1
|
Wang Z, Li L, Li W, Yan H, Yuan Y. Salidroside Alleviates Furan-Induced Impaired Gut Barrier and Inflammation via Gut Microbiota-SCFA-TLR4 Signaling. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:16484-16495. [PMID: 38990698 DOI: 10.1021/acs.jafc.4c02433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
As a food contaminant that can be quickly absorbed through the gastrointestinal system, furan has been shown to disrupt the intestinal flora and barrier. Investigation of the intestinal toxicity mechanism of furan is of great significance to health. We previously identified the regulatory impact of salidroside (SAL) against furan-provoked intestinal damage, and the present work further explored whether the alleviating effect of SAL against furan-caused intestinal injury was based on the intestinal flora; three models, normal, pseudo-germ-free, and fecal microbiota transplantation (FMT), were established, and the changes in intestinal morphology, barrier, and inflammation were observed. Moreover, 16S rDNA sequencing observed the variation of the fecal flora associated with inflammation and short-chain fatty acids (SCFAs). Results obtained from the LC-MS/MS suggested that SAL increased furan-inhibited SCFA levels, activated the mRNA expressions of SCFA receptors (GPR41, GPR43, and GPR109A), and inhibited the furan-activated TLR4/MyD88/NF-κB signaling. Analysis of protein-protein interaction further confirmed the aforementioned effects of SAL, which inhibited furan-induced barrier damage and intestinal inflammation.
Collapse
Affiliation(s)
- Ziyue Wang
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Lu Li
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Wenliang Li
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Haiyang Yan
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Yuan Yuan
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| |
Collapse
|
2
|
Payen C, Kerouanton A, Novoa J, Pazos F, Benito C, Denis M, Guyard M, Moreno FJ, Chemaly M. Effects of Major Families of Modulators on Performances and Gastrointestinal Microbiota of Poultry, Pigs and Ruminants: A Systematic Approach. Microorganisms 2023; 11:1464. [PMID: 37374967 DOI: 10.3390/microorganisms11061464] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
Considering the ban on the use of antibiotics as growth stimulators in the livestock industry, the use of microbiota modulators appears to be an alternative solution to improve animal performance. This review aims to describe the effect of different families of modulators on the gastrointestinal microbiota of poultry, pigs and ruminants and their consequences on host physiology. To this end, 65, 32 and 4 controlled trials or systematic reviews were selected from PubMed for poultry, pigs and ruminants, respectively. Microorganisms and their derivatives were the most studied modulator family in poultry, while in pigs, the micronutrient family was the most investigated. With only four controlled trials selected for ruminants, it was difficult to conclude on the modulators of interest for this species. For some modulators, most studies showed a beneficial effect on both the phenotype and the microbiota. This was the case for probiotics and plants in poultry and minerals and probiotics in pigs. These modulators seem to be a good way for improving animal performance.
Collapse
Affiliation(s)
- Cyrielle Payen
- French Agency for Food, Environmental and Occupational Health and Safety, ANSES, Hygiene and Quality of Poultry, Pig Products Unit, 22440 Ploufragan, France
| | - Annaëlle Kerouanton
- French Agency for Food, Environmental and Occupational Health and Safety, ANSES, Hygiene and Quality of Poultry, Pig Products Unit, 22440 Ploufragan, France
| | - Jorge Novoa
- Computational Systems Biology Group, National Centre for Biotechnology (CNB-CSIC), Darwin 3, 28049 Madrid, Spain
| | - Florencio Pazos
- Computational Systems Biology Group, National Centre for Biotechnology (CNB-CSIC), Darwin 3, 28049 Madrid, Spain
| | - Carlos Benito
- Instituto de Gestión de la Innovación y del Conocimiento, INGENIO (CSIC and U. Politécnica de Valencia), Edificio 8E, Cam. de Vera, 46022 Valencia, Spain
| | - Martine Denis
- French Agency for Food, Environmental and Occupational Health and Safety, ANSES, Hygiene and Quality of Poultry, Pig Products Unit, 22440 Ploufragan, France
| | - Muriel Guyard
- French Agency for Food, Environmental and Occupational Health and Safety, ANSES, Hygiene and Quality of Poultry, Pig Products Unit, 22440 Ploufragan, France
| | - F Javier Moreno
- Instituto de Investigación en Ciencias de la Alimentación (CIAL), CSIC-UAM, CEI (UAM + CSIC), Nicolás Cabrera 9, 28049 Madrid, Spain
| | - Marianne Chemaly
- French Agency for Food, Environmental and Occupational Health and Safety, ANSES, Hygiene and Quality of Poultry, Pig Products Unit, 22440 Ploufragan, France
| |
Collapse
|
3
|
Chen S, Wu H, Chen C, Wang D, Yang Y, Zhou Z, Zhu R, He X, Pan Y, Li C. The prognostic prediction of periodontal non-surgery therapy in periodontitis patients based on surface-enhanced Raman measurements of pre-treatment saliva. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 288:122150. [PMID: 36459721 DOI: 10.1016/j.saa.2022.122150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/15/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
Periodontitis is one of the most prevalent dental diseases, and the patients with periodontitis often suffer from refractory periodontitis or recurrence of disease due to improper or inadequate treatment. In clinical practice, the early and accurate assessment of post-treatment prognosis in periodontitis patients is always very important in order to implement timely interventions. In this study, a pre-treatment saliva SERS based prognostic protocol was explored to predict the prognosis of periodontal non-surgery therapy in periodontitis patients. According to the biomolecular analysis, significant differences in the levels of ascorbic acid, uric acid and glutathione are observed between good prognosis group and poor prognosis group, which are expected to serve as potential prognostic markers. Furthermore, high accuracy, sensitivity and specificity can also be achieved by using the proposed prognostic model. The excellent performance of the proposed method has demonstrated its potential for fast, accurate, and non-invasive prognostic prediction of periodontal non-surgery therapy in periodontitis patients, even at the time before implementing treatment, thus is expected to benefit timely and rational guidance on clinical interventions.
Collapse
Affiliation(s)
- Shuo Chen
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China; Key Laboratory of Intelligent Computing in Medical Image, Ministry of Education, China
| | - Haotian Wu
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China
| | - Chen Chen
- School and Hospital of Stomatology, China Medical University, Shenyang, China; Liaoning Provincial Key Laboratory of Oral Disease, Shenyang, China
| | - Daheng Wang
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China
| | - Yaru Yang
- School and Hospital of Stomatology, China Medical University, Shenyang, China; Liaoning Provincial Key Laboratory of Oral Disease, Shenyang, China
| | - Zheng Zhou
- School of Innovation and Entrepreneurship, Liaoning Institute of Science and Technology, Benxi, China
| | - Ruochen Zhu
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China
| | - Xiaoning He
- The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Yaping Pan
- School and Hospital of Stomatology, China Medical University, Shenyang, China; Liaoning Provincial Key Laboratory of Oral Disease, Shenyang, China
| | - Chen Li
- School and Hospital of Stomatology, China Medical University, Shenyang, China; Liaoning Provincial Key Laboratory of Oral Disease, Shenyang, China.
| |
Collapse
|
4
|
Beaumont M, Roura E, Lambert W, Turni C, Michiels J, Chalvon-Demersay T. Selective nourishing of gut microbiota with amino acids: A novel prebiotic approach? Front Nutr 2022; 9:1066898. [PMID: 36601082 PMCID: PMC9806265 DOI: 10.3389/fnut.2022.1066898] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022] Open
Abstract
Prebiotics are dietary substrates which promote host health when utilized by desirable intestinal bacteria. The most commonly used prebiotics are non-digestible oligosaccharides but the prebiotic properties of other types of nutrients such as polyphenols are emerging. Here, we review recent evidence showing that amino acids (AA) could function as a novel class of prebiotics based on: (i) the modulation of gut microbiota composition, (ii) the use by selective intestinal bacteria and the transformation into bioactive metabolites and (iii) the positive impact on host health. The capacity of intestinal bacteria to metabolize individual AA is species or strain specific and this property is an opportunity to favor the growth of beneficial bacteria while constraining the development of pathogens. In addition, the chemical diversity of AA leads to the production of multiple bacterial metabolites with broad biological activities that could mediate their prebiotic properties. In this context, we introduce the concept of "Aminobiotics," which refers to the functional role of some AA as prebiotics. We also present studies that revealed synergistic effects of the co-administration of AA with probiotic bacteria, indicating that AA can be used to design novel symbiotics. Finally, we discuss the difficulty to bring free AA to the distal gut microbiota and we propose potential solutions such as the use of delivery systems including encapsulation to bypass absorption in the small intestine. Future studies will need to further identify individual AA, dose and mode of administration to optimize prebiotic effects for the benefit of human and animal health.
Collapse
Affiliation(s)
- Martin Beaumont
- GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet-Tolosan, France
| | - Eugeni Roura
- Centre of Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD, Australia
| | | | - Conny Turni
- Centre for Animal Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD, Australia
| | - Joris Michiels
- Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | | |
Collapse
|
5
|
Wang D, Kuang Y, Wan Z, Li P, Zhao J, Zhu H, Liu Y. Aspartate Alleviates Colonic Epithelial Damage by Regulating Intestinal Stem Cell Proliferation and Differentiation via Mitochondrial Dynamics. Mol Nutr Food Res 2022; 66:e2200168. [PMID: 36310136 DOI: 10.1002/mnfr.202200168] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 08/26/2022] [Indexed: 11/06/2022]
Abstract
SCOPE Proliferation and differentiation of intestinal stem cells (ISCs) are crucial for functional restoration after injury, which can be regulated by nutritional molecules. Aspartate is implicated in maintaining intestinal barrier after injury, but underlying mechanisms remain elusive. Here, this study seeks to investigate if aspartate alleviates colonic epithelial damage by regulating ISC function, and to elucidate its mechanisms. METHODS AND RESULTS Eight-week-old male C57BL/6 mice supplement with or without 1% L-aspartate are subjected to drinking water or 2.5% DSS to induce colitis. In this study, aspartate administration alleviates the severity of colitis, as indicated by reduced body weight loss, colon shortening, and inhibited pro-inflammatory cytokine expression in DSS-challenged mice. Additionally, aspartate promotes colonic epithelial cell proliferation and differentiation after DSS-induced damage in mice. Pretreatment with aspartate not only enhances ISC proliferation but also induces ISC differentiation toward enterocytes and goblet cells, which prevent TNF-α-induced colonoid damage. Mechanistically, aspartate ameliorates DSS/TNF-α-induced perturbation of mitochondrial metabolism and maintains mitochondrial dynamics in colonic epithelium and colonoids. Moreover, aspartate-mediated ISC proliferation and differentiation are primarily dependent on mitochondrial fusion rather than fission. CONCLUSIONS The findings indicate that aspartate promotes ISC proliferation and differentiation to alleviate colonic epithelial damage by regulation of mitochondrial metabolism and dynamics.
Collapse
Affiliation(s)
- Dan Wang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, P. R. China
| | - Yanling Kuang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, P. R. China
| | - Zhicheng Wan
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, P. R. China
| | - Pei Li
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, P. R. China
| | - Jiangchao Zhao
- Division of Agriculture, Department of Animal Science, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Huiling Zhu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, P. R. China
| | - Yulan Liu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, P. R. China
| |
Collapse
|
6
|
Abstract
Flavonoids are natural polyphenol secondary metabolites that are widely produced in planta. Flavonoids are ubiquities in human dietary intake and exhibit a myriad of health benefits. Flavonoids-induced biological activities are strongly influenced by their in situ availability in the human GI tract, as well as the levels of which are modulated by interaction with the gut bacteria. As such, assessing flavonoids–microbiome interactions is considered a key to understand their physiological activities. Here, we review the interaction between the various classes of dietary flavonoids (flavonols, flavones, flavanones, isoflavones, flavan-3-ols and anthocyanins) and gut microbiota. We aim to provide a holistic overview of the nature and identity of flavonoids on diet and highlight how flavonoids chemical structure, metabolism and impact on humans and their microbiomes are interconnected. Emphasis is placed on how flavonoids and their biotransformation products affect gut microbiota population, influence gut homoeostasis and induce measurable physiological changes and biological benefits.
Collapse
|
7
|
Adachi H, Kudo M, Ishiyama S, Mochizuki K. Protein restriction during the fetal period upregulates IL1B and IL13 while suppressing MUC2 expression in the jejunum of mice after weaning. Nutrition 2022; 98:111605. [DOI: 10.1016/j.nut.2022.111605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 01/13/2022] [Accepted: 01/17/2022] [Indexed: 11/15/2022]
|
8
|
Abachi S, Pilon G, Marette A, Bazinet L, Beaulieu L. Immunomodulatory effects of fish peptides on cardiometabolic syndrome associated risk factors: A review. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.2014861] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Soheila Abachi
- Institute of Nutrition and Functional Foods, Université Laval, Quebec, Quebec, Canada
- Department of Food Science, Faculty of Agricultural and Food Sciences, Université Laval, Quebec, Quebec, Canada
| | - Geneviève Pilon
- Institute of Nutrition and Functional Foods, Université Laval, Quebec, Quebec, Canada
- Department of Medicine, Faculty of Medicine, Cardiology Axis of the Quebec Heart and Lung Institute, Quebec, Quebec, Canada
| | - André Marette
- Institute of Nutrition and Functional Foods, Université Laval, Quebec, Quebec, Canada
- Department of Medicine, Faculty of Medicine, Cardiology Axis of the Quebec Heart and Lung Institute, Quebec, Quebec, Canada
| | - Laurent Bazinet
- Institute of Nutrition and Functional Foods, Université Laval, Quebec, Quebec, Canada
- Department of Food Science, Faculty of Agricultural and Food Sciences, Université Laval, Quebec, Quebec, Canada
| | - Lucie Beaulieu
- Institute of Nutrition and Functional Foods, Université Laval, Quebec, Quebec, Canada
- Department of Food Science, Faculty of Agricultural and Food Sciences, Université Laval, Quebec, Quebec, Canada
| |
Collapse
|
9
|
Yuan Y, Lu L, Bo N, Chaoyue Y, Haiyang Y. Allicin Ameliorates Intestinal Barrier Damage via Microbiota-Regulated Short-Chain Fatty Acids-TLR4/MyD88/NF-κB Cascade Response in Acrylamide-Induced Rats. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:12837-12852. [PMID: 34694121 DOI: 10.1021/acs.jafc.1c05014] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Acrylamide (AA) is a heat-induced toxicant, which can cause severe damage to health. In the present study, SD rats were used to investigate the potential therapeutic effects of allicin dietary supplementation in the rats with AA-induced intestinal injury. The elevated expression of occludin, claudin-1, zonula occludens-1 (ZO-1), mucin 2, and mucin 3 indicated that oral allicin alleviated the intestinal epithelial barrier breakage induced by AA, compared with the AA-treated group. In the gut microbiota, Bacteroides, Escherichia_Shigella, Dubosiella, and Alloprevotella related to the synthesis of short-chain fatty acids (SCFAs) were negatively affected by AA, while allicin regulated cascade response of the microbiota-SCFAs signaling to reverse the reduction of acetic acid and propionic acid by AA treatment. Allicin also dramatically down-regulated the expression of Toll-like receptor 4 (TLR4), myeloid differentiation factor 88 (MyD88), NF-κB signaling pathway proteins, and proinflammatory cytokines by promoting the production of SCFAs in AA-treated rats. Allicin relieved the intestinal barrier injury and inflammation caused by AA as evidenced by the regulation cascade response of the microbiota-SCFAs-TLR4/MyD88/NF-κB signaling pathway. In conclusion, allicin is highly effective in the treatment and prevention of AA-induced intestinal injury.
Collapse
Affiliation(s)
- Yuan Yuan
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Li Lu
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Nan Bo
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Yang Chaoyue
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Yan Haiyang
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| |
Collapse
|
10
|
A Targeted Serum Metabolomics GC-MS Approach Identifies Predictive Blood Biomarkers for Retained Placenta in Holstein Dairy Cows. Metabolites 2021; 11:metabo11090633. [PMID: 34564449 PMCID: PMC8466882 DOI: 10.3390/metabo11090633] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 01/09/2023] Open
Abstract
The retained placenta is a common pathology of dairy cows. It is associated with a significant drop in the dry matter intake, milk yield, and increased susceptibility of dairy cows to metritis, mastitis, and displaced abomasum. The objective of this study was to identify metabolic alterations that precede and are associated with the disease occurrence. Blood samples were collected from 100 dairy cows at −8 and −4 weeks prior to parturition and on the day of retained placenta, and only 16 healthy cows and 6 cows affected by retained placenta were selected to measure serum polar metabolites by a targeted gas chromatography–mass spectroscopy (GC-MS) metabolomics approach. A total of 27 metabolites were identified and quantified in the serum. There were 10, 18, and 17 metabolites identified as being significantly altered during the three time periods studied. However, only nine metabolites were identified as being shared among the three time periods including five amino acids (Asp, Glu, Ser, Thr, and Tyr), one sugar (myo-inositol), phosphoric acid, and urea. The identified metabolites can be used as predictive biomarkers for the risk of retained placenta in dairy cows and might help explain the metabolic processes that occur prior to the incidence of the disease and throw light on the pathomechanisms of the disease.
Collapse
|
11
|
Free amino acid composition of saliva in patients with healthy periodontium and periodontitis. Clin Oral Investig 2021; 25:4175-4183. [PMID: 33977387 DOI: 10.1007/s00784-021-03977-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 05/04/2021] [Indexed: 12/23/2022]
Abstract
OBJECTIVES To identify and compare the free amino acids in the saliva of periodontitis patients and healthy individuals and to assess their levels in different periodontal disease types. MATERIALS AND METHODS There were three groups: healthy individuals (control (C); n = 20), Stage III Grade B generalized periodontitis (GP-B; n = 20), and Stage III Grade C generalized periodontitis (GP-C; n = 20). Clinical periodontal parameters were measured. Amino acid analysis of the saliva was accomplished by liquid chromatography-mass spectrometry (LC MS/MS), taking the mean concentration. RESULTS Citrulline and carnosine concentrations were significantly higher in patients with periodontitis than in the control group (p < 0.017). Methionine, glutamic acid, and arginine showed significantly higher concentrations in GP-C, whereas proline and tryptophan showed higher concentrations in the GP-B group (p < 0.017). There was a significant correlation between methionine, citrulline, arginine, and carnosine and clinical periodontal parameters. CONCLUSIONS Our results demonstrate that periodontal status and disease type can result in variations in salivary amino acid (AA) content in correlation with clinical inflammatory signs. The significant correlation of methionine, citrulline, carnosine, and arginine with clinical parameters, regardless of systemic status, suggests that the levels of different salivary free AAs play roles in periodontitis. CLINICAL RELEVANCE Salivary free AAs may be suggested as a potential diagnostic compound in patients with periodontitis. CLINICAL TRIAL REGISTRATION ClinicalTrials.gov NCT04642716.
Collapse
|
12
|
Zhang X, Hou Z, Xu B, Xie C, Wang Z, Yu X, Wu D, Yan X, Dai Q. Dietary Supplementation of ε-Polylysine Beneficially Affects Ileal Microbiota Structure and Function in Ningxiang Pigs. Front Microbiol 2020; 11:544097. [PMID: 33312165 PMCID: PMC7702972 DOI: 10.3389/fmicb.2020.544097] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 10/28/2020] [Indexed: 12/20/2022] Open
Abstract
Intestinal microbiota plays an important role in the health of animals. However, little is known about the gut microbiota in Ningxiang pigs. Thus, we investigated how dietary supplementation with different ε-polylysine concentrations (0, 20, 40, 80, and 160 ppm) affected the ileal microbiota in Ningxiang pigs using a replicated 5 × 5 Latin square method. Each experimental period included 10 days for diet adaptation, 3 days for feces collection and 2 days for digesta collection. The ileal contents were collected and used for sequencing of the V3-V4 hypervariable region of the 16S rRNA gene. The results revealed that ε-polylysine significantly decreased the digestibility of crude protein and crude fiber, as well as the utilization of metabolizable energy (P < 0.05). The relative abundances of 19 bacterial genera significantly increased, while those of 26 genera significantly decreased (P < 0.05). In addition, ε-polylysine increased the abundance of some bacteria (e.g., Faecalibacterium, Bifidobacterium, and lactic acid bacteria) and inhibited some other bacteria (e.g., Micrococcaceae, Acinetobacter, Anaerococcus, Peptoniphilus, Dehalobacterium, Finegoldia, Treponema, and Brevundimonas). Furthermore, based on the 16S rRNA gene data and data from the precalculated GreenGenes database, bacterial communities in the ileal contents exhibited enhanced functional maturation, including changes in the metabolism of carbohydrates, amino acids (e.g., alanine, lysine, tryptophan, cysteine, and methionine), cofactors, and vitamins (e.g., biotin, thiamine, and folate), as well as in the activity of the insulin signaling pathway. This study suggests that ε-polylysine may influence the utilization of feed nutrients by Ningxiang pigs, including proteins, lipids, metabolizable energy, and fiber, by regulating the gut microbiota.
Collapse
Affiliation(s)
- Xuelei Zhang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhenping Hou
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Baoyang Xu
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Chunlin Xie
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhichang Wang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xia Yu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Duanqin Wu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Xianghua Yan
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Qiuzhong Dai
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| |
Collapse
|
13
|
Ren W, Bin P, Yin Y, Wu G. Impacts of Amino Acids on the Intestinal Defensive System. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1265:133-151. [PMID: 32761574 DOI: 10.1007/978-3-030-45328-2_8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The intestine interacts with a diverse community of antigens and bacteria. To keep its homeostasis, the gut has evolved with a complex defense system, including intestinal microbiota, epithelial layer and lamina propria. Various factors (e.g., nutrients) affect the intestinal defensive system and progression of intestinal diseases. This review highlights the current understanding about the role of amino acids (AAs) in protecting the intestine from harm. Amino acids (e.g., arginine, glutamine and tryptophan) are essential for the function of intestinal microbiota, epithelial cells, tight junction, goblet cells, Paneth cells and immune cells (e.g., macrophages, B cells and T cells). Through the modulation of the intestinal defensive system, AAs maintain the integrity and function of the intestinal mucosa and inhibit the progression of various intestinal diseases (e.g., intestinal infection and intestinal colitis). Thus, adequate intake of functional AAs is crucial for intestinal and whole-body health in humans and other animals.
Collapse
Affiliation(s)
- Wenkai Ren
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Peng Bin
- Jiangsu Co-Innovation Center for Important Animal Infectious Diseases and Zoonoses, Joint International Research Laboratory of Agriculture and Agri-Product, Safety of Ministry of Education of China, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Yulong Yin
- Laboratory of Animal Nutrition and Health and Key Laboratory of Agro-Ecology, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, China
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
14
|
Xiang H, Zuo J, Guo F, Dong D. What we already know about rhubarb: a comprehensive review. Chin Med 2020; 15:88. [PMID: 32863857 PMCID: PMC7448319 DOI: 10.1186/s13020-020-00370-6] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 08/19/2020] [Indexed: 02/06/2023] Open
Abstract
Rhubarb (also named Rhei or Dahuang), one of the most ancient and important herbs in traditional Chinese medicine (TCM), belongs to the Rheum L. genus from the Polygonaceae family, and its application can be traced back to 270 BC in "Shen Nong Ben Cao Jing". Rhubarb has long been used as an antibacterial, anti-inflammatory, anti-fibrotic and anticancer medicine in China. However, for a variety of reasons, such as origin, variety and processing methods, there are differences in the effective components of rhubarb, which eventually lead to decreased quality and poor efficacy. Additionally, although some papers have reviewed the relationship between the active ingredients of rhubarb and pharmacologic actions, most studies have concentrated on one or several aspects, although there has been great progress in rhubarb research in recent years. Therefore, this review aims to summarize recent studies on the geographic distribution, taxonomic identification, pharmacology, clinical applications and safety issues related to rhubarb and provide insights into the further development and application of rhubarb in the future.
Collapse
Affiliation(s)
- Hong Xiang
- Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jiaxin Zuo
- Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, China
- College of Pharmacy, Dalian Medical University, Dalian, China
| | - Fangyue Guo
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Deshi Dong
- Department of Clinical Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
15
|
Liu C, Sun Y, Shao Z. Current Concepts of the Pathogenesis of Aplastic Anemia. Curr Pharm Des 2020; 25:236-241. [PMID: 30864496 DOI: 10.2174/1381612825666190313113601] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 03/08/2019] [Indexed: 02/07/2023]
Abstract
Abnormal activation of the immune system plays an important role in the pathogenesis of aplastic anemia (AA). Various immune cells and cytokines constitute a complex immune network, leading to bone marrow failure. The known pathogenesis is an increase of the myeloid dendritic cell (mDC)/ plasmacytoid dendritic cell (pDC) ratio, which causes the ratio of T helper (Th)1/Th2 to be skewed in favor of Th1 and eventually leads to an abnormal activation of cytotoxic T lymphocyte (CTL). The antigens that stimulate T cells in the context of AA remain unknown. In this process, regulatory T (Treg), Th17, natural killer (NK) cell, memory T cell and negative hematopoietic regulatory factors are also involved. In addition, genetic background (e.g., chromosomal abnormalities, telomere attrition, somatic cell mutations), abnormal bone marrow hematopoietic microenvironment and viral infection may also contribute to the pathogenesis of AA. This review summarizes the recent studies of the pathogenesis of AA and the current status of AA research.
Collapse
Affiliation(s)
- Chunyan Liu
- Department of Hematology, Tianjin Medical University General Hospital, 154 Anshan St, Heping District, Tianjin, China
| | - Yingying Sun
- Department of Hematology, Tianjin Medical University General Hospital, 154 Anshan St, Heping District, Tianjin, China
| | - Zonghong Shao
- Department of Hematology, Tianjin Medical University General Hospital, 154 Anshan St, Heping District, Tianjin, China
| |
Collapse
|
16
|
Jiao Y, Li X, Kim IH. Changes in growth performance, nutrient digestibility, immune blood profiles, fecal microbial and fecal gas emission of growing pigs in response to zinc aspartic acid chelate. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2019; 33:597-604. [PMID: 31480182 PMCID: PMC7054602 DOI: 10.5713/ajas.19.0057] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 06/20/2019] [Indexed: 11/27/2022]
Abstract
Objective This study was conducted to investigate the effect of zinc aspartic acid chelate (Zn-ASP) on growth performance, nutrient digestibility, blood profiles, fecal microbial and fecal gas emission in growing pigs. Methods A total of 160 crossbred ([Landrace×Yorkshire]×Duroc) growing pigs with an initial body weight (BW) of 25.56±2.22 kg were used in a 6-wk trial. Pigs were randomly allocated into 1 of 4 treatments according to their sex and BW (8 replicates with 2 gilts and 3 barrows per replication pen). Treatments were as follows: i) CON, basal diet, ii) TRT1, CON+0.1% Zn-ASP, iii) TRT2, CON+0.2% Zn-ASP, and iv) TRT3, CON+0.3% Zn-ASP. Pens were assigned in a randomized complete block design to compensate for known position effects in the experimental facility. Results In the current study, BW, average daily gain, and gain:feed ratio showed significant improvement as dietary Zn-ASP increased (p<0.05) in growing pigs. Apparent total tract digestibility (ATTD) of dry matter was increased linearly (p<0.05) in pigs fed with Zn-ASP diets. A linear effect (p<0.05) was detected for the Zn concentration in blood with the increasing levels of Zn-ASP supplementation. Lactic acid bacteria and coliform bacteria were affected linearly (p<0.05) in pigs fed with Zn-ASP diets. However, no significant differences were observed in the ATTD of nitrogen, energy and Zn. And dietary Zn-ASP supplementation did not affect fecal ammonia, hydrogen sulfide and total mercaptans emissions in growing pigs. Conclusion In conclusion, dietary supplementation with Zn-ASP of diet exerted beneficial effects on the growth performance, nutrient digestibility, blood profiles and fecal microbes in growing pigs.
Collapse
Affiliation(s)
- Yang Jiao
- Department of Animal Resource and Science, Dankook University, Cheonan, Chungnam 31116, Korea.,Jiangsu Key Laboratory of Marine Bioresources and Eco-environment, Jiangsu Ocean University, Jiangsu 222005, China
| | - Xinran Li
- Department of Mathematics and Statistics, Huazhong Agricultural University, Wuhan 430070, China
| | - In Ho Kim
- Department of Animal Resource and Science, Dankook University, Cheonan, Chungnam 31116, Korea
| |
Collapse
|
17
|
Ao X, Zhang S, Kim J, Kim I. Effect of dietary standardized ileal digestible lysine and copper density on growth performance, nutrient digestibility, blood profiles, fecal microbiota, backfat thickness and lean meat percentage in growing pigs. Livest Sci 2019. [DOI: 10.1016/j.livsci.2019.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
18
|
Bin P, Tang Z, Liu S, Chen S, Xia Y, Liu J, Wu H, Zhu G. Intestinal microbiota mediates Enterotoxigenic Escherichia coli-induced diarrhea in piglets. BMC Vet Res 2018; 14:385. [PMID: 30518356 PMCID: PMC6282381 DOI: 10.1186/s12917-018-1704-9] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 11/21/2018] [Indexed: 12/31/2022] Open
Abstract
Background Enterotoxigenic Escherichia coli (ETEC) causes diarrhea in humans, cows, and pigs. The gut microbiota underlies pathology of several infectious diseases yet the role of the gut microbiota in the pathogenesis of ETEC-induced diarrhea is unknown. Results By using an ETEC induced diarrheal model in piglet, we profiled the jejunal and fecal microbiota using metagenomics and 16S rRNA sequencing. A jejunal microbiota transplantation experiment was conducted to determine the role of the gut microbiota in ETEC-induced diarrhea. ETEC-induced diarrhea influenced the structure and function of gut microbiota. Diarrheal piglets had lower Bacteroidetes: Firmicutes ratio and microbiota diversity in the jejunum and feces, and lower percentage of Prevotella in the feces, but higher Lactococcus in the jejunum and higher Escherichia-Shigella in the feces. The transplantation of the jejunal microbiota from diarrheal piglets to uninfected piglets leaded to diarrhea after transplantation. Microbiota transplantation experiments also supported the notion that dysbiosis of gut microbiota is involved in the immune responses in ETEC-induced diarrhea. Conclusion We conclude that ETEC infection influences the gut microbiota and the dysbiosis of gut microbiota after ETEC infection mediates the immune responses in ETEC infection. Electronic supplementary material The online version of this article (10.1186/s12917-018-1704-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Peng Bin
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Jiangsu Co-innovation Center for Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Zhiyi Tang
- College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Shaojuan Liu
- College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Shuai Chen
- Laboratory of Animal Nutrition and Health and Key Laboratory of Agro-Ecology, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan, 410125, People's Republic of China
| | - Yaoyao Xia
- Laboratory of Animal Nutrition and Health and Key Laboratory of Agro-Ecology, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan, 410125, People's Republic of China
| | - Jiaqi Liu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Jiangsu Co-innovation Center for Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Hucong Wu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Jiangsu Co-innovation Center for Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Guoqiang Zhu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Jiangsu Co-innovation Center for Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China.
| |
Collapse
|
19
|
Azad MAK, Sarker M, Li T, Yin J. Probiotic Species in the Modulation of Gut Microbiota: An Overview. BIOMED RESEARCH INTERNATIONAL 2018; 2018:9478630. [PMID: 29854813 PMCID: PMC5964481 DOI: 10.1155/2018/9478630] [Citation(s) in RCA: 401] [Impact Index Per Article: 57.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Accepted: 03/29/2018] [Indexed: 12/12/2022]
Abstract
Probiotics are microbial strains that are beneficial to health, and their potential has recently led to a significant increase in research interest in their use to modulate the gut microbiota. The animal gut is a complex ecosystem of host cells, microbiota, and available nutrients, and the microbiota prevents several degenerative diseases in humans and animals via immunomodulation. The gut microbiota and its influence on human nutrition, metabolism, physiology, and immunity are addressed, and several probiotic species and strains are discussed to improve the understanding of modulation of gut microbiota. This paper provides a broad review of several Lactobacillus spp., Bifidobacterium spp., and other coliform bacteria as the most promising probiotic species and their role in the prevention of degenerative diseases, such as obesity, diabetes, cancer, cardiovascular diseases, malignancy, liver disease, and inflammatory bowel disease. This review also discusses a recent study of Saccharomyces spp. in which inflammation was prevented by promotion of proinflammatory immune function via the production of short-chain fatty acids. A summary of gut microbiota alteration with future perspectives is also provided.
Collapse
Affiliation(s)
- Md. Abul Kalam Azad
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, Hunan 410125, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Manobendro Sarker
- Department of Food Engineering and Technology, State University of Bangladesh, Dhaka 1205, Bangladesh
| | - Tiejun Li
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, Hunan 410125, China
| | - Jie Yin
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, Hunan 410125, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
20
|
Li Y, Han H, Yin J, Zheng J, Zhu X, Li T, Yin Y. Effects of glutamate and aspartate on growth performance, serum amino acids, and amino acid transporters in piglets. FOOD AGR IMMUNOL 2018. [DOI: 10.1080/09540105.2018.1437892] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Yuying Li
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, People’s Republic of China
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, Hunan, People’s Republic of China
- Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, Hunan, People’s Republic of China
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, Hunan, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Hui Han
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, People’s Republic of China
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, Hunan, People’s Republic of China
- Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, Hunan, People’s Republic of China
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, Hunan, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Jie Yin
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, People’s Republic of China
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, Hunan, People’s Republic of China
- Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, Hunan, People’s Republic of China
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, Hunan, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Jie Zheng
- Department of Animal Science, Hunan Agriculture University, Changsha, Hunan, People’s Republic of China
| | - Xiaotong Zhu
- College of Life Science, Guangxi Normal University, Guilin, Guangxi, People’s Republic of China
| | - Tiejun Li
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, People’s Republic of China
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, Hunan, People’s Republic of China
- Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, Hunan, People’s Republic of China
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, Hunan, People’s Republic of China
- Hunan Co-Innovation Center of Animal Production Safety, Changsha, Hunan, People’s Republic of China
| | - Yulong Yin
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, People’s Republic of China
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, Hunan, People’s Republic of China
- Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, Hunan, People’s Republic of China
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, Hunan, People’s Republic of China
- Hunan Co-Innovation Center of Animal Production Safety, Changsha, Hunan, People’s Republic of China
| |
Collapse
|
21
|
Functions and Signaling Pathways of Amino Acids in Intestinal Inflammation. BIOMED RESEARCH INTERNATIONAL 2018; 2018:9171905. [PMID: 29682569 PMCID: PMC5846438 DOI: 10.1155/2018/9171905] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 11/30/2017] [Accepted: 12/13/2017] [Indexed: 12/11/2022]
Abstract
Intestine is always exposed to external environment and intestinal microorganism; thus it is more sensitive to dysfunction and dysbiosis, leading to intestinal inflammation, such as inflammatory bowel disease (IBD), irritable bowel syndrome (IBS), and diarrhea. An increasing number of studies indicate that dietary amino acids play significant roles in preventing and treating intestinal inflammation. The review aims to summarize the functions and signaling mechanisms of amino acids in intestinal inflammation. Amino acids, including essential amino acids (EAAs), conditionally essential amino acids (CEAAs), and nonessential amino acids (NEAAs), improve the functions of intestinal barrier and expressions of anti-inflammatory cytokines and tight junction proteins but decrease oxidative stress and the apoptosis of enterocytes as well as the expressions of proinflammatory cytokines in the intestinal inflammation. The functions of amino acids are associated with various signaling pathways, including mechanistic target of rapamycin (mTOR), inducible nitric oxide synthase (iNOS), calcium-sensing receptor (CaSR), nuclear factor-kappa-B (NF-κB), mitogen-activated protein kinase (MAPK), nuclear erythroid-related factor 2 (Nrf2), general controlled nonrepressed kinase 2 (GCN2), and angiotensin-converting enzyme 2 (ACE2).
Collapse
|
22
|
Jiao J, Wu J, Wang M, Zhou C, Zhong R, Tan Z. Rhubarb Supplementation Promotes Intestinal Mucosal Innate Immune Homeostasis through Modulating Intestinal Epithelial Microbiota in Goat Kids. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:1047-1057. [PMID: 29325417 DOI: 10.1021/acs.jafc.7b05297] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The abuse and misuse of antibiotics in livestock production pose a potential health risk globally. Rhubarb can serve as a potential alternative to antibiotics, and several studies have looked into its anticancer, antitumor, and anti-inflammatory properties. The aim of this study was to test the effects of rhubarb supplementation to the diet of young ruminants on innate immune function and epithelial microbiota in the small intestine. Goat kids were fed with a control diet supplemented with or without rhubarb (1.25% DM) and were slaughtered at days 50 and 60 of age. Results showed that the supplementation of rhubarb increased ileal villus height (P = 0.036), increased jejujal and ileal anti-inflammatory IL-10 production (P < 0.05), increased jejunal and ileal Claudin-1 expression at both mRNA and protein levels (P < 0.05), and decreased ileal pro-inflammatory IL-1β production (P < 0.05). These changes in innate immune function were accompanied by shifts in ileal epithelial bacterial ecosystem in favor of Blautia, Clostridium, Lactobacillus, and Pseudomonas, and with a decline in the relative abundance of Staphylococcus (P < 0.001) when rhubarb was supplemented. Additionally, age also affected (P < 0.05) crypt depth, cytokine production, Claudin-1 expression and relative abundances of specific genera in epithelial bacteria. Collectively, the supplementation of rhubarb could enhance host mucosal innate immune homeostasis by modulating intestinal epithelial microbiota during the early stages of animal development.
Collapse
Affiliation(s)
- Jinzhen Jiao
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, The Chinese Academy of Sciences ; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, Hunan 410125, P. R. China
- Hunan Co-Innovation Center of Animal Production Safety, CICAPS , Changsha, Hunan 410128, P. R. China
| | - Jian Wu
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, The Chinese Academy of Sciences ; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, Hunan 410125, P. R. China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Min Wang
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, The Chinese Academy of Sciences ; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, Hunan 410125, P. R. China
- Hunan Co-Innovation Center of Animal Production Safety, CICAPS , Changsha, Hunan 410128, P. R. China
| | - Chuanshe Zhou
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, The Chinese Academy of Sciences ; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, Hunan 410125, P. R. China
- Hunan Co-Innovation Center of Animal Production Safety, CICAPS , Changsha, Hunan 410128, P. R. China
| | - Rongzhen Zhong
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences , Changchun, Jilin 130102, P. R. China
| | - Zhiliang Tan
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, The Chinese Academy of Sciences ; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, Hunan 410125, P. R. China
- Hunan Co-Innovation Center of Animal Production Safety, CICAPS , Changsha, Hunan 410128, P. R. China
| |
Collapse
|
23
|
Yin J, Li Y, Han H, Liu Z, Zeng X, Li T, Yin Y. Long-term effects of lysine concentration on growth performance, intestinal microbiome, and metabolic profiles in a pig model. Food Funct 2018; 9:4153-4163. [DOI: 10.1039/c8fo00973b] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Lysine is a common limiting amino acid in human and animal diets and plays an important role in cell proliferation and metabolism.
Collapse
Affiliation(s)
- Jie Yin
- Laboratory of Animal Nutritional Physiology and Metabolic Process
- Institute of Subtropical Agriculture
- Chinese Academy of Sciences
- Changsha
- China
| | - Yuying Li
- Laboratory of Animal Nutritional Physiology and Metabolic Process
- Institute of Subtropical Agriculture
- Chinese Academy of Sciences
- Changsha
- China
| | - Hui Han
- Laboratory of Animal Nutritional Physiology and Metabolic Process
- Institute of Subtropical Agriculture
- Chinese Academy of Sciences
- Changsha
- China
| | - Zhaojin Liu
- Department of Animal Science
- Hunan Agriculture University
- Changsha 410125
- China
| | - Xiangfang Zeng
- College of Animal Science and Technology
- Chinese Agriculture University
- Beijing
- China
| | - Tiejun Li
- Laboratory of Animal Nutritional Physiology and Metabolic Process
- Institute of Subtropical Agriculture
- Chinese Academy of Sciences
- Changsha
- China
| | - Yulong Yin
- Laboratory of Animal Nutritional Physiology and Metabolic Process
- Institute of Subtropical Agriculture
- Chinese Academy of Sciences
- Changsha
- China
| |
Collapse
|