1
|
Liu M, Wu MX, Gong FF, Sun ZM, Li Y, Huan F, Chen GX, Liu QM, Liu H, Liu GM. Optimized carbonylation treatment of Litopenaeus vannamei matrix decreased its immunoreactivity and improved edible quality, simultaneously. Food Chem 2025; 464:141614. [PMID: 39423529 DOI: 10.1016/j.foodchem.2024.141614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 10/21/2024]
Abstract
The study aimed to investigate how carbonylation affects the immunoreactivity and edible quality of the Litopenaeus vannamei matrix. The carbonylation treatment conditions of the shrimp matrix were optimized. Firstly, the treatment condition is optimized with 1.0 mmol/L malonaldehyde at 37 °C, 12 h. The optimized carbonylated shrimp showed lower immunoreactivity, carbonyl group, and free amino acids. Then the edible quality was evaluated, optimized carbonylated shrimp matrix presented better digestibility and the continuous digestion products showed lower immunoreactivity. Optimized carbonylated shrimp for the other sensory indicators showed better texture properties and an inviting appearance. Looser microstructure by scanning electron microscopy contributed to the higher digestibility, lower immunoreactivity, and better edible quality for optimized carbonylated shrimp matrix. Besides, more potentially modified amino acid residues exposed on the allergen surface may be the other reason. In conclusion, optimized carbonylation treatment reduced the immunoreactivity and improved the edible quality of shrimp.
Collapse
Affiliation(s)
- Meng Liu
- School of Marine Biology, Xiamen Ocean Vocational College, Applied Technology Engineering Center of Fujian Provincial Higher Education for Marine Resource Protection and Ecological Governance, Xiamen Key Laboratory of Intelligent Fishery, Xiamen, Fujian 361100, China; College of Ocean Food and Biological Engineering, Jimei University, 43 Yindou Road, Xiamen, Fujian 361021, China
| | - Ming-Xuan Wu
- College of Ocean Food and Biological Engineering, Jimei University, 43 Yindou Road, Xiamen, Fujian 361021, China
| | - Fei-Fei Gong
- School of Marine Biology, Xiamen Ocean Vocational College, Applied Technology Engineering Center of Fujian Provincial Higher Education for Marine Resource Protection and Ecological Governance, Xiamen Key Laboratory of Intelligent Fishery, Xiamen, Fujian 361100, China
| | - Zhao-Min Sun
- School of Marine Biology, Xiamen Ocean Vocational College, Applied Technology Engineering Center of Fujian Provincial Higher Education for Marine Resource Protection and Ecological Governance, Xiamen Key Laboratory of Intelligent Fishery, Xiamen, Fujian 361100, China
| | - Ying Li
- School of Marine Biology, Xiamen Ocean Vocational College, Applied Technology Engineering Center of Fujian Provincial Higher Education for Marine Resource Protection and Ecological Governance, Xiamen Key Laboratory of Intelligent Fishery, Xiamen, Fujian 361100, China
| | - Fei Huan
- College of Ocean Food and Biological Engineering, Jimei University, 43 Yindou Road, Xiamen, Fujian 361021, China
| | - Gui-Xia Chen
- Women and Children's Hospital Affiliated to Xiamen University, Xiamen, Fujian 361003, China
| | - Qing-Mei Liu
- College of Ocean Food and Biological Engineering, Jimei University, 43 Yindou Road, Xiamen, Fujian 361021, China
| | - Hong Liu
- College of Ocean Food and Biological Engineering, Jimei University, 43 Yindou Road, Xiamen, Fujian 361021, China
| | - Guang-Ming Liu
- School of Marine Biology, Xiamen Ocean Vocational College, Applied Technology Engineering Center of Fujian Provincial Higher Education for Marine Resource Protection and Ecological Governance, Xiamen Key Laboratory of Intelligent Fishery, Xiamen, Fujian 361100, China; College of Ocean Food and Biological Engineering, Jimei University, 43 Yindou Road, Xiamen, Fujian 361021, China.
| |
Collapse
|
2
|
Feng R, Xiong X, Dou P, Li J, Benjakul S, Luo Y, Tan Y, Hong H. Quantitative analysis of 4-hydroxy-2-nonenal (HNE) in fish muscle by high-performance liquid chromatography with pre-column derivatization using (2,4-dinitrophenyl)-hydrazine. Food Chem 2025; 464:141841. [PMID: 39504905 DOI: 10.1016/j.foodchem.2024.141841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/28/2024] [Accepted: 10/27/2024] [Indexed: 11/08/2024]
Abstract
4-Hydroxy-2-nonenal (HNE), a reactive compound produced during the peroxidation of polyunsaturated fatty acids, is implicated in numerous diseases and the degradation of food quality. Although the detection of HNE in meat has a long history, methods for detecting HNE in freshwater fish are inadequate due to the significant influence of matrix differences (i.e., the matrix effect). We developed a method to measure HNE in six freshwater fish species: Grass carp, Silver carp, Bighead carp, Common carp, Crucian carp, and Wuchang bream. This method showed excellent linearity (R2 values from 0.9943 to 0.9958) and high recovery rates (95.45-104.41 %), with limits of detection (LOD) between 0.029 and 0.176 μmol/kg, covering a range of 0.006 to 25.600 μmol/kg. Matrix effect assessment revealed matrix factors (Mf) between 0.13 and 0.47. This study enhances our understanding of lipid oxidation in fish and guides improvements in food processing techniques.
Collapse
Affiliation(s)
- Ruifang Feng
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Xin Xiong
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Peipei Dou
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Jinlin Li
- National R&D Center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang 330022, China
| | - Soottawat Benjakul
- Department of Food Technology, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| | - Yongkang Luo
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yuqing Tan
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Hui Hong
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
3
|
Liu K, Liu Z, Miao J, Huang Y, Lai K. Multi-response kinetic study of Maillard reaction hazards in the glucose-lysine model system. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:1207-1215. [PMID: 39299926 DOI: 10.1002/jsfa.13911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 08/14/2024] [Accepted: 09/05/2024] [Indexed: 09/22/2024]
Abstract
BACKGROUND Nε-carboxymethyllysine (CML), Nε-carboxyethyllysine (CEL) and α-aminoadipic acid (AAA) are important foodborne hazards and their intake can cause a variety of diseases in humans. It is extremely important to investigate the formation mechanism of CML, CEL and AAA, as well as their association with each other when aiming to control their production. RESULTS A multi-response kinetic model was developed within the glucose-lysine Maillard reaction model system. The concentrations of glucose, lysine, glyoxal (GO), methylglyoxal (MGO), CML, CEL and AAA were quantified at different temperature (100-160 °C) and at different intervals (0-60 min). The experimental data were fitted to the proposed model to calculate kinetic parameters for the corresponding steps. The results indicated that the production of CML was primarily relied on the direct oxidative cleavage of the Amadori product, rather than the reaction between GO and Lys, whereas CEL and AAA were generated through the reaction of MGO with Lys. Significantly, the reaction between α-dicarbonyl compounds and Lys preferentially generated CML and CEL, resulting in the lower concentrations of AAA compared to CML and CEL. CONCLUSION The multi-response kinetic model developed in the present study can be applied well to the Maillard reaction. The relationship between the formation mechanisms of CML, CEL and AAA is also explained. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Kaihua Liu
- College of Food Science and Technology, Shanghai Ocean University, LinGang New City, China
- Engineering Research Center of Food Thermal-Processing Technology, Shanghai Ocean University, Shanghai, China
| | - Zhijie Liu
- College of Food Science and Technology, Shanghai Ocean University, LinGang New City, China
- Engineering Research Center of Food Thermal-Processing Technology, Shanghai Ocean University, Shanghai, China
| | - Junjian Miao
- College of Food Science and Technology, Shanghai Ocean University, LinGang New City, China
- Engineering Research Center of Food Thermal-Processing Technology, Shanghai Ocean University, Shanghai, China
| | - Yiqun Huang
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha, China
| | - Keqiang Lai
- College of Food Science and Technology, Shanghai Ocean University, LinGang New City, China
- Engineering Research Center of Food Thermal-Processing Technology, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
4
|
Günal-Köroğlu D, Yılmaz H, Gultekin Subasi B, Capanoglu E. Protein oxidation: The effect of different preservation methods or phenolic additives during chilled and frozen storage of meat/meat products. Food Res Int 2025; 200:115378. [PMID: 39779159 DOI: 10.1016/j.foodres.2024.115378] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/04/2024] [Accepted: 11/14/2024] [Indexed: 01/11/2025]
Abstract
Lipid and protein oxidation have significant effects on the shelf-life and nutritional value of meat and meat products. While lipid oxidation has been extensively studied, it has been recognized that proteins are also susceptible to oxidation. However, the precise mechanisms of oxygen-induced amino acid and protein modifications in the food matrix remain unclear. This review comprehensively explores the impact of various preservation techniques, including high hydrostatic pressure (HHP), irradiation (IR), and modified atmosphere packaging (MAP), on protein oxidation during chilled or frozen storage of meat products. While these techniques have shown promising results in extending shelf-life, their effects on protein oxidation are dose-dependent and must be carefully controlled to maintain product quality. Preservation techniques involving the use of phenolic additives have demonstrated synergistic effects in mitigating protein oxidation during storage. Notably, natural phenolic additives have shown comparable efficacy compared to artificial antioxidants. Additionally, incorporating phenolic additives into bio-edible films has shown promise in combating protein oxidation.
Collapse
Affiliation(s)
- Deniz Günal-Köroğlu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, 34469 Istanbul, Türkiye.
| | - Hilal Yılmaz
- Department of Biotechnology, Faculty of Science, Bartın University, Bartın, Türkiye.
| | - Busra Gultekin Subasi
- Center for Innovative Food (CiFOOD), Department of Food Science, Aarhus University, Agro Food Park 48, Aarhus N 8200, Denmark
| | - Esra Capanoglu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, 34469 Istanbul, Türkiye.
| |
Collapse
|
5
|
Hülsebusch L, Heyn TR, Amft J, Schwarz K. Extrusion of plant proteins: A review of lipid and protein oxidation and their impact on functional properties. Food Chem 2024; 470:142607. [PMID: 39740432 DOI: 10.1016/j.foodchem.2024.142607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/26/2024] [Accepted: 12/19/2024] [Indexed: 01/02/2025]
Abstract
Extrusion processing can improve the functional and nutritional value of plant proteins, making them a sustainable source for various applications. During both low- and high-moisture extrusion, raw materials are subjected to harsh process conditions, leading to lipid and protein oxidation. In general, oxidation products are associated with adverse effects on product properties and human health. The oxidation rates are influenced by a number of factors, including temperature, water, oil content, and protein source, with lipid-protein interactions playing a significant role in oxidation dynamics and measurement accuracy. Higher extrusion temperatures and water content promote oxidation, yet are also necessary for fiber formation. Mild protein oxidation can improve functional properties and digestibility, while extensive oxidation tends to reduce both. Therefore, adjusting extrusion parameters is critical for controlling oxidation. In addition, natural antioxidants may reduce oxidation during extrusion, but their impact on functional properties requires further investigation.
Collapse
Affiliation(s)
- Loana Hülsebusch
- Kiel University, Institute of Human Nutrition and Food Science, Division of Food Technology, Heinrich-Hecht-Platz 10, 24118 Kiel, Germany.
| | - Timon R Heyn
- Kiel University, Institute of Human Nutrition and Food Science, Division of Food Technology, Heinrich-Hecht-Platz 10, 24118 Kiel, Germany.
| | - Jonas Amft
- Kiel University, Institute of Human Nutrition and Food Science, Division of Food Technology, Heinrich-Hecht-Platz 10, 24118 Kiel, Germany.
| | - Karin Schwarz
- Kiel University, Institute of Human Nutrition and Food Science, Division of Food Technology, Heinrich-Hecht-Platz 10, 24118 Kiel, Germany.
| |
Collapse
|
6
|
Wang P, Song J, Du M, Wen C, Zhou Y. Storage causes protein oxidation of soybean meal and affects antioxidant status, digestive performance and meat quality of broilers. Anim Biosci 2024; 37:2126-2136. [PMID: 39210822 PMCID: PMC11541012 DOI: 10.5713/ab.24.0011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/08/2024] [Accepted: 05/20/2024] [Indexed: 09/04/2024] Open
Abstract
OBJECTIVE This study investigated the protein oxidation of soybean meal (SBM) stored in a warehouse and the effects of SBM on growth performance, antioxidant status, digestive performance, intestinal morphology, and breast muscle quality of broilers. METHODS In total, 160 one-day-old Arbor Acres Plus broilers (half male and half female) were randomly divided into two groups with ten replicates of eight birds each: The control group was served with a basal diet including SBM stored at -20°C (FSBM), and the experimental group was served with a basal diet including SBM stored in a warehouse at room temperature for 45 days (RSBM). RESULTS Compared with FSBM, the protein carbonyl level in RSBM was increased, the free and total thiol levels and in vitro digestibility of protein were decreased. The RSBM decreased the serum glutathione (GSH) level and the hepatic total superoxide dismutase (T-SOD) activity at days 21 and 42 when compared with FSBM. Further, RSBM reduced the duodenal T-SOD activity, jejunal catalase (CAT), and T-SOD activities at day 21, and decreased the duodenal CAT and T-SOD activities, jejunal T-SOD activity, and ileal GSH level and T-SOD activity at days 21 and 42 when compared with FSBM. Besides, the trypsin activity and the ratio of villus height to crypt depth in small intestines of broilers at days 21 and 42 were reduced when fed with a RSBM-contained diet. Compared with FSBM, the 24-h drip loss, shear force, and 24- and 48-h cooking loss of breast muscle were increased of RSBM group, the opposite result was observed for muscle lightness at 48 h. CONCLUSION Room temperature storage for 45 days led a protein oxidation and decreased in vitro digestibility in SBM, and fed RSBM impaired growth performance, antioxidant status, and meat quality, reduced trypsin activity, and affected the small intestine morphology in broilers.
Collapse
Affiliation(s)
- Peng Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095,
China
| | - Juanjuan Song
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095,
China
| | - Mingfang Du
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095,
China
| | - Chao Wen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095,
China
| | - Yanmin Zhou
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095,
China
| |
Collapse
|
7
|
Feng R, Yu Q, Bao Y, Chen L, Luo Y, Tan Y, Hong H. Myofibrillar protein lipoxidation in fish induced by linoleic acid and 4-hydroxy-2-nonenal: Insights from LC-MS/MS analysis. Food Res Int 2024; 187:114357. [PMID: 38763641 DOI: 10.1016/j.foodres.2024.114357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/14/2024] [Accepted: 04/17/2024] [Indexed: 05/21/2024]
Abstract
The oxidation of fish lipids and proteins is interconnected. The LOX (lipoxygenase)-catalyzed LA (linoleic acid) oxidation system on MPs (myofibrillar proteins) was established in vitro, to investigate the impact of lipoxidation on the physicochemical properties of fish MPs. By detecting HNE (4-hydroxy-2-nonenal) concentration during LA oxidation, the HNE treatment system was established to investigate the role of HNE in this process. In addition, the site specificity of modification on MPs was detected utilizing LC-MS/MS. Both treatments could induce sidechain modification, increase particle size, and cause loss of nutritional value through the reduction in amino acid content of MPs. The HNE group is more likely to alter the MPs' surface hydrophobicity compared to the LA group. By increasing the exposure of modification sites in MPs, the HNE group has more types and number of modifications compared to the LA group. LA group mainly induced the modification of single oxygen addition on MPs instead, which accounted for over 50 % of all modifications. The LA group induced a more pronounced reduction in the solubility of MPs as compared to the HNE group. In conclusion, HNE binding had a high susceptibility to Lys on MPs. Protein aggregation, peptide chain fragmentation, and decreased solubility occurred in the LA group mainly induced by peroxide generated during lipid oxidation or the unreacted LA instead of HNE. This study fills in the mechanism of lipoxidation on protein oxidation in fish and sheds light on the HNE modification sites of MPs, paving the way for the development of oxidation control technology.
Collapse
Affiliation(s)
- Ruifang Feng
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Qinye Yu
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yulong Bao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Liang Chen
- Public Service Platform of South China Sea for R&D Marine Biomedicine Resources, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, Guangdong 524023, China
| | - Yongkang Luo
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yuqing Tan
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Hui Hong
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
8
|
Oppedisano F, Nesci S, Spagnoletta A. Mitochondrial sirtuin 3 and role of natural compounds: the effect of post-translational modifications on cellular metabolism. Crit Rev Biochem Mol Biol 2024; 59:199-220. [PMID: 38993040 DOI: 10.1080/10409238.2024.2377094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 07/03/2024] [Indexed: 07/13/2024]
Abstract
Sirtuins (SIRTs) are a family of proteins with enzymatic activity. In particular, they are a family of class III NAD+-dependent histone deacetylases and ADP-ribosyltransferases. NAD+-dependent deac(et)ylase activities catalyzed by sirtuin include ac(et)ylation, propionylation, butyrylation, crotonylation, manylation, and succinylation. Specifically, human SIRT3 is a 399 amino acid protein with two functional domains: a large Rossmann folding motif and NAD+ binding, and a small complex helix and zinc-binding motif. SIRT3 is widely expressed in mitochondria-rich tissues and is involved in maintaining mitochondrial integrity, homeostasis, and function. Moreover, SIRT3 regulates related diseases, such as aging, hepatic, kidney, neurodegenerative and cardiovascular disease, metabolic diseases, and cancer development. In particular, one of the most significant and damaging post-translational modifications is irreversible protein oxidation, i.e. carbonylation. This process is induced explicitly by increased ROS production due to mitochondrial dysfunction. SIRT3 is carbonylated by 4-hydroxynonenal at the level of Cys280. The carbonylation induces conformational changes in the active site, resulting in allosteric inhibition of SIRT3 activity and loss of the ability to deacetylate and regulate antioxidant enzyme activity. Phytochemicals and, in particular, polyphenols, thanks to their strong antioxidant activity, are natural compounds with a positive regulatory action on SIRT3 in various pathologies. Indeed, the enzymatic SIRT3 activity is modulated, for example, by different natural polyphenol classes, including resveratrol and the bergamot polyphenolic fraction. Thus, this review aims to elucidate the mechanisms by which phytochemicals can interact with SIRT3, resulting in post-translational modifications that regulate cellular metabolism.
Collapse
Affiliation(s)
- Francesca Oppedisano
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University "Magna Græcia" of Catanzaro, Catanzaro, Italy
| | - Salvatore Nesci
- Department of Veterinary Medical Sciences, Alma Mater Studiorum-Università di Bologna, Ozzano Emilia, Italy
| | - Anna Spagnoletta
- Laboratory "Regenerative Circular Bioeconomy", ENEA-Trisaia Research Centre, Rotondella, Italy
| |
Collapse
|
9
|
Bagarinao NC, King J, Leong SY, Agyei D, Sutton K, Oey I. Effect of Germination on Seed Protein Quality and Secondary Metabolites and Potential Modulation by Pulsed Electric Field Treatment. Foods 2024; 13:1598. [PMID: 38890827 PMCID: PMC11172214 DOI: 10.3390/foods13111598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/03/2024] [Accepted: 05/18/2024] [Indexed: 06/20/2024] Open
Abstract
Plant-based foods are being increasingly favored to feed the ever-growing population, but these need to exhibit improved nutritional value in terms of protein quality and digestibility to be considered a useful alternative to animal-based foods. Germination is essential for plant growth and represents a viable method through which the protein quality of plants can be further improved. However, it will be a challenge to maintain efficient rates of germination in a changing climate when seeds are sown. In the context of the indoor germination of seeds for food, consumption, or processing purposes, a more efficient and sustainable process is desired. Therefore, novel techniques to facilitate seed germination are required. Pulsed electric fields (PEF) treatment of seeds results in the permeabilization of the cell membrane, allowing water to be taken up more quickly and triggering biochemical changes to the macromolecules in the seed during germination. Therefore, PEF could be a chemical-free approach to induce a stress response in seeds, leading to the production of secondary metabolites known to exert beneficial effects on human health. However, this application of PEF, though promising, requires further research to optimize its impact on the protein and bioactive compounds in germinating seeds.
Collapse
Affiliation(s)
- Norma Cecille Bagarinao
- Department of Food Science, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand; (N.C.B.); (J.K.); (S.Y.L.); (D.A.)
- Riddet Institute, Private Bag 11 222, Palmerston North 4442, New Zealand;
| | - Jessie King
- Department of Food Science, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand; (N.C.B.); (J.K.); (S.Y.L.); (D.A.)
- Riddet Institute, Private Bag 11 222, Palmerston North 4442, New Zealand;
| | - Sze Ying Leong
- Department of Food Science, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand; (N.C.B.); (J.K.); (S.Y.L.); (D.A.)
- Riddet Institute, Private Bag 11 222, Palmerston North 4442, New Zealand;
| | - Dominic Agyei
- Department of Food Science, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand; (N.C.B.); (J.K.); (S.Y.L.); (D.A.)
| | - Kevin Sutton
- Riddet Institute, Private Bag 11 222, Palmerston North 4442, New Zealand;
- The New Zealand Institute for Plant & Food Research Limited, Private Bag 4704, Christchurch Mail Centre, Christchurch 8140, New Zealand
| | - Indrawati Oey
- Department of Food Science, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand; (N.C.B.); (J.K.); (S.Y.L.); (D.A.)
- Riddet Institute, Private Bag 11 222, Palmerston North 4442, New Zealand;
| |
Collapse
|
10
|
Sun Q, Kong B, Zheng O, Liu S, Dong X. Tracking protein aggregation behaviour and emulsifying properties induced by structural alterations in common carp (Cyprinus carpio) myofibrillar protein during long-term frozen storage. Int J Biol Macromol 2024; 264:130171. [PMID: 38360237 DOI: 10.1016/j.ijbiomac.2024.130171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 02/05/2024] [Accepted: 02/12/2024] [Indexed: 02/17/2024]
Abstract
The effect of ultrasound-assisted immersion freezing (UIF), air freezing (AF), and immersion freezing (IF) on the protein structure, aggregation, and emulsifying properties of common carp (Cyprinus carpio) myofibrillar protein during frozen storage were evaluated in the present study. The result showed that, compared with AF and IF samples, UIF sample had higher reactive/total sulfhydryl, protein solubility, and lower protein turbidity (P < 0.05), indicating that UIF was beneficial to inhibit protein oxidation and aggregation induced by frozen storage. UIF inhibited the alteration of secondary structure and tertiary structure during frozen storage. Meanwhile, UIF sample had higher emulsifying activity index, and smaller emulsion droplet diameter than AF and IF samples (P < 0.05), suggesting that UIF was beneficial for maintaining the emulsifying properties of protein during storage. In general, UIF is a potential and effective method to suppress the decrease in protein emulsifying properties during long-term frozen storage.
Collapse
Affiliation(s)
- Qinxiu Sun
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, Guangdong 524088, China
| | - Baohua Kong
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Ouyang Zheng
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, Guangdong 524088, China
| | - Shucheng Liu
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, Guangdong 524088, China
| | - Xiuping Dong
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
11
|
Guo C, Wang S, Jia X, Pan J, Dong X, Li S. Changes in Novel Biomarkers for Protein Oxidation in Pork Patties under Different Cooking Methods. Foods 2024; 13:1034. [PMID: 38611339 PMCID: PMC11011914 DOI: 10.3390/foods13071034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/22/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
The aim of this study was to assess the effectiveness of different biomarkers to identify the levels of protein oxidation in pork patties induced by assorted cooking methods. To achieve this purpose, pork patties prepared from longissimus dorsi were cooked using three methods (frying, steaming, and roasting) at different internal temperatures (60, 70, 80, and 90 °C). Traditional biomarkers including total carbonyl and total thiol and novel biomarkers including α-aminoadipic semialdehyde (AAS) and lysinonorleucine (LNL) were determined. Results demonstrated that total thiol and AAS were the most successful biomarkers in distinguishing the three cooking methods in relation to protein oxidation, with AAS being the most sensitive. Moreover, as indicated by the biomarkers of total thiol and AAS, frying caused the highest level of protein oxidation, while steaming resulted in the lowest level when pork patties were cooked to the internal temperatures of 70 or 80 °C.
Collapse
Affiliation(s)
- Chuanyu Guo
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (C.G.); (S.W.); (X.J.); (J.P.); (X.D.)
| | - Shouyin Wang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (C.G.); (S.W.); (X.J.); (J.P.); (X.D.)
| | - Xiaolei Jia
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (C.G.); (S.W.); (X.J.); (J.P.); (X.D.)
| | - Jinfeng Pan
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (C.G.); (S.W.); (X.J.); (J.P.); (X.D.)
- SKL of Marine Food Processing & Safety Control, Dalian 116034, China
- National Engineering Research Center of Seafood, Dalian 116034, China
| | - Xiuping Dong
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (C.G.); (S.W.); (X.J.); (J.P.); (X.D.)
- SKL of Marine Food Processing & Safety Control, Dalian 116034, China
- National Engineering Research Center of Seafood, Dalian 116034, China
| | - Shengjie Li
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (C.G.); (S.W.); (X.J.); (J.P.); (X.D.)
- SKL of Marine Food Processing & Safety Control, Dalian 116034, China
- National Engineering Research Center of Seafood, Dalian 116034, China
| |
Collapse
|
12
|
Gou F, Gao S, Li B. Lipid-Induced Oxidative Modifications Decrease the Bioactivities of Collagen Hydrolysates from Fish Skin: The Underlying Mechanism Based on the Proteomic Strategy. Foods 2024; 13:583. [PMID: 38397560 PMCID: PMC10888297 DOI: 10.3390/foods13040583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/06/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
Collagen peptides exhibit various bioactivities, including antioxidation and ACE inhibition. However, the bioactivities of collagen peptides decrease gradually due to oxidation deterioration during storage, and this degradation of bioactive peptides is rarely studied. In this study, the oxidative levels and the bioactivities of collagen peptides were investigated during an oxidative-induced storage accelerated by lipids. The results suggested that the oxidation of collagen peptides was divided into three stages. At the early stage, the carbonyl content of collagen peptides increased rapidly (from 2.32 to 3.72 μmol/g peptide), showing a close correlation with their bioactivities (for antioxidation, r = -0.947; for ACE inhibition, r = -0.911). The oxidation level in the middle stage continued but was stable, and the bioactivities decreased. At the later stage, the Schiff base and dityrosine content increased significantly and showed a strong correlation with the bioactivities (antioxidation, r = -0.820, -0.801; ACE inhibition, r = -0.779, -0.865). The amino acid and proteomic analyses showed that Met, Lys, and Arg were susceptible to oxidation and revealed their oxidative modification types. This study provided an insight into the dynamic oxidative modifications of collagen peptides, which were shown to correlate well with the change in bioactivities.
Collapse
Affiliation(s)
| | | | - Bo Li
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (F.G.); (S.G.)
| |
Collapse
|
13
|
Ahmad A, Mahmood N, Hussain M, Aiman U, Al-Mijalli SH, Raza MA, Al Jbawi E. Improvement in oxidative stability and quality characteristics of functional chicken meat product supplemented with aqueous coriander extract. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2023. [DOI: 10.1080/10942912.2023.2189086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Affiliation(s)
- Awais Ahmad
- Department of Food Sciences, Government College University, Faisalabad, Pakistan
| | - Nasir Mahmood
- Department of Zoology, University of Central Punjab Bahawalpur Campus, Bahawalpur, Pakistan
| | - Muzzamal Hussain
- Department of Food Sciences, Government College University, Faisalabad, Pakistan
| | - Umme Aiman
- Department of Food Science and Nutrition, Government College University, Faisalabad, Pakistan
| | - Samiah H. Al-Mijalli
- Department of Biology, College of Sciences, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | | | | |
Collapse
|
14
|
Dassoff E, Shireen A, Wright A. Lipid emulsion structure, digestion behavior, physiology, and health: a scoping review and future directions. Crit Rev Food Sci Nutr 2023; 65:320-352. [PMID: 37947287 DOI: 10.1080/10408398.2023.2273448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Research investigating the effects of the food matrix on health is needed to untangle many unresolved questions in nutritional science. Emulsion structure plays a fundamental role in this inquiry; however, the effects of oil-in-water emulsion structure on broad metabolic, physiological, and health-related outcomes have not been comprehensively reviewed. This systematic scoping review targets this gap and examines methodological considerations for the field of relating food structure and health. MEDLINE, Web of Science, and CAB Direct were searched from inception to December 2022, returning 3106 articles, 52 of which were eligible for inclusion. Many investigated emulsion lipid droplet size and/or gastric colloidal stability and their relation to postprandial weight-loss-related outcomes. The present review also identifies numerous novel relationships between emulsion structures and health-related outcomes. "Omics" endpoints present an exciting avenue for more comprehensive analysis in this area, yet interpretation remains difficult. Identifying valid surrogate biomarkers for long-term outcomes and disease risk will be a turning point for food structure research, leading to breakthroughs in the pace and utility of research that generates advancements in health. The review's findings and recommendations aim to support new hypotheses, future trial design, and evidence-based emulsion design for improved health and well-being.
Collapse
Affiliation(s)
- Erik Dassoff
- Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Arshia Shireen
- Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Amanda Wright
- Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
15
|
Wang W, Jia X, Guo C, Pan J, Dong X, Li S. Protein carbonylation and structural changes in porcine myofibrillar protein exposed to metal ion-H 2O 2-ascorbate and linoleic acid-lipoxidase oxidizing systems. Food Res Int 2023; 173:113420. [PMID: 37803758 DOI: 10.1016/j.foodres.2023.113420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/27/2023] [Accepted: 08/29/2023] [Indexed: 10/08/2023]
Abstract
The present study aimed to compare two oxidizing systems commonly present in meat for their influence on protein oxidation patterns, with emphasis on the specific lysine-derived markers for protein carbonylation (α-aminoadipic semialdehyde, AAS; lysinonorlucine, LNL) and their relationships with the common markers for protein oxidation. For this purpose, pork myofibrillar proteins (MFP, 5 mg/mL) were suspended in 0.6 M NaCl (pH 7.5) and incubated at 4 ℃ for 24 h with two oxidizing systems: (1) a metal-catalyzed oxidizing system (MOS: 10 µM FeCl3, 100 µM ascorbic acid, and 0-10 mmol/L H2O2), (2) a linoleic acid - lipoxidase oxidizing system (LOS: 7500 units of lipoxidase/mL, and 0-10 mM linoleic acid). Results showed that the amounts of AAS and LNL in both MOS- and LOS-oxidized MFP was proportional to the oxidant concentrations (H2O2 or linoleic acid), while the formation of total carbonyl and total thiol also exhibited similar oxidant-dose-dependent patterns. Meanwhile, the α-helix contents of MFP declined with oxidant concentrations irrespective of the oxidizing systems. The reducing SDS-PAGE revealed that the myosin heavy chain band started to diminish at high H2O2 concentration (5 and 10 mM) in MOS whereas at low level of linoleic acid (0.5 mM) in LOS. Overall, these results demonstrated both oxidizing systems could be involved in the formation of AAS and LNL, and that the generation of AAS and LNL can be used as reliable markers for protein oxidation, but also might be directly involved in protein structural changes and then contribute to the alternations of protein functionality.
Collapse
Affiliation(s)
- Wenhui Wang
- School of Food Science and Technology, Dalian Polytechnic University, Ganjingzi #1, 116304 Dalian, Liaoning, China
| | - Xiaolei Jia
- School of Food Science and Technology, Dalian Polytechnic University, Ganjingzi #1, 116304 Dalian, Liaoning, China
| | - Chuanyu Guo
- School of Food Science and Technology, Dalian Polytechnic University, Ganjingzi #1, 116304 Dalian, Liaoning, China
| | - Jinfeng Pan
- School of Food Science and Technology, Dalian Polytechnic University, Ganjingzi #1, 116304 Dalian, Liaoning, China; National Engineering Research Center of Seafood, Ganjingzi #1, 116304 Dalian, Liaoning, China
| | - Xiuping Dong
- School of Food Science and Technology, Dalian Polytechnic University, Ganjingzi #1, 116304 Dalian, Liaoning, China; National Engineering Research Center of Seafood, Ganjingzi #1, 116304 Dalian, Liaoning, China
| | - Shengjie Li
- School of Food Science and Technology, Dalian Polytechnic University, Ganjingzi #1, 116304 Dalian, Liaoning, China; National Engineering Research Center of Seafood, Ganjingzi #1, 116304 Dalian, Liaoning, China.
| |
Collapse
|
16
|
Sánchez-Terrón G, Martínez R, Ruiz J, Luna C, Estévez M. Impact of Sustained Fructose Consumption on Gastrointestinal Function and Health in Wistar Rats: Glycoxidative Stress, Impaired Protein Digestion, and Shifted Fecal Microbiota. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:16270-16285. [PMID: 37859404 PMCID: PMC10623553 DOI: 10.1021/acs.jafc.3c04515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
The gastrointestinal tract (GIT) is the target of assorted pathological conditions, and dietary components are known to affect its functionality and health. In previous in vitro studies, we observed that reducing sugars induced protein glycoxidation and impaired protein digestibility. To gain further insights into the pathophysiological effects of dietary sugars, Wistar rats were provided with a 30% (w/v) fructose water solution for 10 weeks. Upon slaughter, in vivo protein digestibility was assessed, and the entire GIT (digests and tissues) was analyzed for markers of oxidative stress and untargeted metabolomics. Additionally, the impact of sustained fructose intake on colonic microbiota was also evaluated. High fructose intake for 10 weeks decreased protein digestibility and promoted changes in the physiological digestion of proteins, enhancing intestinal digestion rather than stomach digestion. Moreover, at colonic stages, the oxidative stress was harmfully increased, and both the microbiota and the intraluminal colonic metabolome were modified.
Collapse
Affiliation(s)
- Guadalupe Sánchez-Terrón
- TECAL Research Group, Meat and Meat Products Research Institute (IPROCAR), Universidad de Extremadura (UEX), Cáceres 10003, Spain
| | - Remigio Martínez
- TECAL Research Group, Meat and Meat Products Research Institute (IPROCAR), Universidad de Extremadura (UEX), Cáceres 10003, Spain
- Animal Health Department, Universidad of Extremadura (UEX), Cáceres 10003, Spain
- Animal Health Department, GISAZ Research Group, ENZOEM Competitive Research Unit, Universidad of Córdoba (UCO), Córdoba 14014, Spain
| | - Jorge Ruiz
- TECAL Research Group, Meat and Meat Products Research Institute (IPROCAR), Universidad de Extremadura (UEX), Cáceres 10003, Spain
| | - Carolina Luna
- Emergency Unit, Servicio Extremeño de Salud, SES, Junta de Extremadura, Cáceres 10003, Spain
| | - Mario Estévez
- TECAL Research Group, Meat and Meat Products Research Institute (IPROCAR), Universidad de Extremadura (UEX), Cáceres 10003, Spain
| |
Collapse
|
17
|
Sánchez-Quintero MJ, Delgado J, Martín Chaves L, Medina-Vera D, Murri M, Becerra-Muñoz VM, Estévez M, Crespo-Leiro MG, Paz López G, González-Jiménez A, A. G. Ranea J, Queipo-Ortuño MI, Plaza-Andrades I, Rodríguez-Capitán J, Pavón-Morón FJ, Jiménez-Navarro MF. Multi-Omics Approach Reveals Prebiotic and Potential Antioxidant Effects of Essential Oils from the Mediterranean Diet on Cardiometabolic Disorder Using Humanized Gnotobiotic Mice. Antioxidants (Basel) 2023; 12:1643. [PMID: 37627638 PMCID: PMC10451832 DOI: 10.3390/antiox12081643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/14/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
Essential oils sourced from herbs commonly used in the Mediterranean diet have demonstrated advantageous attributes as nutraceuticals and prebiotics within a model of severe cardiometabolic disorder. The primary objective of this study was to assess the influences exerted by essential oils derived from thyme (Thymus vulgaris) and oregano (Origanum vulgare) via a comprehensive multi-omics approach within a gnotobiotic murine model featuring colonic microbiota acquired from patients diagnosed with coronary artery disease (CAD) and type-2 diabetes mellitus (T2DM). Our findings demonstrated prebiotic and potential antioxidant effects elicited by these essential oils. We observed a substantial increase in the relative abundance of the Lactobacillus genus in the gut microbiota, accompanied by higher levels of short-chain fatty acids and a reduction in trimethylamine N-oxide levels and protein oxidation in the plasma. Moreover, functional enrichment analysis of the cardiac tissue proteome unveiled an over-representation of pathways related to mitochondrial function, oxidative stress, and cardiac contraction. These findings provide compelling evidence of the prebiotic and antioxidant actions of thyme- and oregano-derived essential oils, which extend to cardiac function. These results encourage further investigation into the promising utility of essential oils derived from herbs commonly used in the Mediterranean diet as potential nutraceutical interventions for mitigating chronic diseases linked to CAD and T2DM.
Collapse
Grants
- PI-0170-2018, PI-0131/2020, and PI-0245-2021 Consejería de Salud y Familias-Junta de Andalucía and European Regional Development Funds/European Social Fund
- UMA20-FEDERJA-074 Universidad de Málaga, Consejería de Economía, Conocimiento, Empresas y Universidad-Junta de Andalucía and ERDF/ESF
- ProyExcel_01009 Consejería de Transformación Económica, Industria, Conocimiento y Universidades-Junta de Andalucía and ERDF/ESF
- SEC/FEC-INV-BAS 23 Sociedad Española de Cardiología and Fundación Andaluza de Cardiología
- PT20/00101 Instituto de Salud Carlos III, Ministerio de Ciencia e Innovación-Gobierno de España
- CB16/11/00360 CIBERCV-Instituto de Salud Carlos III, Ministerio de Ciencia e Innovación-Gobierno de España and ERDF/ESF
- Q-2918001-E Cátedra de Terapias Avanzadas en Patología Cardiovascular, Universidad de Málaga
Collapse
Affiliation(s)
- María José Sánchez-Quintero
- Biomedical Research Institute of Malaga and Nanomedicine Platform (IBIMA Plataforma BIONAND), 29590 Málaga, Spain; (M.J.S.-Q.); (L.M.C.); (D.M.-V.); (M.M.); (V.M.B.-M.); (M.I.Q.-O.); (I.P.-A.); (M.F.J.-N.)
- Heart Area, Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain
- Biomedical Research Network Center for Cardiovascular Diseases (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain;
| | - Josué Delgado
- Higiene y Salud Alimentaria, Faculty of Veterinary, University of Extremadura, 10003 Cáceres, Spain;
- Instituto Universitario de Investigación de Carne y Productos Cárnicos (IPROCAR), University of Extremadura, 10003 Cáceres, Spain;
| | - Laura Martín Chaves
- Biomedical Research Institute of Malaga and Nanomedicine Platform (IBIMA Plataforma BIONAND), 29590 Málaga, Spain; (M.J.S.-Q.); (L.M.C.); (D.M.-V.); (M.M.); (V.M.B.-M.); (M.I.Q.-O.); (I.P.-A.); (M.F.J.-N.)
- Heart Area, Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain
- Department of Dermatology and Medicine, Faculty of Medicine, University of Málaga, 29010 Málaga, Spain
| | - Dina Medina-Vera
- Biomedical Research Institute of Malaga and Nanomedicine Platform (IBIMA Plataforma BIONAND), 29590 Málaga, Spain; (M.J.S.-Q.); (L.M.C.); (D.M.-V.); (M.M.); (V.M.B.-M.); (M.I.Q.-O.); (I.P.-A.); (M.F.J.-N.)
- Heart Area, Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain
- Biomedical Research Network Center for Cardiovascular Diseases (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain;
- Department of Dermatology and Medicine, Faculty of Medicine, University of Málaga, 29010 Málaga, Spain
- Clinical Management Unit of Mental Health, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain
| | - Mora Murri
- Biomedical Research Institute of Malaga and Nanomedicine Platform (IBIMA Plataforma BIONAND), 29590 Málaga, Spain; (M.J.S.-Q.); (L.M.C.); (D.M.-V.); (M.M.); (V.M.B.-M.); (M.I.Q.-O.); (I.P.-A.); (M.F.J.-N.)
- Heart Area, Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain
- Clinical Management Unit of Endocrinology and Nutrition, Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain
- Biomedical Research Network Center for the Physiopathology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Víctor M. Becerra-Muñoz
- Biomedical Research Institute of Malaga and Nanomedicine Platform (IBIMA Plataforma BIONAND), 29590 Málaga, Spain; (M.J.S.-Q.); (L.M.C.); (D.M.-V.); (M.M.); (V.M.B.-M.); (M.I.Q.-O.); (I.P.-A.); (M.F.J.-N.)
- Heart Area, Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain
- Biomedical Research Network Center for Cardiovascular Diseases (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain;
| | - Mario Estévez
- Instituto Universitario de Investigación de Carne y Productos Cárnicos (IPROCAR), University of Extremadura, 10003 Cáceres, Spain;
| | - María G. Crespo-Leiro
- Biomedical Research Network Center for Cardiovascular Diseases (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain;
- Service of Cardiology, Complexo Hospitalario Universitario A Coruña (CHUAC), University of A Coruña, Instituto Investigación Biomédica A Coruña (INIBIC), 15006 A Coruña, Spain
| | - Guillermo Paz López
- Bioinformatics, Common Support Structures (ECAI), IBIMA Plataforma BIONAND, 29590 Málaga, Spain; (G.P.L.); (A.G.-J.); (J.A.G.R.)
| | - Andrés González-Jiménez
- Bioinformatics, Common Support Structures (ECAI), IBIMA Plataforma BIONAND, 29590 Málaga, Spain; (G.P.L.); (A.G.-J.); (J.A.G.R.)
| | - Juan A. G. Ranea
- Bioinformatics, Common Support Structures (ECAI), IBIMA Plataforma BIONAND, 29590 Málaga, Spain; (G.P.L.); (A.G.-J.); (J.A.G.R.)
- Department of Molecular Biology and Biochemistry, Faculty of Science, University of Málaga, 29010 Málaga, Spain
- CIBER of Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - María Isabel Queipo-Ortuño
- Biomedical Research Institute of Malaga and Nanomedicine Platform (IBIMA Plataforma BIONAND), 29590 Málaga, Spain; (M.J.S.-Q.); (L.M.C.); (D.M.-V.); (M.M.); (V.M.B.-M.); (M.I.Q.-O.); (I.P.-A.); (M.F.J.-N.)
- Intercenter Clinical Management Unit of Medical Oncology, Hospitales Universitarios Regional y Virgen de la Victoria y Centro de Investigaciones Médico Sanitarias (CIMES), 29010 Málaga, Spain
- Department of Surgical Specialties, Biochemistry, and Immunology, Faculty of Medicine, University of Málaga, 29010 Málaga, Spain
| | - Isaac Plaza-Andrades
- Biomedical Research Institute of Malaga and Nanomedicine Platform (IBIMA Plataforma BIONAND), 29590 Málaga, Spain; (M.J.S.-Q.); (L.M.C.); (D.M.-V.); (M.M.); (V.M.B.-M.); (M.I.Q.-O.); (I.P.-A.); (M.F.J.-N.)
- Intercenter Clinical Management Unit of Medical Oncology, Hospitales Universitarios Regional y Virgen de la Victoria y Centro de Investigaciones Médico Sanitarias (CIMES), 29010 Málaga, Spain
| | - Jorge Rodríguez-Capitán
- Biomedical Research Institute of Malaga and Nanomedicine Platform (IBIMA Plataforma BIONAND), 29590 Málaga, Spain; (M.J.S.-Q.); (L.M.C.); (D.M.-V.); (M.M.); (V.M.B.-M.); (M.I.Q.-O.); (I.P.-A.); (M.F.J.-N.)
- Heart Area, Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain
- Biomedical Research Network Center for Cardiovascular Diseases (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain;
| | - Francisco Javier Pavón-Morón
- Biomedical Research Institute of Malaga and Nanomedicine Platform (IBIMA Plataforma BIONAND), 29590 Málaga, Spain; (M.J.S.-Q.); (L.M.C.); (D.M.-V.); (M.M.); (V.M.B.-M.); (M.I.Q.-O.); (I.P.-A.); (M.F.J.-N.)
- Heart Area, Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain
- Biomedical Research Network Center for Cardiovascular Diseases (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain;
| | - Manuel F. Jiménez-Navarro
- Biomedical Research Institute of Malaga and Nanomedicine Platform (IBIMA Plataforma BIONAND), 29590 Málaga, Spain; (M.J.S.-Q.); (L.M.C.); (D.M.-V.); (M.M.); (V.M.B.-M.); (M.I.Q.-O.); (I.P.-A.); (M.F.J.-N.)
- Heart Area, Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain
- Biomedical Research Network Center for Cardiovascular Diseases (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain;
| |
Collapse
|
18
|
Duque-Estrada P, Petersen IL. The sustainability paradox of processing plant proteins. NPJ Sci Food 2023; 7:38. [PMID: 37491430 PMCID: PMC10368665 DOI: 10.1038/s41538-023-00214-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 07/17/2023] [Indexed: 07/27/2023] Open
Affiliation(s)
- Patrícia Duque-Estrada
- Department of Food Science, Food Analytics and Biotechnology Section, University of Copenhagen, Rolighedsvej 26, 1958, Frederiksberg C, Denmark.
| | - Iben Lykke Petersen
- Department of Food Science, Food Analytics and Biotechnology Section, University of Copenhagen, Rolighedsvej 26, 1958, Frederiksberg C, Denmark
| |
Collapse
|
19
|
Zhang J, Urriola PE, Naeve SL, Shurson GC, Chen C. Counteracting Roles of Lipidic Aldehydes and Phenolic Antioxidants on Soy Protein Oxidation Defined by a Chemometric Survey of Solvent and Mechanically Extracted Soybean Meals. Antioxidants (Basel) 2023; 12:1419. [PMID: 37507956 PMCID: PMC10376880 DOI: 10.3390/antiox12071419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/07/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Soybean meal (SBM) is a premier source of protein for feeding food-producing animals. However, its nutritional value can be compromised by protein oxidation. In this study, a total of 54 sources of solvent extracted SBM (SSBM) and eight sources of mechanically extracted SBM (MSBM), collected from different commercial producers and geographic locations in the United States during the years 2020 and 2021, were examined by chemometric analysis to determine the extent of protein oxidation and its correlation with soybean oil extraction methods and non-protein components. The results showed substantial differences between SSBM and MSBM in the proximate analysis composition, protein carbonyl content, lipidic aldehydes, and antioxidants, as well as subtle differences between 2020 SSBM and 2021 SSBM samples in protein oxidation and moisture content. Correlation analysis further showed positive correlations between protein carbonyl content and multiple lipid parameters, including the ether extract, p-anisidine value, individual aldehydes, and total aldehydes. Among the antioxidants in SBM, negative correlations with protein carbonyl content were observed for total phenolic content and isoflavone glycoside concentrations, but not for Trolox equivalent antioxidant capacity (TEAC), α-tocopherol, and γ-tocopherol. Overall, soybean oil extraction methods, together with other factors such as enzyme treatment and environmental conditions, can significantly affect the proximate analysis composition, the protein and lipid oxidation status, and the antioxidant profile of SBM. Lipidic aldehydes and phenolic antioxidants play counteracting roles in the oxidation of soy protein. The range of protein carbonyl content measured in this study could serve as a reference to evaluate the protein quality of SBM from various sources used in animal feed.
Collapse
Affiliation(s)
- Junwei Zhang
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN 55108, USA
| | - Pedro E Urriola
- Department of Animal Science, University of Minnesota, St. Paul, MN 55108, USA
| | - Seth L Naeve
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN 55108, USA
| | - Gerald C Shurson
- Department of Animal Science, University of Minnesota, St. Paul, MN 55108, USA
| | - Chi Chen
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN 55108, USA
| |
Collapse
|
20
|
Feng R, Liang W, Liu Y, Luo Y, Tan Y, Hong H. Protein oxidation affected the digestibility and modification sites of myofibrillar proteins from bighead carp fillets treated with hydroxyl radicals and endogenous oxidizing system. Food Chem 2023; 409:135279. [PMID: 36603476 DOI: 10.1016/j.foodchem.2022.135279] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 12/01/2022] [Accepted: 12/19/2022] [Indexed: 12/25/2022]
Abstract
This study aimed to investigate the effect of hydroxyl radical oxidizing system (HROS) and endogenous oxidizing system (EOS, i.e., frozen storage at -20 °C) on protein oxidation, digestive properties, and peptide modification of myofibrillar proteins (MPs) in bighead carp (Hypophthalmichthys nobilis) fillets. The oxidation degree increased with the frozen time and H2O2 concentration as evidenced by carbonyl group generation and sulfhydryl group loss in MPs. The digestibility of protein declined gradually during frozen storage, while it increased after treatment with 5 mM H2O2 compared with no H2O2 intervention. More modification numbers and types were observed in the EOS group than HROS in digested MPs peptides, which might be due to the complexity of the frozen fillet system such as the presence of lipid. The potential conversion of α-aminoadipic semialdehyde (AAS) to α-aminoadipic acids (AAA) was observed in HROS. Additionally, the myosin heavy chain was more susceptible to oxidation among all MPs by EOS oxidation.
Collapse
Affiliation(s)
- Ruifang Feng
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 10083, China
| | - Wenyu Liang
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 10083, China
| | - Yueyue Liu
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 10083, China
| | - Yongkang Luo
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 10083, China; National Research and Development Center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Yuqing Tan
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 10083, China.
| | - Hui Hong
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 10083, China; Center of Food Colloids and Delivery for Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 10083, China.
| |
Collapse
|
21
|
Eazhumalai G, Kalaivendan RGT, Annapure US. Effect of atmospheric pin-to-plate cold plasma on oat protein: Structural, chemical, and foaming characteristics. Int J Biol Macromol 2023; 242:125103. [PMID: 37257535 DOI: 10.1016/j.ijbiomac.2023.125103] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/17/2023] [Accepted: 05/24/2023] [Indexed: 06/02/2023]
Abstract
The impact of novel pin-to-plate atmospheric cold plasma was investigated with input voltage (170 V, 230 V) and exposure time (15 & 30 min) on oat protein by studying structural (FTIR, circular dichroism (CD), UV-vis, Fluorescence), morphological (particle size analysis, SEM, turbidity), chemical (pH, redox potential (ORP), ζ potential, carbonyl, sulfhydryl, surface hydrophobicity), and foaming characteristics. The plasma treatment reduced the pH while increasing the ORP of the dispersions. These ionic environment changes affected the ζ potential and particle size leading to the formation of larger aggregates (170-15; 230-15) and distorted smaller ones (170-30; 230-30) as confirmed by SEM. The FTIR spectra showed reduced intensity at specific amide bands (1600-1700 cm-1) and also an increase in carbonyl stretching (1743 cm-1) representing oxidative carbonylation (increase in carbonyl content). Thus, the partial exposure of hydrophobic amino acids increases surface hydrophobicity. The altered secondary structure (rise in α-helix, decrement in β-sheets and turns), and tertiary structures were observed in circular dichroism (CD) and UV absorbance and fluorescence characteristics of proteins respectively. Furthermore, the increase in free sulfhydryl content and disulfide content was highly affected by the plasma treatments due to observed protein unfolding and aggregations. Besides, the increased solubility and reduced surface tension contributed to the improved foaming characteristics. Thus, plasma processing influences protein structure affecting their characteristics and other functionalities.
Collapse
Affiliation(s)
- Gunaseelan Eazhumalai
- Department of Food Engineering Technology, Institute of Chemical Technology, Mumbai 400019, India
| | | | - Uday S Annapure
- Department of Food Engineering Technology, Institute of Chemical Technology, Mumbai 400019, India; Institute of Chemical Technology, Marathwada Campus, Jalna 431213, India.
| |
Collapse
|
22
|
Carvalho LM, Rocha TC, Delgado J, Díaz-Velasco S, Madruga MS, Estévez M. Deciphering the underlying mechanisms of the oxidative perturbations and impaired meat quality in Wooden breast myopathy by label-free quantitative MS-based proteomics. Food Chem 2023; 423:136314. [PMID: 37167669 DOI: 10.1016/j.foodchem.2023.136314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/25/2023] [Accepted: 05/03/2023] [Indexed: 05/13/2023]
Abstract
The study aimed to investigate biochemical mechanisms occurred in Wooden breast (WB) chicken meat, with attention to the impact on meat quality. Commercial chicken breasts were classified as Normal (N, n = 12), WB-M (moderate degree; focal hardness on cranial region, n = 12) and WB-S (severe degree; extreme and diffused hardness over the entire surface, n = 12). Samples were analyzed for physico-chemical properties, oxidative damage to lipids and proteins, and discriminating sarcoplasmic proteins by using a Q-Exactive mass spectrometer. WB meat presented impaired composition and functionality and higher levels of lipid and protein oxidation markers than N meat. The proteomic profile of WB-S presents a dynamic regulation of the relevant proteins involved in redox homeostasis, carbohydrate, protein and lipid metabolisms. Proteomics results demonstrate that the physiological and metabolic processes of muscles affected by WB myopathy are involved in combating the inflammatory process and in repairing the damaged tissue by oxidative stress.
Collapse
Affiliation(s)
- Leila M Carvalho
- Postgraduate Program in Food Science and Technology. Department of Food Engineering, Federal University of Paraiba, João Pessoa, Paraíba, Brazil
| | - Thayse C Rocha
- Postgraduate Program in Food Science and Technology. Department of Food Engineering, Federal University of Paraiba, João Pessoa, Paraíba, Brazil
| | - Josué Delgado
- Higiene y Seguridad Alimentaria, Instituto Universitario de Investigación de Carne y Productos Cárnicos, Facultad de Veterinaria, Universidad de Extremadura, Avda. de las Ciencias s/n, 10003 Cáceres, Spain
| | - Silvia Díaz-Velasco
- Tecnología de los Alimentos, Instituto Universitario de Investigación de Carne y Productos Cárnicos, Facultad de Veterinaria, Universidad de Extremadura, Avda. de las Ciencias s/n, 10003 Cáceres, Spain
| | - Marta S Madruga
- Postgraduate Program in Food Science and Technology. Department of Food Engineering, Federal University of Paraiba, João Pessoa, Paraíba, Brazil
| | - Mario Estévez
- Tecnología de los Alimentos, Instituto Universitario de Investigación de Carne y Productos Cárnicos, Facultad de Veterinaria, Universidad de Extremadura, Avda. de las Ciencias s/n, 10003 Cáceres, Spain.
| |
Collapse
|
23
|
Tola AJ, Missihoun TD. Ammonium sulfate-based prefractionation improved proteome coverage and detection of carbonylated proteins in Arabidopsis thaliana leaf extract. PLANTA 2023; 257:62. [PMID: 36808312 DOI: 10.1007/s00425-023-04083-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 01/29/2023] [Indexed: 06/18/2023]
Abstract
Ammonium sulfate is well known to salt out proteins at high concentrations. The study revealed that it can serve to increase by 60% the total number of identified carbonylated proteins by LC-MS/MS. Protein carbonylation is a significant post-translational modification associated with reactive oxygen species signaling in animal and plant cells. However, the detection of carbonylated proteins involved in signaling is still challenging, as they only represent a small subset of the proteome in the absence of stress. In this study, we investigated the hypothesis that a prefractionation step with ammonium sulphate will improve the detection of the carbonylated proteins in a plant extract. For this, we extracted total protein from the Arabidopsis thaliana leaves and subjected the extract to stepwise precipitation with ammonium sulfate to 40%, 60%, and 80% saturation. The protein fractions were then analyzed by liquid chromatography-tandem mass spectrometry for protein identification. We found that all the proteins identified in the non-fractionated samples were also found in the prefractionated samples, indicating no loss was incurred during the prefractionation. About 45% more proteins were identified in the fractionated samples compared to the non-fractionated total crude extract. When the prefractionation steps were combined with the enrichment of carbonylated proteins labeled with a fluorescent hydrazide probe, several carbonylated proteins, which were unseen in the non-fractionated samples, became visible in the prefractionated samples. Consistently, the prefractionation method allowed to identify 63% more carbonylated proteins by mass spectrometry compared to the number of carbonylated proteins identified from the total crude extract without prefractionation. These results indicated that the ammonium sulfate-based proteome prefractionation can be used to improve proteome coverage and identification of carbonylated proteins from a complex proteome sample.
Collapse
Affiliation(s)
- Adesola Julius Tola
- Groupe de Recherche en Biologie Végétale (GRBV), Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, 3351 boul. des Forges, Trois-Rivières, QC, G9A 5H7, Canada
| | - Tagnon D Missihoun
- Groupe de Recherche en Biologie Végétale (GRBV), Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, 3351 boul. des Forges, Trois-Rivières, QC, G9A 5H7, Canada.
| |
Collapse
|
24
|
Feng F, Yin Y, Zhou L, Ma C, Zhang W. Effect of Nitric Oxide and Its Induced Protein S-Nitrosylation on the Structures and In Vitro Digestion Properties of Beef Myofibrillar Protein. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:2532-2540. [PMID: 36700649 DOI: 10.1021/acs.jafc.2c07804] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
This study aimed to investigate the effects of nitric oxide (NO) and its induced protein S-nitrosylation on the structures and digestion properties of beef myofibrillar protein (MP). The MP was treated with 0, 50, 250, 500, and 1000 μM concentrations of NO-donor S-nitrosoglutathione (GSNO) for 30 min at 37 °C. The results indicated that GSNO treatment significantly decreased the sulfhydryl contents whereas the carbonyl contents increased. Meanwhile, compared with the control group, the surface hydrophobicity, the intrinsic fluorescence intensity, and the α-helix content of proteins were decreased significantly with the enhancement of GSNO concentrations. In addition, 250 μM GSNO treatment increased the gastric digestibility of MP, while the gastrointestinal digestibility and the release of peptides were both inhibited by 500 and 1000 μM GSNO treatments. These data demonstrate that protein S-nitrosylation can affect the in vitro digestion properties of proteins by altering the physicochemical properties and structure of MP.
Collapse
Affiliation(s)
- Fan Feng
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education China, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing210095, China
| | - Yantao Yin
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education China, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing210095, China
| | - Lei Zhou
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education China, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing210095, China
| | - Chao Ma
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education China, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing210095, China
| | - Wangang Zhang
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education China, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing210095, China
| |
Collapse
|
25
|
Effect of active ice nucleation bacteria on freezing and the properties of surimi during frozen storage. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
26
|
Kilning invokes oxidative changes in malt proteins. Eur Food Res Technol 2022. [DOI: 10.1007/s00217-022-04144-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
AbstractBeneath glycation, oxidation reactions may take place at cereal proteins during production of malt. The extent of oxidative chemical changes at malt proteins has not yet been studied. In the present short communication, malt protein was characterized by the determination of free thiol groups and degree of methionine oxidation as well as the sites that are reactive to covalent modification by 2,4-dinitrophenylhydrazine (DNPH, “protein carbonylation”). Protein carbonylation in pale malts was around 1.5 nmol/mg protein and increased with increasing malt colour. Investigations on the protein pellet isolated for determination of carbonylation revealed that solubility and colour may disturb the quantification of carbonyl sites in roasted malts. Free thiols decreased with increasing malt colour already in pale malts (EBC < 10). The formation of methionine sulfoxide (MetSO) was intensified with increasing malt colour. An amount of 7–20% of methionine was converted to MetSO in pale and dark malt, whereas nearly 60% of methionine was oxidized to MetSO in roasted malts. The formation of methionine sulfone was negligible. This study shows that malt proteins suffer from oxidation during kilning, and future studies will have to show whether this supports the pro- or antioxidant activity of malt.
Collapse
|
27
|
Li S, Guo X, Shen Y, Pan J, Dong X. Effects of oxygen concentrations in modified atmosphere packaging on pork quality and protein oxidation. Meat Sci 2022; 189:108826. [PMID: 35429825 DOI: 10.1016/j.meatsci.2022.108826] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 03/12/2022] [Accepted: 04/08/2022] [Indexed: 10/18/2022]
Abstract
This study aimed to investigate the effects of oxygen concentrations in modified atmosphere packaging (MAP) on pork color and protein oxidation under refrigerated storage. Pork steaks were vacuum packaged or MAP packed with different levels of oxygen (40%, 60% and 80%), and stored for 14 days at 4 °C. After storage, the instrumental color, purge loss, cooking loss and shear fore were measured, and levels of protein oxidation in both the sarcoplasmic and myofibrillar proteins were quantified separately by the determination of carbonyl contents, thiol contents, loss of specific amino acid residues, and formation of α-aminoadipic semialdehyde. Results suggested that 40% of oxygen in MAP was sufficient to obtain highest redness, and higher oxygen levels showed little improvement but led to further protein carbonylation and meat toughening. Meanwhile, the sarcoplasmic proteins seemed to be more vulnerable to protein oxidation than the myofibrillar proteins. In particular, the formation of α-aminoadipic semialdehyde might contribute little to the carbonylation of both protein fractions, and possible reasons were discussed.
Collapse
Affiliation(s)
- Shengjie Li
- School of Food Science and Technology, Dalian Polytechnic University, Ganjingzi #1, 116304 Dalian, Liaoning, China; National Engineering Research Center of Seafood, Ganjingzi #1, 116304 Dalian, Liaoning, China.
| | - Xiuxia Guo
- School of Food Science and Technology, Dalian Polytechnic University, Ganjingzi #1, 116304 Dalian, Liaoning, China
| | - Yuqing Shen
- School of Food Science and Technology, Dalian Polytechnic University, Ganjingzi #1, 116304 Dalian, Liaoning, China
| | - Jinfeng Pan
- School of Food Science and Technology, Dalian Polytechnic University, Ganjingzi #1, 116304 Dalian, Liaoning, China; National Engineering Research Center of Seafood, Ganjingzi #1, 116304 Dalian, Liaoning, China
| | - Xiuping Dong
- School of Food Science and Technology, Dalian Polytechnic University, Ganjingzi #1, 116304 Dalian, Liaoning, China; National Engineering Research Center of Seafood, Ganjingzi #1, 116304 Dalian, Liaoning, China
| |
Collapse
|
28
|
Pang S, Wang Y, Hao R, Mráz J, Li S, Zheng Q, Pan J. UV
irradiation improved gel properties and chill‐stored stability of surimi gel. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Shiwen Pang
- National Engineering Research Center for Seafood, Collaborative Innovation Center of Provincial and Ministerial Co‐construction for Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, College of Food Science and Technology Dalian Polytechnic University Dalian 116034 China
| | - Yong Wang
- National Engineering Research Center for Seafood, Collaborative Innovation Center of Provincial and Ministerial Co‐construction for Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, College of Food Science and Technology Dalian Polytechnic University Dalian 116034 China
| | - Ruoyi Hao
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses Institute of Aquaculture and Protection of Waters České Budějovice 370 05 Czech Republic
| | - Jan Mráz
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses Institute of Aquaculture and Protection of Waters České Budějovice 370 05 Czech Republic
| | - Shengjie Li
- National Engineering Research Center for Seafood, Collaborative Innovation Center of Provincial and Ministerial Co‐construction for Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, College of Food Science and Technology Dalian Polytechnic University Dalian 116034 China
| | - Qilin Zheng
- National Engineering Research Center for Seafood, Collaborative Innovation Center of Provincial and Ministerial Co‐construction for Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, College of Food Science and Technology Dalian Polytechnic University Dalian 116034 China
| | - Jinfeng Pan
- National Engineering Research Center for Seafood, Collaborative Innovation Center of Provincial and Ministerial Co‐construction for Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, College of Food Science and Technology Dalian Polytechnic University Dalian 116034 China
| |
Collapse
|
29
|
|
30
|
Marrugo Padilla A, Rizzo G, Smaldini PL, Vaccaro J, Méndez Cuadro D, Rodríguez Cavallo E, Docena GH. Carbonylation induced by antibiotic and pesticide residues on casein increases its IgE binding and allergenicity. Free Radic Res 2022; 56:28-39. [DOI: 10.1080/10715762.2022.2032020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Albeiro Marrugo Padilla
- Analytical Chemistry and Biomedicine Group. Campus of Zaragocilla ancient building Cread. University of Cartagena. Cartagena-Colombia.
| | - Gastón Rizzo
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), UNLP, CONICET, asociado a CIC PBA, Facultad de Ciencias Exactas, Departamento de Ciencias Biológicas, La Plata, Argentina
| | - Paola L. Smaldini
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), UNLP, CONICET, asociado a CIC PBA, Facultad de Ciencias Exactas, Departamento de Ciencias Biológicas, La Plata, Argentina
| | - Julián Vaccaro
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), UNLP, CONICET, asociado a CIC PBA, Facultad de Ciencias Exactas, Departamento de Ciencias Biológicas, La Plata, Argentina
| | - Darío Méndez Cuadro
- Analytical Chemistry and Biomedicine Group. Campus of Zaragocilla ancient building Cread. University of Cartagena. Cartagena-Colombia.
| | - Erika Rodríguez Cavallo
- Analytical Chemistry and Biomedicine Group. Campus of Zaragocilla ancient building Cread. University of Cartagena. Cartagena-Colombia.
| | - Guillermo H. Docena
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), UNLP, CONICET, asociado a CIC PBA, Facultad de Ciencias Exactas, Departamento de Ciencias Biológicas, La Plata, Argentina
| |
Collapse
|