1
|
Alarjani WMA, Mohammed MEA. Antioxidant activities of Saudi honey samples related to their content of short peptides. Sci Rep 2024; 14:24318. [PMID: 39414854 PMCID: PMC11484816 DOI: 10.1038/s41598-024-74824-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 09/30/2024] [Indexed: 10/18/2024] Open
Abstract
This study explored the effect of geographical and floral origins on the antioxidant activities of Saudi honey samples related to their content of short peptides originated from honeybee proteins. The studied antioxidants were the total protein concentration, catalase activity, phenolic acids and flavonoids. The antioxidant activity assays included were the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay, the ferric reducing antioxidant power (FRAP) assay and Ascorbic acid Equivalent Antioxidant Capacity (AEAC). The studied honey samples were obtained from the southwestern region of Saudi Arabia, namely Asir (65) and Jazan (25). The floral origins of the honey samples were Acacia (51), Ziziphus (4) and polyfloral (35). The LC/MS technique was used to detect the short peptides and the mascot database was used to identify the short peptides, their precursor proteins and the protease enzymes that produce them. Jazan honey was characterized by high number of short peptides. The short peptides were originated from honeybee proteins by the action of proteases from the honeybees and bacteria. The antioxidant activity of the honey samples increase with the increase of their content of short peptides and proteins. The amino acids type and sequence of the short peptides qualify them to act as antioxidant, antimicrobial, anti-diabetic, anti-hypertension, immunomodulatory and cholesterol lowering peptides.
Collapse
Affiliation(s)
- Wed Mohammed Ali Alarjani
- Department of Chemistry - Preparatory Year Program, Batterjee Medical College, Aseer, 62451, Saudi Arabia
- Department of Chemistry, College of Science, King Khalid University, Abha, Saudi Arabia
| | | |
Collapse
|
2
|
Erkoc P, Schiffmann S, Ulshöfer T, Henke M, Marner M, Krämer J, Predel R, Schäberle TF, Hurka S, Dersch L, Vilcinskas A, Fürst R, Lüddecke T. Determining the pharmacological potential and biological role of linear pseudoscorpion toxins via functional profiling. iScience 2024; 27:110209. [PMID: 39021791 PMCID: PMC11253529 DOI: 10.1016/j.isci.2024.110209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/24/2024] [Accepted: 06/04/2024] [Indexed: 07/20/2024] Open
Abstract
Arthropod venoms contain bioactive molecules attractive for biomedical applications. However, few of these have been isolated, and only a tiny number has been characterized. Pseudoscorpions are small arachnids whose venom has been largely overlooked. Here, we present the first structural and functional assessment of the checacin toxin family, discovered in the venom of the house pseudoscorpion (Chelifer cancroides). We combined in silico and in vitro analyses to establish their bioactivity profile against microbes and various cell lines. This revealed inhibitory effects against bacteria and fungi. We observed cytotoxicity against specific cell types and effects involving second messengers. Our work provides insight into the biomedical potential and evolution of pseudoscorpion venoms. We propose that plesiotypic checacins evolved to defend the venom gland against infection, whereas apotypic descendants evolved additional functions. Our work highlights the importance of considering small and neglected species in biodiscovery programs.
Collapse
Affiliation(s)
- Pelin Erkoc
- Institute of Pharmaceutical Biology, Faculty of Biochemistry, Chemistry and Pharmacy, Goethe University Frankfurt, 60438 Frankfurt, Germany
- LOEWE Center for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325 Frankfurt, Germany
| | - Susanne Schiffmann
- LOEWE Center for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325 Frankfurt, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), 60596 Frankfurt, Germany
| | - Thomas Ulshöfer
- LOEWE Center for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325 Frankfurt, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), 60596 Frankfurt, Germany
| | - Marina Henke
- LOEWE Center for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325 Frankfurt, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), 60596 Frankfurt, Germany
| | - Michael Marner
- Branch of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME-BR), 35392 Giessen, Germany
| | - Jonas Krämer
- Institute of Zoology, University of Cologne, Zuelpicher Strasse 47b, 50674 Cologne, Germany
- Institute for Insect Biotechnology, Justus-Liebig-University of Giessen, Heinrich-Buff-Ring 26–32, 35392 Giessen, Germany
| | - Reinhard Predel
- Institute of Zoology, University of Cologne, Zuelpicher Strasse 47b, 50674 Cologne, Germany
| | - Till F. Schäberle
- Branch of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME-BR), 35392 Giessen, Germany
- Institute for Insect Biotechnology, Justus-Liebig-University of Giessen, Heinrich-Buff-Ring 26–32, 35392 Giessen, Germany
- German Center for Infection Research (DZIF), Partner Site Giessen-Marburg-Langen, Ohlebergsweg 12, 35392 Giessen, Germany
| | - Sabine Hurka
- LOEWE Center for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325 Frankfurt, Germany
- Branch of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME-BR), 35392 Giessen, Germany
| | - Ludwig Dersch
- LOEWE Center for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325 Frankfurt, Germany
- Branch of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME-BR), 35392 Giessen, Germany
| | - Andreas Vilcinskas
- LOEWE Center for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325 Frankfurt, Germany
- Branch of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME-BR), 35392 Giessen, Germany
- Institute for Insect Biotechnology, Justus-Liebig-University of Giessen, Heinrich-Buff-Ring 26–32, 35392 Giessen, Germany
| | - Robert Fürst
- LOEWE Center for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325 Frankfurt, Germany
- Pharmaceutical Biology, Department of Pharmacy – Center for Drug Research, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377 Munich, Germany
| | - Tim Lüddecke
- LOEWE Center for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325 Frankfurt, Germany
- Branch of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME-BR), 35392 Giessen, Germany
| |
Collapse
|
3
|
Paul S, Verma S, Chen YC. Peptide Dendrimer-Based Antibacterial Agents: Synthesis and Applications. ACS Infect Dis 2024; 10:1034-1055. [PMID: 38428037 PMCID: PMC11019562 DOI: 10.1021/acsinfecdis.3c00624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 03/03/2024]
Abstract
Pathogenic bacteria cause the deaths of millions of people every year. With the development of antibiotics, hundreds and thousands of people's lives have been saved. Nevertheless, bacteria can develop resistance to antibiotics, rendering them insensitive to antibiotics over time. Peptides containing specific amino acids can be used as antibacterial agents; however, they can be easily degraded by proteases in vivo. To address these issues, branched peptide dendrimers are now being considered as good antibacterial agents due to their high efficacy, resistance to protease degradation, and low cytotoxicity. The ease with which peptide dendrimers can be synthesized and modified makes them accessible for use in various biological and nonbiological fields. That is, peptide dendrimers hold a promising future as antibacterial agents with prolonged efficacy without bacterial resistance development. Their in vivo stability and multivalence allow them to effectively target multi-drug-resistant strains and prevent biofilm formation. Thus, it is interesting to have an overview of the development and applications of peptide dendrimers in antibacterial research, including the possibility of employing machine learning approaches for the design of AMPs and dendrimers. This review summarizes the synthesis and applications of peptide dendrimers as antibacterial agents. The challenges and perspectives of using peptide dendrimers as the antibacterial agents are also discussed.
Collapse
Affiliation(s)
- Suchita Paul
- Institute
of Semiconductor Technology, National Yang
Ming Chiao Tung University, Hsinchu 300, Taiwan
- Department
of Chemistry, Indian Institute of Technology
Kanpur, Kanpur 208016, Uttar Pradesh, India
| | - Sandeep Verma
- Department
of Chemistry, Indian Institute of Technology
Kanpur, Kanpur 208016, Uttar Pradesh, India
- Gangwal
School of Medical Sciences and Technology, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India
| | - Yu-Chie Chen
- Institute
of Semiconductor Technology, National Yang
Ming Chiao Tung University, Hsinchu 300, Taiwan
- Department
of Applied Chemistry, National Yang Ming
Chiao Tung University, Hsinchu 300, Taiwan
| |
Collapse
|
4
|
Liang J, Song Y, Zhao Y, Gao Y, Hou J, Yang G. A sensitive electrochemical sensor for chiral detection of tryptophan enantiomers by using carbon black and β‑cyclodextrin. Mikrochim Acta 2023; 190:433. [PMID: 37814099 DOI: 10.1007/s00604-023-06011-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/19/2023] [Indexed: 10/11/2023]
Abstract
A chiral sensor for the electrochemical identification of tryptophan (Trp) isomers is described. The electrochemical sensor was prepared based on the combination of (a) carbon black (CB-COOH) as conductive material, (b) Cu2+-modified β-cyclodextrin (Cu-β-CD), and (c) β-CD-based metal-organic frameworks (β-CD-MOF) as chiral selectors. The Cu-β-CD can be self-assembled into the CB-COOH and β-CD-MOF through electrostatic interactions, which was characterized by zeta potential analysis. UV-vis spectroscopy proved that Cu-β-CD displays a higher combination for D-Trp than L-Trp, and the β-CD-MOF at the surface of the GCE has a higher affinity for L-Trp than D-Trp, which endow an easier permeation of L-Trp to the surface of the electrode, thus leading to a larger electrochemical signal of differential pulse voltammetry (DPV). The enantioselectivity for L-Trp over D-Trp (IL/ID) is 2.13, with a low detection limit for D-Trp (11.18 μM) and L-Trp (5.48 μM). In addition, the proposed chiral sensor can be chosen to determine the percentage of D-Trp in enantiomer mixture solutions and real sample detection with a recovery from 98.2 to 102.8% for L-Trp and 97.9 to 101.1% for D-Trp.
Collapse
Affiliation(s)
- Jiamin Liang
- Department of Chemistry and Chemical Engineering, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Hexing Road 26, Harbin, 150040, People's Republic of China
| | - Yuxin Song
- Department of Chemistry and Chemical Engineering, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Hexing Road 26, Harbin, 150040, People's Republic of China
| | - Yanan Zhao
- Department of Chemistry and Chemical Engineering, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Hexing Road 26, Harbin, 150040, People's Republic of China
| | - Yue Gao
- Department of Chemistry and Chemical Engineering, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Hexing Road 26, Harbin, 150040, People's Republic of China
| | - Juan Hou
- Key Laboratory of Applied Chemistry and Nanotechnology at Universities of Jilin Province, Changchun University of Science and Technology, Changchun, 130022, People's Republic of China
| | - Guang Yang
- Department of Chemistry and Chemical Engineering, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Hexing Road 26, Harbin, 150040, People's Republic of China.
| |
Collapse
|
5
|
Ciulla MG, Gelain F. Structure-activity relationships of antibacterial peptides. Microb Biotechnol 2023; 16:757-777. [PMID: 36705032 PMCID: PMC10034643 DOI: 10.1111/1751-7915.14213] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 12/08/2022] [Accepted: 01/01/2023] [Indexed: 01/28/2023] Open
Abstract
Antimicrobial peptides play a crucial role in innate immunity, whose components are mainly peptide-based molecules with antibacterial properties. Indeed, the exploration of the immune system over the past 40 years has revealed a number of natural peptides playing a pivotal role in the defence mechanisms of vertebrates and invertebrates, including amphibians, insects, and mammalians. This review provides a discussion regarding the antibacterial mechanisms of peptide-based agents and their structure-activity relationships (SARs) with the aim of describing a topic that is not yet fully explored. Some growing evidence suggests that innate immunity should be strongly considered for the development of novel antibiotic peptide-based libraries. Also, due to the constantly rising concern of antibiotic resistance, the development of new antibiotic drugs is becoming a priority of global importance. Hence, the study and the understanding of defence phenomena occurring in the immune system may inspire the development of novel antibiotic compound libraries and set the stage to overcome drug-resistant pathogens. Here, we provide an overview of the importance of peptide-based antibacterial sources, focusing on accurately selected molecular structures, their SARs including recently introduced modifications, their latest biotechnology applications, and their potential against multi-drug resistant pathogens. Last, we provide cues to describe how antibacterial peptides show a better scope of action selectivity than several anti-infective agents, which are characterized by non-selective activities and non-targeted actions toward pathogens.
Collapse
Affiliation(s)
- Maria Gessica Ciulla
- Institute for Stem-Cell Biology, Regenerative Medicine and Innovative Therapies, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
- Center for Nanomedicine and Tissue Engineering (CNTE), ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Fabrizio Gelain
- Institute for Stem-Cell Biology, Regenerative Medicine and Innovative Therapies, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
- Center for Nanomedicine and Tissue Engineering (CNTE), ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| |
Collapse
|
6
|
Wu Y, He Q, Che X, Liu F, Lu J, Kong X. Effect of number of lysine motifs on the bactericidal and hemolytic activity of short cationic antimicrobial peptides. Biochem Biophys Res Commun 2023; 648:66-71. [PMID: 36736093 DOI: 10.1016/j.bbrc.2023.01.094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 01/28/2023] [Indexed: 02/03/2023]
Abstract
Antimicrobial peptides (AMPs) are vital components of the nonspecific immune system that represent a promising broad-spectrum alternative to conventional antibiotics. Several short cationic antimicrobial peptides show highly effective antibacterial activity and low hemolytic activity, which are based on the action of a few critical amino acids, such as phenylalanine (F) and lysine (K). Previous studies have reported that Fmoc-based phenylalanine peptides possess appreciable antibacterial potency against Gram-positive bacteria, but their ability to kill Gram-negative bacteria was suboptimal. In this study, we designed and prepared a series of Fmoc-KnF peptide (n = 1-3) series by adding lysine motifs to strengthen their broad-spectrum antibacterial activity. The effect was investigated that the amount of lysine in Fmoc-F peptides on their antibacterial properties and hemolytic activities. Our results showed that the Fmoc-KKF peptide holds the strongest antimicrobial activity against both Gram-positive and negative bacteria among all designed peptides, as well as low hemolytic activity. These results provide support for the general strategy of enhancing the broad-spectrum antibacterial activity of AMPs through increased lysine content.
Collapse
Affiliation(s)
- Yuling Wu
- Institute of Smart Biomaterials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, Zhejiang, China; Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, Zhejiang, China
| | - Qingling He
- Institute of Smart Biomaterials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, Zhejiang, China; Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, Zhejiang, China
| | - Xun Che
- Institute of Smart Biomaterials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, Zhejiang, China; Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, Zhejiang, China
| | - Fei Liu
- Department of Orthopaedics, Affiliated Hangzhou Chest Hospital, Zhejiang University School of Medicine, No 208 Huancheng East Rd, Zhejiang Province, Hangzhou, 310003, China
| | - Jiaju Lu
- Institute of Smart Biomaterials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, Zhejiang, China; Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, Zhejiang, China.
| | - Xiangdong Kong
- Institute of Smart Biomaterials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, Zhejiang, China; Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, Zhejiang, China.
| |
Collapse
|
7
|
Bortolotti A, Troiano C, Bobone S, Konai MM, Ghosh C, Bocchinfuso G, Acharya Y, Santucci V, Bonacorsi S, Di Stefano C, Haldar J, Stella L. Mechanism of lipid bilayer perturbation by bactericidal membrane-active small molecules. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2023; 1865:184079. [PMID: 36374761 DOI: 10.1016/j.bbamem.2022.184079] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 10/21/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022]
Abstract
Membrane-active small molecules (MASMs) are small organic molecules designed to reproduce the fundamental physicochemical properties of natural antimicrobial peptides: their cationic charge and amphiphilic character. This class of compounds has a promising broad range of antimicrobial activity and, at the same time, solves some major limitations of the peptides, such as their high production costs and low in vivo stability. Most cationic antimicrobial peptides act by accumulating on the surface of bacterial membranes and causing the formation of defects when a threshold is reached. Due to the drastically different structures of the two classes of molecules, it is not obvious that small-molecule antimicrobials act in the same way as natural peptides, and very few data are available on this aspect. Here we combined spectroscopic studies and molecular dynamics simulations to characterize the mechanism of action of two different MASMs. Our results show that, notwithstanding their simple structure, these molecules act just like antimicrobial peptides. They bind to the membrane surface, below the head-groups, and insert their apolar moieties in the core of the bilayer. Like many natural peptides, they cause the formation of defects when they reach a high coverage of the membrane surface. In addition, they cause membrane aggregation, and this property could contribute to their antimicrobial activity.
Collapse
Affiliation(s)
- A Bortolotti
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, 00133 Rome, Italy
| | - C Troiano
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, 00133 Rome, Italy
| | - S Bobone
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, 00133 Rome, Italy
| | - M M Konai
- Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru 560064, Karnataka, India
| | - C Ghosh
- Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru 560064, Karnataka, India
| | - G Bocchinfuso
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Y Acharya
- Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru 560064, Karnataka, India
| | - V Santucci
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, 00133 Rome, Italy
| | - S Bonacorsi
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, 00133 Rome, Italy
| | - C Di Stefano
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, 00133 Rome, Italy
| | - J Haldar
- Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru 560064, Karnataka, India; School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru 560064, Karnataka, India.
| | - L Stella
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, 00133 Rome, Italy.
| |
Collapse
|
8
|
Casciaro B, Loffredo MR, Cappiello F, O’Sullivan N, Tortora C, Manzer R, Karmakar S, Haskell A, Hasan SK, Mangoni ML. KDEON WK-11: A short antipseudomonal peptide with promising potential. Front Chem 2022; 10:1000765. [PMID: 36465859 PMCID: PMC9713011 DOI: 10.3389/fchem.2022.1000765] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 11/01/2022] [Indexed: 08/27/2023] Open
Abstract
The plight of antimicrobial resistance continues to limit the availability of antibiotic treatment effective in combating resistant bacterial infections. Despite efforts made to rectify this issue and minimise its effects on both patients and the wider community, progress in this area remains minimal. Here, we de-novo designed a peptide named KDEON WK-11, building on previous work establishing effective residues and structures active in distinguished antimicrobial peptides such as lactoferrin. We assessed its antimicrobial activity against an array of bacterial strains and identified its most potent effect, against Pseudomonas aeruginosa with an MIC value of 3.12 μM, lower than its counterparts developed with similar residues and chain lengths. We then determined its anti-biofilm properties, potential mechanism of action and in vitro cytotoxicity. We identified that KDEON WK-11 had a broad range of antimicrobial activity and specific capabilities to fight Pseudomonas aeruginosa with low in vitro cytotoxicity and promising potential to express anti-lipopolysaccharide qualities, which could be exploited to expand its properties into an anti-sepsis agent.
Collapse
Affiliation(s)
- Bruno Casciaro
- Laboratory Affiliated to Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences A. Rossi Fanelli, Sapienza University of Rome, Rome, Italy
| | - Maria Rosa Loffredo
- Laboratory Affiliated to Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences A. Rossi Fanelli, Sapienza University of Rome, Rome, Italy
| | - Floriana Cappiello
- Laboratory Affiliated to Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences A. Rossi Fanelli, Sapienza University of Rome, Rome, Italy
| | - Niamh O’Sullivan
- Laboratory Affiliated to Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences A. Rossi Fanelli, Sapienza University of Rome, Rome, Italy
| | - Carola Tortora
- Department of Chemistry and Technology of Drugs, “Department of Excellence 2018–2022”, Sapienza University of Rome, Rome, Italy
| | - Rizwan Manzer
- Iuventis Technologies Inc. (DBA Immunotrex Biologics), Lowell, MA, United States
| | - Sougata Karmakar
- Iuventis Technologies Inc. (DBA Immunotrex Biologics), Lowell, MA, United States
| | - Alan Haskell
- Iuventis Technologies Inc. (DBA Immunotrex Biologics), Lowell, MA, United States
| | - Syed K. Hasan
- Iuventis Technologies Inc. (DBA Immunotrex Biologics), Lowell, MA, United States
| | - Maria Luisa Mangoni
- Laboratory Affiliated to Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences A. Rossi Fanelli, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
9
|
Sidorczuk K, Gagat P, Pietluch F, Kała J, Rafacz D, Bąkała L, Słowik J, Kolenda R, Rödiger S, Fingerhut LCHW, Cooke IR, Mackiewicz P, Burdukiewicz M. Benchmarks in antimicrobial peptide prediction are biased due to the selection of negative data. Brief Bioinform 2022; 23:6672903. [PMID: 35988923 PMCID: PMC9487607 DOI: 10.1093/bib/bbac343] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/07/2022] [Accepted: 07/25/2022] [Indexed: 12/29/2022] Open
Abstract
Antimicrobial peptides (AMPs) are a heterogeneous group of short polypeptides that target not only microorganisms but also viruses and cancer cells. Due to their lower selection for resistance compared with traditional antibiotics, AMPs have been attracting the ever-growing attention from researchers, including bioinformaticians. Machine learning represents the most cost-effective method for novel AMP discovery and consequently many computational tools for AMP prediction have been recently developed. In this article, we investigate the impact of negative data sampling on model performance and benchmarking. We generated 660 predictive models using 12 machine learning architectures, a single positive data set and 11 negative data sampling methods; the architectures and methods were defined on the basis of published AMP prediction software. Our results clearly indicate that similar training and benchmark data set, i.e. produced by the same or a similar negative data sampling method, positively affect model performance. Consequently, all the benchmark analyses that have been performed for AMP prediction models are significantly biased and, moreover, we do not know which model is the most accurate. To provide researchers with reliable information about the performance of AMP predictors, we also created a web server AMPBenchmark for fair model benchmarking. AMPBenchmark is available at http://BioGenies.info/AMPBenchmark.
Collapse
Affiliation(s)
| | | | | | - Jakub Kała
- Warsaw University of Technology, Faculty of Mathematics and Information Science, Poland
| | - Dominik Rafacz
- Warsaw University of Technology, Faculty of Mathematics and Information Science, Poland
| | - Laura Bąkała
- Warsaw University of Technology, Faculty of Mathematics and Information Science, Poland
| | - Jadwiga Słowik
- Warsaw University of Technology, Faculty of Mathematics and Information Science, Poland
| | - Rafał Kolenda
- Quadram Institute Biosciences, Norwich Research Park, Norwich, United Kingdom,Wrocław University of Environmental and Life Sciences, Faculty of Veterinary Medicine, Poland
| | - Stefan Rödiger
- Brandenburg University of Technology Cottbus-Senftenberg, Faculty of Natural Sciences, Germany
| | - Legana C H W Fingerhut
- Department of Molecular and Cell Biology, Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Australia
| | - Ira R Cooke
- Department of Molecular and Cell Biology, Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Australia
| | | | | |
Collapse
|
10
|
Tryptophan, more than just an interfacial amino acid in the membrane activity of cationic cell-penetrating and antimicrobial peptides. Q Rev Biophys 2022; 55:e10. [PMID: 35979810 DOI: 10.1017/s0033583522000105] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Trp is unique among the amino acids since it is involved in many different types of noncovalent interactions such as electrostatic and hydrophobic ones, but also in π-π, π-cation, π-anion and π-ion pair interactions. In membranotropic peptides and proteins, Trp locates preferentially at the water-membrane interface. In antimicrobial or cell-penetrating peptides (AMPs and CPPs respectively), Trp is well-known for its strong role in the capacity of these peptides to interact and affect the membrane organisation of both bacteria and animal cells at the level of the lipid bilayer. This essential amino acid can however be involved in other types of interactions, not only with lipids, but also with other membrane partners, that are crucial to understand the functional roles of membranotropic peptides. This review is focused on this latter less known role of Trp and describes in details, both in qualitative and quantitative ways: (i) the physico-chemical properties of Trp; (ii) its effect in CPP internalisation; (iii) its importance in AMP activity; (iv) its role in the interaction of AMPs with glycoconjugates or lipids in bacteria membranes and the consequences on the activity of the peptides; (v) its role in the interaction of CPPs with negatively charged polysaccharides or lipids of animal membranes and the consequences on the activity of the peptides. We intend to bring highlights of the physico-chemical properties of Trp and describe its extensive possibilities of interactions, not only at the well-known level of the lipid bilayer, but with other less considered cell membrane components, such as carbohydrates and the extracellular matrix. The focus on these interactions will allow the reader to reevaluate reported studies. Altogether, our review gathers dedicated studies to show how unique are Trp properties, which should be taken into account to design future membranotropic peptides with expected antimicrobial or cell-penetrating activity.
Collapse
|
11
|
Amorim-Carmo B, Parente AMS, Souza ES, Silva-Junior AA, Araújo RM, Fernandes-Pedrosa MF. Antimicrobial Peptide Analogs From Scorpions: Modifications and Structure-Activity. Front Mol Biosci 2022; 9:887763. [PMID: 35712354 PMCID: PMC9197468 DOI: 10.3389/fmolb.2022.887763] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/19/2022] [Indexed: 11/29/2022] Open
Abstract
The rapid development of multidrug-resistant pathogens against conventional antibiotics is a global public health problem. The irrational use of antibiotics has promoted therapeutic limitations against different infections, making research of new molecules that can be applied to treat infections necessary. Antimicrobial peptides (AMPs) are a class of promising antibiotic molecules as they present broad action spectrum, potent activity, and do not easily induce resistance. Several AMPs from scorpion venoms have been described as a potential source for the development of new drugs; however, some limitations to their application are also observed. Here, we describe strategies used in several approaches to optimize scorpion AMPs, addressing their primary sequence, biotechnological potential, and characteristics that should be considered when developing an AMP derived from scorpion venoms. In addition, this review may contribute towards improving the understanding of rationally designing new molecules, targeting functional AMPs that may have a therapeutic application.
Collapse
Affiliation(s)
- Bruno Amorim-Carmo
- Laboratory of Pharmaceutical Technology and Biotechnology, Pharmacy Department, Federal University of Rio Grande do North, Natal, Brazil
| | - Adriana M. S. Parente
- Laboratory of Pharmaceutical Technology and Biotechnology, Pharmacy Department, Federal University of Rio Grande do North, Natal, Brazil
| | - Eden S. Souza
- School of Biomolecular and Biomedical Sciences, University College Dublin, Dublin, Ireland
| | - Arnóbio A. Silva-Junior
- Laboratory of Pharmaceutical Technology and Biotechnology, Pharmacy Department, Federal University of Rio Grande do North, Natal, Brazil
| | - Renata M. Araújo
- Laboratory of Pharmaceutical Technology and Biotechnology, Pharmacy Department, Federal University of Rio Grande do North, Natal, Brazil
| | - Matheus F. Fernandes-Pedrosa
- Laboratory of Pharmaceutical Technology and Biotechnology, Pharmacy Department, Federal University of Rio Grande do North, Natal, Brazil
| |
Collapse
|
12
|
Kerr RV, Fairbairn JA, Merritt AT, Bugg TDH. Peptidomimetic analogues of an Arg-Trp-x-x-Trp motif responsible for interaction of translocase MraY with bacteriophage ϕX174 lysis protein E. Bioorg Med Chem 2021; 52:116502. [PMID: 34808406 DOI: 10.1016/j.bmc.2021.116502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/29/2021] [Accepted: 10/29/2021] [Indexed: 11/25/2022]
Abstract
Translocase MraY is the target for bacteriophage ϕX174 lysis protein E, which interacts via a protein-protein interaction mediated by Phe-288 and Glu-287 of E. coli MraY, and an Arg-Trp-x-x-Trp motif on protein E, also found in several cationic antimicrobial peptides. Analogues of Arg-Trp-octyl ester, found previously to show antimicrobial activity, were tested for antimicrobial activity, with Lys-Trp-oct (MIC50P. fluorescens 5 µg/mL) and Arg-Trp-decyl ester (MIC50P. fluorescens 3 µg/mL) showing enhanced antimicrobial activity. Synthesis and testing of α-helix peptidomimetic analogues for this motif revealed improved antibacterial activity (MIC50E. coli 4-7 µg/mL) for analogues containing two aromatic substituents, mimicking the Arg-Trp-x-x-Trp motif, and MraY inhibition (IC50 140 µM) by one such peptidomimetic. Investigation of mechanism of action using the Alamar Blue membrane permeabilisation assay revealed bacteriostatic and bacteriocidal mechanisms in different members of this set of compounds, raising the possibility of more than one biological target. The observed antimicrobial activity and MraY inhibition shown by peptidomimetic compounds confirms that this site could be targeted by drug-like molecules.
Collapse
Affiliation(s)
- Rachel V Kerr
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK
| | - Julia A Fairbairn
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK
| | - Andrew T Merritt
- LifeArc, SBC Open Innovation Campus, Stevenage, Herts SG1 2FX, UK
| | - Timothy D H Bugg
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK.
| |
Collapse
|
13
|
Wang HY, Chen XC, Yan ZH, Tu F, He T, Gopinath SCB, Rui XH, Cao FT. Human neutrophil peptide 1 promotes immune sterilization in vivo by reducing the virulence of multidrug-resistant Klebsiella pneumoniae and increasing the ability of macrophages. Biotechnol Appl Biochem 2021; 69:2091-2101. [PMID: 34664729 DOI: 10.1002/bab.2270] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 10/04/2021] [Indexed: 12/24/2022]
Abstract
By studying the expression in patients and cell modeling in vitro, antimicrobial peptides for Klebsiella were screened. Killing curve and membrane permeability experiments are used to study the antibacterial effect of antimicrobial peptides in vitro. Cytotoxicity-related indicators including lipopolysaccharide (LPS), capsule polysaccharide (CPS), and outer membrane protein expression were measured. Intranasal inoculation of pneumoconiosis was used to construct a mouse infection model, and the survival rate and cytokine expression level were tested. Human neutrophil peptide 1 (HNP-1) showed a significant antibacterial effect, which improved the permeability of the outer membrane of K. pneumoniae. Moreover, HNP-1 decreased LPS, CPS content, and outer membrane proteins. K. pneumoniae infection decreased antimicrobial peptide, oxidative stress, and autophagy-related genes, while HNP-1 increased these genes. After coculture with macrophages, the endocytosis of macrophages is enhanced and the bacterial load is greater in the K. pneumoniae + peptide group. Besides, higher levels of pp38 and pp65 in the K. pneumoniae + peptide group. HNP-1 rescued the cytotoxicity induced by K. pneumoniae. The survival rate is significantly improved after K. pneumoniae is treated by HNP-1. All cytokines in the peptide group were significantly higher. HNP-1 promotes immune sterilization by reducing the virulence of multidrug-resistant K. pneumoniae and increasing the ability of macrophages.
Collapse
Affiliation(s)
- Hui-Yun Wang
- Department of Laboratory Medicine, Jiangyin Traditional Hospital, Wuxi 214005, China
| | - Xiao-Chun Chen
- Department of Laboratory Medicine, Taizhou Second People's Hospital, Jiangyan District, Taizhou City, China
| | - Zhi-Han Yan
- Hepatology Department, Wuxi Fifth People's Hospital, Wuxi, China
| | - Fan Tu
- Department of Laboratory Medicine, Wuxi Fifth People's Hospital, Wuxi, China
| | - Tian He
- Department of Laboratory Medicine, Wuxi Fifth People's Hospital, Wuxi, China
| | - Subash C B Gopinath
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis, Perlis, Malaysia.,Faculty of Chemical Engineering Technology, Universiti Malaysia Perlis, Perlis, Malaysia
| | - Xiao-Hong Rui
- Department of Laboratory Medicine, Wuxi Fifth People's Hospital, Wuxi, China
| | - Fu-Tao Cao
- Emergency Department, Wuxi Second People's Hospital, Wuxi, China
| |
Collapse
|
14
|
Gibała A, Żeliszewska P, Gosiewski T, Krawczyk A, Duraczyńska D, Szaleniec J, Szaleniec M, Oćwieja M. Antibacterial and Antifungal Properties of Silver Nanoparticles-Effect of a Surface-Stabilizing Agent. Biomolecules 2021; 11:1481. [PMID: 34680114 PMCID: PMC8533414 DOI: 10.3390/biom11101481] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/01/2021] [Accepted: 10/02/2021] [Indexed: 01/23/2023] Open
Abstract
The biocidal properties of silver nanoparticles (AgNPs) prepared with the use of biologically active compounds seem to be especially significant for biological and medical application. Therefore, the aim of this research was to determine and compare the antibacterial and fungicidal properties of fifteen types of AgNPs. The main hypothesis was that the biological activity of AgNPs characterized by comparable size distributions, shapes, and ion release profiles is dependent on the properties of stabilizing agent molecules adsorbed on their surfaces. Escherichia coli and Staphylococcus aureus were selected as models of two types of bacterial cells. Candida albicans was selected for the research as a representative type of eukaryotic microorganism. The conducted studies reveal that larger AgNPs can be more biocidal than smaller ones. It was found that positively charged arginine-stabilized AgNPs (ARGSBAgNPs) were the most biocidal among all studied nanoparticles. The strongest fungicidal properties were detected for negatively charged EGCGAgNPs obtained using (-)-epigallocatechin gallate (EGCG). It was concluded that, by applying a specific stabilizing agent, one can tune the selectivity of AgNP toxicity towards desired pathogens. It was established that E. coli was more sensitive to AgNP exposure than S. aureus regardless of AgNP size and surface properties.
Collapse
Affiliation(s)
- Agnieszka Gibała
- Department of Molecular Medical Microbiology, Chair of Microbiology, Faculty of Medicine, Jagiellonian University Medical College, Czysta 18, 31-12 Krakow, Poland; (T.G.); (A.K.)
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland; (P.Ż.); (D.D.); (M.S.); (M.O.)
| | - Paulina Żeliszewska
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland; (P.Ż.); (D.D.); (M.S.); (M.O.)
| | - Tomasz Gosiewski
- Department of Molecular Medical Microbiology, Chair of Microbiology, Faculty of Medicine, Jagiellonian University Medical College, Czysta 18, 31-12 Krakow, Poland; (T.G.); (A.K.)
| | - Agnieszka Krawczyk
- Department of Molecular Medical Microbiology, Chair of Microbiology, Faculty of Medicine, Jagiellonian University Medical College, Czysta 18, 31-12 Krakow, Poland; (T.G.); (A.K.)
| | - Dorota Duraczyńska
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland; (P.Ż.); (D.D.); (M.S.); (M.O.)
| | - Joanna Szaleniec
- Department of Otolaryngology, Faculty of Medicine, Jagiellonian University Medical College, Jakubowskiego 2, 30-688 Krakow, Poland;
| | - Maciej Szaleniec
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland; (P.Ż.); (D.D.); (M.S.); (M.O.)
| | - Magdalena Oćwieja
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland; (P.Ż.); (D.D.); (M.S.); (M.O.)
| |
Collapse
|
15
|
Anti-biofilm and anti-inflammatory effects of Lycosin-II isolated from spiders against multi-drug resistant bacteria. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2021; 1864:183769. [PMID: 34506798 DOI: 10.1016/j.bbamem.2021.183769] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 08/26/2021] [Accepted: 09/01/2021] [Indexed: 12/14/2022]
Abstract
Currently, multidrug-resistant bacteria are rapidly increasing worldwide because of the misuse or overuse of antibiotics. In particular, few options exist for treating infections caused by long-persisting oxacillin-resistant strains and recently proliferating carbapenem-resistant strains. Therefore, alternative treatments are urgently needed. The antimicrobial peptide (AMP) Lycosin-II is a peptide consisting of 21 amino acids isolated from the venom of the spider Lycosa singoriensis. Lycosin-II showed strong antibacterial activity and biofilm inhibition effects against gram-positive and gram-negative bacteria including oxacillin-resistant Staphylococcus aureus (S. aureus) and meropenem-resistant Pseudomonas aeruginosa (P. aeruginosa) isolated from patients. In addition, Lycosin-II was not cytotoxic against human foreskin fibroblast Hs27 or hemolytic against sheep red blood cells at the concentration of which exerted antibacterial activity. The mechanism of action of Lycosin-II involves binding to lipoteichoic acid and lipopolysaccharide of gram-positive and gram-negative bacterial membranes, respectively, to destroy the bacterial membrane. Moreover, Lycosin-II showed anti-inflammatory effects by inhibiting the expression of pro-inflammatory cytokines that are increased during bacterial infection in Hs27 cells. These results suggest that Lycosin-II can serve as a therapeutic agent against infections with multidrug-resistant strains.
Collapse
|
16
|
Chou S, Li Q, Wu H, Li J, Chang YF, Shang L, Li J, Wang Z, Shan A. Selective Antifungal Activity and Fungal Biofilm Inhibition of Tryptophan Center Symmetrical Short Peptide. Int J Mol Sci 2021; 22:ijms22158231. [PMID: 34360998 PMCID: PMC8348200 DOI: 10.3390/ijms22158231] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/19/2021] [Accepted: 07/19/2021] [Indexed: 11/24/2022] Open
Abstract
Candida albicans, an opportunistic fungus, causes dental caries and contributes to mucosal bacterial dysbiosis leading to a second infection. Furthermore, C.albicans forms biofilms that are resistant to medicinal treatment. To make matters worse, antifungal resistance has spread (albeit slowly) in this species. Thus, it has been imperative to develop novel, antifungal drug compounds. Herein, a peptide was engineered with the sequence of RRFSFWFSFRR-NH2; this was named P19. This novel peptide has been observed to exert disruptive effects on fungal cell membrane physiology. Our results showed that P19 displayed high binding affinity to lipopolysaccharides (LPS), lipoteichoic acids (LTA) and the plasma membrane phosphatidylinositol (PI), phosphatidylserine (PS), cardiolipin, and phosphatidylglycerol (PG), further indicating that the molecular mechanism of P19 was not associated with the receptor recognition, but rather related to competitive interaction with the plasma membrane. In addition, compared with fluconazole and amphotericin B, P19 has been shown to have a lower potential for resistance selection than established antifungal agents.
Collapse
Affiliation(s)
- Shuli Chou
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, China; (S.C.); (Q.L.); (H.W.); (J.L.); (L.S.); (J.L.); (Z.W.)
| | - Qiuke Li
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, China; (S.C.); (Q.L.); (H.W.); (J.L.); (L.S.); (J.L.); (Z.W.)
| | - Hua Wu
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, China; (S.C.); (Q.L.); (H.W.); (J.L.); (L.S.); (J.L.); (Z.W.)
| | - Jinze Li
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, China; (S.C.); (Q.L.); (H.W.); (J.L.); (L.S.); (J.L.); (Z.W.)
| | - Yung-Fu Chang
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA;
| | - Lu Shang
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, China; (S.C.); (Q.L.); (H.W.); (J.L.); (L.S.); (J.L.); (Z.W.)
| | - Jiawei Li
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, China; (S.C.); (Q.L.); (H.W.); (J.L.); (L.S.); (J.L.); (Z.W.)
| | - Zhihua Wang
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, China; (S.C.); (Q.L.); (H.W.); (J.L.); (L.S.); (J.L.); (Z.W.)
| | - Anshan Shan
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, China; (S.C.); (Q.L.); (H.W.); (J.L.); (L.S.); (J.L.); (Z.W.)
- Correspondence:
| |
Collapse
|
17
|
Gómez J, Sierra D, Ojeda C, Thavalingam S, Miller R, Guzmán F, Metzler-Nolte N. Solid-phase synthesis and evaluation of linear and cyclic ferrocenoyl/ruthenocenoyl water-soluble hexapeptides as potential antibacterial compounds. J Biol Inorg Chem 2021; 26:599-615. [PMID: 34292404 DOI: 10.1007/s00775-021-01877-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/08/2021] [Indexed: 01/08/2023]
Abstract
A series of novel water-soluble short peptide-bioconjugates containing a ferrocenoyl (Fc) or ruthenocenoyl (Rc) unit was synthesized and characterized to combine the unique activity of ferrocene and the isoelectronic ruthenocene with precisely designed peptide structures. We aim at evaluating these bioconjugates as a new class of OrganoMetallic Short AntiMicrobial Peptides (OM-SAMPs). The series of OM-SAMPs was designed with a set of linear and "head-to-tail" cyclic metallocene-based hexapeptides derived from the homo-sequence H-KKKKKK-NH2 by substitution of lysine (K) by tryptophan (W) and by orthogonal derivatization of the ε-N-amine group of lysine by a metallocene moiety. Peptide conjugates were characterized by RP-HPLC, mass spectrometry (ESI and MALDI-TOF) and circular dichroism (CD) spectroscopy. Gram-positive and Gram-negative antibacterial activity testings were carried out to explore the role of insertion of the metallocene fragment into the peptide, and the effect of the modification of the cationic charge and aromatic residues on the physiochemical properties of these OM-SAMPs. These results show that the insertion of two tryptophan residues and ferrocenoyl/ruthenocenoyl moieties into a linear homo-sequence peptides increase significantly their antibacterial activity with minimum inhibitory concentration values as low as 5 μM for the most active compounds. However, "head-to-tail" cyclic metallocene-based hexapeptides were not active against Gram-negative bacteria up to concentrations of 50 μM. These studies provide a better understanding of the role of structural modifications to enhance antibacterial peptide activity, which is promising for their therapeutic application.
Collapse
Affiliation(s)
- Johana Gómez
- Núcleo de Biotecnología Curauma, Pontificia Universidad Católica de Valparaíso, Av. Universidad 330, Valparaiso, Chile.
| | - Diego Sierra
- Instituto de Química Y Bioquímica, Facultad de Ciencias, Universidad de Valparaíso, Av. Gran Bretaña 1111, Valparaiso, Chile.
| | - Claudia Ojeda
- Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2950, Valparaiso, Chile
| | - Sugina Thavalingam
- Inorganic Chemistry I-Bioinorganic Chemistry, Ruhr University Bochum, Universitӓtsstrasse 150, 44780, Bochum, Germany
| | - Reece Miller
- Inorganic Chemistry I-Bioinorganic Chemistry, Ruhr University Bochum, Universitӓtsstrasse 150, 44780, Bochum, Germany
| | - Fanny Guzmán
- Núcleo de Biotecnología Curauma, Pontificia Universidad Católica de Valparaíso, Av. Universidad 330, Valparaiso, Chile
| | - Nils Metzler-Nolte
- Inorganic Chemistry I-Bioinorganic Chemistry, Ruhr University Bochum, Universitӓtsstrasse 150, 44780, Bochum, Germany
| |
Collapse
|
18
|
Wu Y, Nie T, Meng F, Zhou L, Chen M, Sun J, Lu Z, Lu Y. The determination of antibacterial mode for cationic lipopeptides brevibacillins against Salmonella typhimurium by quantum chemistry calculation. Appl Microbiol Biotechnol 2021; 105:5643-5655. [PMID: 34160646 DOI: 10.1007/s00253-021-11398-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 05/16/2021] [Accepted: 05/24/2021] [Indexed: 01/25/2023]
Abstract
Brevibacillins are broad-spectrum cationic antimicrobial lipopeptides produced by Brevibacillus laterosporus fmb70 CGMCC 18426. The antibacterial mode of brevibacillins against Salmonella typhimurium CICC 21493 was investigated by quantum chemistry calculation in this study. The addition of LPS, Mg2+, and Ca2+ partially reduced the antimicrobial activity of brevibacillin and brevibacillin V against S. typhimurium, which indicated that the two cationic lipopeptides could bind to LPS and displaced the divalent cations on the LPS network. Release of LPS from S. typhimurium by brevibacillin and brevibacillin V resulted in destroying the dense LPS network and increasing the permeability of the outer membrane. Quantum chemistry calculation analysis revealed that Lys7 is the most critical amino acid residue to destroy the outer membrane. The total average N-H charge difference of the three protonated amino groups (Orn3-NH3, Lys7-NH3, and Lys10-NH3) determined the ability of brevibacillin V to bind LPS stronger than brevibacillin. Calcein complete leakage from liposomes and release of DiSC3-5 from the cytoplasmic membrane (CM) indicated that brevibacillin and brevibacillin V may destroy the CM. Brevibacillin and brevibacillin V exhibited their antimicrobial activities through membrane damages, where the OM permeability with high concentration of 64-256 µg/mL and membrane damage of CM with a low concentration of 4 μg/mL. Our finding might be helpful to understand the broad-spectrum antimicrobial mechanism of cationic lipopeptide and to design the novel antimicrobial peptide. KEY POINTS: • Brevibacillin V had stronger affinity for LPS than brevibacillin. • The N-H charge difference was the key of the difference in the affinity to LPS. • Brevibacillins inhibited Salmonella by displacing the divalent cations on the LPS.
Collapse
Affiliation(s)
- Yubo Wu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Ting Nie
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Fanqiang Meng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Libang Zhou
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Meirong Chen
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Jing Sun
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, 210023, Jiangsu Province, China
| | - Zhaoxin Lu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China.
| | - Yingjian Lu
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, 210023, Jiangsu Province, China.
| |
Collapse
|
19
|
Liu Y, Yan Z, Chai J, Zhou J, Wang C. Antimicrobial Activity of the Antibacterial Peptide PMAP-GI24 and Its Analogs. Int J Pept Res Ther 2020. [DOI: 10.1007/s10989-020-10026-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
20
|
Mumtaz S, Behera S, Mukhopadhyay K. Lipidated Short Analogue of α-Melanocyte Stimulating Hormone Exerts Bactericidal Activity against the Stationary Phase of Methicillin-Resistant Staphylococcus aureus and Inhibits Biofilm Formation. ACS OMEGA 2020; 5:28425-28440. [PMID: 33195893 PMCID: PMC7658953 DOI: 10.1021/acsomega.0c01462] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 09/04/2020] [Indexed: 05/20/2023]
Abstract
Stationary phase Staphylococcus aureus, especially methicillin-resistant S. aureus (MRSA), has been widely associated with many persistent infections as well as biofilm-associated infections, which are challenging due to their increasing antibiotic resistance. α-Melanocyte stimulating hormone (α-MSH) is an antimicrobial peptide (AMP) with well-established potent activity against S. aureus , but little is known about its antimicrobial efficacy against the stationary phase of the bacteria. We investigated the in vitro activities of two palmitoylated analogues, Pal-α-MSH(6-13) and Pal-α-MSH(11-13), of the C-terminal fragments of α-MSH against biofilm-producing strains of methicillin-sensitive S. aureus (MSSA) and MRSA. While both the peptides demonstrated anti-staphylococcal efficacy, Pal-α-MSH(11-13) emerged as the most effective AMP as palmitoylation led to a remarkable enhancement in its activity against stationary phase bacteria. Similar to α-MSH, both the designed analogues were membrane-active and exhibited improved bacterial membrane depolarization and permeabilization, as further confirmed via electron microscopy studies. Of the two peptides, Pal-α-MSH(11-13) was able to retain its activity in the presence of standard microbiological media, which otherwise is a major limiting factor toward the therapeutic use of α-MSH-based peptides. More importantly, Pal-α-MSH(11-13) was also highly effective in inhibiting the formation of biofilms. Furthermore, it did not lead to resistance development in MRSA cells even upon 18 serial passages at sub-MIC concentrations. These observations support the potential use of Pal-α-MSH(11-13) in the treatment of planktonic as well as sessile S. aureus infections.
Collapse
|
21
|
Frederiksen N, Hansen PR, Zabicka D, Tomczak M, Urbas M, Domraceva I, Björkling F, Franzyk H. Alternating Cationic-Hydrophobic Peptide/Peptoid Hybrids: Influence of Hydrophobicity on Antibacterial Activity and Cell Selectivity. ChemMedChem 2020; 15:2544-2561. [PMID: 33029927 DOI: 10.1002/cmdc.202000526] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/01/2020] [Indexed: 12/17/2022]
Abstract
The influence of hydrophobicity on antibacterial activity versus the effect on the viability of mammalian cells for peptide/peptoid hybrids was examined for oligomers based on the cationic Lys-like peptoid residue combined with each of 28 hydrophobic amino acids in an alternating sequence. Their relative hydrophobicity was correlated to activity against both Gram-negative and Gram-positive species, human red blood cells, and HepG2 cells. This identified hydrophobic side chains that confer potent antibacterial activity (e. g., MICs of 2-8 μg/mL against E. coli) and low toxicity toward mammalian cells (<10 % hemolysis at 400 μg/mL and IC50 >800 μg/mL for HepG2 viability). Most peptidomimetics retained activity against drug-resistant strains. These findings corroborate the hypothesis that for related peptidomimetics two hydrophobicity thresholds may be identified: i) it should exceed a certain level in order to confer antibacterial activity, and ii) there is an upper limit, beyond which cell selectivity is lost. It is envisioned that once identified for a given subclass of peptide-like antibacterials such thresholds can guide further optimisation.
Collapse
Affiliation(s)
- Nicki Frederiksen
- Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 162, 2100, Copenhagen, Denmark
| | - Paul R Hansen
- Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 162, 2100, Copenhagen, Denmark
| | - Dorota Zabicka
- Department of Epidemiology and Clinical Microbiology, National Medicines Institute, ul. Chełmska 30/34, 00-725, Warsaw, Poland
| | - Magdalena Tomczak
- Department of Epidemiology and Clinical Microbiology, National Medicines Institute, ul. Chełmska 30/34, 00-725, Warsaw, Poland
| | - Malgorzata Urbas
- Department of Epidemiology and Clinical Microbiology, National Medicines Institute, ul. Chełmska 30/34, 00-725, Warsaw, Poland
| | - Ilona Domraceva
- Latvian Institute of Organic Synthesis, Aizkraukles 21, 1006, Riga, Latvia
| | - Fredrik Björkling
- Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 162, 2100, Copenhagen, Denmark
| | - Henrik Franzyk
- Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 162, 2100, Copenhagen, Denmark
| |
Collapse
|
22
|
Thapa RK, Winther-Larsen HC, Diep DB, Tønnesen HH. Preformulation studies on novel garvicin KS peptides for topical applications. Eur J Pharm Sci 2020; 151:105333. [PMID: 32268197 DOI: 10.1016/j.ejps.2020.105333] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/30/2020] [Accepted: 03/30/2020] [Indexed: 11/18/2022]
Abstract
Antimicrobial peptides (AMPs) are emerging as a viable alternative to antibiotics attributable to their potent antimicrobial effects and low propensity for resistance development, especially in chronic infected wounds. The development of an optimized topical formulation of AMPs is thus warranted. Preformulation studies for determination of the suitability and optimization requirements of AMPs in topical formulation development are important. Therefore, we sought to investigate the preformulation studies for a novel bacteriocin garvicin KS (GarKS), which is composed of three peptides (GakA, GakB, and GakC). The effects of physiological fluids and varying temperatures on GarKS peptide stability were determined. The antimicrobial effects of the peptides and their combinations were evaluated in Staphylococcus aureus (methicillin sensitive and resistant strains). Furthermore, their effects on fibroblast viability and proliferation were determined. The GarKS peptides were stable in water and PBS at room and physiological temperatures, however, the peptides were significantly degraded in simulated wound fluid. The antimicrobial and fibroblast cell viability/proliferation effects of either individual GarKS peptides or their combinations varied. A careful consideration of the peptide stability, antimicrobial efficacy, and fibroblast viability/proliferation effects suggests GakA+GakB as a potent combination for the development of an optimized topical formulation of GarKS peptides.
Collapse
Affiliation(s)
- Raj Kumar Thapa
- Section for Pharmaceutics and Social Pharmacy, Department of Pharmacy, University of Oslo, P. O. Box 1068 Blindern, NO, 0316 Oslo, Norway.
| | - Hanne Cecilie Winther-Larsen
- Centre for Integrative Microbial Evolution (CIME) and Department of Pharmacology and Pharmaceutical Biosciences, University of Oslo, P. O. Box 1068 Blindern, NO, 0371 Oslo, Norway
| | - Dzung B Diep
- Faculty of Chemistry, Biotechnology, and Food Science, Norwegian University of Life Sciences, P.O. Box 5003, NO, 1432 Ås, Norway
| | - Hanne Hjorth Tønnesen
- Section for Pharmaceutics and Social Pharmacy, Department of Pharmacy, University of Oslo, P. O. Box 1068 Blindern, NO, 0316 Oslo, Norway
| |
Collapse
|
23
|
Gunasekaran P, Kim EY, Lee J, Ryu EK, Shin SY, Bang JK. Synthesis of Fmoc-Triazine Amino Acids and Its Application in the Synthesis of Short Antibacterial Peptidomimetics. Int J Mol Sci 2020; 21:ijms21103602. [PMID: 32443730 PMCID: PMC7279249 DOI: 10.3390/ijms21103602] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/18/2020] [Accepted: 05/18/2020] [Indexed: 12/13/2022] Open
Abstract
To combat the escalating rise of antibacterial resistance, the development of antimicrobial peptides (AMPs) with a unique mode of action is considered an attractive strategy. However, proteolytic degradation of AMPs remains the greatest challenge in their transformation into therapeutics. Herein, we synthesized Fmoc-triazine amino acids that differ from each other by anchoring either cationic or hydrophobic residues. These unnatural amino acids were adopted for solid-phase peptide synthesis (SPPS) to synthesize a series of amphipathic antimicrobial peptidomimetics. From the antimicrobial screening, we found that the trimer, BJK-4 is the most potent short antimicrobial peptidomimetic without showing hemolytic activity and it displayed enhanced proteolytic stability. Moreover, the mechanism of action to kill bacteria was found to be an intracellular targeting.
Collapse
Affiliation(s)
- Pethaiah Gunasekaran
- Division of Magnetic Resonance, Korea Basic Science Institute (KBSI), Ochang 28119, Korea; (P.G.); (J.L.); (E.K.R.)
| | - Eun Young Kim
- Department of Medical Science, Graduate School, Chosun University, Gwangju 61452, Korea; (E.Y.K.); (S.Y.S.)
| | - Jian Lee
- Division of Magnetic Resonance, Korea Basic Science Institute (KBSI), Ochang 28119, Korea; (P.G.); (J.L.); (E.K.R.)
| | - Eun Kyoung Ryu
- Division of Magnetic Resonance, Korea Basic Science Institute (KBSI), Ochang 28119, Korea; (P.G.); (J.L.); (E.K.R.)
- Department of Bio-analytical Science, University of Science & Technology, Daejeon 34113, Korea
| | - Song Yub Shin
- Department of Medical Science, Graduate School, Chosun University, Gwangju 61452, Korea; (E.Y.K.); (S.Y.S.)
- Department of Cellular and Molecular Medicine, School of Medicine, Chosun University, Gwangju 61452, Korea
| | - Jeong Kyu Bang
- Division of Magnetic Resonance, Korea Basic Science Institute (KBSI), Ochang 28119, Korea; (P.G.); (J.L.); (E.K.R.)
- Department of Bio-analytical Science, University of Science & Technology, Daejeon 34113, Korea
- Correspondence: ; Tel.: +82-43-240-5023
| |
Collapse
|
24
|
Ramamourthy G, Park J, Seo C, J. Vogel H, Park Y. Antifungal and Antibiofilm Activities and the Mechanism of Action of Repeating Lysine-Tryptophan Peptides against Candida albicans. Microorganisms 2020; 8:E758. [PMID: 32443520 PMCID: PMC7285485 DOI: 10.3390/microorganisms8050758] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 05/06/2020] [Accepted: 05/16/2020] [Indexed: 11/29/2022] Open
Abstract
The rapid increase in the emergence of antifungal-resistant Candida albicans strains is becoming a serious health concern. Because antimicrobial peptides (AMPs) may provide a potential alternative to conventional antifungal agents, we have synthesized a series of peptides with a varying number of lysine and tryptophan repeats (KWn-NH2). The antifungal activity of these peptides increased with peptide length, but only the longest KW5 peptide displayed cytotoxicity towards a human keratinocyte cell line. The KW4 and KW5 peptides exhibited strong antifungal activity against C. albicans, even under conditions of high-salt and acidic pH, or the addition of fungal cell wall components. Moreover, KW4 inhibited biofilm formation by a fluconazole-resistant C. albicans strain. Circular dichroism and fluorescence spectroscopy indicated that fungal liposomes could interact with the longer peptides but that they did not release the fluorescent dye calcein. Subsequently, fluorescence assays with different dyes revealed that KW4 did not disrupt the membrane integrity of intact fungal cells. Scanning electron microscopy showed no changes in fungal morphology, while laser-scanning confocal microscopy indicated that KW4 can localize into the cytosol of C. albicans. Gel retardation assays revealed that KW4 can bind to fungal RNA as a potential intracellular target. Taken together, our data indicate that KW4 can inhibit cellular functions by binding to RNA and DNA after it has been translocated into the cell, resulting in the eradication of C. albicans.
Collapse
Affiliation(s)
- Gopal Ramamourthy
- Biochemistry Research Group, Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada; (G.R.); (H.J.V.)
- Department of Biomedical Science and BK21-Plus Research Team for Bioactive Control Technology, Chosun University, Gwangju 61452, Korea
| | - Jonggwan Park
- Department of Bioinformatics, Kongju National University, Kongju 38065, Korea; (J.P.); (C.S.)
| | - Changho Seo
- Department of Bioinformatics, Kongju National University, Kongju 38065, Korea; (J.P.); (C.S.)
| | - Hans J. Vogel
- Biochemistry Research Group, Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada; (G.R.); (H.J.V.)
| | - Yoonkyung Park
- Department of Biomedical Science and BK21-Plus Research Team for Bioactive Control Technology, Chosun University, Gwangju 61452, Korea
- Research Center for Proteineous Materials, Chosun University, Gwangju 61452, Korea
| |
Collapse
|
25
|
Muchintala D, Suresh V, Raju D, Sashidhar R. Synthesis and characterization of cecropin peptide-based silver nanocomposites: Its antibacterial activity and mode of action. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 110:110712. [DOI: 10.1016/j.msec.2020.110712] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 01/26/2020] [Accepted: 01/30/2020] [Indexed: 12/19/2022]
|
26
|
Anionic food color tartrazine enhances antibacterial efficacy of histatin-derived peptide DHVAR4 by fine-tuning its membrane activity. Q Rev Biophys 2020; 53:e5. [PMID: 32115014 DOI: 10.1017/s0033583520000013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Here it is demonstrated how some anionic food additives commonly used in our diet, such as tartrazine (TZ), bind to DHVAR4, an antimicrobial peptide (AMP) derived from oral host defense peptides, resulting in significantly fostered toxic activity against both Gram-positive and Gram-negative bacteria, but not against mammalian cells. Biophysical studies on the DHVAR4-TZ interaction indicate that initially large, positively charged aggregates are formed, but in the presence of lipid bilayers, they rather associate with the membrane surface. In contrast to synergistic effects observed for mixed antibacterial compounds, this is a principally different mechanism, where TZ directly acts on the membrane-associated AMP promoting its biologically active helical conformation. Model vesicle studies show that compared to dye-free DHVAR4, peptide-TZ complexes are more prone to form H-bonds with the phosphate ester moiety of the bilayer head-group region resulting in more controlled bilayer fusion mechanism and concerted severe cell damage. AMPs are considered as promising compounds to combat formidable antibiotic-resistant bacterial infections; however, we know very little on their in vivo actions, especially on how they interact with other chemical agents. The current example illustrates how food dyes can modulate AMP activity, which is hoped to inspire improved therapies against microbial infections in the alimentary tract. Results also imply that the structure and function of natural AMPs could be manipulated by small compounds, which may also offer a new strategic concept for the future design of peptide-based antimicrobials.
Collapse
|
27
|
Conversion of Broad-Spectrum Antimicrobial Peptides into Species-Specific Antimicrobials Capable of Precisely Targeting Pathogenic Bacteria. Sci Rep 2020; 10:944. [PMID: 31969663 PMCID: PMC6976587 DOI: 10.1038/s41598-020-58014-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 01/03/2020] [Indexed: 11/25/2022] Open
Abstract
Currently, the majority of antibiotics in clinical use have broad activity spectra, killing pathogenic and beneficial microorganisms indiscriminately. The disruption of the ecological balance of normal flora often results in secondary infections or other antibiotic-associated complications. Therefore, targeted antimicrobial therapies capable of specifically eliminating pathogenic bacteria while retaining the protective benefits of a normal microflora would be advantageous. In this study, we successfully constructed a series of Enterococcus faecalis-targeted antimicrobial peptides from wide-spectrum antimicrobial peptide precursors. These peptides are designed based on fusion of the species-specific peptide pheromone cCF10 and modification of the active region of the antimicrobial peptide. The results showed that cCF10-C4 possessed specific antimicrobial activity against E. faecalis and was not active against other types of bacteria tested. The specificity of this hybrid peptide was shown by the absence of antimicrobial effects in the pheromone-substituted derivative. Further studies indicated that cCF10-C4 and its parent peptide C4 exert their activities by damaging cytoplasmic membrane integrity. The present study reveals the application potential of these molecules as “probiotic” antimicrobials for the control of specific bacterial infections, and it also helps to elucidate the design and construction of species-specific antimicrobials with precise targeting specificity.
Collapse
|
28
|
Zil’berg RA, Maistrenko VN, Yarkaeva YA, Dubrovskii DI. An Enantioselective Voltammetric Sensor System Based on Glassy Carbon Electrodes Modified by Polyarylenephthalide Composites with α-, β-, and γ-Cyclodextrins for Recognizing D- and L-Tryptophans. JOURNAL OF ANALYTICAL CHEMISTRY 2019. [DOI: 10.1134/s1061934819110133] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
29
|
Thery T, Lynch KM, Arendt EK. Natural Antifungal Peptides/Proteins as Model for Novel Food Preservatives. Compr Rev Food Sci Food Saf 2019; 18:1327-1360. [DOI: 10.1111/1541-4337.12480] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 05/17/2019] [Accepted: 07/04/2019] [Indexed: 01/08/2023]
Affiliation(s)
- Thibaut Thery
- School of Food and Nutritional SciencesUniv. College Cork Ireland
| | - Kieran M. Lynch
- School of Food and Nutritional SciencesUniv. College Cork Ireland
| | - Elke K. Arendt
- School of Food and Nutritional SciencesUniv. College Cork Ireland
- Microbiome IrelandUniv. College Cork Ireland
| |
Collapse
|
30
|
Erbilen N, Zor E, Saf AO, Akgemci EG, Bingol H. An electrochemical chiral sensor based on electrochemically modified electrode for the enantioselective discrimination of D-/L-tryptophan. J Solid State Electrochem 2019. [DOI: 10.1007/s10008-019-04370-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
31
|
Shruti SR, Rajasekaran R. Identification of protegrin-1 as a stable and nontoxic scaffold among protegrin family - a computational approach. J Biomol Struct Dyn 2018; 37:2430-2439. [PMID: 30047844 DOI: 10.1080/07391102.2018.1491418] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Achieving both, nontoxicity and stability in antimicrobial peptides (AMP) is a challenge. This study predicts a structurally stable, nontoxic scaffold among the protegrin family, for future therapeutic peptide analogs. Protegrins (PG) are a class of pharmaceutically approved, in demand AMPs, which require further improvement in terms of nontoxicity and stability. Out of five protegrins viz., PG1, PG2, PG3, PG4 and PG5, PG1 has been predicted as best scaffold. Prediction was based upon sequential elimination of other protegrins, using computational methods to assess the extracellular bacterial membrane penetrability, nontoxicity and structural stability by geometric observables. Initially, PG2 and PG4 showing the lowest membrane penetrability and highest toxicity respectively, were screened out. Among the remaining three protegrins, PG1 displayed both lowest root mean square deviation and radius of gyration, with a considerable occupancy of seven H-bonds and established uniform secondary structure profile throughout its ensembles. Therefore, the authors claim the superiority of PG1 as a nontoxic stable scaffold among its family. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- S R Shruti
- a Department of Biotechnology, Bioinformatics lab, School of Biosciences and Technology , VIT (Deemed to be University) , Vellore , Tamil Nadu , India
| | - R Rajasekaran
- a Department of Biotechnology, Bioinformatics lab, School of Biosciences and Technology , VIT (Deemed to be University) , Vellore , Tamil Nadu , India
| |
Collapse
|
32
|
Thery T, Shwaiki LN, O'Callaghan YC, O'Brien NM, Arendt EK. Antifungal activity of a de novo synthetic peptide and derivatives against fungal food contaminants. J Pept Sci 2018; 25:e3137. [PMID: 30488526 DOI: 10.1002/psc.3137] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 10/26/2018] [Accepted: 11/02/2018] [Indexed: 12/13/2022]
Abstract
The development of novel solutions to fight microbial food contaminants rests upon two pillars, which are the development of resistant strains and consumers' desire for a reduced consumption of synthetic drugs. Natural antimicrobial peptides possess the qualities to overcome these issues. De novo synthesis of novel antifungal compounds is a major progress that has been facilitated by the identification of parameters involved in the antimicrobial activity. A 14-residue peptide named KK14, with the sequence KKFFRAWWAPRFLK-NH2 , was designed and inhibited conidial germination and fungal growth of food contaminants within the range 6.25 to 50 μg/ml and 6.25 to 100 μg/ml, respectively. The study of three analogues of the peptide highlighted the role of some residues in the structural conformation of the peptide and its antifungal activity. The substitution of a Pro residue with Arg increased the helical content of the peptide not only its antifungal activity but also its cytotoxicity. The insertion of an unnatural bulky residue β-diphenylalanine or a full d-enantiomerization overall increased the antifungal potency. The four peptides showed similar behaviour towards salt increase, heat treatment, and pH decrease. Interestingly, the denantiomer remained the most active at high pH and after proteolytic digestion. The four peptides did not present haemolytic activity up to 200 μg/ml but had different behaviours of cytotoxicity. These differences could be crucial for potential application as pharmaceutical or food preservatives.
Collapse
Affiliation(s)
- Thibaut Thery
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland
| | - Laila N Shwaiki
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland
| | | | - Nora M O'Brien
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland
| | - Elke K Arendt
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland.,APC Microbiome Institute, University College Cork, Cork, Ireland
| |
Collapse
|
33
|
Dong N, Chou S, Li J, Xue C, Li X, Cheng B, Shan A, Xu L. Short Symmetric-End Antimicrobial Peptides Centered on β-Turn Amino Acids Unit Improve Selectivity and Stability. Front Microbiol 2018; 9:2832. [PMID: 30538681 PMCID: PMC6277555 DOI: 10.3389/fmicb.2018.02832] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 11/05/2018] [Indexed: 11/13/2022] Open
Abstract
Antimicrobial peptides (AMPs) are excellent candidates to combat the increasing number of multi- or pan-resistant pathogens worldwide based on their mechanism of action, which is different from that of antibiotics. In this study, we designed short peptides by fusing an α-helix and β-turn sequence-motif in a symmetric-end template to promote the higher cell selectivity, antibacterial activity and salt-resistance of these structures. The results showed that the designed peptides PQ and PP tended to form an α-helical structure upon interacting with a membrane-mimicking environment. They displayed high cell selectivity toward bacterial cells over eukaryotic cells. Their activities were mostly maintained in the presence of different conditions (salts, serum, heat, and pH), which indicated their stability in vivo. Fluorescence spectroscopy and electron microscopy analyses indicated that PP and PQ killed bacterial cells through membrane pore formation, thereby damaging membrane integrity. This study revealed the potential application of these designed peptides as new candidate antimicrobial agents.
Collapse
Affiliation(s)
- Na Dong
- The Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Shuli Chou
- The Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Jiawei Li
- The Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Chenyu Xue
- The Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Xinran Li
- The Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Baojing Cheng
- The Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Anshan Shan
- The Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Li Xu
- The Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| |
Collapse
|
34
|
Morais CM, Cardoso AM, Cunha PP, Aguiar L, Vale N, Lage E, Pinheiro M, Nunes C, Gomes P, Reis S, Castro MMCA, Pedroso de Lima MC, Jurado AS. Acylation of the S4 13-PV cell-penetrating peptide as a means of enhancing its capacity to mediate nucleic acid delivery: Relevance of peptide/lipid interactions. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:2619-2634. [PMID: 30291923 DOI: 10.1016/j.bbamem.2018.10.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 09/09/2018] [Accepted: 10/02/2018] [Indexed: 11/20/2022]
Abstract
BACKGROUND Cell-penetrating peptides (CPPs) have been extensively exploited in gene therapy approaches as vectors for intracellular delivery of bioactive molecules. The ability of CPPs to be internalized into cells and their capacity to complex nucleic acids depend on their molecular structure, both primary and secondary, namely regarding hydrophobicity/hydrophilicity. CPP acylation has been used as a strategy to improve this structural feature. METHODS Acyl groups (from 6 to 18 carbon atoms) were attached to the S413-PV peptide and their effects on the peptide competence to complex siRNAs and to mediate gene silencing in glioblastoma (GBM) cells were studied. A systematic characterization of membrane interactions with S413-PV acyl-derivatives was also conducted, using different biophysical techniques (surface pressure-area isotherms in Langmuir monolayers, DSC and 31P NMR) to unravel a relationship between CPP biological activity and CPP effects on membrane stability and lipid organization. RESULTS A remarkable concordance was noticed between acylated-S413-PV peptide competence to promote gene silencing in GBM cells and disturbance induced in membrane models, the lauroyl- and myristoyl-S413-PV peptides being the most effective. A cut-off effect was described for the first time regarding the influence of acyl-chain length on CPP bioactivity. CONCLUSIONS C12-S413-PV showed high capacity to destabilize lipid bilayers, to escape from lysosomal degradation and to mediate gene silencing without promoting cytotoxicity. GENERAL SIGNIFICANCE Besides unraveling a new CPP with high potential to be employed as a gene delivery vector, this work emphasizes the benefit from allying biophysical and biological studies towards a proper CPP structural refinement for successful pre-clinical/clinical application.
Collapse
Affiliation(s)
- Catarina M Morais
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; Department of Life Sciences, Faculty of Science and Technology, University of Coimbra, Coimbra, Portugal
| | - Ana M Cardoso
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Pedro P Cunha
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Luísa Aguiar
- LAQV-REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Nuno Vale
- UCIBIO-REQUIMTE, Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Emílio Lage
- LAQV-REQUIMTE, Department of Chemical Sciences, Laboratory of Applied Chemistry, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Marina Pinheiro
- LAQV-REQUIMTE, Department of Chemical Sciences, Laboratory of Applied Chemistry, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Cláudia Nunes
- LAQV-REQUIMTE, Department of Chemical Sciences, Laboratory of Applied Chemistry, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Paula Gomes
- LAQV-REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Salette Reis
- LAQV-REQUIMTE, Department of Chemical Sciences, Laboratory of Applied Chemistry, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - M Margarida C A Castro
- Department of Life Sciences, Faculty of Science and Technology, University of Coimbra, Coimbra, Portugal; Coimbra Chemistry Center, University of Coimbra, Coimbra, Portugal
| | | | - Amália S Jurado
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; Department of Life Sciences, Faculty of Science and Technology, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
35
|
Serra I, Casu M, Ceccarelli M, Gameiro P, Rinaldi AC, Scorciapino MA. Effects of amphipathic profile regularization on structural order and interaction with membrane models of two highly cationic branched peptides with β-sheet propensity. Peptides 2018; 105:28-36. [PMID: 29800587 DOI: 10.1016/j.peptides.2018.05.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 05/17/2018] [Accepted: 05/22/2018] [Indexed: 11/21/2022]
Abstract
Antimicrobial peptides attracted increasing interest in last decades due to the rising concern of multi-drug resistant pathogens. Dendrimeric peptides are branched molecules with multiple copies of one peptide functional unit bound to the central core. Compared to linear analogues, they usually show improved activity and lower susceptibility to proteases. Knowledge of structure-function relationship is fundamental to tailor their properties. This work is focused on SB056, the smallest example of dendrimeric peptide, whose amino acid sequence is WKKIRVRLSA. Two copies are bound to the α- and ε- nitrogen of one lysine core. An 8-aminooctanamide was added at the C-terminus to improve membrane affinity. Its propensity for β-type structures is also interesting, since helical peptides were already thoroughly studied. Moreover, SB056 maintains activity at physiological osmolarity, a typical limitation of natural peptides. An optimized analogue with improved performance was designed, β-SB056, which differs only in the relative position of the first two residues (KWKIRVRLSA). This produced remarkable differences. Structure order and aggregation behavior were characterized by using complementary techniques and membrane models with different negative charge. Infrared spectroscopy showed different propensity for ordered β-sheets. Lipid monolayers' surface pressure was measured to estimate the area/peptide and the ability to perturb lipid packing. Fluorescence spectroscopy was applied to compare peptide insertion into the lipid bilayer. Such small change in primary structure produced fundamental differences in their aggregation behavior. A regular amphipathic peptide's primary structure was responsible for ordered β-sheets in a charge independent fashion, in contrast to unordered aggregates formed by the former analogue.
Collapse
Affiliation(s)
- Ilaria Serra
- Department of Chemical and Geological Sciences, University of Cagliari, Monserrato (CA), Italy
| | - Mariano Casu
- Department of Physics, University of Cagliari, Monserrato (CA), Italy
| | - Matteo Ceccarelli
- Department of Physics, University of Cagliari, Monserrato (CA), Italy
| | - Paula Gameiro
- Department of Chemistry and Biochemistry, Requimte, LAQV, University of Porto, Portugal
| | - Andrea C Rinaldi
- Department of Biomedical Sciences, Biochemistry Unit, University of Cagliari, Monserrato (CA), Italy
| | | |
Collapse
|
36
|
Kim MK, Kang HK, Ko SJ, Hong MJ, Bang JK, Seo CH, Park Y. Mechanisms driving the antibacterial and antibiofilm properties of Hp1404 and its analogue peptides against multidrug-resistant Pseudomonas aeruginosa. Sci Rep 2018; 8:1763. [PMID: 29379033 PMCID: PMC5789083 DOI: 10.1038/s41598-018-19434-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 12/28/2017] [Indexed: 01/06/2023] Open
Abstract
Hp1404, identified from the venom of the scorpion Heterometrus petersii, displays antimicrobial activity with cytotoxicity. Several synthetic peptides were designed based on the parent peptide Hp1404 to reduce cytotoxicity and improve activity (deletion of glycine and phenylalanine, substitution with leucine and lysine). The analogue peptides generated comprised 12 amino acids and displayed amphipathic α-helical structures, with higher hydrophobic moments and net positive charge than those of the Hp1404. The analogues showed less hemolytic and toxic effects toward mammalian cells than the Hp1404, especially Hp1404-T1e, which exhibited particularly potent antibacterial and antibiofilm activities against multidrug-resistant Pseudomonas aeruginosa (MRPA) strains. The analogue peptide Hp1404-T1e was more stable against salt and trypsin than the Hp1404. Hp1404's mechanism of action involves binding to lipopolysaccharide (LPS), thereby killing bacteria through membrane disruption. Hp1404-T1e kills bacteria more rapidly than Hp1404 and not only seems to bind more strongly to LPS but may also be able to enter bacterial cells and interact with their DNA. Additionally, Hp1404-T1e can effectively kill bacteria in vivo. The results of this study indicate that Hp1404-T1e not only displays antimicrobial activity, but is also functional in physiological conditions, confirming its potential use as an effective therapeutic agent against MRPA.
Collapse
Affiliation(s)
- Min Kyung Kim
- Research Center for proteineous Materials (RCPM), Chosun University, Kwangju, Republic of Korea
- Department of Biotechnology and BK21-Plus Research Team for Bioactive Control Technology, Chosun University, Kwangju, Republic of Korea
| | - Hee Kyoung Kang
- Department of Biotechnology and BK21-Plus Research Team for Bioactive Control Technology, Chosun University, Kwangju, Republic of Korea
| | - Su Jin Ko
- Research Center for proteineous Materials (RCPM), Chosun University, Kwangju, Republic of Korea
- Department of Biotechnology and BK21-Plus Research Team for Bioactive Control Technology, Chosun University, Kwangju, Republic of Korea
| | - Min Ji Hong
- Research Center for proteineous Materials (RCPM), Chosun University, Kwangju, Republic of Korea
- Department of Biotechnology and BK21-Plus Research Team for Bioactive Control Technology, Chosun University, Kwangju, Republic of Korea
| | - Jeong Kyu Bang
- Division of Magnetic Resonance, Korea Basic Science Institute, Ochang, Chung-Buk, 363-883, Republic of Korea
| | - Chang Ho Seo
- Department of Bioinformatics, Kongju National University, Kongju, 314-701, South Korea
| | - Yoonkyung Park
- Research Center for proteineous Materials (RCPM), Chosun University, Kwangju, Republic of Korea.
- Department of Biotechnology and BK21-Plus Research Team for Bioactive Control Technology, Chosun University, Kwangju, Republic of Korea.
| |
Collapse
|
37
|
Identification of an Ultra-Short Peptide with Potent Pseudomonas aeruginosa Activity for Development as a Topical Antibacterial Agent. Int J Pept Res Ther 2018. [DOI: 10.1007/s10989-018-9678-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
38
|
Cathelicidin-trypsin inhibitor loop conjugate represents a promising antibiotic candidate with protease stability. Sci Rep 2017; 7:2600. [PMID: 28572668 PMCID: PMC5453931 DOI: 10.1038/s41598-017-02050-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 04/05/2017] [Indexed: 12/15/2022] Open
Abstract
Cathelicidins are regarded as promising antibiotics due to their capability against antibiotic-resistant bacteria without cytotoxicity. However, some concerns about the balance of cytotoxicity and antimicrobial activity, weak stability and enzymatic susceptibility sually restrict their therapeutic use. Here, we designed a series of shortened variants, Hc1~15, based on our previously characterized Hc-CATH. Hc3, the one with the best activity, after point mutation was engineered with a trypsin inhibitor loop, ORB-C, to obtain four hybrid peptides: H3TI, TIH3, H3TIF and TIH3F. All four except TIH3 were found possessing an appreciable profile of proteases inhibitory and antimicrobial characteristics without increase in cytotoxicity. Among them, TIH3F exhibited the most potent and broad-spectrum antimicrobial and anti-inflammatory activities. Fluorescence spectroscopy has demonstrated a quick induction of bacterial membrane permeability by TIH3F leading to the cell death, which also accounts for its fast anti-biofilm activity. Such mode of antimicrobial action was mainly attributed to peptides’ amphiphilic and helical structures determined by CD and homology modeling. Besides, TIH3F exhibited good tolerance to salt, serum, pH, and temperature, indicating a much better physiological stability in vitro than Hc3, Most importantly, in the case of resistance against proteases hydrolysis, current hybrid peptides displayed a remarkable enhancement than their original templates.
Collapse
|
39
|
Li R, Zhang L, Zhang H, Yi Y, Wang L, Chen L, Zhang L. Protective effect of a novel antifungal peptide derived from human chromogranin a on the immunity of mice infected with Candida krusei. Exp Ther Med 2017; 13:2429-2434. [PMID: 28565859 DOI: 10.3892/etm.2017.4290] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 03/09/2017] [Indexed: 12/13/2022] Open
Abstract
Invasive fungal infections threat the life of immunocompromised patients. Chromogranin A N-46 (CGA-N46), corresponding to the 31st to 76th amino acids of the N-terminus of human chromogranin A, is an antifungal peptide. In order to elucidate the antifungal effects of CGA-N46 in vivo, we studied its effects on cell-mediated immunity in Candida krusei-infected mice. The results showed that the treatment with CGA-N46 increased the average body weight and decreased the mortality of the immunocompromised mice model infected with Candida krusei. The spleen and thymus indices of treated mice has markedly increased compared with that of the control group (P<0.05), and the immune cell levels in peripheral blood also increased significantly (P<0.05). The immuno-modulatory effect of CGA-N46 (60 mg/kg/day) was found to be comparable to that of terbinafine. Additionally, CGA-N46 could alleviate or eliminate histopathological symptoms in the liver, spleen, kidney, and lung tissues. In conclusion, the present study suggests that CGA-N46 may offer a new strategy for antifungal therapeutic option. This study is an essential step in elucidating the effect of CGA-N46 in vivo.
Collapse
Affiliation(s)
- Ruifang Li
- College of Biological Engineering, Henan University of Technology, Zhengzhou, Henan 450001, P.R. China
| | - Lin Zhang
- College of Biological Engineering, Henan University of Technology, Zhengzhou, Henan 450001, P.R. China
| | - Huiru Zhang
- College of Biological Engineering, Henan University of Technology, Zhengzhou, Henan 450001, P.R. China
| | - Yanjie Yi
- College of Biological Engineering, Henan University of Technology, Zhengzhou, Henan 450001, P.R. China
| | - Le Wang
- College of Biological Engineering, Henan University of Technology, Zhengzhou, Henan 450001, P.R. China
| | - Liang Chen
- College of Biological Engineering, Henan University of Technology, Zhengzhou, Henan 450001, P.R. China
| | - Lan Zhang
- College of Biological Engineering, Henan University of Technology, Zhengzhou, Henan 450001, P.R. China
| |
Collapse
|
40
|
Screening for a Potent Antibacterial Peptide to Treat Mupirocin-Resistant MRSA Skin Infections. Int J Pept Res Ther 2017. [DOI: 10.1007/s10989-017-9580-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
41
|
Ng SMS, Yap YYA, Cheong JWD, Ng FM, Lau QY, Barkham T, Teo JWP, Hill J, Chia CSB. Antifungal peptides: a potential new class of antifungals for treating vulvovaginal candidiasis caused by fluconazole-resistant Candida albicans. J Pept Sci 2017; 23:215-221. [PMID: 28105725 DOI: 10.1002/psc.2970] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Revised: 12/14/2016] [Accepted: 12/23/2016] [Indexed: 11/06/2022]
Abstract
Vulvovaginal candidiasis/candidosis is a common fungal infection afflicting approximately 75% of women globally caused primarily by the yeast Candida albicans. Fluconazole is widely regarded as the antifungal drug of choice since its introduction in 1990 due to its high oral bioavailability, convenient dosing regimen and favourable safety profile. However, its widespread use has led to the emergence of fluconazole-resistant C. albicans, posing a universal clinical concern. Coupled to the dearth of new antifungal drugs entering the market, it is imperative to introduce new drug classes to counter this threat. Antimicrobial peptides (AMPs) are potential candidates due to their membrane-disrupting mechanism of action. By specifically targeting fungal membranes and being rapidly fungicidal, they can reduce the chances of resistance development and treatment duration. Towards this goal, we conducted a head-to-head comparison of 61 short linear AMPs from the literature to identify the peptide with the most potent activity against fluconazole-resistant C. albicans. The 11-residue peptide, P11-6, was identified and assayed against a panel of clinical C. albicans isolates followed by fungicidal/static determination and a time-kill assay to gauge its potential for further drug development. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Siew Mei Samantha Ng
- Experimental Therapeutics Centre, Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Nanos #03-01, 138669, Singapore
| | - Yi Yong Alvin Yap
- Experimental Therapeutics Centre, Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Nanos #03-01, 138669, Singapore
| | - Jin Wei Darryl Cheong
- Experimental Therapeutics Centre, Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Nanos #03-01, 138669, Singapore
| | - Fui Mee Ng
- Experimental Therapeutics Centre, Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Nanos #03-01, 138669, Singapore
| | - Qiu Ying Lau
- Experimental Therapeutics Centre, Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Nanos #03-01, 138669, Singapore
| | - Timothy Barkham
- Department of Laboratory Medicine, Tan Tock Seng Hospital, 11 Jalan Tan Tock Seng, 308433, Singapore
| | - Jeanette Woon Pei Teo
- Department of Laboratory Medicine, National University Hospital, 5 Lower Kent Ridge Road, 119074, Singapore
| | - Jeffrey Hill
- Experimental Therapeutics Centre, Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Nanos #03-01, 138669, Singapore
| | - Cheng San Brian Chia
- Experimental Therapeutics Centre, Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Nanos #03-01, 138669, Singapore
| |
Collapse
|
42
|
Avitabile C, D'Andrea LD, Saviano M, Olivieri M, Cimmino A, Romanelli A. Binding studies of antimicrobial peptides to Escherichia coli cells. Biochem Biophys Res Commun 2016; 478:149-153. [PMID: 27450805 DOI: 10.1016/j.bbrc.2016.07.077] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 07/18/2016] [Indexed: 12/27/2022]
Abstract
Understanding the mechanism of action of antimicrobial peptides is pivotal to the design of new and more active peptides. In the last few years it has become clear that the behavior of antimicrobial peptides on membrane model systems does not always translate to cells; therefore the need to develop methods aimed at capturing details of the interactions of peptides with bacterial cells is compelling. In this work we analyzed binding of two peptides, namely temporin B and TB_KKG6A, to Escherichia coli cells and to Escherichia coli LPS. Temporin B is a natural peptide active against Gram positive bacteria but inactive against Gram negative bacteria, TB_KKG6A is an analogue of temporin B showing activity against both Gram positive and Gram negative bacteria. We found that binding to cells occurs only for the active peptide TB_KKG6A; stoichiometry and affinity constant of this peptide toward Escherichia coli cells were determined.
Collapse
Affiliation(s)
- Concetta Avitabile
- Istituto di Biostrutture e Bioimmagini, CNR, Via Mezzocannone 16, 80134 Napoli, Italy
| | - Luca D D'Andrea
- Istituto di Biostrutture e Bioimmagini, CNR, Via Mezzocannone 16, 80134 Napoli, Italy
| | - Michele Saviano
- Istituto di Cristallografia, CNR, Via Amendola 122, 70126 Bari, Italy
| | - Michele Olivieri
- Istituto di Genetica e Biofisica "A. Buzzati Traverso", CNR, Via Pietro Castellino 111, 80131 Napoli, Italy
| | - Amelia Cimmino
- Istituto di Genetica e Biofisica "A. Buzzati Traverso", CNR, Via Pietro Castellino 111, 80131 Napoli, Italy
| | - Alessandra Romanelli
- Istituto di Biostrutture e Bioimmagini, CNR, Via Mezzocannone 16, 80134 Napoli, Italy; Dipartimento di Farmacia, Università di Napoli "Federico II", Via Mezzocannone 16, 80134 Napoli, Italy.
| |
Collapse
|
43
|
Ramesh S, Govender T, Kruger HG, de la Torre BG, Albericio F. Short AntiMicrobial Peptides (SAMPs) as a class of extraordinary promising therapeutic agents. J Pept Sci 2016; 22:438-51. [DOI: 10.1002/psc.2894] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Revised: 04/08/2016] [Accepted: 04/11/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Suhas Ramesh
- Catalysis and Peptide Research Unit, School of Health Sciences; University of KwaZulu-Natal; Durban 4001 South Africa
| | - Thavendran Govender
- Catalysis and Peptide Research Unit, School of Health Sciences; University of KwaZulu-Natal; Durban 4001 South Africa
| | - Hendrik G. Kruger
- Catalysis and Peptide Research Unit, School of Health Sciences; University of KwaZulu-Natal; Durban 4001 South Africa
| | - Beatriz G. de la Torre
- Catalysis and Peptide Research Unit, School of Health Sciences; University of KwaZulu-Natal; Durban 4001 South Africa
| | - Fernando Albericio
- Catalysis and Peptide Research Unit, School of Health Sciences; University of KwaZulu-Natal; Durban 4001 South Africa
- School of Chemistry and Physics; University of KwaZulu-Natal; Durban 4001 South Africa
- CIBER-BBN, Networking Centre on Bioengineering; Biomaterials and Nanomedicine; Barcelona Science Park 08028 Barcelona Spain
- Department of Chemistry, College of Science; King Saud University; P.O. Box 2455 Riyadh 11451 Saudi Arabia
- Department of Organic Chemistry; University of Barcelona; 08028 Barcelona Spain
| |
Collapse
|
44
|
Prada YA, Guzmán F, Rondón P, Escobar P, Ortíz C, Sierra DA, Torres R, Mejía-Ospino E. A New Synthetic Peptide with In vitro Antibacterial Potential Against Escherichia coli O157:H7 and Methicillin-Resistant Staphylococcus aureus (MRSA). Probiotics Antimicrob Proteins 2016; 8:134-40. [DOI: 10.1007/s12602-016-9219-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
45
|
Speck-Planche A, Kleandrova VV, Ruso JM, Cordeiro MNDS. First Multitarget Chemo-Bioinformatic Model To Enable the Discovery of Antibacterial Peptides against Multiple Gram-Positive Pathogens. J Chem Inf Model 2016; 56:588-98. [PMID: 26960000 DOI: 10.1021/acs.jcim.5b00630] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Antimicrobial peptides (AMPs) have emerged as promising therapeutic alternatives to fight against the diverse infections caused by different pathogenic microorganisms. In this context, theoretical approaches in bioinformatics have paved the way toward the creation of several in silico models capable of predicting antimicrobial activities of peptides. All current models have several significant handicaps, which prevent the efficient search for highly active AMPs. Here, we introduce the first multitarget (mt) chemo-bioinformatic model devoted to performing alignment-free prediction of antibacterial activity of peptides against multiple Gram-positive bacterial strains. The model was constructed from a data set containing 2488 cases of AMPs sequences assayed against at least 1 out of 50 Gram-positive bacterial strains. This mt-chemo-bioinformatic model displayed percentages of correct classification higher than 90.00% in both training and prediction (test) sets. For the first time, two computational approaches derived from basic concepts in genetics and molecular biology were applied, allowing the calculations of the relative contributions of any amino acid (in a defined position) to the antibacterial activity of an AMP and depending on the bacterial strain used in the biological assay. The present mt-chemo-bioinformatic model constitutes a powerful tool to enable the discovery of potent and versatile AMPs.
Collapse
Affiliation(s)
- Alejandro Speck-Planche
- Department of Applied Physics, University of Santiago de Compostela (USC) , 15782 Santiago de Compostela, Spain.,REQUIMTE/Department of Chemistry and Biochemistry, University of Porto , 4169-007 Porto, Portugal
| | - Valeria V Kleandrova
- Faculty of Technology and Production Management, Moscow State University of Food Production , Volokolamskoe shosse 11, 125080 Moscow, Russia
| | - Juan M Ruso
- Department of Applied Physics, University of Santiago de Compostela (USC) , 15782 Santiago de Compostela, Spain
| | - M N D S Cordeiro
- REQUIMTE/Department of Chemistry and Biochemistry, University of Porto , 4169-007 Porto, Portugal
| |
Collapse
|
46
|
Panteleev PV, Bolosov IA, Ovchinnikova TV. Bioengineering and functional characterization of arenicin shortened analogs with enhanced antibacterial activity and cell selectivity. J Pept Sci 2015; 22:82-91. [PMID: 26814379 DOI: 10.1002/psc.2843] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Revised: 11/03/2015] [Accepted: 11/13/2015] [Indexed: 11/09/2022]
Abstract
New bioengineering approaches are required for development of more active and less toxic antimicrobial peptides. In this study we used β-hairpin antimicrobial peptide arenicin-1 as a template for design of more potent antimicrobials. In particular, six shortened 17-residue analogs were obtained by recombinant expression in Escherichia coli. Besides, we have introduced the second disulfide bridge by analogy with the structure of tachyplesins. As a result, a number of analogs with enhanced activity and cell selectivity were developed. In comparison with arenicin-1, which acts on cell membranes with low selectivity, the most potent and promising its analog termed ALP1 possessed two-fold higher antibacterial activity and did not affect viability of mammalian cells at concentration up to 50 μM. The therapeutic index of ALP1 against both Gram-positive and Gram-negative bacteria was significantly increased compared with that of arenicin-1 while the mechanism of action remained the same. Like arenicin-1, the analog rapidly disrupt membranes of both stationary and exponential phase bacterial cells and effectively kills multidrug-resistant Gram-negative bacteria. Furthermore, ALP1 was shown to bind DNA in vitro at a ratio of 1:1 (w/w). The circular dichroism spectra demonstrated that secondary structures of the shortened analogs were similar to that of arenicin-1 in water solution, but significantly differed in membrane-mimicking environments. This work shows that a strand length is one of the key parameters affecting cell selectivity of β-hairpin antimicrobial peptides.
Collapse
Affiliation(s)
- Pavel V Panteleev
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya str., 16/10, 117997, Moscow, Russia
| | - Ilia A Bolosov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya str., 16/10, 117997, Moscow, Russia
| | - Tatiana V Ovchinnikova
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya str., 16/10, 117997, Moscow, Russia
| |
Collapse
|
47
|
Wang J, Chou S, Xu L, Zhu X, Dong N, Shan A, Chen Z. High specific selectivity and Membrane-Active Mechanism of the synthetic centrosymmetric α-helical peptides with Gly-Gly pairs. Sci Rep 2015; 5:15963. [PMID: 26530005 PMCID: PMC4632126 DOI: 10.1038/srep15963] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 10/06/2015] [Indexed: 12/18/2022] Open
Abstract
We used a template-assisted approach to develop synthetic antimicrobial peptides, which differ from naturally occurring antimicrobial peptides that can compromise host natural defenses. Previous researches have demonstrated that symmetrical distribution patterns of amino acids contribute to the antimicrobial activity of natural peptides. However, there is little research describing such design ideas for synthetic α-helical peptides. Therefore, here, we established a centrosymmetric α-helical sequence template (y + hhh + y)n (h, hydrophobic amino acid; +, cationic amino acid; y, Gly or hydrophobic amino acid), which contributed to amphipathicity, and a series of centrosymmetric peptides was designed with pairs of small amino acids (Ala and Gly), which were utilized to modulate the biological activity. The centrosymmetric peptides with 3 repeat units exhibited strong antimicrobial activity; in particular, the Gly-rich centrosymmetric peptide GG3 showed stronger selectivity for gram-negative bacteria without hemolysis. Furthermore, beyond our expectation, fluorescence spectroscopy and electron microscopy analyses indicated that the GG3, which possessed poor α-helix conformation, dramatically exhibited marked membrane destruction via inducing bacterial membrane permeabilization, pore formation and disruption, even bound DNA to further exert antimicrobial activity. Collectively, the Gly-rich centrosymmetric peptide GG3 was an ideal candidate for commercialization as a clinical therapeutic to treat gram-negative bacterial infections.
Collapse
Affiliation(s)
- Jiajun Wang
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Shuli Chou
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Lin Xu
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Xin Zhu
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Na Dong
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Anshan Shan
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Zhihui Chen
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, P.R. China
| |
Collapse
|
48
|
Azmi F, Elliott AG, Khalil ZG, Hussein WM, Kavanagh A, Huang JX, Quezada M, Blaskovich MAT, Capon RJ, Cooper MA, Skwarczynski M, Toth I. Self-assembling lipopeptides with a potent activity against Gram-positive bacteria, including multidrug resistant strains. Nanomedicine (Lond) 2015; 10:3359-71. [DOI: 10.2217/nnm.15.137] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Aim: To explore the potential of de novo designed cyclic lipopeptides and its linear counterparts as antibacterial agents. Materials & methods: The lipopeptides were synthesized via solid-phase peptide synthesis and the cyclization was achieved by using succinic acid linker. The antimicrobial activities of the lipopeptides were evaluated in vitro against a variety selection of Gram-negative and Gram-positive bacteria including clinical isolates of multidrug-resistant strains. Results: The synthesized lipopeptides were able to self-assemble into nanoparticles in an aqueous environment, with three exhibiting potent antibacterial activity against Gram-positive bacteria, including clinically relevant multidrug-resistant bacteria. Conclusion: The lead compounds have the potential to be developed as new antibacterials that are effective against Gram-positive bacteria, including multidrug-resistant isolates.
Collapse
Affiliation(s)
- Fazren Azmi
- School of Chemistry & Molecular Biosciences, The University of Queensland, St Lucia 4072, Australia
- Faculty of Pharmacy, National University of Malaysia, Kuala Lumpur, Malaysia
| | - Alysha G Elliott
- Institute for Molecular Bioscience, The University of Queensland, St Lucia 4072, Australia
| | - Zeinab G Khalil
- Institute for Molecular Bioscience, The University of Queensland, St Lucia 4072, Australia
| | - Waleed M Hussein
- School of Chemistry & Molecular Biosciences, The University of Queensland, St Lucia 4072, Australia
| | - Angela Kavanagh
- Institute for Molecular Bioscience, The University of Queensland, St Lucia 4072, Australia
| | - Johnny X Huang
- Institute for Molecular Bioscience, The University of Queensland, St Lucia 4072, Australia
| | - Michelle Quezada
- Institute for Molecular Bioscience, The University of Queensland, St Lucia 4072, Australia
| | - Mark AT Blaskovich
- Institute for Molecular Bioscience, The University of Queensland, St Lucia 4072, Australia
| | - Robert J Capon
- Institute for Molecular Bioscience, The University of Queensland, St Lucia 4072, Australia
| | - Matthew A Cooper
- Institute for Molecular Bioscience, The University of Queensland, St Lucia 4072, Australia
| | - Mariusz Skwarczynski
- School of Chemistry & Molecular Biosciences, The University of Queensland, St Lucia 4072, Australia
| | - Istvan Toth
- School of Chemistry & Molecular Biosciences, The University of Queensland, St Lucia 4072, Australia
- Institute for Molecular Bioscience, The University of Queensland, St Lucia 4072, Australia
- School of Pharmacy, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
49
|
Design and membrane-disruption mechanism of charge-enriched AMPs exhibiting cell selectivity, high-salt resistance, and anti-biofilm properties. Amino Acids 2015; 48:505-22. [DOI: 10.1007/s00726-015-2104-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 09/22/2015] [Indexed: 12/13/2022]
|
50
|
Li RF, Yan XH, Lu YB, Lu YL, Zhang HR, Chen SH, Liu S, Lu ZF. Anti-candidal activity of a novel peptide derived from human chromogranin A and its mechanism of action against Candida krusei. Exp Ther Med 2015; 10:1768-1776. [PMID: 26640548 PMCID: PMC4665730 DOI: 10.3892/etm.2015.2731] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 08/13/2015] [Indexed: 11/17/2022] Open
Abstract
Candida species (Candida spp.) are important fungal pathogens, which cause numerous clinical diseases associated with significant mortality and morbidity in healthcare settings. In our previous study, we identified a recombinant peptide, chromogranin A (CGA)-N46, corresponding to the N-terminal Pro31-Gln76 sequence of human CGA, that exhibited antifungal activity against Candida albicans. The present study investigated the antifungal activity of CGA-N46, and its underlying mechanism, against numerous Candida spp. CGA-N46 inhibited the growth of all of the tested Candida spp., of which Candida krusei exhibited the greatest sensitivity. CGA-N46 was able to disrupt the stability of the phospholipid monolayer without damaging the integrity and permeability of the outer membrane of C. krusei cells, and induced cytoplasm vacuolization and mitochondrial damage. In addition, treatment of C. krusei with CGA-N46 was associated with decreased levels of intracellular reactive oxygen species, a reduction in the mitochondrial membrane potential, and DNA synthesis inhibition. The results of the present study suggested that CGA-N46 was able to pass through the cell membrane of Candida spp. by temporarily destabilizing the phospholipid membrane, which in turn led to mitochondrial dysfunction and inhibition of DNA synthesis. Therefore, CGA-N46 may be considered a novel antifungal compound for the treatment of patients with C. krusei infections.
Collapse
Affiliation(s)
- Rui-Fang Li
- College of Biological Engineering, Henan University of Technology, Zhengzhou, Henan 450001, P.R. China
| | - Xiao-Hui Yan
- College of Biological Engineering, Henan University of Technology, Zhengzhou, Henan 450001, P.R. China
| | - Yan-Bo Lu
- College of Biological Engineering, Henan University of Technology, Zhengzhou, Henan 450001, P.R. China
| | - Ya-Li Lu
- College of Biological Engineering, Henan University of Technology, Zhengzhou, Henan 450001, P.R. China
| | - Hui-Ru Zhang
- College of Biological Engineering, Henan University of Technology, Zhengzhou, Henan 450001, P.R. China
| | - Shi-Hua Chen
- College of Biological Engineering, Henan University of Technology, Zhengzhou, Henan 450001, P.R. China
| | - Shuai Liu
- College of Biological Engineering, Henan University of Technology, Zhengzhou, Henan 450001, P.R. China
| | - Zhi-Fang Lu
- College of Biological Engineering, Henan University of Technology, Zhengzhou, Henan 450001, P.R. China
| |
Collapse
|