1
|
Adedara IA, Ileola-Gold AV, Adelaja UA, Njoku CA, Ikeji CN, Owoeye O, Farombi EO. Exogenous taurine administration abates reproductive dysfunction in male rats exposed to silver nanoparticles. ENVIRONMENTAL TOXICOLOGY 2024; 39:61-74. [PMID: 37638810 DOI: 10.1002/tox.23945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/18/2023] [Accepted: 08/13/2023] [Indexed: 08/29/2023]
Abstract
The broad contemporary applications of silver nanoparticles (AgNPs) have been associated with various toxicities including reproductive toxicity. Taurine is well acknowledged for its potent pharmacological role in numerous disease models and chemically-mediated toxicity. We investigated the effect of taurine on AgNPs-induced reproductive toxicity in male rats. The animals were intraperitoneally injected with AgNPs (200 μg/kg) alone or co-administered with taurine at 50 and 100 mg/kg for 21 successive days. Exogenous taurine administration significantly abated AgNPs-induced oxidative injury by decreasing the levels of oxidative stress indices while boosting antioxidant enzymes activities and glutathione level in the hypothalamus, testes and epididymis of exposed animals. Taurine administration alleviated AgNPs-induced inflammatory response and caspase-3 activity, an apoptotic biomarker. Moreover, taurine significantly improved spermiogram, reproductive hormones and the marker enzymes of testicular function in AgNPs-treated animals. The ameliorative effect of taurine on pathological lesions induced by AgNPs in the exposed animals was substantiated by histopathological data. This study provides the first mechanistic evidence that taurine supplementation affords therapeutic effect against reproductive dysfunction associated with AgNPs exposure in male rats.
Collapse
Affiliation(s)
- Isaac A Adedara
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Ayomitan V Ileola-Gold
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Uthman A Adelaja
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Chiwueze A Njoku
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Cynthia N Ikeji
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Olatunde Owoeye
- Department of Anatomy, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Ebenezer O Farombi
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
2
|
LTBP2 Knockdown Promotes Ferroptosis in Gastric Cancer Cells through p62-Keap1-Nrf2 Pathway. BIOMED RESEARCH INTERNATIONAL 2022; 2022:6532253. [PMID: 35968244 PMCID: PMC9371865 DOI: 10.1155/2022/6532253] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 07/06/2022] [Indexed: 11/18/2022]
Abstract
Gastric cancer (GC) is one of the most common gastrointestinal malignancies. Ferroptosis is a new type of peroxidation-driven and iron-dependent cell death. However, the biological functions and exact regulatory mechanisms of ferroptosis in GC remain elusive. Here, we performed RNAi and gene transfection, cell viability assay, lipid peroxidation assay, reactive oxygen species (ROS) assay, glutathione assay, qRT-PCR, Western blotting, and transmission electron microscopy (TEM) to study ferroptosis in gastric cancer. The results revealed that silencing latent transforming growth factor β binding proteins (LTBP2) can significantly inhibit GC cell proliferation and decrease cellular GSH levels, reduce GPX4 activity, and increase ROS generation and malondialdehyde (MDA) levels, leading to ferroptosis in GC cells. In addition, we demonstrate that suppression of LTBP2 could regulate the p62-Keap1-Nrf2 pathway, thereby downregulating the GPX4 and xCT expression and upregulating the PTGS2 and 4HNE expression. Our findings described a new role of LTBP2 in regulating ferroptosis, which heralds the prospect of ferroptosis-mediated cancer therapy.
Collapse
|
3
|
Egbujor MC, Petrosino M, Zuhra K, Saso L. The Role of Organosulfur Compounds as Nrf2 Activators and Their Antioxidant Effects. Antioxidants (Basel) 2022; 11:1255. [PMID: 35883746 PMCID: PMC9311638 DOI: 10.3390/antiox11071255] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 11/24/2022] Open
Abstract
Nuclear factor erythroid 2-related factor 2 (Nrf2) signaling has become a key pathway for cellular regulation against oxidative stress and inflammation, and therefore an attractive therapeutic target. Several organosulfur compounds are reportedly activators of the Nrf2 pathway. Organosulfur compounds constitute an important class of therapeutic agents in medicinal chemistry due to their ability to participate in biosynthesis, metabolism, cellular functions, and protection of cells from oxidative damage. Sulfur has distinctive chemical properties such as a large number of oxidation states and versatility of reactions that promote fundamental biological reactions and redox biochemistry. The presence of sulfur is responsible for the peculiar features of organosulfur compounds which have been utilized against oxidative stress-mediated diseases. Nrf2 activation being a key therapeutic strategy for oxidative stress is closely tied to sulfur-based chemistry since the ability of compounds to react with sulfhydryl (-SH) groups is a common property of Nrf2 inducers. Although some individual organosulfur compounds have been reported as Nrf2 activators, there are no papers with a collective analysis of these Nrf2-activating organosulfur compounds which may help to broaden the knowledge of their therapeutic potentials and motivate further research. In line with this fact, for the first time, this review article provides collective and comprehensive information on Nrf2-activating organosulfur compounds and their therapeutic effects against oxidative stress, thereby enriching the chemical and pharmacological diversity of Nrf2 activators.
Collapse
Affiliation(s)
- Melford Chuka Egbujor
- Department of Chemical Sciences, Rhema University Nigeria, Aba 453115, Abia State, Nigeria
| | - Maria Petrosino
- Department of Pharmacology, Faculty of Science and Medicine, University of Fribourg, 1700 Fribourg, Switzerland
| | - Karim Zuhra
- Department of Pharmacology, Faculty of Science and Medicine, University of Fribourg, 1700 Fribourg, Switzerland
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
4
|
Hu Y, Wu Q, Qiao Y, Zhang P, Dai W, Tao H, Chen S. Disturbances in Metabolic Pathways and the Identification of a Potential Biomarker Panel for Early Cartilage Degeneration in a Rabbit Anterior Cruciate Ligament Transection Model. Cartilage 2021; 13:1376S-1387S. [PMID: 32441117 PMCID: PMC8804857 DOI: 10.1177/1947603520921434] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVE This study aimed to assess the association between synovial fluid (SF) metabolites and magnetic resonance imaging (MRI) measurements of cartilage biochemical composition to identify potential SF biomarkers for detecting the early onset of cartilage degeneration in a rabbit model. METHODS Both knees of 12 New Zealand White rabbits were used. The anterior cruciate ligament transection (ACLT) model was performed on right knees, and the sham surgery on left knees. MRI UTE-T2* scanning and SF sample collection were performed on ACLT knees at 4 and 8 weeks postsurgery and on sham surgery knees at 4 weeks postsurgery. Ultra-performance liquid chromatography-mass spectrometry and multivariate statistical analysis were used to distinguish samples in three groups. Pathway and receiver operating characteristic analyses were utilized to identify potential metabolite biomarkers. RESULTS There were 12 knees in sham surgery models, 11 in ACLT models at 4 weeks postsurgery, and 10 in ACLT models at 8 weeks postsurgery. UTE-T2* values for the lateral tibia cartilage showed significant decreases over the study period. Levels of 103 identified metabolites in SF were markedly different among three groups. Furthermore, 24 metabolites were inversely correlated with UTE-T2* values of the lateral tibia cartilage, while hippuric acid was positively correlated with UTE-T2* values of the lateral tibia cartilage. Among 25 potential markers, N1-acetylspermidine, 2-amino-1,3,4-octadecanetriol, l-phenylalanine, 5-hydroxy-l-tryptophan, and l-tryptophan were identified as potential biomarkers with high area under the curve values and Pearson correlation coefficients. CONCLUSION Five differential metabolites in SF were found as potential biomarkers for the early detection of cartilage degeneration in the rabbit ACLT model.
Collapse
Affiliation(s)
- Yiwen Hu
- Department of Radiology & Institute of Medical Functional and Molecular Imaging, Huashan Hospital, Fudan University, Shanghai, China
| | - Qian Wu
- Shanghai Center for Bioinformation Technology & Shanghai Engineering Research Center of Pharmaceutical Translation, Shanghai Industrial Technology Institute, Shanghai, China
| | - Yang Qiao
- Department of Radiology & Institute of Medical Functional and Molecular Imaging, Huashan Hospital, Fudan University, Shanghai, China
| | - Peng Zhang
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Wentao Dai
- Shanghai Center for Bioinformation Technology & Shanghai Engineering Research Center of Pharmaceutical Translation, Shanghai Industrial Technology Institute, Shanghai, China
| | - Hongyue Tao
- Department of Radiology & Institute of Medical Functional and Molecular Imaging, Huashan Hospital, Fudan University, Shanghai, China
| | - Shuang Chen
- Department of Radiology & Institute of Medical Functional and Molecular Imaging, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
5
|
An Integrated Bile Acids Profile Determination by UHPLC-MS/MS to Identify the Effect of Bile Acids Supplement in High Plant Protein Diet on Common Carp ( Cyprinus carpio). Foods 2021; 10:foods10102465. [PMID: 34681514 PMCID: PMC8535531 DOI: 10.3390/foods10102465] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/05/2021] [Accepted: 10/13/2021] [Indexed: 12/12/2022] Open
Abstract
Bile acids (BAs) have considerable importance in the metabolism of glycolipid and cholesterol. The purpose of the present study is to clarify the effects of bile acids supplementary in a high plant protein diet for the common carp BA profiles and hepatopancreas and intestine health. An 11-week feeding trial was conducted with high plant protein diet (18% soybean meal and 18% cottonseed protein concentrated) (HP) and HP added 600 mg/kg BAs (HP+BAs) for common carp, and then, the UHPLC-MS/MS technology was used to analyze the BAs in the bile and plasma of two groups. HP could induce vacuolation of hepatocytes and accumulation of glycogen in the common carp, while these phenotypes were significantly improved in the HP+BAs group. In addition, the BA profile of the HP group and HP+BAs group are described in detail, for the common carp bile with treatment by exogenous BAs, TCA, CA, TβMCA, and TωMCA were the main components. Furthermore, in the HP+BAs group plasma, CDCA, CA, LCA, and GCDCA increased significantly; they could activate TGR5, and the activation of hepatopancreas TGR5 might regulate glucose metabolism to relieve hepatopancreas glycogen accumulation. This study proved that BAs supplemented to plant protein diet could relieve the common carp hepatopancreas glycogen accumulation by changing the BAs’ profile, thereby promoting its healthy growth, which has important guiding significance for the promotion of aquaculture development and makes an important contribution to expanding the strategic space of food security.
Collapse
|
6
|
Samra K, Kuganesan M, Smith W, Kleyman A, Tidswell R, Arulkumaran N, Singer M, Dyson A. The Pharmacology and Therapeutic Utility of Sodium Hydroselenide. Int J Mol Sci 2021; 22:3258. [PMID: 33806825 PMCID: PMC8005069 DOI: 10.3390/ijms22063258] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/19/2021] [Accepted: 03/20/2021] [Indexed: 01/05/2023] Open
Abstract
Metabolically active gasotransmitters (nitric oxide, carbon monoxide and hydrogen sulfide) are important signalling molecules that show therapeutic utility in oxidative pathologies. The reduced form of selenium, hydrogen selenide (HSe-/H2Se), shares some characteristics with these molecules. The simple selenide salt, sodium hydroselenide (NaHSe) showed significant metabolic activity, dose-dependently decreasing ex vivo O2 consumption (rat soleus muscle, liver) and transiently inhibiting mitochondrial cytochrome C oxidase (liver, heart). Pharmacological manipulation of selenoprotein expression in HepG2 human hepatocytes revealed that the oxidation status of selenium impacts on protein expression; reduced selenide (NaHSe) increased, whereas (oxidized) sodium selenite decreased the abundance of two ubiquitous selenoproteins. An inhibitor of endogenous sulfide production (DL-propargylglycine; PAG) also reduced selenoprotein expression; this was reversed by exogenous NaHSe, but not sodium hydrosulfide (NaHS). NaHSe also conferred cytoprotection against an oxidative challenge (H2O2), and this was associated with an increase in mitochondrial membrane potential. Anesthetized Wistar rats receiving intravenous NaHSe exhibited significant bradycardia, metabolic acidosis and hyperlactataemia. In summary, NaHSe modulates metabolism by inhibition of cytochrome C oxidase. Modification of selenoprotein expression revealed the importance of oxidation status of selenium therapies, with implications for current clinical practice. The utility of NaHSe as a research tool and putative therapeutic is discussed.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Alex Dyson
- Bloomsbury Institute of Intensive Care Medicine, Division of Medicine, University College London, Gower Street, London WC1E 6BT, UK; (K.S.); (M.K.); (W.S.); (A.K.); (R.T.); (N.A.); (M.S.)
| |
Collapse
|
7
|
Baseggio Conrado A, Fanelli S, McGuire VA, Ibbotson SH. Role of Hypotaurine in Protection against UVA-Induced Damage in Keratinocytes. Photochem Photobiol 2020; 97:353-359. [PMID: 32959397 DOI: 10.1111/php.13334] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 08/31/2020] [Accepted: 09/09/2020] [Indexed: 01/18/2023]
Abstract
Photoageing and skin cancer are major causes of morbidity and are a high cost to society. Interest in the development of photoprotective agents for inclusion in topical cosmetic and sunscreen products is profound. Recently, amino acids with a sulfinic group, notably hypotaurine, have been included as ingredients in cosmetic preparations. However, the mechanism of action of hypotaurine as a possible anti-aging agent is unknown, despite its use as a free radical scavenger. To address this issue, we investigated hypotaurine uptake in a human keratinocyte model and examined its effect on UVR-induced cytotoxicity. Hypotaurine was taken up by keratinocytes in a time- and concentration-dependent manner, with levels remaining significantly above baseline 48 h after washout. A cytoprotective effect of pre-incubation with 2.5-5 mMhypotaurine was shown as indicated by increased cell viability when keratinocytes were irradiated with UVA at 5 or 10 Jcm-2 , with the level of hypotaurine also significantly reduced. These findings indicate a potential cytoprotective effect of hypotaurine against the deleterious effects of UVA irradiation. This provides support for further studies to evaluate the potential photoprotective benefits of hypotaurine supplementation of topical cosmetic and sunscreen products.
Collapse
Affiliation(s)
| | - Sergio Fanelli
- Department of Biochemical Sciences " A. Rossi Fanelli", Sapienza University of Rome, Rome, Italy
| | - Victoria Anne McGuire
- Photobiology Unit, Ninewells Hospital & Medical School, University of Dundee, Dundee, UK
| | - Sally Helen Ibbotson
- Photobiology Unit, Ninewells Hospital & Medical School, University of Dundee, Dundee, UK
| |
Collapse
|
8
|
Li M, Xu C, Shi J, Ding J, Wan X, Chen D, Gao J, Li C, Zhang J, Lin Y, Tu Z, Kong X, Li Y, Yu C. Fatty acids promote fatty liver disease via the dysregulation of 3-mercaptopyruvate sulfurtransferase/hydrogen sulfide pathway. Gut 2018; 67:2169-2180. [PMID: 28877979 PMCID: PMC6241611 DOI: 10.1136/gutjnl-2017-313778] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 07/14/2017] [Accepted: 08/21/2017] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Accumulation of free fatty acids (FFAs) in hepatocytes induces lipotoxicity, leading to non-alcoholic fatty liver disease (NAFLD). This study aimed to investigate the underlying mechanisms by which FFA contributes to the pathogenesis of NAFLD via the regulation of 3-mercaptopyruvate sulfurtransferase (MPST), a key enzyme that regulates endogenous hydrogen sulfide (H2S) biosynthesis. DESIGN Hepatic MPST expression was evaluated in mice and patients with NAFLD. A variety of molecular approaches were used to study the effects of MPST regulation on hepatic steatosis in vivo and in vitro. RESULTS In vitro treatment of hepatocytes with FFAs upregulated MPST expression, which was partially dependent on NF-κB/p65. Hepatic MPST expression was markedly increased in high fat diet (HFD)-fed mice and patients with NAFLD. Partial knockdown of MPST via adenovirus delivery of MPST short hairpin RNA or heterozygous deletion of the Mpst gene significantly ameliorated hepatic steatosis in HFD-fed mice. Consistently, inhibition of MPST also reduced FFA-induced fat accumulation in L02 cells. Intriguingly, inhibition of MPST significantly enhanced rather than decreased H2S production, whereas MPST overexpression markedly inhibited H2S production. Co-immunoprecipitation experiments showed that MPST directly interacted with and negatively regulated cystathionine γ-lyase (CSE), a major source of H2S production in the liver. Mechanistically, MPST promoted steatosis via inhibition of CSE/H2S and subsequent upregulation of the sterol regulatory element-binding protein 1c pathway, C-Jun N-terminal kinase phosphorylation and hepatic oxidative stress. CONCLUSIONS FFAs upregulate hepatic expression of MPST and subsequently inhibit the CSE/H2S pathway, leading to NAFLD. MPST may be a potential therapeutic target for NAFLD.
Collapse
Affiliation(s)
- Meng Li
- Department of Gastroenterology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Chengfu Xu
- Department of Gastroenterology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Junping Shi
- Division of Hepatology, Hangzhou Normal University Affiliated Hospital, Hangzhou, Zhejiang, China
| | - Jiexia Ding
- Department of Gastroenterology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xingyong Wan
- Department of Gastroenterology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Dahua Chen
- Department of Gastroenterology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jianguo Gao
- Department of Gastroenterology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Chunxiao Li
- Department of Gastroenterology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jie Zhang
- Department of Gastroenterology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yiming Lin
- Department of Gastroenterology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhenhua Tu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaoni Kong
- Department of Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Youming Li
- Department of Gastroenterology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Chaohui Yu
- Department of Gastroenterology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
9
|
Wen C, Li F, Zhang L, Duan Y, Guo Q, Wang W, He S, Li J, Yin Y. Taurine is Involved in Energy Metabolism in Muscles, Adipose Tissue, and the Liver. Mol Nutr Food Res 2018; 63:e1800536. [DOI: 10.1002/mnfr.201800536] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 09/13/2018] [Indexed: 01/05/2023]
Affiliation(s)
- Chaoyue Wen
- Laboratory of Animal Nutrition and Human HealthHunan international joint laboratory of Animal Intestinal Ecology and HealthCollege of Life ScienceHunan Normal University Changsha Hunan 410081 China
| | - Fengna Li
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic ProcessKey Laboratory of Agro‐ecological Processes in Subtropical RegionInstitute of Subtropical AgricultureChinese Academy of SciencesHunan Provincial Engineering Research Center for Healthy Livestock and Poultry ProductionScientific Observing and Experimental Station of Animal Nutrition and Feed Science in South‐CentralMinistry of Agriculture Changsha 410125 China
- Hunan Co‐Innovation Center of Animal Production SafetyCICAPSHunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients Changsha 410128 China
| | - Lingyu Zhang
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic ProcessKey Laboratory of Agro‐ecological Processes in Subtropical RegionInstitute of Subtropical AgricultureChinese Academy of SciencesHunan Provincial Engineering Research Center for Healthy Livestock and Poultry ProductionScientific Observing and Experimental Station of Animal Nutrition and Feed Science in South‐CentralMinistry of Agriculture Changsha 410125 China
- University of Chinese Academy of Sciences Beijing 100039 China
| | - Yehui Duan
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic ProcessKey Laboratory of Agro‐ecological Processes in Subtropical RegionInstitute of Subtropical AgricultureChinese Academy of SciencesHunan Provincial Engineering Research Center for Healthy Livestock and Poultry ProductionScientific Observing and Experimental Station of Animal Nutrition and Feed Science in South‐CentralMinistry of Agriculture Changsha 410125 China
| | - Qiuping Guo
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic ProcessKey Laboratory of Agro‐ecological Processes in Subtropical RegionInstitute of Subtropical AgricultureChinese Academy of SciencesHunan Provincial Engineering Research Center for Healthy Livestock and Poultry ProductionScientific Observing and Experimental Station of Animal Nutrition and Feed Science in South‐CentralMinistry of Agriculture Changsha 410125 China
- University of Chinese Academy of Sciences Beijing 100039 China
| | - Wenlong Wang
- Laboratory of Animal Nutrition and Human HealthHunan international joint laboratory of Animal Intestinal Ecology and HealthCollege of Life ScienceHunan Normal University Changsha Hunan 410081 China
| | - Shanping He
- Laboratory of Animal Nutrition and Human HealthHunan international joint laboratory of Animal Intestinal Ecology and HealthCollege of Life ScienceHunan Normal University Changsha Hunan 410081 China
| | - Jianzhong Li
- Laboratory of Animal Nutrition and Human HealthHunan international joint laboratory of Animal Intestinal Ecology and HealthCollege of Life ScienceHunan Normal University Changsha Hunan 410081 China
| | - Yulong Yin
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic ProcessKey Laboratory of Agro‐ecological Processes in Subtropical RegionInstitute of Subtropical AgricultureChinese Academy of SciencesHunan Provincial Engineering Research Center for Healthy Livestock and Poultry ProductionScientific Observing and Experimental Station of Animal Nutrition and Feed Science in South‐CentralMinistry of Agriculture Changsha 410125 China
- Hunan Co‐Innovation Center of Animal Production SafetyCICAPSHunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients Changsha 410128 China
| |
Collapse
|
10
|
Humberto Vilar Da Silva J, González-Cerón F, Howerth EW, Rekaya R, Aggrey SE. Inhibition of the Transsulfuration Pathway Affects Growth and Feather Follicle Development in Meat-Type Chickens. Anim Biotechnol 2018; 30:175-179. [PMID: 29708051 DOI: 10.1080/10495398.2018.1461634] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Cysteine is a nonessential amino acid in poultry nutrition. Poultry diets are deficient in cysteine, but the bird's cysteine need is met through the transsulfuration pathway (TSP) where homocysteine is converted to cysteine: a process catalyzed by cystathionine β-synthase (CBS) and cystathionine γ-lyase (CTH). Cysteine is also a major component of keratinized protein found in feathers, but the extent to which cysteine is involved in feather and skin development in poultry is unknown. We randomly assigned chicks to control and treatment (control diet plus 100 mg/kg body weight of propargylglycine which is an inhibitor of CTH) diets. The thickness of skin layers, primary feather follicle parameters, growth, and mRNA expression of CBS and CTH were measured. Inhibition of TSP corresponded with the upregulation of liver mRNA of both CBS and CTH and reduction in growth from 35 to 40 days of age. The epidermis thickness, feather follicle length, and diameter were reduced from 10 to 40 days of age. Incorporation of cysteine into keratinized protein may be more sensitive to the level of available cysteine than into nonkeratinized proteins. Thus, disruption of the TSP could affect the thermoregulatory ability of the bird.
Collapse
Affiliation(s)
| | - Fernando González-Cerón
- a NutriGenomics Laboratory, Department of Poultry Science , University of Georgia , Athens , GA , USA
| | - Elizabeth W Howerth
- b Department of Pathology, College of Veterinary Medicine , University of Georgia , Athens , GA , USA
| | - Romdhane Rekaya
- c Department of Animal and Dairy Science , University of Georgia , Athens , GA , USA.,d Institute of Bioinformatics , University of Georgia , Athens , GA , USA
| | - Samuel E Aggrey
- a NutriGenomics Laboratory, Department of Poultry Science , University of Georgia , Athens , GA , USA.,d Institute of Bioinformatics , University of Georgia , Athens , GA , USA
| |
Collapse
|
11
|
Gold-nanofève surface-enhanced Raman spectroscopy visualizes hypotaurine as a robust anti-oxidant consumed in cancer survival. Nat Commun 2018; 9:1561. [PMID: 29674746 PMCID: PMC5908798 DOI: 10.1038/s41467-018-03899-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Accepted: 03/20/2018] [Indexed: 01/24/2023] Open
Abstract
Gold deposition with diagonal angle towards boehmite-based nanostructure creates random arrays of horse-bean-shaped nanostructures named gold-nanofève (GNF). GNF generates many electromagnetic hotspots as surface-enhanced Raman spectroscopy (SERS) excitation sources, and enables large-area visualization of molecular vibration fingerprints of metabolites in human cancer xenografts in livers of immunodeficient mice with sufficient sensitivity and uniformity. Differential screening of GNF-SERS signals in tumours and those in parenchyma demarcated tumour boundaries in liver tissues. Furthermore, GNF-SERS combined with quantum chemical calculation identified cysteine-derived glutathione and hypotaurine (HT) as tumour-dominant and parenchyma-dominant metabolites, respectively. CD44 knockdown in cancer diminished glutathione, but not HT in tumours. Mechanisms whereby tumours sustained HT under CD44-knockdown conditions include upregulation of PHGDH, PSAT1 and PSPH that drove glycolysis-dependent activation of serine/glycine-cleavage systems to provide one-methyl group for HT synthesis. HT was rapidly converted into taurine in cancer cells, suggesting that HT is a robust anti-oxidant for their survival under glutathione-suppressed conditions. Surface-enhanced Raman spectroscopy (SERS) visualizes fingerprints of intermolecular vibrations of many metabolites. Here the authors report a SERS imaging technique that enables the visualization of metabolites distribution and automated extraction of tumour boundaries in frozen tissues.
Collapse
|
12
|
Juszczak GR, Stankiewicz AM. Glucocorticoids, genes and brain function. Prog Neuropsychopharmacol Biol Psychiatry 2018; 82:136-168. [PMID: 29180230 DOI: 10.1016/j.pnpbp.2017.11.020] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 10/18/2017] [Accepted: 11/23/2017] [Indexed: 01/02/2023]
Abstract
The identification of key genes in transcriptomic data constitutes a huge challenge. Our review of microarray reports revealed 88 genes whose transcription is consistently regulated by glucocorticoids (GCs), such as cortisol, corticosterone and dexamethasone, in the brain. Replicable transcriptomic data were combined with biochemical and physiological data to create an integrated view of the effects induced by GCs. The most frequently reported genes were Errfi1 and Ddit4. Their up-regulation was associated with the altered transcription of genes regulating growth factor and mTORC1 signaling (Gab1, Tsc22d3, Dusp1, Ndrg2, Ppp5c and Sesn1) and progression of the cell cycle (Ccnd1, Cdkn1a and Cables1). The GC-induced reprogramming of cell function involves changes in the mRNA level of genes responsible for the regulation of transcription (Klf9, Bcl6, Klf15, Tle3, Cxxc5, Litaf, Tle4, Jun, Sox4, Sox2, Sox9, Irf1, Sall2, Nfkbia and Id1) and the selective degradation of mRNA (Tob2). Other genes are involved in the regulation of metabolism (Gpd1, Aldoc and Pdk4), actin cytoskeleton (Myh2, Nedd9, Mical2, Rhou, Arl4d, Osbpl3, Arhgef3, Sdc4, Rdx, Wipf3, Chst1 and Hepacam), autophagy (Eva1a and Plekhf1), vesicular transport (Rhob, Ehd3, Vps37b and Scamp2), gap junctions (Gjb6), immune response (Tiparp, Mertk, Lyve1 and Il6r), signaling mediated by thyroid hormones (Thra and Sult1a1), calcium (Calm2), adrenaline/noradrenaline (Adcy9 and Adra1d), neuropeptide Y (Npy1r) and histamine (Hdc). GCs also affected genes involved in the synthesis of polyamines (Azin1) and taurine (Cdo1). The actions of GCs are restrained by feedback mechanisms depending on the transcription of Sgk1, Fkbp5 and Nr3c1. A side effect induced by GCs is increased production of reactive oxygen species. Available data show that the brain's response to GCs is part of an emergency mode characterized by inactivation of non-core activities, restrained inflammation, restriction of investments (growth), improved efficiency of energy production and the removal of unnecessary or malfunctioning cellular components to conserve energy and maintain nutrient supply during the stress response.
Collapse
Affiliation(s)
- Grzegorz R Juszczak
- Department of Animal Behavior, Institute of Genetics and Animal Breeding, Jastrzebiec, ul. Postepu 36A, 05-552 Magdalenka, Poland.
| | - Adrian M Stankiewicz
- Department of Molecular Biology, Institute of Genetics and Animal Breeding, Jastrzebiec, ul. Postepu 36A, 05-552 Magdalenka, Poland
| |
Collapse
|
13
|
Beyer BA, Fang M, Sadrian B, Montenegro-Burke JR, Plaisted WC, Kok BPC, Saez E, Kondo T, Siuzdak G, Lairson LL. Metabolomics-based discovery of a metabolite that enhances oligodendrocyte maturation. Nat Chem Biol 2018; 14:22-28. [PMID: 29131145 PMCID: PMC5928791 DOI: 10.1038/nchembio.2517] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 10/11/2017] [Indexed: 01/24/2023]
Abstract
Endogenous metabolites play essential roles in the regulation of cellular identity and activity. Here we have investigated the process of oligodendrocyte precursor cell (OPC) differentiation, a process that becomes limiting during progressive stages of demyelinating diseases, including multiple sclerosis, using mass-spectrometry-based metabolomics. Levels of taurine, an aminosulfonic acid possessing pleotropic biological activities and broad tissue distribution properties, were found to be significantly elevated (∼20-fold) during the course of oligodendrocyte differentiation and maturation. When added exogenously at physiologically relevant concentrations, taurine was found to dramatically enhance the processes of drug-induced in vitro OPC differentiation and maturation. Mechanism of action studies suggest that the oligodendrocyte-differentiation-enhancing activities of taurine are driven primarily by its ability to directly increase available serine pools, which serve as the initial building block required for the synthesis of the glycosphingolipid components of myelin that define the functional oligodendrocyte cell state.
Collapse
Affiliation(s)
- Brittney A Beyer
- Department of Chemistry, The Scripps Research Institute, La Jolla, California, USA
- The California Institute for Biomedical Research, La Jolla, California, USA
| | - Mingliang Fang
- Center for Metabolomics and Mass Spectrometry, The Scripps Research Institute, La Jolla, California, USA
| | - Benjamin Sadrian
- The California Institute for Biomedical Research, La Jolla, California, USA
| | - J Rafael Montenegro-Burke
- Center for Metabolomics and Mass Spectrometry, The Scripps Research Institute, La Jolla, California, USA
| | - Warren C Plaisted
- The California Institute for Biomedical Research, La Jolla, California, USA
| | - Bernard P C Kok
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Enrique Saez
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Toru Kondo
- Division of Stem Cell Biology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Gary Siuzdak
- Center for Metabolomics and Mass Spectrometry, The Scripps Research Institute, La Jolla, California, USA
- Department of Molecular and Computational Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Luke L Lairson
- Department of Chemistry, The Scripps Research Institute, La Jolla, California, USA
| |
Collapse
|
14
|
Hao S, Yu J, He W, Huang Q, Zhao Y, Liang B, Zhang S, Wen Z, Dong S, Rao J, Liao W, Shi M. Cysteine Dioxygenase 1 Mediates Erastin-Induced Ferroptosis in Human Gastric Cancer Cells. Neoplasia 2017; 19:1022-1032. [PMID: 29144989 PMCID: PMC5686465 DOI: 10.1016/j.neo.2017.10.005] [Citation(s) in RCA: 193] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 10/20/2017] [Accepted: 10/23/2017] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Ferroptosis is a recently discovered form of iron-dependent nonapoptotic cell death. It is characterized by loss of the activity of the lipid repair enzyme, glutathione peroxidase 4 (GPX4), and accumulation of lethal reactive lipid oxygen species. However, we still know relatively little about ferroptosis and its molecular mechanism in gastric cancer (GC) cells. Here, we demonstrate that erastin, a classic inducer of ferroptosis, induces this form of cell death in GC cells and that cysteine dioxygenase 1 (CDO1) plays an important role in this process. METHODS We performed quantitative real-time polymerase chain reaction, Western blotting, cell viability assay, reactive oxygen species (ROS) assay, glutathione assay, lipid peroxidation assay, RNAi and gene transfection, immunofluorescent staining, dual-luciferase reporter assay, transmission electron microscopy, and chromatin immunoprecipitation assay to study the regulation of ferroptosis in GC cells. Mouse xenograft assay was used to figure out the mechanism in vivo. RESULTS Silencing CDO1 inhibited erastin-induced ferroptosis in GC cells both in vitro and in vivo. Suppression of CDO1 restored cellular GSH levels, prevented ROS generation, and reduced malondialdehyde, one of the end products of lipid peroxidation. In addition, silencing COO1 maintained mitochondrial morphologic stability in erastin-treated cells. Mechanistically, c-Myb transcriptionally regulated CDO1, and inhibition of CDO1 expression upregulated GPX4 expression. CONCLUSIONS Our findings give a better understanding of ferroptosis and its molecular mechanism in GC cells, gaining insight into ferroptosis-mediated cancer treatment.
Collapse
Affiliation(s)
- Shihui Hao
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, PR China
| | - Jiang Yu
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, PR China
| | - Wanming He
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, PR China
| | - Qiong Huang
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, PR China
| | - Yang Zhao
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, PR China
| | - Bishan Liang
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, PR China
| | - Shuyi Zhang
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, PR China
| | - Zhaowei Wen
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, PR China
| | - Shumin Dong
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, PR China
| | - Jinjun Rao
- Key Laboratory of New Drug Screening of Guangdong Province, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, PR China
| | - Wangjun Liao
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, PR China
| | - Min Shi
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, PR China.
| |
Collapse
|
15
|
Sarkar P, Basak P, Ghosh S, Kundu M, Sil PC. Prophylactic role of taurine and its derivatives against diabetes mellitus and its related complications. Food Chem Toxicol 2017; 110:109-121. [PMID: 29050977 DOI: 10.1016/j.fct.2017.10.022] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 10/11/2017] [Accepted: 10/13/2017] [Indexed: 02/08/2023]
Abstract
Taurine is a conditionally essential amino acid present in the body in free form. Mammalian taurine is synthesized in the pancreas via the cysteine sulfinic acid pathway. Anti-oxidation and anti-inflammation are two main properties through which it exerts its therapeutic effects. Many studies have shown its excellent therapeutic potential against diabetes mellitus and related complications like diabetic neuropathy, retinopathy, nephropathy, hematological dysfunctions, reproductive dysfunctions, liver and pancreas related complications etc. Not only taurine, a number of its derivatives have also been reported to be important in ameliorating diabetic complications. The present review has been aimed to describe the importance of taurine and its derivatives against diabetic metabolic syndrome and related complications.
Collapse
Affiliation(s)
- Poulami Sarkar
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata-700054, India
| | - Priyanka Basak
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata-700054, India
| | - Sumit Ghosh
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata-700054, India
| | - Mousumi Kundu
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata-700054, India
| | - Parames C Sil
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata-700054, India.
| |
Collapse
|