Department of Medicine, University of Colorado Denver, Aurora, Colorado
| | - Uwe Christians
- Clinical Research and Development, Department of Anesthesiology, University of Colorado Denver, Aurora, Colorado
| |
Collapse
|
12
|
Creatine is a Conditionally Essential Nutrient in Chronic Kidney Disease: A Hypothesis and Narrative Literature Review. Nutrients 2019; 11:nu11051044. [PMID: 31083291 PMCID: PMC6567063 DOI: 10.3390/nu11051044] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/23/2019] [Accepted: 05/08/2019] [Indexed: 12/15/2022] Open
Abstract
To accommodate the loss of the plethora of functions of the kidneys, patients with chronic kidney disease require many dietary adjustments, including restrictions on the intake of protein, phosphorus, sodium and potassium. Plant-based foods are increasingly recommended as these foods contain smaller amounts of saturated fatty acids, protein and absorbable phosphorus than meat, generate less acid and are rich in fibers, polyunsaturated fatty acids, magnesium and potassium. Unfortunately, these dietary recommendations cannot prevent the occurrence of many symptoms, which typically include fatigue, impaired cognition, myalgia, muscle weakness, and muscle wasting. One threat coming with the recommendation of low-protein diets in patients with non-dialysis-dependent chronic kidney disease (CKD) and with high-protein diets in patients with dialysis-dependent CKD, particularly with current recommendations towards proteins coming from plant-based sources, is that of creatine deficiency. Creatine is an essential contributor in cellular energy homeostasis, yet on a daily basis 1.6–1.7% of the total creatine pool is degraded. As the average omnivorous diet cannot fully compensate for these losses, the endogenous synthesis of creatine is required for continuous replenishment. Endogenous creatine synthesis involves two enzymatic steps, of which the first step is a metabolic function of the kidney facilitated by the enzyme arginine:glycine amidinotransferase (AGAT). Recent findings strongly suggest that the capacity of renal AGAT, and thus endogenous creatine production, progressively decreases with the increasing degree of CKD, to become absent or virtually absent in dialysis patients. We hypothesize that with increasing degree of CKD, creatine coming from meat and dairy in food increasingly becomes an essential nutrient. This phenomenon will likely be present in patients with CKD stages 3, 4 and 5, but will likely be most pronouncedly present in patients with dialysis-dependent CKD, because of the combination of lowest endogenous production of creatine and unopposed losses of creatine into the dialysate. It is likely that these increased demands for dietary creatine are not sufficiently met. The result of which, may be a creatine deficiency with important contributions to the sarcopenia, fatigue, impaired quality of life, impaired cognition, and premature mortality seen in CKD.
Collapse
|
13
|
Schmidt S, Gocheva V, Zumbrunn T, Rubino-Nacht D, Bonati U, Fischer D, Hafner P. Treatment with L-citrulline in patients with post-polio syndrome: study protocol for a single-center, randomised, placebo-controlled, double-blind trial. Trials 2017; 18:116. [PMID: 28274276 PMCID: PMC5343398 DOI: 10.1186/s13063-017-1829-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 02/08/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Post-polio syndrome (PPS) is a condition that affects polio survivors years after recovery from an initial acute infection by the Poliomyelitis virus. Most often, patients who suffered from polio start to experience gradual new weakening in muscles, a gradual decrease in the size of muscles (muscle atrophy) and fatigue years after the acute illness. L-citrulline is known to change muscular metabolism synthesis by raising nitric oxide (NO) levels and increasing protein synthesis. This investigator-initiated, randomised, placebo-controlled, double-blind, trial aims to demonstrate that L-citrulline positively influences muscle function and increases muscular energy production in patients with PPS. METHODS/DESIGN Thirty ambulant PPS patients will be recruited in Switzerland. Patients will be randomly allocated to one of the two arms of the study (placebo:verum 1:1). After a 24-week run-in phase to observe natural disease history and progression, participants will be treated either with L-citrulline or placebo for 24 weeks. The primary endpoint is change in the 6-min Walking Distance Test. Secondary endpoints will include motor function measure, quantitative muscle force, quantitative muscle magnetic resonance imaging and magnetic resonance spectroscopy and serum biomarker laboratory analysis DISCUSSION: The aim of this phase IIa trial is to determine if treatment with L-citrulline shows a positive effect on clinical function and paraclinical biomarkers in PPS. If treatment with L-citrulline shows positive effects, this might represent a cost-efficient symptomatic therapy for PPS patients. TRIAL REGISTRATION ClinicalTrial.gov, ID: NCT02801071 . Registered on 6 June 2016.
Collapse
Affiliation(s)
- Simone Schmidt
- Division of Neuropediatrics, University of Basel Children’s Hospital, Spitalstrasse 33, Postfach 4031 Basel, Switzerland
- Division of Neurology, University Hospital Basel, Basel, Switzerland
| | - Vanya Gocheva
- Division of Neuropediatrics, University of Basel Children’s Hospital, Spitalstrasse 33, Postfach 4031 Basel, Switzerland
| | - Thomas Zumbrunn
- Department of Clinical Research, Clinical Trial Unit, University Hospital Basel, Basel, Switzerland
| | - Daniela Rubino-Nacht
- Division of Neuropediatrics, University of Basel Children’s Hospital, Spitalstrasse 33, Postfach 4031 Basel, Switzerland
| | - Ulrike Bonati
- Division of Neuropediatrics, University of Basel Children’s Hospital, Spitalstrasse 33, Postfach 4031 Basel, Switzerland
- Division of Internal Medicine, University Hospital Basel, Basel, Switzerland
| | - Dirk Fischer
- Division of Neuropediatrics, University of Basel Children’s Hospital, Spitalstrasse 33, Postfach 4031 Basel, Switzerland
- Division of Neurology, University Hospital Basel, Basel, Switzerland
- Division of Neurology, Medical University Clinic, Kantonsspital Baselland, Bruderholz, Switzerland
| | - Patricia Hafner
- Division of Neuropediatrics, University of Basel Children’s Hospital, Spitalstrasse 33, Postfach 4031 Basel, Switzerland
- Division of Neurology, Medical University Clinic, Kantonsspital Baselland, Bruderholz, Switzerland
| |
Collapse
|
14
|
Zheng Y, Wang K, Zhang J, Qin W, Yan X, Shen G, Gao G, Pan F, Cui D. Simultaneous Quantitative Detection of Helicobacter Pylori Based on a Rapid and Sensitive Testing Platform using Quantum Dots-Labeled Immunochromatiographic Test Strips. NANOSCALE RESEARCH LETTERS 2016; 11:62. [PMID: 26842795 PMCID: PMC4740476 DOI: 10.1186/s11671-016-1254-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Accepted: 01/20/2016] [Indexed: 05/29/2023]
Abstract
Quantum dots-labeled urea-enzyme antibody-based rapid immunochromatographic test strips have been developed as quantitative fluorescence point-of-care tests (POCTs) to detect helicobacter pylori. Presented in this study is a new test strip reader designed to run on tablet personal computers (PCs), which is portable for outdoor detection even without an alternating current (AC) power supply. A Wi-Fi module was integrated into the reader to improve its portability. Patient information was loaded by a barcode scanner, and an application designed to run on tablet PCs was developed to handle the acquired images. A vision algorithm called Kmeans was used for picture processing. Different concentrations of various human blood samples were tested to evaluate the stability and accuracy of the fabricated device. Results demonstrate that the reader can provide an easy, rapid, simultaneous, quantitative detection for helicobacter pylori. The proposed test strip reader has a lighter weight than existing detection readers, and it can run for long durations without an AC power supply, thus verifying that it possesses advantages for outdoor detection. Given its fast detection speed and high accuracy, the proposed reader combined with quantum dots-labeled test strips is suitable for POCTs and owns great potential in applications such as screening patients with infection of helicobacter pylori, etc. in near future.
Collapse
Affiliation(s)
- Yu Zheng
- Institute of Nano Biomedical and Engineering, Department of Instrument Science and Engineering, Key Laboratory for Thin Film and Microfabrication of Ministry of Education, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, People's Republic of China.
| | - Kan Wang
- Institute of Nano Biomedical and Engineering, Department of Instrument Science and Engineering, Key Laboratory for Thin Film and Microfabrication of Ministry of Education, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, People's Republic of China.
| | - Jingjing Zhang
- Institute of Nano Biomedical and Engineering, Department of Instrument Science and Engineering, Key Laboratory for Thin Film and Microfabrication of Ministry of Education, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, People's Republic of China.
| | - Weijian Qin
- Institute of Nano Biomedical and Engineering, Department of Instrument Science and Engineering, Key Laboratory for Thin Film and Microfabrication of Ministry of Education, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, People's Republic of China.
| | - Xinyu Yan
- The Outpatient Department of Zhujiang Hosptial, South Medical University, 1023 South Shatai Road, Guangzhou, 510515, People's Republic of China.
| | - Guangxia Shen
- Institute of Nano Biomedical and Engineering, Department of Instrument Science and Engineering, Key Laboratory for Thin Film and Microfabrication of Ministry of Education, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, People's Republic of China.
| | - Guo Gao
- Institute of Nano Biomedical and Engineering, Department of Instrument Science and Engineering, Key Laboratory for Thin Film and Microfabrication of Ministry of Education, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, People's Republic of China.
| | - Fei Pan
- Institute of Nano Biomedical and Engineering, Department of Instrument Science and Engineering, Key Laboratory for Thin Film and Microfabrication of Ministry of Education, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, People's Republic of China.
| | - Daxiang Cui
- Institute of Nano Biomedical and Engineering, Department of Instrument Science and Engineering, Key Laboratory for Thin Film and Microfabrication of Ministry of Education, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, People's Republic of China.
| |
Collapse
|
15
|
Nikolaeva S, Ansermet C, Centeno G, Pradervand S, Bize V, Mordasini D, Henry H, Koesters R, Maillard M, Bonny O, Tokonami N, Firsov D. Nephron-Specific Deletion of Circadian Clock Gene Bmal1 Alters the Plasma and Renal Metabolome and Impairs Drug Disposition. J Am Soc Nephrol 2016; 27:2997-3004. [PMID: 27056296 PMCID: PMC5042670 DOI: 10.1681/asn.2015091055] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 01/10/2016] [Indexed: 12/11/2022] Open
Abstract
The circadian clock controls a wide variety of metabolic and homeostatic processes in a number of tissues, including the kidney. However, the role of the renal circadian clocks remains largely unknown. To address this question, we performed a combined functional, transcriptomic, and metabolomic analysis in mice with inducible conditional knockout (cKO) of BMAL1, which is critically involved in the circadian clock system, in renal tubular cells (Bmal1lox/lox/Pax8-rtTA/LC1 mice). Induction of cKO in adult mice did not produce obvious abnormalities in renal sodium, potassium, or water handling. Deep sequencing of the renal transcriptome revealed significant changes in the expression of genes related to metabolic pathways and organic anion transport in cKO mice compared with control littermates. Furthermore, kidneys from cKO mice exhibited a significant decrease in the NAD+-to-NADH ratio, which reflects the oxidative phosphorylation-to-glycolysis ratio and/or the status of mitochondrial function. Metabolome profiling showed significant changes in plasma levels of amino acids, biogenic amines, acylcarnitines, and lipids. In-depth analysis of two selected pathways revealed a significant increase in plasma urea level correlating with increased renal Arginase II activity, hyperargininemia, and increased kidney arginine content as well as a significant increase in plasma creatinine concentration and a reduced capacity of the kidney to secrete anionic drugs (furosemide) paralleled by an approximate 80% decrease in the expression level of organic anion transporter 3 (SLC22a8). Collectively, these results indicate that the renal circadian clocks control a variety of metabolic/homeostatic processes at the intrarenal and systemic levels and are involved in drug disposition.
Collapse
Affiliation(s)
- Svetlana Nikolaeva
- Department of Pharmacology and Toxicology and Institute of Evolutionary Physiology and Biochemistry, St. Petersburg, Russia
| | | | | | - Sylvain Pradervand
- Genomic Technologies Facility, University of Lausanne, Lausanne, Switzerland
| | | | - David Mordasini
- Department of Pharmacology and Toxicology and Department of Nephrology, Hypertension and Clinical Pharmacology, Inselspital, Bern, Switzerland; Department of Clinical Research, University of Bern, Bern, Switzerland
| | | | - Robert Koesters
- Department of Nephrology, Tenon Hospital, Université Pierre et Marie Curie, Paris, France; and
| | - Marc Maillard
- Service of Nephrology, Department of Medicine, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Olivier Bonny
- Department of Pharmacology and Toxicology and Service of Nephrology, Department of Medicine, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Natsuko Tokonami
- Department of Pharmacology and Toxicology and Labeled Research Team (ERL) 8228-U1138 équipe 3, Centre de Recherche des Cordeliers, Paris, France
| | | |
Collapse
|
16
|
Žunić G, Vučević D, Tomić A, Drašković-Pavlović B, Majstorović I, Spasić S. Renal transplantation promptly restores excretory function but disturbed L-arginine metabolism persists in patients during the early period after surgery. Nitric Oxide 2015; 44:18-23. [DOI: 10.1016/j.niox.2014.11.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 11/05/2014] [Accepted: 11/07/2014] [Indexed: 10/24/2022]
|
17
|
Cheon DJ, Walts AE, Beach JA, Lester J, Bomalaski JS, Walsh CS, Ruprecht Wiedemeyer W, Karlan BY, Orsulic S. Differential expression of argininosuccinate synthetase in serous and non-serous ovarian carcinomas. JOURNAL OF PATHOLOGY CLINICAL RESEARCH 2014; 1:41-53. [PMID: 27499892 PMCID: PMC4858122 DOI: 10.1002/cjp2.4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 06/02/2014] [Indexed: 12/13/2022]
Abstract
The current standard of care for epithelial ovarian cancer does not discriminate between different histologic subtypes (serous, clear cell, endometrioid and mucinous) despite the knowledge that ovarian carcinoma subtypes do not respond uniformly to conventional platinum/taxane‐based chemotherapy. Exploiting addictions and vulnerabilities in cancers with distinguishable molecular features presents an opportunity to develop individualized therapies that may be more effective than the current ‘one size fits all' approach. One such opportunity is arginine depletion therapy with pegylated arginine deiminase, which has shown promise in several cancer types that exhibit low levels of argininosuccinate synthetase including hepatocellular and prostate carcinoma and melanoma. Based on the high levels of argininosuccinate synthetase previously observed in ovarian cancers, these tumours have been considered unlikely candidates for arginine depletion therapy. However, argininosuccinate synthetase levels have not been evaluated in the individual histologic subtypes of ovarian carcinoma. The current study is the first to examine the expression of argininosuccinate synthetase at the mRNA and protein levels in large cohorts of primary and recurrent ovarian carcinomas and ovarian cancer cell lines. We show that the normal fallopian tube fimbria and the majority of primary high‐grade and low‐grade serous ovarian carcinomas express high levels of argininosuccinate synthetase, which tend to further increase in recurrent tumours. In contrast to the serous subtype, non‐serous ovarian carcinoma subtypes (clear cell, endometrioid and mucinous) frequently lack detectable argininosuccinate synthetase expression. The in vitro sensitivity of ovarian cancer cell lines to arginine depletion with pegylated arginine deiminase was inversely correlated with argininosuccinate synthetase expression. Our data suggest that the majority of serous ovarian carcinomas are not susceptible to therapeutic intervention with arginine deiminase while a subset of non‐serous ovarian carcinoma subtypes are auxotrophic for arginine and should be considered for clinical trials with pegylated arginine deiminase.
Collapse
Affiliation(s)
- Dong-Joo Cheon
- Women's Cancer Program Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center Los Angeles CA USA
| | - Ann E Walts
- Department of Pathology and Laboratory Medicine Cedars-Sinai Medical Center Los Angeles CA USA
| | - Jessica A Beach
- Women's Cancer ProgramSamuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical CenterLos AngelesCAUSA; Graduate Program in Biomedical Science and Translational MedicineCedars-Sinai Medical CenterLos AngelesCAUSA
| | - Jenny Lester
- Women's Cancer Program Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center Los Angeles CA USA
| | | | - Christine S Walsh
- Women's Cancer ProgramSamuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical CenterLos AngelesCAUSA; Department of Obstetrics and Gynecology, David Geffen School of MedicineUniversity of California at Los AngelesLos AngelesCAUSA
| | - W Ruprecht Wiedemeyer
- Women's Cancer ProgramSamuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical CenterLos AngelesCAUSA; Department of Obstetrics and Gynecology, David Geffen School of MedicineUniversity of California at Los AngelesLos AngelesCAUSA
| | - Beth Y Karlan
- Women's Cancer ProgramSamuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical CenterLos AngelesCAUSA; Department of Obstetrics and Gynecology, David Geffen School of MedicineUniversity of California at Los AngelesLos AngelesCAUSA
| | - Sandra Orsulic
- Women's Cancer ProgramSamuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical CenterLos AngelesCAUSA; Department of Obstetrics and Gynecology, David Geffen School of MedicineUniversity of California at Los AngelesLos AngelesCAUSA
| |
Collapse
|
18
|
Molecular characterization of argininosuccinate synthase and argininosuccinate lyase from the liver of the African lungfish Protopterus annectens, and their mRNA expression levels in the liver, kidney, brain and skeletal muscle during aestivation. J Comp Physiol B 2014; 184:835-53. [PMID: 25034132 DOI: 10.1007/s00360-014-0842-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 06/11/2014] [Accepted: 06/20/2014] [Indexed: 02/05/2023]
Abstract
Argininosuccinate synthase (Ass) and argininosuccinate lyase (Asl) are involved in arginine synthesis for various purposes. The complete cDNA coding sequences of ass and asl from the liver of Protopterus annectens consisted of 1,296 and 1,398 bp, respectively. Phylogenetic analyses revealed that the deduced Ass and Asl of P. annectens had close relationship with that of the cartilaginous fish Callorhinchus milii. Besides being strongly expressed in the liver, ass and asl expression were detectable in many tissues/organs. In the liver, mRNA expression levels of ass and asl increased significantly during the induction phase of aestivation, probably to increase arginine production to support increased urea synthesis. The increases in ass and asl mRNA expression levels during the prolonged maintenance phase and early arousal phase of aestivation could reflect increased demand on arginine for nitric oxide (NO) production in the liver. In the kidney, there was a significant decrease in ass mRNA expression level after 6 months of aestivation, indicating possible decreases in the synthesis and supply of arginine to other tissues/organs. In the brain, changes in ass and asl mRNA expression levels during the three phases of aestivation could be related to the supply of arginine for NO synthesis in response to conditions that resemble ischaemia and ischaemia-reperfusion during the maintenance and arousal phase of aestivation, respectively. The decrease in ass mRNA expression level, accompanied with decreases in the concentrations of arginine and NO, in the skeletal muscle of aestivating P. annectens might ameliorate the potential of disuse muscle atrophy.
Collapse
|
19
|
|
20
|
Physical Exercise Induces Specific Adaptations Resulting in Reduced Organ Injury and Mortality During Severe Polymicrobial Sepsis. Crit Care Med 2013; 41:e246-55. [DOI: 10.1097/ccm.0b013e31828a2ae3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
21
|
Žunić G, Tomić A, Spasić S. Unilateral nephrectomy causes an early abrupt decrease in plasma arginine and simultaneous reduction in glomerular filtration rate in living kidney donors. Clin Biochem 2013; 46:1394-8. [DOI: 10.1016/j.clinbiochem.2013.04.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2012] [Revised: 04/28/2013] [Accepted: 04/29/2013] [Indexed: 12/21/2022]
|
22
|
Yang J, Gonon AT, Sjöquist PO, Lundberg JO, Pernow J. Arginase regulates red blood cell nitric oxide synthase and export of cardioprotective nitric oxide bioactivity. Proc Natl Acad Sci U S A 2013; 110:15049-54. [PMID: 23980179 PMCID: PMC3773799 DOI: 10.1073/pnas.1307058110] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The theory that red blood cells (RBCs) generate and release nitric oxide (NO)-like bioactivity has gained considerable interest. However, it remains unclear whether it can be produced by endothelial NO synthase (eNOS), which is present in RBCs, and whether NO can escape scavenging by hemoglobin. The aim of this study was to test the hypothesis that arginase reciprocally controls NO formation in RBCs by competition with eNOS for their common substrate arginine and that RBC-derived NO is functionally active following arginase blockade. We show that rodent and human RBCs contain functional arginase 1 and that pharmacological inhibition of arginase increases export of eNOS-derived nitrogen oxides from RBCs under basal conditions. The functional importance was tested in an ex vivo model of myocardial ischemia-reperfusion injury. Inhibitors of arginase significantly improved postischemic functional recovery in rat hearts if administered in whole blood or with RBCs in plasma. By contrast, arginase inhibition did not improve postischemic recovery when administered with buffer solution or plasma alone. The protective effect of arginase inhibition was lost in the presence of a NOS inhibitor. Moreover, hearts from eNOS(-/-) mice were protected when the arginase inhibitor was given with blood from wild-type donors. In contrast, when hearts from wild-type mice were given blood from eNOS(-/-) mice, the arginase inhibitor failed to protect against ischemia-reperfusion. These results strongly support the notion that RBCs contain functional eNOS and release NO-like bioactivity. This process is under tight control by arginase 1 and is of functional importance during ischemia-reperfusion.
Collapse
Affiliation(s)
| | - Adrian T. Gonon
- Divison of Clinical Physiology, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital, 171 76 Stockholm, Sweden; and
| | | | - Jon O. Lundberg
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - John Pernow
- Divison of Cardiology, Department of Medicine, and
| |
Collapse
|
23
|
Bahri S, Zerrouk N, Aussel C, Moinard C, Crenn P, Curis E, Chaumeil JC, Cynober L, Sfar S. Citrulline: From metabolism to therapeutic use. Nutrition 2013; 29:479-84. [DOI: 10.1016/j.nut.2012.07.002] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2012] [Accepted: 07/01/2012] [Indexed: 01/21/2023]
|
24
|
Levillain O, Ramos-Molina B, Forcheron F, Peñafiel R. Expression and distribution of genes encoding for polyamine-metabolizing enzymes in the different zones of male and female mouse kidneys. Amino Acids 2012; 43:2153-63. [PMID: 22562773 DOI: 10.1007/s00726-012-1300-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Accepted: 04/12/2012] [Indexed: 12/16/2022]
Abstract
The role of polyamines in renal physiology is only partially understood. Moreover, most of the data on the enzymes of polyamine metabolism come from studies using whole kidneys. The aim of the present study was to analyze the mRNA abundance of the genes implicated in both the polyamine biosynthetic and catabolic pathways in different renal zones of male and female mice, by means of the quantitative reverse transcription-polymerase chain reaction. Our results indicate that there is an uneven distribution of the different mRNAs studied in the five renal zones: superficial cortex, deep cortex, outer stripe of the outer medulla (OS), inner stripe of the outer medulla (IS), and the inner medulla + papilla (IM). The biosynthetic genes, ornithine decarboxylase (ODC) and spermine synthase, were more expressed in the cortex, whereas the mRNAs of the catabolic genes spermine oxidase (SMO) and diamine oxidase were more abundant in IS and IM. The genes involved in the regulation of polyamine synthesis (AZ1, AZ2 and AZIN1) were expressed in all the renal zones, predominantly in the cortex, while AZIN2 gene was more abundant in the OS. ODC, SMO, spermidine synthase and spermidine/spermine acetyl transferase expression was higher in males than in females. In conclusion, the genes encoding for the polyamine metabolism were specifically and quantitatively distributed along the corticopapillary axis of male and female mouse kidneys, suggesting that their physiological role is essential in defined renal zones and/or nephron segments.
Collapse
Affiliation(s)
- Olivier Levillain
- Institut de Biologie et Chimie des Protéines, FRE 3310, Dysfonctionnements de l'homéostasie tissulaire et ingénierie thérapeutique, (DyHTIT), 7 passage du Vercors, 69367, Lyon, France.
| | | | | | | |
Collapse
|
25
|
Ong SL, Whitworth JA. Glucocorticoid-induced hypertension and the nitric oxide system. Expert Rev Endocrinol Metab 2012; 7:273-280. [PMID: 30780842 DOI: 10.1586/eem.12.19] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Glucocorticoid hormones, both naturally occurring and synthetic, have long been recognized as a major cause of hypertension. There are well-described experimental models of glucocorticoid-induced hypertension, such as adrenocorticotropic hormone- and dexamethasone-induced hypertension in rats, although the exact mechanism of glucocorticoid-induced hypertension remains unclear. It was initially considered to be due to mineralocorticoid receptor activation but more recent studies have not supported this notion. Current evidence demonstrates the importance of the nitric oxide (NO) system and interactions between NO and reactive oxygen species in the development of glucocorticoid-induced hypertension. This review highlights the pathways contributing to NO deficiency, which encompass the availability of l-arginine, endothelial NO synthase function and the extent of NO inactivation during oxidative stress.
Collapse
Affiliation(s)
- Sharon Lh Ong
- a Department of Renal Medicine, St George Hospital, Kogarah, NSW, Australia.
- b Department of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Judith A Whitworth
- c The John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| |
Collapse
|