• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4612468)   Today's Articles (1591)   Subscriber (49386)
For: Koval IA, Belle C, Selmeczi K, Philouze C, Saint-Aman E, Schuitema AM, Gamez P, Pierre JL, Reedijk J. Catecholase activity of a μ-hydroxodicopper(II) macrocyclic complex: structures, intermediates and reaction mechanism. J Biol Inorg Chem 2005;10:739-50. [PMID: 16208496 DOI: 10.1007/s00775-005-0016-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2005] [Accepted: 07/29/2005] [Indexed: 10/25/2022]
Number Cited by Other Article(s)
1
Mohebbi Jahromi Z, Asadi Z, Eigner V, Dusek M, Rastegari B. A new phenoxo-bridged dicopper Schiff base Complex: Synthesis, Crystal Structure, DNA/BSA Interaction, Cytotoxicity Assay and Catecholase Activity. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.115891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
2
Akhtar MN, Shahid M, Ahmad MS, Zierkiewicz W, Michalczyk M, Taj MB, Khalid M, Hanif MA. Iron (III) complex exhibiting efficient catechol oxidase activity: Experimental, kinetic and theoretical approach. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
3
Salunke PS, Puranik AA, Kulkarni ND. Histamine derived dimer of µ-Chlorido-µ-Phenoxido Dicopper(II) complex as a Potential Enzyme Mimic with Catecholase activity. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.115700] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
4
Chen QC, Fridman N, Tumanskii B, Gross Z. A chromophore-supported structural and functional model of dinuclear copper enzymes, for facilitating mechanism of action studies. Chem Sci 2021;12:12445-12450. [PMID: 34603675 PMCID: PMC8480325 DOI: 10.1039/d1sc02593g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 08/09/2021] [Indexed: 11/25/2022]  Open
5
Homrich AM, Farias G, Amorim SM, Xavier FR, Gariani RA, Neves A, Terenzi H, Peralta RA. Effect of Chelate Ring Size of Binuclear Copper(II) Complexes on Catecholase Activity and DNA Cleavage. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202001170] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
6
Dolai M, Saha U. A simple Cu(II) complex of phenolic oxime: synthesis, crystal structure, supramolecular interactions, DFT calculation and catecholase activity study. Heliyon 2020;6:e04942. [PMID: 33043159 PMCID: PMC7536372 DOI: 10.1016/j.heliyon.2020.e04942] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 07/02/2020] [Accepted: 09/11/2020] [Indexed: 11/28/2022]  Open
7
Tuning the catecholase activity of bis(pyrazolyl)methane-based copper(II) complexes by substitutions of the ligand core: unraveling a dual O2/H2O2 oxidation mechanism. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119507] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
8
Ali I, Mandal B, Saha R, Ghosh R, Chandra Majee M, Mondal D, Mitra P, Mandal D. Mono and tri-nuclear cobalt(III) complexes with sterically constrained phenol based N2O2 ligand: Synthesis, structure and catechol oxidase activity. Polyhedron 2020. [DOI: 10.1016/j.poly.2020.114429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
9
Salonen P, Peuronen A, Lehtonen A. Bioinspired Mo, W and V complexes bearing a highly hydroxyl-functionalized Schiff base ligand. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119414] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
10
Synthesis, structure, DFT study and catechol oxidase activity of Cu(II) complex with sterically constrained phenol based ligand. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.04.110] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
11
Jana A, Brandão P, Jana H, Jana AD, Mondal G, Bera P, Santra A, Mahapatra AK, Bera P. Synthesis, structure and catalytic promiscuity of a napthyl-pyrazole Mn(II) complex and structure–activity relationships. J COORD CHEM 2019. [DOI: 10.1080/00958972.2019.1658192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
12
Sheoran M, Bhar K, Jain S, Rana M, Khan TA, Sharma AK. Phenoxo-bridged dicopper complexes: Syntheses, characterizations, crystal structures and catecholase activity. Polyhedron 2019. [DOI: 10.1016/j.poly.2019.01.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
13
Joy SR, Trufan E, Smith MD, Puscas C, Silaghi-Dumitrescu RL, Semeniuc RF. An unexpected μ4-oxido-bridged tetranuclear Cu(II) inverse coordination complex of a heptadentate bis(pyrazolyl)methane-based ligand: Synthesis, structure, spectroscopic properties, and catecholase activity. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2018.10.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
14
Biomimetics of mononuclear and dinuclear Cu(II) and Fe(III) complexes of a newly synthesized piperazyl Mannich base with or without thiocyanate towards catechol. MONATSHEFTE FUR CHEMIE 2018. [DOI: 10.1007/s00706-018-2291-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
15
Aggregation of mononuclear copper complexes by metal-oxidation-induced ligand deprotonation. Inorganica Chim Acta 2018. [DOI: 10.1016/j.ica.2017.08.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
16
Kinetic studies of the impact of thiocyanate moiety on the catalytic properties of Cu(II) and Fe(III) complexes of a new Mannich base. J Mol Struct 2018. [DOI: 10.1016/j.molstruc.2017.12.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
17
Singh O, Maji A, Singh UP, Ghosh K. Water-Soluble Copper Complex Derived from Ligand TETATAHaving NNN Donors: Studies on Rapid Degradation of Organic Dyes, Catecholase and Phenoxazinone Synthase Activities. ChemistrySelect 2018. [DOI: 10.1002/slct.201800045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
18
Gülzow J, Hörner G, Strauch P, Stritt A, Irran E, Grohmann A. Oxygen Delivery as a Limiting Factor in Modelling Dicopper(II) Oxidase Reactivity. Chemistry 2017;23:7009-7023. [PMID: 28094884 DOI: 10.1002/chem.201605868] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Indexed: 11/10/2022]
19
Kumari S, Mahato AK, Maurya A, Singh VK, Kesharwani N, Kachhap P, Koshevoy IO, Haldar C. Syntheses and characterization of monobasic tridentate Cu(ii) Schiff-base complexes for efficient oxidation of 3,5-di-tert-butylcatechol and oxidative bromination of organic substrates. NEW J CHEM 2017. [DOI: 10.1039/c7nj00957g] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
20
Saha M, Malviya N, Das M, Choudhuri I, Mobin SM, Pathak B, Mukhopadhyay S. Effect on catecholase activity and interaction with biomolecules of metal complexes containing differently tuned 5-substituted ancillary tetrazolato ligands. Polyhedron 2017. [DOI: 10.1016/j.poly.2016.09.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
21
Parween A, Naskar S, Mota AJ, Espinosa Ferao A, Chattopadhyay SK, Rivière E, Lewis W, Naskar S. C i -Symmetry, [2 × 2] grid, square copper complex with the N4,N5-bis(4-fluorophenyl)-1H-imidazole-4,5-dicarboxamide ligand: structure, catecholase activity, magnetic properties and DFT calculations. NEW J CHEM 2017. [DOI: 10.1039/c7nj01667k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
22
Catechol oxidase and phenoxazinone synthase: Biomimetic functional models and mechanistic studies. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2015.11.002] [Citation(s) in RCA: 170] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
23
Dey SK, Mukherjee A. Investigation of 3d-transition metal acetates in the oxidation of substituted dioxolene and phenols. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.molcata.2015.06.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
24
Chakraborty P, Adhikary J, Ghosh B, Sanyal R, Chattopadhyay SK, Bauzá A, Frontera A, Zangrando E, Das D. Relation between the Catalytic Efficiency of the Synthetic Analogues of Catechol Oxidase with Their Electrochemical Property in the Free State and Substrate-Bound State. Inorg Chem 2014;53:8257-69. [DOI: 10.1021/ic5005177] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
25
Dey SK, Mukherjee A. The synthesis, characterization and catecholase activity of dinuclear cobalt(ii/iii) complexes of an O-donor rich Schiff base ligand. NEW J CHEM 2014. [DOI: 10.1039/c4nj00715h] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
26
Ghosh T, Adhikary J, Chakraborty P, Sukul PK, Jana MS, Mondal TK, Zangrando E, Das D. A radical pathway in catecholase activity with nickel(ii) complexes of phenol based “end-off” compartmental ligands. Dalton Trans 2014;43:841-52. [DOI: 10.1039/c3dt51419f] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
27
Mechanism of a dinuclear copper complex catalyzed autoxidation of 3,5-di-tert-butylcatechol. Polyhedron 2014. [DOI: 10.1016/j.poly.2013.09.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
28
Allen SE, Walvoord RR, Padilla-Salinas R, Kozlowski MC. Aerobic copper-catalyzed organic reactions. Chem Rev 2013;113:6234-458. [PMID: 23786461 PMCID: PMC3818381 DOI: 10.1021/cr300527g] [Citation(s) in RCA: 1228] [Impact Index Per Article: 111.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
29
Mandal S, Mukherjee J, Lloret F, Mukherjee R. Modeling tyrosinase and catecholase activity using new m-Xylyl-based ligands with bidentate alkylamine terminal coordination. Inorg Chem 2012. [PMID: 23194383 DOI: 10.1021/ic3013848] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
30
Rocha BG, Wanke R, Guedes da Silva MFC, Luzyanin KV, Martins LM, Smolénski P, Pombeiro AJ. Reactivity of bulky tris(phenylpyrazolyl)methanesulfonate copper(I) complexes towards small unsaturated molecules. J Organomet Chem 2012. [DOI: 10.1016/j.jorganchem.2012.03.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
31
Dinuclear copper(II) complexes: Solvent dependent catecholase activity. Polyhedron 2012. [DOI: 10.1016/j.poly.2012.06.087] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
32
Comba P, Martin B, Muruganantham A, Straub J. Structure, Bonding, and Catecholase Mechanism of Copper Bispidine Complexes. Inorg Chem 2012;51:9214-25. [DOI: 10.1021/ic3004917] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
33
Guha A, Chattopadhyay T, Paul ND, Mukherjee M, Goswami S, Mondal TK, Zangrando E, Das D. Radical Pathway in Catecholase Activity with Zinc-Based Model Complexes of Compartmental Ligands. Inorg Chem 2012;51:8750-9. [DOI: 10.1021/ic300400v] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
34
Martínez A, Membrillo I, Ugalde-Saldívar VM, Gasque L. Dinuclear Copper Complexes with Imidazole Derivative Ligands: A Theoretical Study Related to Catechol Oxidase Activity. J Phys Chem B 2012;116:8038-44. [DOI: 10.1021/jp300444m] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
35
Biswas A, Das LK, Drew MGB, Aromí G, Gamez P, Ghosh A. Synthesis, Crystal Structures, Magnetic Properties and Catecholase Activity of Double Phenoxido-Bridged Penta-Coordinated Dinuclear Nickel(II) Complexes Derived from Reduced Schiff-Base Ligands: Mechanistic Inference of Catecholase Activity. Inorg Chem 2012;51:7993-8001. [DOI: 10.1021/ic202748m] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
36
Silavi R, Divsalar A, Saboury AA. A short review on the structure-function relationship of artificial catecholase/tyrosinase and nuclease activities of Cu-complexes. J Biomol Struct Dyn 2012;30:752-72. [PMID: 22731989 DOI: 10.1080/07391102.2012.689704] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
37
Arbuse A, Font M, Martínez MA, Fontrodona X, Prieto MJ, Moreno V, Sala X, Llobet A. DNA-Cleavage Induced by New Macrocyclic Schiff base Dinuclear Cu(I) Complexes Containing Pyridyl Pendant Arms. Inorg Chem 2009;48:11098-107. [DOI: 10.1021/ic901488j] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
38
Wanke R, Smoleński P, da Silva MFCG, Martins LMDRS, Pombeiro AJL. Cu(I) complexes bearing the new sterically demanding and coordination flexible tris(3-phenyl-1-pyrazolyl)methanesulfonate ligand and the water-soluble phosphine 1,3,5-triaza-7-phosphaadamantane or related ligands. Inorg Chem 2008;47:10158-68. [PMID: 18841929 DOI: 10.1021/ic801254b] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
39
Banu KS, Chattopadhyay T, Banerjee A, Bhattacharya S, Suresh E, Nethaji M, Zangrando E, Das D. Catechol Oxidase Activity of a Series of New Dinuclear Copper(II) Complexes with 3,5-DTBC and TCC as Substrates: Syntheses, X-ray Crystal Structures, Spectroscopic Characterization of the Adducts and Kinetic Studies. Inorg Chem 2008;47:7083-93. [DOI: 10.1021/ic701332w] [Citation(s) in RCA: 159] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
40
A dicopper complex with distant metal centers. Structure, magnetic properties, electrochemistry and catecholase activity. J Inorg Biochem 2008;102:1227-35. [DOI: 10.1016/j.jinorgbio.2007.12.032] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2007] [Revised: 11/15/2007] [Accepted: 12/17/2007] [Indexed: 11/19/2022]
41
Comba P, Kerscher M, Schiek W. Bispidine Coordination Chemistry. PROGRESS IN INORGANIC CHEMISTRY 2008. [DOI: 10.1002/9780470144428.ch9] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
42
Mijangos E, Reedijk J, Gasque L. Copper(ii) complexes of a polydentate imidazole-based ligand. pH effect on magnetic coupling and catecholase activity. Dalton Trans 2008:1857-63. [PMID: 18369492 DOI: 10.1039/b714283h] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
43
Grigoropoulou G, Christoforidis KC, Louloudi M, Deligiannakis Y. Structure-catalytic function relationship of SiO2-immobilized mononuclear Cu complexes: an EPR study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2007;23:10407-18. [PMID: 17764200 DOI: 10.1021/la700815d] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
44
Güell M, Siegbahn PEM. Theoretical study of the catalytic mechanism of catechol oxidase. J Biol Inorg Chem 2007;12:1251-64. [PMID: 17891425 DOI: 10.1007/s00775-007-0293-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2007] [Accepted: 08/16/2007] [Indexed: 10/22/2022]
45
Belle C, Selmeczi K, Torelli S, Pierre JL. Chemical tools for mechanistic studies related to catechol oxidase activity. CR CHIM 2007. [DOI: 10.1016/j.crci.2006.10.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
46
van der Vlugt JI, Meyer F. Homogeneous Copper-Catalyzed Oxidations. TOP ORGANOMETAL CHEM 2007. [DOI: 10.1007/3418_2006_060] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
47
Born K, Comba P, Daubinet A, Fuchs A, Wadepohl H. Catecholase activity of dicopper(II)-bispidine complexes: stabilities and structures of intermediates, kinetics and reaction mechanism. J Biol Inorg Chem 2006;12:36-48. [PMID: 16964505 DOI: 10.1007/s00775-006-0161-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2006] [Accepted: 08/09/2006] [Indexed: 10/24/2022]
48
Koval IA, Selmeczi K, Belle C, Philouze C, Saint-Aman E, Gautier-Luneau I, Schuitema AM, van Vliet M, Gamez P, Roubeau O, Lüken M, Krebs B, Lutz M, Spek AL, Pierre JL, Reedijk J. Catecholase Activity of a Copper(II) Complex with a Macrocyclic Ligand: Unraveling Catalytic Mechanisms. Chemistry 2006;12:6138-50. [PMID: 16832797 DOI: 10.1002/chem.200501600] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
49
Sreenivasulu B, Zhao F, Gao S, Vittal JJ. Synthesis, Structures and Catecholase Activity of a New Series of Dicopper(II) Complexes of Reduced Schiff Base Ligands. Eur J Inorg Chem 2006. [DOI: 10.1002/ejic.200600022] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
50
Koval IA, Gamez P, Belle C, Selmeczi K, Reedijk J. Synthetic models of the active site of catechol oxidase: mechanistic studies. Chem Soc Rev 2006;35:814-40. [PMID: 16936929 DOI: 10.1039/b516250p] [Citation(s) in RCA: 420] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
PrevPage 1 of 2 12Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA