1
|
Khajuria A, Alajangi HK, Sharma A, Kaur H, Sharma P, Negi S, Kumari L, Trivedi M, Yadav AK, Kumar R, Raghuvanshi RS, Kaur IP, Tyagi RK, Jaiswal PK, Lim YB, Barnwal RP, Singh G. Theranostics: aptamer-assisted carbon nanotubes as MRI contrast and photothermal agent for breast cancer therapy. DISCOVER NANO 2024; 19:145. [PMID: 39256285 PMCID: PMC11387581 DOI: 10.1186/s11671-024-04095-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/24/2024] [Indexed: 09/12/2024]
Abstract
Breast cancer is one of the leading causes of death among women globally, making its diagnosis and treatment challenging. The use of nanotechnology for cancer diagnosis and treatment is an emerging area of research. To address this issue, multiwalled carbon nanotubes (MWCNTs) were ligand exchanged with butyric acid (BA) to gain hydrophilic character. The successful functionalization was confirmed by FTIR spectroscopy. Surface morphology changes were observed using SEM, while TEM confirmed the structural integrity of the MWCNTs after functionalization. Particle size, zeta potential, and UV spectroscopy were also performed to further characterize the nanoparticles. The breast cancer aptamer specific to Mucin-1 (MUC-1) was then conjugated with the functionalized MWCNTs. These MWCNTs successfully targeted breast cancer cells (MDA-MB-231) as examined by cellular uptake studies and exhibited a reduction in cancer-induced inflammation, as evidenced by gene transcription (qPCR) and protein expression (immunoblotting) levels. Immunoblot and confocal-based immunofluorescence assay (IFA) indicated the ability of CNTs to induce photothermal cell death of MDA-MB-231 cells. Upon imaging, cancer cells were effectively visualized due to the MWCNTs' ability to act as magnetic resonance imaging (MRI) contrast agents. Additionally, MWCNTs demonstrated photothermal capabilities to eliminate bound cancer cells. Collectively, our findings pave the way for developing aptamer-labeled MWCNTs as viable "theranostic alternatives" for breast cancer treatment.
Collapse
Affiliation(s)
- Akhil Khajuria
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014, India
| | - Hema K Alajangi
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014, India
- Department of Biophysics, Panjab University, Chandigarh, 160014, India
| | - Akanksha Sharma
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014, India
- Department of Biophysics, Panjab University, Chandigarh, 160014, India
| | - Harinder Kaur
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014, India
| | - Prakriti Sharma
- Division of Cell Biology and Imunology, Biomedical Parasitology and Translational-Immunology Lab, CSIR-Institute of Microbial Technology (IMTECH), Chandigarh, 160036, India
| | - Sushmita Negi
- Division of Cell Biology and Imunology, Biomedical Parasitology and Translational-Immunology Lab, CSIR-Institute of Microbial Technology (IMTECH), Chandigarh, 160036, India
| | - Laxmi Kumari
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014, India
| | - Manisha Trivedi
- Indian Pharmacopoeia Commission, Ministry of Health and Family Welfare, Government of India, Ghaziabad, 201002, India
| | - Ashok Kumar Yadav
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014, India
| | - Robin Kumar
- Indian Pharmacopoeia Commission, Ministry of Health and Family Welfare, Government of India, Ghaziabad, 201002, India
| | - Rajeev Singh Raghuvanshi
- Indian Pharmacopoeia Commission, Ministry of Health and Family Welfare, Government of India, Ghaziabad, 201002, India
| | - Indu Pal Kaur
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014, India
| | - Rajeev K Tyagi
- Division of Cell Biology and Imunology, Biomedical Parasitology and Translational-Immunology Lab, CSIR-Institute of Microbial Technology (IMTECH), Chandigarh, 160036, India
| | - Pradeep Kumar Jaiswal
- Department of Biochemistry and Biophysics, Texas A & M University, College Station, TX, 77843, USA
| | - Yong-Beom Lim
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Korea.
| | | | - Gurpal Singh
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
2
|
Jayaswal N, Srivastava S, Kumar S, Belagodu Sridhar S, Khalid A, Najmi A, Zoghebi K, Alhazmi HA, Mohan S, Tambuwala MM. Precision arrows: Navigating breast cancer with nanotechnology siRNA. Int J Pharm 2024; 662:124403. [PMID: 38944167 DOI: 10.1016/j.ijpharm.2024.124403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/26/2024] [Accepted: 06/26/2024] [Indexed: 07/01/2024]
Abstract
Nanotechnology-based drug delivery systems, including siRNA, present an innovative approach to treating breast cancer, which disproportionately affects women. These systems enable personalized and targeted therapies, adept at managing drug resistance and minimizing off-target effects. This review delves into the current landscape of nanotechnology-derived siRNA transport systems for breast cancer treatment, discussing their mechanisms of action, preclinical and clinical research, therapeutic applications, challenges, and future prospects. Emphasis is placed on the importance of targeted delivery and precise gene silencing in improving therapeutic efficacy and patient outcomes. The review addresses specific hurdles such as specificity, biodistribution, immunological reactions, and regulatory approval, offering potential solutions and avenues for future research. SiRNA drug delivery systems hold promise in revolutionizing cancer care and improving patient outcomes, but realizing their full potential necessitates ongoing research, innovation, and collaboration. Understanding the intricacies of siRNA delivery mechanisms is pivotal for designing effective cancer treatments, overcoming challenges, and advancing siRNA-based therapies for various diseases, including cancer. The article provides a comprehensive review of the methods involved in siRNA transport for therapeutic applications, particularly in cancer treatment, elucidating the complex journey of siRNA molecules from extracellular space to intracellular targets. Key mechanisms such as endocytosis, receptor-mediated uptake, and membrane fusion are explored, alongside innovative delivery vehicles and technologies that enhance siRNA delivery efficiency. Moreover, the article discusses challenges and opportunities in the field, including issues related to specificity, biodistribution, immune response, and clinical translation. By comprehending the mechanisms of siRNA delivery, researchers can design and develop more effective siRNA-based therapies for various diseases, including cancer.
Collapse
Affiliation(s)
- Nandani Jayaswal
- Faculty of Pharmaceutical Sciences, Mahayogi Gorakhnath University, Gorakhpur, 273007, India
| | - Shriyansh Srivastava
- Department of Pharmacology, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi 273007, India; Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, India.
| | - Sachin Kumar
- Department of Pharmacology, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi 273007, India
| | | | - Asaad Khalid
- Substance Abuse and Toxicology Research Centre, Jazan University, Jazan 45142, Saudi Arabia.
| | - Asim Najmi
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Khalid Zoghebi
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Hassan A Alhazmi
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Syam Mohan
- Substance Abuse and Toxicology Research Centre, Jazan University, Jazan 45142, Saudi Arabia; School of Health Sciences, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India; Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India
| | - Murtaza M Tambuwala
- Lincoln Medical School, University of Lincoln, Brayford Pool Campus, Lincoln LN6 7TS, UK; RAK College of Pharmacy, RAK Medical and Health Sciences University, Ras Al Khaimah, UAE.
| |
Collapse
|
3
|
Ali AA, Belali TM, Abu-Alghayth MH, Alyahyawi Y, Abalkhail A, Hazazi A, Nassar SA, Khan FR, Shmrany HA, Syed SM. Non-coding RNAs and estrogen receptor signaling in breast cancer: Nanotechnology-based therapeutic approaches. Pathol Res Pract 2024; 263:155568. [PMID: 39288475 DOI: 10.1016/j.prp.2024.155568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/19/2024] [Accepted: 08/28/2024] [Indexed: 09/19/2024]
Abstract
This review investigates the regulatory role of non-coding RNAs (ncRNAs) in estrogen receptor (ER) signaling pathways, particularly in the context of breast cancer therapy, with an emphasis on the emerging potential of nanotechnology for drug delivery. The information was obtained from reputable databases, including PubMed, Elsevier, Springer, Wiley, Taylor, and Francis, which contain past and present research. Breast cancer remains the most prevalent cancer among women worldwide, and ER signaling mechanisms heavily influence its progression. Treatment options have traditionally encompassed surgery, chemotherapy, radiation therapy, targeted therapy, and hormone therapy. In recent decades, nanomedicine has emerged as a promising approach to breast cancer treatment. By passively targeting tumor cells and reducing toxicity, nanodrugs can overcome the challenges of conventional chemotherapy. Additionally, nanocarriers can stimulate tumor cells, enhancing treatment efficacy. Recent advancements in nanomedicine offer promising approaches for targeted cancer therapy, potentially overcoming the limitations of conventional treatments. This review explores the interactions between long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) with ER pathways, their impact on breast cancer progression, and how these interactions can be leveraged to enhance therapeutic efficacy through nanotechnology-based drug delivery systems.
Collapse
Affiliation(s)
- Amer Al Ali
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, University of Bisha, 255, Al Nakhil, Bisha 67714, Saudi Arabia
| | - Tareg M Belali
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, P.O. Box 255, Bisha 67714, Saudi Arabia
| | - Mohammed H Abu-Alghayth
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, P.O. Box 255, Bisha 67714, Saudi Arabia
| | - Yara Alyahyawi
- Department of Medical Laboratory Technology, College of Nursing and Health Sciences, Jazan University, Jazan, Saudi Arabia
| | - Adil Abalkhail
- Department Public Health, College of Applied Medical Sciences, Qassim University, Buraydah 51452, P.O. Box 6666, Saudi Arabia
| | - Ali Hazazi
- Department of Pathology and Laboratory Medicine, Security Forces Hospital Program, Riyadh, Saudi Arabia; College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Somia A Nassar
- Department of Laboratory Medical Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Saudi Arabia; Department of Parasitology & Animal Diseases, National Research Centre, 33 Bohouth St., Dokki, Giza 12622, Egypt
| | - Farhan R Khan
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, Al- Quwayiyah, Shaqra University, Riyadh, Saudi Arabia
| | - Humood Al Shmrany
- Department of Laboratory Medical Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Saudi Arabia.
| | - Shoaeb Mohammad Syed
- Department of Pharmaceutics, Dayanand College of Pharmacy, Barshi Road, Latur, MS, 413531, India.
| |
Collapse
|
4
|
Zeynalzadeh E, Khodadadi E, Khodadadi E, Ahmadian Z, Kazeminava F, Rasoulzadehzali M, Samadi Kafil H. Navigating the neurological frontier: Macromolecular marvels in overcoming blood-brain barrier challenges for advanced drug delivery. Heliyon 2024; 10:e35562. [PMID: 39170552 PMCID: PMC11336773 DOI: 10.1016/j.heliyon.2024.e35562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/29/2024] [Accepted: 07/31/2024] [Indexed: 08/23/2024] Open
Abstract
The blood-brain interface poses formidable obstacles in addressing neurological conditions such as Alzheimer's, Multiple Sclerosis, brain cancers, and cerebrovascular accidents. Serving as a safeguard against potential threats in the blood, this barrier hinders direct drug delivery to affected cells, necessitating specialized transport mechanisms. Within the realm of nanotechnology, the creation of nanoscale carriers, including macromolecules such as polymers, lipids, and metallic nanoparticles, is gaining prominence. These carriers, tailored in diverse forms and sizes and enriched with specific functional groups for enhanced penetration and targeting, are capturing growing interest. This revised abstract explores the macromolecular dimension in understanding how nanoparticles interact with the blood-brain barrier. It re-evaluates the structure and function of the blood-brain barrier, highlighting macromolecular nanocarriers utilized in drug delivery to the brain. The discussion delves into the intricate pathways through which drugs navigate the blood-brain barrier, emphasizing the distinctive attributes of macromolecular nanocarriers. Additionally, it explores recent innovations in nanotechnology and unconventional approaches to drug delivery. Ultimately, the paper addresses the intricacies and considerations in developing macromolecular-based nanomedicines for the brain, aiming to advance the creation and evolution of nanomedicines for neurological ailments.
Collapse
Affiliation(s)
- Elham Zeynalzadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ehsan Khodadadi
- Drugs Applied Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ehsaneh Khodadadi
- Drugs Applied Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zainab Ahmadian
- Department of Pharmaceutics, School of Pharmacy, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Fahimeh Kazeminava
- Drugs Applied Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Monireh Rasoulzadehzali
- Drugs Applied Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Samadi Kafil
- Drugs Applied Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
5
|
Liu C, Zhang Y, Wen J, Liu J, Huo M, Shen Y, Luo H, Zhang H. Red blood membrane camouflaging Bismuth nanoflowers designed for radio-photothermal therapy in lung cancer. J Drug Target 2024; 32:544-556. [PMID: 38469874 DOI: 10.1080/1061186x.2024.2329110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 03/05/2024] [Indexed: 03/13/2024]
Abstract
Radio-photothermal therapy is an effective modality for cancer treatment. To overcome the radio-resistance in the hypoxic microenvironment and improve the sensitivity of radiotherapy, metal nanoparticles, and radio-photothermal therapy are widely used in the research of improving the curative effect and reducing the side effects of radiotherapy. Here, we developed red blood membrane camouflaging bismuth nanoflowers (RBCM-BNF) with outstanding physiological stability and biodegradability for lung tumours. In vitro data proved that the RBCM-BNF had the greatest cancer cell-killing ability combined with X-ray irradiation and photo-thermal treatment. Meanwhile, in vivo studies revealed that RBCM-BNF can alleviate the hypoxic microenvironment and promote tumour cell apoptosis by inhibiting HIF-1α expression and increasing caspase-3 expression. Therefore, RBCM-BNF had a good radio-sensitising effect and might be a promising biomimetic nanoplatform as a therapeutic target for cancer.
Collapse
Affiliation(s)
- Chang Liu
- Department of Pharmaceutics, State Key Laboratory of Nature Medicines, China Pharmaceutical University, Nanjing, China
| | - Yuanyuan Zhang
- Department of Pharmacy, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, China
| | - Jing Wen
- Department of Pharmaceutics, State Key Laboratory of Nature Medicines, China Pharmaceutical University, Nanjing, China
| | - Ji Liu
- Department of Pharmaceutics, State Key Laboratory of Nature Medicines, China Pharmaceutical University, Nanjing, China
| | - Meirong Huo
- Department of Pharmaceutics, State Key Laboratory of Nature Medicines, China Pharmaceutical University, Nanjing, China
| | - Yan Shen
- Department of Pharmaceutics, State Key Laboratory of Nature Medicines, China Pharmaceutical University, Nanjing, China
| | - Hao Luo
- Department of Internal Medicine Oncology, Lianshui People's Hospital, Lianshui, Jiangsu Province, China
| | - Hui Zhang
- Department of Radiotherapy, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, China
| |
Collapse
|
6
|
Bento C, Katz M, Santos MMM, Afonso CAM. Striving for Uniformity: A Review on Advances and Challenges To Achieve Uniform Polyethylene Glycol. Org Process Res Dev 2024; 28:860-890. [PMID: 38660381 PMCID: PMC11036406 DOI: 10.1021/acs.oprd.3c00428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 03/01/2024] [Accepted: 03/08/2024] [Indexed: 04/26/2024]
Abstract
Poly(ethylene glycol) (PEG) is the polymer of choice in drug delivery systems due to its biocompatibility and hydrophilicity. For over 20 years, this polymer has been widely used in the drug delivery of small drugs, proteins, oligonucleotides, and liposomes, improving the stability and pharmacokinetics of many drugs. However, despite the extensive clinical experience with PEG, concerns have emerged related to its use. These include hypersensitivity, purity, and nonbiodegradability. Moreover, conventional PEG is a mixture of polymers that can complicate drug synthesis and purification leading to unwanted immunogenic reactions. Studies have shown that uniform PEGylated drugs may be more effective than conventional PEGylated drugs as they can overcome issues related to molecular heterogeneity and immunogenicity. This has led to significant research efforts to develop synthetic procedures to produce uniform PEGs (monodisperse PEGs). As a result, iterative step-by-step controlled synthesis methods have been created over time and have shown promising results. Nonetheless, these procedures have presented numerous challenges due to their iterative nature and the requirement for multiple purification steps, resulting in increased costs and time consumption. Despite these challenges, the synthetic procedures went through several improvements. This review summarizes and discusses recent advances in the synthesis of uniform PEGs and its derivatives with a focus on overall yields, scalability, and purity of the polymers. Additionally, the available characterization methods for assessing polymer monodispersity are discussed as well as uniform PEG applications, side effects, and possible alternative polymers that can overcome the drawbacks.
Collapse
Affiliation(s)
- Cláudia Bento
- Hovione
Farmaciência S.A., Estrada do Paço do Lumiar, Campus do Lumiar, Edifício
R, 1649-038 Lisboa, Portugal
- Research
Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003 Lisboa, Portugal
| | - Marianna Katz
- Hovione
Farmaciência S.A., Estrada do Paço do Lumiar, Campus do Lumiar, Edifício
R, 1649-038 Lisboa, Portugal
| | - Maria M. M. Santos
- Research
Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003 Lisboa, Portugal
| | - Carlos A. M. Afonso
- Research
Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003 Lisboa, Portugal
| |
Collapse
|
7
|
Yu X, Zhu L. Nanoparticles for the Treatment of Bone Metastasis in Breast Cancer: Recent Advances and Challenges. Int J Nanomedicine 2024; 19:1867-1886. [PMID: 38414525 PMCID: PMC10898486 DOI: 10.2147/ijn.s442768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 02/15/2024] [Indexed: 02/29/2024] Open
Abstract
Although the frequency of bone metastases from breast cancer has increased, effective treatment is lacking, prompting the development of nanomedicine, which involves the use of nanotechnology for disease diagnosis and treatment. Nanocarrier drug delivery systems offer several advantages over traditional drug delivery methods, such as higher reliability and biological activity, improved penetration and retention, and precise targeting and delivery. Various nanoparticles that can selectively target tumor cells without causing harm to healthy cells or organs have been synthesized. Recent advances in nanotechnology have enabled the diagnosis and prevention of metastatic diseases as well as the ability to deliver complex molecular "cargo" particles to metastatic regions. Nanoparticles can modulate systemic biodistribution and enable the targeted accumulation of therapeutic agents. Several delivery strategies are used to treat bone metastases, including untargeted delivery, bone-targeted delivery, and cancer cell-targeted delivery. Combining targeted agents with nanoparticles enhances the selective delivery of payloads to breast cancer bone metastatic lesions, providing multiple delivery advantages for treatment. In this review, we describe recent advances in nanoparticle development for treating breast cancer bone metastases.
Collapse
Affiliation(s)
- Xianzhe Yu
- Department of Medical Oncology, Cancer Center & Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, Sichuan Province, People's Republic of China
- Department of Gastrointestinal Surgery, Chengdu Second People's Hospital, Chengdu, Sichuan Province, People's Republic of China
| | - Lingling Zhu
- Department of Medical Oncology, Cancer Center & Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, Sichuan Province, People's Republic of China
| |
Collapse
|
8
|
Nag S, Mitra O, Tripathi G, Adur I, Mohanto S, Nama M, Samanta S, Gowda BHJ, Subramaniyan V, Sundararajan V, Kumarasamy V. Nanomaterials-assisted photothermal therapy for breast cancer: State-of-the-art advances and future perspectives. Photodiagnosis Photodyn Ther 2024; 45:103959. [PMID: 38228257 DOI: 10.1016/j.pdpdt.2023.103959] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/16/2023] [Accepted: 12/29/2023] [Indexed: 01/18/2024]
Abstract
Breast cancer (BC) remains an enigmatic fatal modality ubiquitously prevalent in different parts of the world. Contemporary medicines face severe challenges in remediating and healing breast cancer. Due to its spatial specificity and nominal invasive therapeutic regime, photothermal therapy (PTT) has attracted much scientific attention down the lane. PTT utilizes a near-infrared (NIR) light source to irradiate the tumor target intravenously or non-invasively, which is converted into heat energy over an optical fibre. Dynamic progress in nanomaterial synthesis was achieved with specialized visual, physicochemical, biological, and pharmacological features to make up for the inadequacies and expand the horizon of PTT. Numerous nanomaterials have substantial NIR absorption and can function as efficient photothermal transducers. It is achievable to limit the wavelength range of an absorbance peak for specific nanomaterials by manipulating their synthesis, enhancing the precision and quality of PTT. Along the same lines, various nanomaterials are conjugated with a wide range of surface-modifying chemicals, including polymers and antibodies, which may modify the persistence of the nanomaterial and diminish toxicity concerns. In this article, we tend to put forth specific insights and fundamental conceptualizations on pre-existing PTT and its advances upon conjugation with different biocompatible nanomaterials working in synergy to combat breast cancer, encompassing several strategies like immunotherapy, chemotherapy, photodynamic therapy, and radiotherapy coupled with PTT. Additionally, the role or mechanisms of nanoparticles, as well as possible alternatives to PTT, are summarized as a distinctive integral aspect in this article.
Collapse
Affiliation(s)
- Sagnik Nag
- Department of Bio-Sciences, School of Bio-Sciences & Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India; Integrative Multiomics Lab, School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India; Pharmacology Unit, Jeffrey Cheah School of Medicine and Health Sciences (JCSMHS), Monash University Malaysia, Bandar Sunway 47500 Selangor Darul Ehsan, Malaysia.
| | - Oishi Mitra
- Department of Bio-Sciences, School of Bio-Sciences & Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India; Integrative Multiomics Lab, School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Garima Tripathi
- Department of Bio-Sciences, School of Bio-Sciences & Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Israrahmed Adur
- Department of Bio-Sciences, School of Bio-Sciences & Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Sourav Mohanto
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka 575018, India
| | - Muskan Nama
- Department of Bio-Sciences, School of Bio-Sciences & Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Souvik Samanta
- Department of Bio-Sciences, School of Bio-Sciences & Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - B H Jaswanth Gowda
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka 575018, India; School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom
| | - Vetriselvan Subramaniyan
- Pharmacology Unit, Jeffrey Cheah School of Medicine and Health Sciences (JCSMHS), Monash University Malaysia, Bandar Sunway 47500 Selangor Darul Ehsan, Malaysia.
| | - Vino Sundararajan
- Integrative Multiomics Lab, School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India.
| | - Vinoth Kumarasamy
- Department of Parasitology and Medical Entomology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, 56000 Cheras, Kuala Lumpur, Malaysia.
| |
Collapse
|
9
|
Patel H, Li J, Bo L, Mehta R, Ashby CR, Wang S, Cai W, Chen ZS. Nanotechnology-based delivery systems to overcome drug resistance in cancer. MEDICAL REVIEW (2021) 2024; 4:5-30. [PMID: 38515777 PMCID: PMC10954245 DOI: 10.1515/mr-2023-0058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/24/2024] [Indexed: 03/23/2024]
Abstract
Cancer nanomedicine is defined as the application of nanotechnology and nanomaterials for the formulation of cancer therapeutics that can overcome the impediments and restrictions of traditional chemotherapeutics. Multidrug resistance (MDR) in cancer cells can be defined as a decrease or abrogation in the efficacy of anticancer drugs that have different molecular structures and mechanisms of action and is one of the primary causes of therapeutic failure. There have been successes in the development of cancer nanomedicine to overcome MDR; however, relatively few of these formulations have been approved by the United States Food and Drug Administration for the treatment of cancer. This is primarily due to the paucity of knowledge about nanotechnology and the fundamental biology of cancer cells. Here, we discuss the advances, types of nanomedicines, and the challenges regarding the translation of in vitro to in vivo results and their relevance to effective therapies.
Collapse
Affiliation(s)
- Harsh Patel
- College of Pharmacy and Health Sciences, St. John’s University, New York, NY, USA
| | - Jiaxin Li
- College of Pharmacy and Health Sciences, St. John’s University, New York, NY, USA
- School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua, Hunan Province, China
| | - Letao Bo
- College of Pharmacy and Health Sciences, St. John’s University, New York, NY, USA
| | - Riddhi Mehta
- St. John’s College of Liberal Arts and Sciences, St. John’s University, New York, NY, USA
| | - Charles R. Ashby
- College of Pharmacy and Health Sciences, St. John’s University, New York, NY, USA
| | - Shanzhi Wang
- College of Pharmacy and Health Sciences, St. John’s University, New York, NY, USA
| | - Wei Cai
- School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua, Hunan Province, China
| | - Zhe-Sheng Chen
- College of Pharmacy and Health Sciences, St. John’s University, New York, NY, USA
| |
Collapse
|
10
|
Ding X, Zhu C, Wang W, Li M, Ma C, Gao B. SIRT1 is a regulator of autophagy: Implications for the progression and treatment of myocardial ischemia-reperfusion. Pharmacol Res 2024; 199:106957. [PMID: 37820856 DOI: 10.1016/j.phrs.2023.106957] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 09/09/2023] [Accepted: 10/08/2023] [Indexed: 10/13/2023]
Abstract
SIRT1 is a highly conserved nicotinamide adenine dinucleotide (NAD+)-dependent histone deacetylase. It is involved in the regulation of various pathophysiological processes, including cell proliferation, survival, differentiation, autophagy, and oxidative stress. Therapeutic activation of SIRT1 protects the heart and cardiomyocytes from pathology-related stress, particularly myocardial ischemia/reperfusion (I/R). Autophagy is an important metabolic pathway for cell survival during energy or nutrient deficiency, hypoxia, or oxidative stress. Autophagy is a double-edged sword in myocardial I/R injury. The activation of autophagy during the ischemic phase removes excess metabolic waste and helps ensure cardiomyocyte survival, whereas excessive autophagy during reperfusion depletes the cellular components and leads to autophagic cell death. Increasing research on I/R injury has indicated that SIRT1 is involved in the process of autophagy and regulates myocardial I/R. SIRT1 regulates autophagy through various pathways, such as the deacetylation of FOXOs, ATGs, and LC3. Recent studies have confirmed that SIRT1-mediated autophagy plays different roles at different stages of myocardial I/R injury. By targeting the mechanism of SIRT1-mediated autophagy at different stages of I/R injury, new small-molecule drugs, miRNA activators, or blockers can be developed. For example, resveratrol, sevoflurane, quercetin, and melatonin in the ischemic stage, coptisine, curcumin, berberine, and some miRNAs during reperfusion, were involved in regulating the SIRT1-autophagy axis, exerting a cardioprotective effect. Here, we summarize the possible mechanisms of autophagy regulation by SIRT1 in myocardial I/R injury and the related molecular drug applications to identify strategies for treating myocardial I/R injury.
Collapse
Affiliation(s)
- Xiaoqing Ding
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China
| | - Chenyu Zhu
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China
| | - Wenhong Wang
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China
| | - Mengying Li
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China
| | - Chunwei Ma
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China
| | - Binghong Gao
- School of Athletic Performance, Shanghai University of Sport, Shanghai 200438, China.
| |
Collapse
|
11
|
Rahman M, Afzal O, Ullah SNM, Alshahrani MY, Alkhathami AG, Altamimi ASA, Almujri SS, Almalki WH, Shorog EM, Alossaimi MA, Mandal AK, abdulrahman A, Sahoo A. Nanomedicine-Based Drug-Targeting in Breast Cancer: Pharmacokinetics, Clinical Progress, and Challenges. ACS OMEGA 2023; 8:48625-48649. [PMID: 38162753 PMCID: PMC10753706 DOI: 10.1021/acsomega.3c07345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/08/2023] [Accepted: 11/16/2023] [Indexed: 01/03/2024]
Abstract
Breast cancer (BC) is a malignant neoplasm that begins in the breast tissue. After skin cancer, BC is the second most common type of cancer in women. At the end of 2040, the number of newly diagnosed BC cases is projected to increase by over 40%, reaching approximately 3 million worldwide annually. The hormonal and chemotherapeutic approaches based on conventional formulations have inappropriate therapeutic effects and suboptimal pharmacokinetic responses with nonspecific targeting actions. To overcome such issues, the use of nanomedicines, including liposomes, nanoparticles, micelles, hybrid nanoparticles, etc., has gained wider attention in the treatment of BC. Smaller dimensional nanomedicine (especially 50-200 nm) exhibited improved in vivo effectiveness, such as better tissue penetration and more effective tumor suppression through enhanced retention and permeation, as well as active targeting of the drug. Additionally, nanotechnology, which further extended and developed theranostic nanomedicine by incorporating diagnostic and imaging agents in one platform, has been applied to BC. Furthermore, hybrid and theranostic nanomedicine has also been explored for gene delivery as anticancer therapeutics in BC. Moreover, the nanocarriers' size, shape, surface charge, chemical compositions, and surface area play an important role in the nanocarriers' stability, cellular absorption, cytotoxicity, cellular uptake, and toxicity. Additionally, nanomedicine clinical translation for managing BC remains a slow process. However, a few cases are being used clinically, and their progress with the current challenges is addressed in this Review. Therefore, this Review extensively discusses recent advancements in nanomedicine and its clinical challenges in BC.
Collapse
Affiliation(s)
- Mahfoozur Rahman
- Department
of Pharmaceutical Sciences, Shalom Institute of Health and Allied
Sciences, Sam Higginbottom University of
Agriculture, Technology & Sciences, Allahabad, Uttar Pradesh 211007, India
| | - Obaid Afzal
- Department
of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Shehla Nasar Mir
Najib Ullah
- Phyto
Pharmaceuticals Research Lab, Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Sciences and Research, Jamia
Hamdard University, Hamdard Nagar, New Delhi, Delhi 110062, India
| | - Mohammad Y. Alshahrani
- Department
of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, P.O. Box 61413, Abha 9088, Saudi Arabia
| | - Ali G. Alkhathami
- Department
of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, P.O. Box 61413, Abha 9088, Saudi Arabia
| | | | - Salem Salman Almujri
- Department
of Pharmacology, College of Pharmacy, King
Khalid University, Asir-Abha 61421, Saudi Arabia
| | - Waleed H Almalki
- Department
of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Eman M. Shorog
- Department
of Clinical Pharmacy, Faculty of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia
| | - Manal A Alossaimi
- Department
of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Ashok Kumar Mandal
- Department
of Pharmacology, Faculty of Medicine, University
Malaya, Kuala Lumpur 50603, Malaysia
| | - Alhamyani abdulrahman
- Pharmaceuticals
Chemistry Department, Faculty of Clinical Pharmacy, Al Baha University, Al Baha 65779, Saudi Arabia
| | - Ankit Sahoo
- Department
of Pharmaceutical Sciences, Shalom Institute of Health and Allied
Sciences, Sam Higginbottom University of
Agriculture, Technology & Sciences, Allahabad, Uttar Pradesh 211007, India
| |
Collapse
|
12
|
Lu Y, Gu F, Ma Y, Li R, Luo Y, Da X, Jiang L, Li X, Liu Y. Simultaneous Delivery of Doxorubicin and EZH2-Targeting siRNA by Vortex Magnetic Nanorods Synergistically Improved Anti-Tumor Efficacy in Triple-Negative Breast Cancer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301307. [PMID: 37376877 DOI: 10.1002/smll.202301307] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/19/2023] [Indexed: 06/29/2023]
Abstract
Triple-negative breast cancer (TNBC), one of the most aggressive types of breast cancer, currently lacks a targeted therapy and has a high clinical recurrence rate. The present study reports an engineered magnetic nanodrug based on Fe3 O4 vortex nanorods coated with a macrophage membrane loaded with doxorubicin (DOX) and Enhancer of zeste 2 polycomb repressive complex 2 subunit (EZH2) siRNA. This novel nanodrug displays excellent tissue penetration and preferential tumor accumulation. More importantly, it significantly increases tumor suppression compared to chemotherapy, suggesting the synergistic activity of the combination of doxorubicin and EZH2-inhibition. Importantly, owing to tumor-targeted delivery, nanomedicine shows an excellent safety profile after systemic delivery, unlike conventional chemotherapy. In summary, chemotherapy and gene therapy are combined into a novel magnetic nanodrug carrying doxorubicin and EZH2 siRNA, which shows promising clinical application potential in TNBC therapy.
Collapse
Affiliation(s)
- Yunshu Lu
- Department of Breast Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, P. R. China
| | - Fenfen Gu
- Department of Clinical Pharmacy, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, P. R. China
| | - Yuwei Ma
- Department of Breast Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, P. R. China
| | - Ruonan Li
- Department of Clinical Pharmacy, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, P. R. China
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, P. R. China
| | - Yi Luo
- Biotheus Inc., Guangdong Province, Zhuhai, 519080, P. R. China
- Clinical Pharmacy Innovation Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, P. R. China
| | - Xianhong Da
- Department of Clinical Pharmacy, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, P. R. China
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, P. R. China
| | - Lan Jiang
- Department of Clinical Pharmacy, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, P. R. China
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, P. R. China
| | - Xiang Li
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, P. R. China
| | - Yan Liu
- Department of Clinical Pharmacy, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, P. R. China
- Clinical Pharmacy Innovation Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, P. R. China
| |
Collapse
|
13
|
Shi C, Jian C, Wang L, Gao C, Yang T, Fu Z, Wu T. Dendritic cell hybrid nanovaccine for mild heat inspired cancer immunotherapy. J Nanobiotechnology 2023; 21:347. [PMID: 37752555 PMCID: PMC10521411 DOI: 10.1186/s12951-023-02106-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/14/2023] [Indexed: 09/28/2023] Open
Abstract
Cancer therapeutic vaccine can induce antigen-specific immune response, which has shown great potential in cancer immunotherapy. As the key factor of vaccine, antigen plays a central role in eliciting antitumor immunity. However, the insufficient antigen delivery and low efficiency of antigen presentation by dendritic cells (DCs) have greatly restricted the therapeutic efficiency of vaccine. Here we developed a kind of DC hybrid zinc phosphate nanoparticles to co-deliver antigenic peptide and photosensitive melanin. Owing to the chelating ability of Zn2+, the nanoparticles can co-encapsulate antigenic peptide and melanin with high efficiency. The nanovaccine showed good physiological stability with the hydration particle size was approximately 30 nm, and zeta potential was around - 10 mV. The nanovaccine showed homologous targeting effect to DCs in vivo and in vitro, efficiently delivering antigen to DCs. Meanwhile, the nanovaccine could effectively reflux to the tumor-draining lymph nodes. When combined with near-infrared irradiation, the nanovaccine induced effective mild heat in vitro and in vivo to promote antigen presentation. After administrating to MC38 tumor-bearing mice, the hybrid nanovaccine effectively promoted the maturation of DCs, the expansion of cytotoxic T lymphocytes and helper T cells, and the secretion of immunostimulatory cytokines, thereby significantly inhibiting tumor growth.
Collapse
Affiliation(s)
- Chen Shi
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, 430022, China
| | - Chen Jian
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Lulu Wang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Chen Gao
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ting Yang
- Affiliated Hospital of Yunnan University, Kunming, 650000, China
| | - Zhiwen Fu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, 430022, China
| | - Tingting Wu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, 430022, China.
| |
Collapse
|
14
|
Villalobos Gutiérrez PT, Muñoz Carrillo JL, Sandoval Salazar C, Viveros Paredes JM, Gutiérrez Coronado O. Functionalized Metal Nanoparticles in Cancer Therapy. Pharmaceutics 2023; 15:1932. [PMID: 37514119 PMCID: PMC10383728 DOI: 10.3390/pharmaceutics15071932] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Currently, there are many studies on the application of nanotechnology in therapy. Metallic nanoparticles are promising nanomaterials in cancer therapy; however, functionalization of these nanoparticles with biomolecules has become relevant as their effect on cancer cells is considerably increased by photothermal and photodynamic therapies, drug nanocarriers, and specificity by antibodies, resulting in new therapies that are more specific against different types of cancer. This review describes studies on the effect of functionalized palladium, gold, silver and platinum nanoparticles in the treatment of cancer, these nanoparticles themselves show an anticancer effect. This effect is further enhanced when the NPs are functionalized with either antibodies, DNA, RNA, peptides, proteins, or folic acid and other molecules. These NPs can penetrate the cell and accumulate in the tumor tissue, resulting in a cytotoxic effect through the generation of ROS, the induction of apoptosis, cell cycle arrest, DNA fragmentation, and a photothermal effect. NP-based therapy is a new strategy that can be used synergistically with chemotherapy and radiotherapy to achieve more effective therapies and reduce side effects.
Collapse
Affiliation(s)
| | | | - Cuauhtémoc Sandoval Salazar
- División de Ciencias de la Salud e Ingenierías, Campus Celaya-Salvatierra, Universidad de Guanajuato, Celaya 38060, Mexico
| | - Juan Manuel Viveros Paredes
- Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Guadalajara 44430, Mexico
| | | |
Collapse
|
15
|
Aalhate M, Mahajan S, Singh H, Guru SK, Singh PK. Nanomedicine in therapeutic warfront against estrogen receptor-positive breast cancer. Drug Deliv Transl Res 2023; 13:1621-1653. [PMID: 36795198 DOI: 10.1007/s13346-023-01299-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/06/2023] [Indexed: 02/17/2023]
Abstract
Breast cancer (BC) is the most frequently diagnosed malignancy in women worldwide. Almost 70-80% of cases of BC are curable at the early non-metastatic stage. BC is a heterogeneous disease with different molecular subtypes. Around 70% of breast tumors exhibit estrogen-receptor (ER) expression and endocrine therapy is used for the treatment of these patients. However, there are high chances of recurrence in the endocrine therapy regimen. Though chemotherapy and radiation therapy have substantially improved survival rates and treatment outcomes in BC patients, there is an increased possibility of the development of resistance and dose-limiting toxicities. Conventional treatment approaches often suffer from low bioavailability, adverse effects due to the non-specific action of chemotherapeutics, and low antitumor efficacy. Nanomedicine has emerged as a conspicuous strategy for delivering anticancer therapeutics in BC management. It has revolutionized the area of cancer therapy by increasing the bioavailability of the therapeutics and improving their anticancer efficacy with reduced toxicities on healthy tissues. In this article, we have highlighted various mechanisms and pathways involved in the progression of ER-positive BC. Further, different nanocarriers delivering drugs, genes, and natural therapeutic agents for surmounting BC are the spotlights of this article.
Collapse
Affiliation(s)
- Mayur Aalhate
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Srushti Mahajan
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Hoshiyar Singh
- Department of Biological Science, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, India
| | - Santosh Kumar Guru
- Department of Biological Science, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, India
| | - Pankaj Kumar Singh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India.
| |
Collapse
|
16
|
Hirschbiegel CM, Zhang X, Huang R, Cicek YA, Fedeli S, Rotello VM. Inorganic nanoparticles as scaffolds for bioorthogonal catalysts. Adv Drug Deliv Rev 2023; 195:114730. [PMID: 36791809 PMCID: PMC10170407 DOI: 10.1016/j.addr.2023.114730] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/15/2023]
Abstract
Bioorthogonal transition metal catalysts (TMCs) transform therapeutically inactive molecules (pro-drugs) into active drug compounds. Inorganic nanoscaffolds protect and solubilize catalysts while offering a flexible design space for decoration with targeting elements and stimuli-responsive activity. These "drug factories" can activate pro-drugs in situ, localizing treatment to the disease site and minimizing off-target effects. Inorganic nanoscaffolds provide structurally diverse scaffolds for encapsulating TMCs. This ability to define the catalyst environment can be employed to enhance the stability and selectivity of the TMC, providing access to enzyme-like bioorthogonal processes. The use of inorganic nanomaterials as scaffolds TMCs and the use of these bioorthogonal nanozymes in vitro and in vivo applications will be discussed in this review.
Collapse
Affiliation(s)
| | - Xianzhi Zhang
- Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant St, Amherst, MA 01003, USA
| | - Rui Huang
- Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant St, Amherst, MA 01003, USA
| | - Yagiz Anil Cicek
- Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant St, Amherst, MA 01003, USA
| | - Stefano Fedeli
- Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant St, Amherst, MA 01003, USA
| | - Vincent M Rotello
- Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant St, Amherst, MA 01003, USA.
| |
Collapse
|
17
|
Kutumova EO, Akberdin IR, Kiselev IN, Sharipov RN, Egorova VS, Syrocheva AO, Parodi A, Zamyatnin AA, Kolpakov FA. Physiologically Based Pharmacokinetic Modeling of Nanoparticle Biodistribution: A Review of Existing Models, Simulation Software, and Data Analysis Tools. Int J Mol Sci 2022; 23:12560. [PMID: 36293410 PMCID: PMC9604366 DOI: 10.3390/ijms232012560] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/07/2022] [Accepted: 10/14/2022] [Indexed: 11/30/2022] Open
Abstract
Cancer treatment and pharmaceutical development require targeted treatment and less toxic therapeutic intervention to achieve real progress against this disease. In this scenario, nanomedicine emerged as a reliable tool to improve drug pharmacokinetics and to translate to the clinical biologics based on large molecules. However, the ability of our body to recognize foreign objects together with carrier transport heterogeneity derived from the combination of particle physical and chemical properties, payload and surface modification, make the designing of effective carriers very difficult. In this scenario, physiologically based pharmacokinetic modeling can help to design the particles and eventually predict their ability to reach the target and treat the tumor. This effort is performed by scientists with specific expertise and skills and familiarity with artificial intelligence tools such as advanced software that are not usually in the "cords" of traditional medical or material researchers. The goal of this review was to highlight the advantages that computational modeling could provide to nanomedicine and bring together scientists with different background by portraying in the most simple way the work of computational developers through the description of the tools that they use to predict nanoparticle transport and tumor targeting in our body.
Collapse
Affiliation(s)
- Elena O. Kutumova
- Scientific Center for Information Technologies and Artificial Intelligence, Sirius University of Science and Technology, 354340 Sochi, Russia
- Federal Research Center for Information and Computational Technologies, 630090 Novosibirsk, Russia
- BIOSOFT.RU, Ltd., 630058 Novosibirsk, Russia
| | - Ilya R. Akberdin
- Scientific Center for Information Technologies and Artificial Intelligence, Sirius University of Science and Technology, 354340 Sochi, Russia
- BIOSOFT.RU, Ltd., 630058 Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Ilya N. Kiselev
- Scientific Center for Information Technologies and Artificial Intelligence, Sirius University of Science and Technology, 354340 Sochi, Russia
- Federal Research Center for Information and Computational Technologies, 630090 Novosibirsk, Russia
- BIOSOFT.RU, Ltd., 630058 Novosibirsk, Russia
| | - Ruslan N. Sharipov
- Scientific Center for Information Technologies and Artificial Intelligence, Sirius University of Science and Technology, 354340 Sochi, Russia
- Federal Research Center for Information and Computational Technologies, 630090 Novosibirsk, Russia
- BIOSOFT.RU, Ltd., 630058 Novosibirsk, Russia
- Specialized Educational Scientific Center, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Vera S. Egorova
- Scientific Center for Translational Medicine, Sirius University of Science and Technology, 354340 Sochi, Russia
| | - Anastasiia O. Syrocheva
- Scientific Center for Translational Medicine, Sirius University of Science and Technology, 354340 Sochi, Russia
| | - Alessandro Parodi
- Scientific Center for Translational Medicine, Sirius University of Science and Technology, 354340 Sochi, Russia
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Andrey A. Zamyatnin
- Scientific Center for Translational Medicine, Sirius University of Science and Technology, 354340 Sochi, Russia
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Fedor A. Kolpakov
- Scientific Center for Information Technologies and Artificial Intelligence, Sirius University of Science and Technology, 354340 Sochi, Russia
- Federal Research Center for Information and Computational Technologies, 630090 Novosibirsk, Russia
- BIOSOFT.RU, Ltd., 630058 Novosibirsk, Russia
| |
Collapse
|
18
|
Gusmão LA, Matsuo FS, Barbosa HFG, Tedesco AC. Advances in nano-based materials for glioblastoma multiforme diagnosis: A mini-review. FRONTIERS IN NANOTECHNOLOGY 2022. [DOI: 10.3389/fnano.2022.836802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The development of nano-based materials for diagnosis enables a more precise prognosis and results. Inorganic, organic, or hybrid nanoparticles using nanomaterials, such as quantum dots, extracellular vesicle systems, and others, with different molecular compositions, have been extensively explored as a better strategy to overcome the blood-brain barrier and target brain tissue and tumors. Glioblastoma multiforme (GBM) is the most common and aggressive primary tumor of the central nervous system, with a short, established prognosis. The delay in early detection is considered a key challenge in designing a precise and efficient treatment with the most encouraging prognosis. Therefore, the present mini-review focuses on discussing distinct strategies presented recently in the literature regarding nanostructures’ use, design, and application for GBM diagnosis.
Collapse
|
19
|
Cancer nanomedicine: A step towards improving the drug delivery and enhanced efficacy of chemotherapeutic drugs. OPENNANO 2022. [DOI: 10.1016/j.onano.2022.100051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Li L, Liu J, Li X, Tang Y, Shi C, Zhang X, Cui Y, Wang L, Xu W. Influencing factors and characterization methods of nanoparticles regulating amyloid aggregation. SOFT MATTER 2022; 18:3278-3290. [PMID: 35437550 DOI: 10.1039/d1sm01704g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Human disorders associated with amyloid aggregation, such as Alzheimer's disease and Parkinson's disease, afflict the lives of millions worldwide. When peptides and proteins in the body are converted to amyloids, which have a tendency to aggregate, the toxic oligomers produced during the aggregation process can trigger a range of diseases. Nanoparticles (NPs) have been found to possess surface effects that can modulate the amyloid aggregation process and they have potential application value in the treatment of diseases related to amyloid aggregation and fibrillary tangles. In this review, we discuss recent progress relating to studies of nanoparticles that regulate amyloid aggregation. The review focuses on the factors influencing this regulation, which are important as guidelines for the future design of NPs for the treatment of amyloid aggregation. We describe the characterization methods that have been utilized so far in such studies. This review provides research information and characterization methods for the rational design of NPs, which should result in therapeutic strategies for amyloid diseases.
Collapse
Affiliation(s)
- Lingyi Li
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China.
| | - Jianhui Liu
- Yantai Center of Ecology and Environment Monitoring of Shandong Province, Yantai 264025, China
| | - Xinyue Li
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China.
| | - Yuanhan Tang
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China.
| | - Changxin Shi
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China.
| | - Xin Zhang
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China.
| | - Yuming Cui
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China.
| | - Linlin Wang
- State Key Laboratory of Long-Acting and Targeting Drug Delivery System, Shandong Luye Pharmaceutical Co., Ltd, Yantai 264000, China.
| | - Wenlong Xu
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China.
| |
Collapse
|
21
|
Peserico A, Di Berardino C, Russo V, Capacchietti G, Di Giacinto O, Canciello A, Camerano Spelta Rapini C, Barboni B. Nanotechnology-Assisted Cell Tracking. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1414. [PMID: 35564123 PMCID: PMC9103829 DOI: 10.3390/nano12091414] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 02/06/2023]
Abstract
The usefulness of nanoparticles (NPs) in the diagnostic and/or therapeutic sector is derived from their aptitude for navigating intra- and extracellular barriers successfully and to be spatiotemporally targeted. In this context, the optimization of NP delivery platforms is technologically related to the exploitation of the mechanisms involved in the NP-cell interaction. This review provides a detailed overview of the available technologies focusing on cell-NP interaction/detection by describing their applications in the fields of cancer and regenerative medicine. Specifically, a literature survey has been performed to analyze the key nanocarrier-impacting elements, such as NP typology and functionalization, the ability to tune cell interaction mechanisms under in vitro and in vivo conditions by framing, and at the same time, the imaging devices supporting NP delivery assessment, and consideration of their specificity and sensitivity. Although the large amount of literature information on the designs and applications of cell membrane-coated NPs has reached the extent at which it could be considered a mature branch of nanomedicine ready to be translated to the clinic, the technology applied to the biomimetic functionalization strategy of the design of NPs for directing cell labelling and intracellular retention appears less advanced. These approaches, if properly scaled up, will present diverse biomedical applications and make a positive impact on human health.
Collapse
Affiliation(s)
- Alessia Peserico
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (C.D.B.); (V.R.); (G.C.); (O.D.G.); (A.C.); (C.C.S.R.); (B.B.)
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Angelini G, Mura G, Messina G. Therapeutic approaches to preserve the musculature in Duchenne Muscular Dystrophy: The importance of the secondary therapies. Exp Cell Res 2022; 410:112968. [PMID: 34883113 DOI: 10.1016/j.yexcr.2021.112968] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 11/15/2021] [Accepted: 12/04/2021] [Indexed: 02/07/2023]
Abstract
Muscular dystrophies (MDs) are heterogeneous diseases, characterized by primary wasting of skeletal muscle, which in severe cases, such as Duchenne Muscular Dystrophy (DMD), leads to wheelchair dependency, respiratory failure, and premature death. Research is ongoing to develop efficacious therapies, particularly for DMD. Most of the efforts, currently focusing on correcting or restoring the primary defect of MDs, are based on gene-addition, exon-skipping, stop codon read-through, and genome-editing. Although promising, most of them revealed several practical limitations. Shared knowledge in the field is that, in order to be really successful, any therapeutic approach has to rely on spared functional muscle tissue, restricting the number of patients eligible for clinical trials to the youngest and less compromised individuals. In line with this, many therapeutic strategies aim to preserve muscle tissue and function. This Review outlines the most interesting and recent studies addressing the secondary outcomes of DMD and how to better deliver the therapeutic agents. In the future, the effective treatment of DMD will likely require combinations of therapies addressing both the primary genetic defect and its consequences.
Collapse
Affiliation(s)
- Giuseppe Angelini
- Department of Biosciences, University of Milan, Via Celoria 26, 20133, Milan, Italy
| | - Giada Mura
- Department of Biosciences, University of Milan, Via Celoria 26, 20133, Milan, Italy
| | - Graziella Messina
- Department of Biosciences, University of Milan, Via Celoria 26, 20133, Milan, Italy.
| |
Collapse
|
23
|
Demirtürk N, Bilensoy E. Nanocarriers targeting the diseases of the pancreas. Eur J Pharm Biopharm 2022; 170:10-23. [PMID: 34852262 DOI: 10.1016/j.ejpb.2021.11.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 11/20/2021] [Accepted: 11/25/2021] [Indexed: 02/08/2023]
Abstract
Diseases of the pancreas include acute and chronic pancreatitis, exocrine pancreatic insufficiency, diabetes and pancreatic cancer. These pathologies can be difficult to treat due to the innate properties of the pancreas, its structure and localization. The need for effective targeting of the pancreatic tissue by means of nanoparticles delivering therapeutics is a major focus area covered and discussed in this review. Most common diseases of the pancreas do not have specific and direct medical treatment option, and existing treatment options are generally aimed at relieving symptoms. Diabetes has different treatment options for different subtypes based on insulin having stability problems and requiring injections reducing patient compliance. Pancreatic cancer progresses silently and can only be diagnosed in advanced stages. Therefore, survival rate of patients is very low. Gemcitabine and FOLFIRINOX treatment regimens, the most commonly used clinical standard treatments, are generally insufficient due to the chemoresistance that develops in cancer cells and also various side effects. Therefore new treatment options for pancreatic cancer are also under focus. Overcoming drug resistance and pancreatic targeting can be achieved with active and passive targeting methods, and a more effective and safer treatment regimen can be provided at lower drug doses. This review covers the current literature and clinical trials concerning pancreatic drug delivery systems in the nanoscale focusing on the challenges and opportunities provided by these smart delivery systems.
Collapse
Affiliation(s)
- Nurbanu Demirtürk
- Hacettepe University, Faculty of Pharmacy, Department of Pharmaceutical Technology, 06100 Ankara, Turkey
| | - Erem Bilensoy
- Hacettepe University, Faculty of Pharmacy, Department of Pharmaceutical Technology, 06100 Ankara, Turkey.
| |
Collapse
|
24
|
Milán-Rois P, Rodriguez-Diaz C, Castellanos M, Somoza Á. Conjugation of Nucleic Acids and Drugs to Gold Nanoparticles. Methods Mol Biol 2022; 2434:103-116. [PMID: 35213012 PMCID: PMC9703286 DOI: 10.1007/978-1-0716-2010-6_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Gold nanoparticles (AuNPs) can be used as carriers for biomolecules or drugs in cell culture and animal models. Particularly, AuNPs ease their internalization into the cell and prevent their degradation. In addition, engineered AuNPs can be employed as sensors of a variety of biomarkers, where the electronic and optical properties of the AuNPs are exploited for a convenient, easy, and fast read out. However, in all these applications, a key step requires the conjugation of the different molecules to the nanoparticles. The most common approach exploits the great affinity of sulfur for gold. Herein, we summarize the methods used by our group for the conjugation of different molecules with AuNPs. The procedure is easy and takes around 2 days, where the reagents are slowly added, following an incubation at room temperature to ensure the complete conjugation. Finally, the unbound material is removed by centrifugation.
Collapse
Affiliation(s)
- Paula Milán-Rois
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), Madrid, Spain
| | - Ciro Rodriguez-Diaz
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), Madrid, Spain
| | - Milagros Castellanos
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), Madrid, Spain
| | - Álvaro Somoza
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), Madrid, Spain.
| |
Collapse
|
25
|
Fatima I, Rahdar A, Sargazi S, Barani M, Hassanisaadi M, Thakur VK. Quantum Dots: Synthesis, Antibody Conjugation, and HER2-Receptor Targeting for Breast Cancer Therapy. J Funct Biomater 2021; 12:75. [PMID: 34940554 PMCID: PMC8708439 DOI: 10.3390/jfb12040075] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/08/2021] [Accepted: 12/13/2021] [Indexed: 12/13/2022] Open
Abstract
Breast cancer is becoming one of the main lethal carcinomas in the recent era, and its occurrence rate is increasing day by day. There are different breast cancer biomarkers, and their overexpression takes place in the metastasis of cancer cells. The most prevalent breast cancer biomarker is the human epidermal growth factor receptor2 (HER2). As this biomarker is overexpressed in malignant breast tissues, it has become the main focus in targeted therapies to fight breast cancer. There is a cascade of mechanisms involved in metastasis and cell proliferation in cancer cells. Nanotechnology has become extremely advanced in targeting and imaging cancerous cells. Quantum dots (QDs) are semiconductor NPs, and they are used for bioimaging, biolabeling, and biosensing. They are synthesized by different approaches such as top-down, bottom-up, and synthetic methods. Fully human monoclonal antibodies synthesized using transgenic mice having human immunoglobulin are used to target malignant cells. For the HER2 receptor, herceptin® (trastuzumab) is the most specific antibody (Ab), and it is conjugated with QDs by using different types of coupling mechanisms. This quantum dot monoclonal antibody (QD-mAb) conjugate is localized by injecting it into the blood vessel. After the injection, it goes through a series of steps to reach the intracellular space, and bioimaging of specifically the HER2 receptor occurs, where apoptosis of the cancer cells takes place either by the liberation of Ab or the free radicals.
Collapse
Affiliation(s)
- Iqra Fatima
- Department of Pharmacy, Quaid-i-Azam University, Islamabad 45320, Pakistan;
| | - Abbas Rahdar
- Department of Physics, University of Zabol, Zabol 98613-35856, Iran
| | - Saman Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan 98167-43463, Iran;
| | - Mahmood Barani
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman 76169-13555, Iran; (M.B.); (M.H.)
| | - Mohadeseh Hassanisaadi
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman 76169-13555, Iran; (M.B.); (M.H.)
- Department of Plant Protection, Shahid Bahonar University of Kerman, Kerman 76184-11764, Iran
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Center, SRUC, Edinburgh EH9 3JG, UK
- School of Engineering, University of Petroleum & Energy Studies (UPES), Dehradun 248007, Uttarakhand, India
| |
Collapse
|
26
|
Nanocarriers as a Tool for the Treatment of Colorectal Cancer. Pharmaceutics 2021; 13:pharmaceutics13081321. [PMID: 34452282 PMCID: PMC8399070 DOI: 10.3390/pharmaceutics13081321] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/13/2021] [Accepted: 07/20/2021] [Indexed: 12/13/2022] Open
Abstract
Nanotechnology is a promising tool for the treatment of cancer. In the past decades, major steps have been made to bring nanotechnology into the clinic in the form of nanoparticle-based drug delivery systems. The great hope of drug delivery systems is to reduce the side effects of chemotherapeutics while simultaneously increasing the efficiency of the therapy. An increased treatment efficiency would greatly benefit the quality of life as well as the life expectancy of cancer patients. However, besides its many advantages, nanomedicines have to face several challenges and hurdles before they can be used for the effective treatment of tumors. Here, we give an overview of the hallmarks of cancer, especially colorectal cancer, and discuss biological barriers as well as how drug delivery systems can be utilized for the effective treatment of tumors and metastases.
Collapse
|
27
|
Milán-Rois P, Quan A, Slack FJ, Somoza Á. The Role of LncRNAs in Uveal Melanoma. Cancers (Basel) 2021; 13:cancers13164041. [PMID: 34439196 PMCID: PMC8392202 DOI: 10.3390/cancers13164041] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/06/2021] [Accepted: 08/06/2021] [Indexed: 12/13/2022] Open
Abstract
Uveal melanoma (UM) is an intraocular cancer tumor with high metastatic risk. It is considered a rare disease, but 90% of affected patients die within 15 years. Non-coding elements (ncRNAs) such as long non-coding RNAs (lncRNAs) have a crucial role in cellular homeostasis maintenance, taking part in many critical cellular pathways. Their deregulation, therefore, contributes to the induction of cancer and neurodegenerative and metabolic diseases. In cancer, lncRNAs are implicated in apoptosis evasion, proliferation, invasion, drug resistance, and other roles because they affect tumor suppressor genes and oncogenes. For these reasons, lncRNAs are promising targets in personalized medicine and can be used as biomarkers for diseases including UM.
Collapse
Affiliation(s)
- Paula Milán-Rois
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), Unidad Asociada al Centro Nacional de Biotecnología (CSIC), 28049 Madrid, Spain;
| | - Anan Quan
- Department of Pathology, Beth Israel Deaconess Medical Center (BIDMC)/Harvard Medical School, Boston, MA 02215, USA; (A.Q.); (F.J.S.)
| | - Frank J. Slack
- Department of Pathology, Beth Israel Deaconess Medical Center (BIDMC)/Harvard Medical School, Boston, MA 02215, USA; (A.Q.); (F.J.S.)
| | - Álvaro Somoza
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), Unidad Asociada al Centro Nacional de Biotecnología (CSIC), 28049 Madrid, Spain;
- Correspondence: ; Tel.: +34-91-299-8856
| |
Collapse
|
28
|
Multifunctional nanoparticles as optical biosensing probe for breast cancer detection: A review. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 127:112249. [PMID: 34225888 DOI: 10.1016/j.msec.2021.112249] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 05/11/2021] [Accepted: 06/05/2021] [Indexed: 12/15/2022]
Abstract
Optical biosensors show attractive performance in medical sensing in the event of using different nanoparticles in their design. Owing to their unique optical characteristics and biological compatibility, gold nanoparticles (GNPs), silver nanoparticles (AgNPs), bimetallic nanoparticles and magnetic nanoparticles have been broadly implemented in making sensing tools. The functionalization of these nanoparticles with different components provides an excellent opportunity to assemble selective and sensitive sensing materials to detect various biological molecules related to breast cancer. This review summarizes the recent application of optical biosensing devices based on nanomaterials and discusses their pros and cons to improve breast cancer detection in real samples. In particular, the main constituent elements of these optical biosensors including recognition and transducer elements, types of applied nanostructures, analytical sensing procedures, sensor detection ranges and limit of detection (LOD), are expressed in detail.
Collapse
|
29
|
Sharma J, Kumari R, Bhargava A, Tiwari R, Mishra PK. Mitochondrial-induced Epigenetic Modifications: From Biology to Clinical Translation. Curr Pharm Des 2021; 27:159-176. [PMID: 32851956 DOI: 10.2174/1381612826666200826165735] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 07/27/2020] [Indexed: 11/22/2022]
Abstract
Mitochondria are maternally inherited semi-autonomous organelles that play a central role in redox balance, energy metabolism, control of integrated stress responses, and cellular homeostasis. The molecular communication between mitochondria and the nucleus is intricate and bidirectional in nature. Though mitochondrial genome encodes for several key proteins involved in oxidative phosphorylation, several regulatory factors encoded by nuclear DNA are prominent contributors to mitochondrial biogenesis and function. The loss of synergy between this reciprocal control of anterograde (nuclear to mitochondrial) and retrograde (mitochondrial to nuclear) signaling, triggers epigenomic imbalance and affects mitochondrial function and global gene expressions. Recent expansions of our knowledge on mitochondrial epigenomics have offered novel perspectives for the study of several non-communicable diseases including cancer. As mitochondria are considered beacons for pharmacological interventions, new frontiers in targeted delivery approaches could provide opportunities for effective disease management and cure through reversible epigenetic reprogramming. This review focuses on recent progress in the area of mitochondrial-nuclear cross-talk and epigenetic regulation of mitochondrial DNA methylation, mitochondrial micro RNAs, and post-translational modification of mitochondrial nucleoid-associated proteins that hold major opportunities for targeted drug delivery and clinical translation.
Collapse
Affiliation(s)
- Jahnavi Sharma
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Roshani Kumari
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Arpit Bhargava
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Rajnarayan Tiwari
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Pradyumna K Mishra
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| |
Collapse
|
30
|
Green Synthesis and Biomedical Applications of ZnO Nanoparticles: Role of PEGylated-ZnO Nanoparticles as Doxorubicin Drug Carrier against MDA-MB-231(TNBC) Cells Line. CRYSTALS 2021. [DOI: 10.3390/cryst11040344] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The present study aimed to develop the synthesis of zinc oxide nanoparticles (ZnO-NPs) using the green method, with Aloe barbadensis leaf extract as a stabilizing and capping agent. In vitro antitumor cytotoxic activity, as well as the surface-functionalization of ZnO-NPs and their drug loading capacity against doxorubicin (DOX) and gemcitabine (GEM) drugs, were also studied. Morphological and structural properties of the produced ZnO-NPs were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersion X-ray diffraction (EDX), UV-Vis spectrophotometry, Fourier-transform infrared analysis (FTIR), and X-ray diffraction (XRD). The prepared ZnO-NPs had a hexagonal shape and average particle size of 20–40 nm, with an absorption peak at 325 nm. The weight and atomic percentages of zinc (50.58% and 28.13%) and oxygen (26.71% and 60.71%) were also determined by EDAX (energy dispersive x-ray analysis) compositional analysis. The appearance of the FTIR peak at 3420 m–1 confirmed the synthesis of ZnO-NPs. The drug loading efficiency (LE) and loading capacity (LC) of unstabilized and PEGylated ZnO-NPs were determined by doxorubicin (DOX) and gemcitabine (GEM) drugs. DOX had superior LE 65% (650 mg/g) and higher LC 32% (320 mg/g) than GEM LE 30.5% (30 mg/g) and LC 16.25% (162 mg/g) on ZnO-NPs. Similar observation was observed in the case of PEG-ZnO-NPs, where DOX had enhanced LE 68% (680 mg/g) and LC 35% (350) mg/g in contrast to GEM, which had LE and LC values of 35% (350 mg/g) and 19% (190 mg/g), respectively. Therefore, DOX was chosen to encapsulate nanoparticles, along with the untreated nanoparticles, to check their in vitro antiproliferative potential against the triple-negative breast cancer (TNBC) cell line (MDA-MB-231) through the MTT (3-(4,5-Dimethylthiazol-2-Yl)-2,5-Diphenyltetrazolium Bromide) assay. This drug delivery strategy implies that the PEGylated biogenically synthesized ZnO-NPs occupy an important position in chemotherapeutic drug loading efficiency and can improve the therapeutic techniques of triple breast cancer.
Collapse
|
31
|
Valdivia G, Alonso-Diez Á, Pérez-Alenza D, Peña L. From Conventional to Precision Therapy in Canine Mammary Cancer: A Comprehensive Review. Front Vet Sci 2021; 8:623800. [PMID: 33681329 PMCID: PMC7925635 DOI: 10.3389/fvets.2021.623800] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/11/2021] [Indexed: 12/16/2022] Open
Abstract
Canine mammary tumors (CMTs) are the most common neoplasm in intact female dogs. Canine mammary cancer (CMC) represents 50% of CMTs, and besides surgery, which is the elective treatment, additional targeted and non-targeted therapies could offer benefits in terms of survival to these patients. Also, CMC is considered a good spontaneous intermediate animal model for the research of human breast cancer (HBC), and therefore, the study of new treatments for CMC is a promising field in comparative oncology. Dogs with CMC have a comparable disease, an intact immune system, and a much shorter life span, which allows the achievement of results in a relatively short time. Besides conventional chemotherapy, innovative therapies have a large niche of opportunities. In this article, a comprehensive review of the current research in adjuvant therapies for CMC is conducted to gather available information and evaluate the perspectives. Firstly, updates are provided on the clinical-pathological approach and the use of conventional therapies, to delve later into precision therapies against therapeutic targets such as hormone receptors, tyrosine kinase receptors, p53 tumor suppressor gene, cyclooxygenases, the signaling pathways involved in epithelial-mesenchymal transition, and immunotherapy in different approaches. A comparison of the different investigations on targeted therapies in HBC is also carried out. In the last years, the increasing number of basic research studies of new promising therapeutic agents on CMC cell lines and CMC mouse xenografts is outstanding. As the main conclusion of this review, the lack of effort to bring the in vitro studies into the field of applied clinical research emerges. There is a great need for well-planned large prospective randomized clinical trials in dogs with CMC to obtain valid results for both species, humans and dogs, on the use of new therapies. Following the One Health concept, human and veterinary oncology will have to join forces to take advantage of both the economic and technological resources that are invested in HBC research, together with the innumerable advantages of dogs with CMC as a spontaneous animal model.
Collapse
Affiliation(s)
- Guillermo Valdivia
- Department Animal Medicine, Surgery and Pathology, Veterinary School, Complutense University of Madrid, Madrid, Spain
- Mammary Oncology Unit, Complutense Veterinary Teaching Hospital, Complutense University of Madrid, Madrid, Spain
| | - Ángela Alonso-Diez
- Department Animal Medicine, Surgery and Pathology, Veterinary School, Complutense University of Madrid, Madrid, Spain
- Mammary Oncology Unit, Complutense Veterinary Teaching Hospital, Complutense University of Madrid, Madrid, Spain
| | - Dolores Pérez-Alenza
- Department Animal Medicine, Surgery and Pathology, Veterinary School, Complutense University of Madrid, Madrid, Spain
- Mammary Oncology Unit, Complutense Veterinary Teaching Hospital, Complutense University of Madrid, Madrid, Spain
| | - Laura Peña
- Department Animal Medicine, Surgery and Pathology, Veterinary School, Complutense University of Madrid, Madrid, Spain
- Mammary Oncology Unit, Complutense Veterinary Teaching Hospital, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
32
|
Selective cytotoxicity of paclitaxel bonded silver nanoparticle on different cancer cells. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102265] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
33
|
Hsu NS, Tehei M, Hossain MS, Rosenfeld A, Shiddiky MJA, Sluyter R, Dou SX, Yamauchi Y, Konstantinov K. Oxi-Redox Selective Breast Cancer Treatment: An In Vitro Study of Theranostic In-Based Oxide Nanoparticles for Controlled Generation or Prevention of Oxidative Stress. ACS APPLIED MATERIALS & INTERFACES 2021; 13:2204-2217. [PMID: 33399455 DOI: 10.1021/acsami.0c17326] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In this article, we demonstrate that specifically engineered oxide nanoparticles (NPs) have the potential to act as theranostic materials that are able to generate or prevent oxidative stress through their oxi-redox activity in various types of malignant and nonmalignant cells. The oxi-redox activity is related to the type and presence of surface defects, which is modified with appropriate synthesis conditions. In the present work, we used MDA-MB-231 and MCF-7 human breast cancer cells and nonmalignant MCF-10A human breast cells to demonstrate how controlled oxidative stress mediated by specifically nanoengineered indium tin oxide (ITO) NPs can selectively induce cell death in the cancer cells while reducing the oxidative stress in the normal cells and supporting their proliferation. The ITO NPs are also promising nanotheranostic materials for cancer therapy and contrast agents because of their multimodal imaging capabilities. We demonstrate that the synthesized ITO NPs can selectively increase the generation of reactive oxygen species (ROS) in both breast tumor cell lines, resulting in activation of apoptosis, and can also greatly suppress the cellular proliferation in both types of tumor cells. In contrast, the ITO NPs exhibit ROS scavenging-like behavior, significantly decreasing the ROS levels in MCF-10A cells exposed to the additional ROS, hydrogen peroxide (H2O2), so that they protect the proliferation of nonmalignant MCF-10A cells from ROS damage. In addition, fluorescent microscopy images revealed that the ITO NPs emit strong fluorescence that could be used to reveal their location. Moreover, computed tomography imaging demonstrated that the ITO NPs exhibited a comparable capability toward anatomical contrast enhancement. These results suggest that the synthesized ITO NPs have the potential to be a novel selective therapeutic agent with a multimodal imaging property for anticancer treatment.
Collapse
Affiliation(s)
- Nai-Sheng Hsu
- Institute for Superconducting and Electronic Materials, Australian Institute for Innovative Materials, University of Wollongong, 2500 North Wollongong, New South Wales, Australia
- Illawarra Health and Medical Research Institute, University of Wollongong, 2500 Wollongong, New South Wales, Australia
| | - Moeava Tehei
- Illawarra Health and Medical Research Institute, University of Wollongong, 2500 Wollongong, New South Wales, Australia
- Centre for Medical and Radiation Physics, Faculty of Engineering and Information Science, University of Wollongong, 2500 Wollongong, New South Wales, Australia
| | - Md Shahriar Hossain
- Australian Institute for Bioengineering and Nanotechnology, School of Mechanical and Mining Engineering, Faculty of Engineering, Architecture and Information Technology, The University of Queensland, 4072 Brisbane, Queensland, Australia
| | - Anatoly Rosenfeld
- Illawarra Health and Medical Research Institute, University of Wollongong, 2500 Wollongong, New South Wales, Australia
- Centre for Medical and Radiation Physics, Faculty of Engineering and Information Science, University of Wollongong, 2500 Wollongong, New South Wales, Australia
| | - Muhammad J A Shiddiky
- School of Environment and Science (ESC) & Queensland Micro- and Nanotechnology Centre (QMNC), Griffith University, Nathan Campus, Nathan, Queensland 4111, Australia
| | - Ronald Sluyter
- Illawarra Health and Medical Research Institute, University of Wollongong, 2500 Wollongong, New South Wales, Australia
- School of Chemistry and Medical Biology, Faculty of Science, Medicine and Health, University of Wollongong, 2500 Wollongong, New South Wales, Australia
| | - Shi Xue Dou
- Institute for Superconducting and Electronic Materials, Australian Institute for Innovative Materials, University of Wollongong, 2500 North Wollongong, New South Wales, Australia
| | - Yusuke Yamauchi
- Australian Institute for Bioengineering and Nanotechnology and School of Chemical Engineering, The University of Queensland, 4702 Brisbane, Queensland, Australia
- JST-ERATO Yamauchi Materials Space-Tectonics Project and International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044Japan
| | - Konstantin Konstantinov
- Institute for Superconducting and Electronic Materials, Australian Institute for Innovative Materials, University of Wollongong, 2500 North Wollongong, New South Wales, Australia
- Illawarra Health and Medical Research Institute, University of Wollongong, 2500 Wollongong, New South Wales, Australia
| |
Collapse
|
34
|
Huilan Z, Juan W, Wen Z, Dong H, Aiping Z. TiO 2 /SiO 2 -NHOC-FA Nanocomposite as a Photosensitizer with Targeting Ability for Photocatalytic Killing MCF-7 Cells in Vitro and its Mechanism Exploration. Photochem Photobiol 2020; 97:398-407. [PMID: 32966622 DOI: 10.1111/php.13336] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 09/11/2020] [Accepted: 09/14/2020] [Indexed: 11/27/2022]
Abstract
In the paper, a composite TiO2 /SiO2 -NHOC-FA was prepared using the coupling method which is a folic acid-targeted silica-coated titanium dioxide. Their structures were characterized by Fourier transform infrared spectroscopy (FT-IR), ultraviolet-visible spectroscopy (UV-vis), X-ray diffraction (XRD), transmission electron microscope (TEM) and zeta potential method. The results showed that the average diameter of the prepared TiO2 /SiO2 -NHOC-FA composite is 18 nm, which is spherical. Compared with unmodified TiO2 , TiO2 /SiO2 -NHOC-FA composite had superior water solubility and dispersion, and enhanced its photokilling activity by folic acid-targeted to FR (+) cells. In addition, photocatalytic TiO2 /SiO2 -NHOC-FA arrested cell cycle in G2/M phase of MCF-7 cells, resulting in a significant reduction of mitochondrial membrane potential (MMP), and also made the apoptosis rate, ROS components and intracellular calcium concentration increased. It killed the MCF-7 cells through apoptosis pathway. These results for the TiO2 /SiO2 -NHOC-FA composite can provide a theoretical basis for the photodynamic development of TiO2 .
Collapse
Affiliation(s)
- Zhang Huilan
- College of Pharmacy, Shanxi Medical University, Taiyuan, China
| | - Wang Juan
- Department of Shanxi Cardiovascular Hospital, Taiyuan, China
| | - Zhang Wen
- College of Pharmacy, Shanxi Medical University, Taiyuan, China
| | - Han Dong
- Department of Changzhi Maternal, Child Health Care Hospital, Changzhi, China
| | - Zhang Aiping
- College of Pharmacy, Shanxi Medical University, Taiyuan, China
| |
Collapse
|
35
|
Khorsandi L, Farasat M. Zinc oxide nanoparticles enhance expression of maspin in human breast cancer cells. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:38300-38310. [PMID: 32621200 DOI: 10.1007/s11356-020-09986-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 07/01/2020] [Indexed: 06/11/2023]
Abstract
Toxic and apoptotic impacts of zinc oxide nanoparticle (ZNP) on different cancer cells have been reported. Maspin (a mammary serine protease inhibitor) as a tumor suppressor gene can inhibit tumor growth and metastasis. The expression of maspin is modulated by p53, Bcl-2 family genes, and estrogen receptor α (ER-α). This study aimed to assess the ZNP effects on maspin expression in MCF-7 cells (a breast cancer cell). Experimental groups (ZNP5, ZNP10, and ZNP20) received 5, 10, and 20 μM/mL ZNP for 48 h, respectively. 17-β-estradiol (E2) was used to evaluate the role of ER-α in the anticancer impact of ZNP. Cell viability, Annexin V, migration assay, gene expression, and western blotting methods were applied to evaluate ZNP effects on the MCF-7 cells. ZNP at the concentrations of 10 and 20 μM/mL could significantly decrease the viability and migration rate, and significantly increase apoptosis percentage in the MCF-7 cells. ZNP significantly enhanced mRNA expression and protein level of maspin in MCF-7 cells in a concentration-dependent way. ZNP concentration-dependently elevated mRNA expression and protein level of p53 and Bax while reduced the expression of Bcl-2 and ER-α. E2 promoted cancer cell growth by enhancing survival and migration rates. E2 treatment reduced mRNA expression and protein level of maspin and p53, and elevated Bcl-2 expression. ZNP considerably changed these events induced by E2 in the MCF-7 cells. It is concluded that the maspin overexpression is one of the toxic mechanisms of the ZNP on the ER-α-positive breast cancer cells, and can suppress the migration of these cells.
Collapse
Affiliation(s)
- Layasadat Khorsandi
- Cellular and Molecular Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
- Department of Anatomical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Maryam Farasat
- Department of Anatomical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
36
|
Juan A, Cimas FJ, Bravo I, Pandiella A, Ocaña A, Alonso-Moreno C. Antibody Conjugation of Nanoparticles as Therapeutics for Breast Cancer Treatment. Int J Mol Sci 2020; 21:E6018. [PMID: 32825618 PMCID: PMC7504566 DOI: 10.3390/ijms21176018] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/13/2020] [Accepted: 08/18/2020] [Indexed: 02/08/2023] Open
Abstract
Breast cancer is the most common invasive tumor in women and the second leading cause of cancer-related death. Nanomedicine raises high expectations for millions of patients as it can provide better, more efficient, and affordable healthcare, and it has the potential to develop novel therapeutics for the treatment of solid tumors. In this regard, targeted therapies can be encapsulated into nanocarriers, and these nanovehicles are guided to the tumors through conjugation with antibodies-the so-called antibody-conjugated nanoparticles (ACNPs). ACNPs can preserve the chemical structure of drugs, deliver them in a controlled manner, and reduce toxicity. As certain breast cancer subtypes and indications have limited therapeutic options, this field provides hope for the future treatment of patients with difficult to treat breast cancers. In this review, we discuss the application of ACNPs for the treatment of this disease. Given the fact that ACNPs have shown clinical activity in this clinical setting, special emphasis on the role of the nanovehicles and their translation to the clinic is placed on the revision.
Collapse
Affiliation(s)
- Alberto Juan
- Oncología Traslacional, Unidad de Investigación del Complejo Hospitalario Universitario de Albacete, 02008 Albacete, Spain; (A.J.); (F.J.C.)
- Centro Regional de Investigaciones Biomédicas, Unidad NanoCRIB, 02008 Albacete, Spain;
| | - Francisco J. Cimas
- Oncología Traslacional, Unidad de Investigación del Complejo Hospitalario Universitario de Albacete, 02008 Albacete, Spain; (A.J.); (F.J.C.)
- Centro Regional de Investigaciones Biomédicas, Unidad Oncología Traslacional, 02071 Albacete, Spain
| | - Iván Bravo
- Centro Regional de Investigaciones Biomédicas, Unidad NanoCRIB, 02008 Albacete, Spain;
| | - Atanasio Pandiella
- Centro de Investigación del Cáncer-CSIC, IBSAL- Salamanca and CIBERONC, 37007 Salamanca, Spain;
| | - Alberto Ocaña
- Oncología Traslacional, Unidad de Investigación del Complejo Hospitalario Universitario de Albacete, 02008 Albacete, Spain; (A.J.); (F.J.C.)
- Experimental Therapeutics Unit, Hospital clínico San Carlos, IdISSC and CIBERONC, 28040 Madrid, Spain
| | - Carlos Alonso-Moreno
- Centro Regional de Investigaciones Biomédicas, Unidad NanoCRIB, 02008 Albacete, Spain;
- School of Pharmacy, University of Castilla-La Mancha, 02008 Albacete, Spain
| |
Collapse
|
37
|
Identification of a Profile of Neutrophil-Derived Granule Proteins in the Surface of Gold Nanoparticles after Their Interaction with Human Breast Cancer Sera. NANOMATERIALS 2020; 10:nano10061223. [PMID: 32586001 PMCID: PMC7353125 DOI: 10.3390/nano10061223] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/09/2020] [Accepted: 06/19/2020] [Indexed: 12/29/2022]
Abstract
It is well known that the interaction of a nanomaterial with a biological fluid leads to the formation of a protein corona (PC) surrounding the nanomaterial. Using standard blood analyses, alterations in protein patterns are difficult to detect. PC acts as a “nano-concentrator” of serum proteins with affinity for nanoparticles’ surface. Consequently, characterization of PC could allow detection of otherwise undetectable changes in protein concentration at an early stage of a disease, such as breast cancer (BC). Here, we employed gold nanoparticles (AuNPsdiameter: 10.02 ± 0.91 nm) as an enrichment platform to analyze the human serum proteome of BC patients (n = 42) and healthy controls (n = 42). Importantly, the analysis of the PC formed around AuNPs after their interaction with serum samples of BC patients showed a profile of proteins that could differentiate breast cancer patients from healthy controls. These proteins developed a significant role in the immune and/or innate immune system, some of them being neutrophil-derived granule proteins. The analysis of the PC also revealed serum proteome alterations at the subtype level.
Collapse
|
38
|
Nakamura M, Oyane A, Kuroiwa K, Kosuge H. Fabrication of gold-calcium phosphate composite nanoparticles through coprecipitation mediated by amino-terminated polyethylene glycol. Colloids Surf B Biointerfaces 2020; 194:111169. [PMID: 32554258 DOI: 10.1016/j.colsurfb.2020.111169] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/27/2020] [Accepted: 06/01/2020] [Indexed: 12/15/2022]
Abstract
Calcium phosphate (CaP) nanoparticles immobilizing gold (Au) nanocrystals (Au-CaP composite nanoparticles) would be useful in diagnoses and/or treatments with Au nanocrystals. In this study, we achieved the rapid one-pot fabrication of such nanoparticles via coprecipitation in labile supersaturated CaP solutions by using appropriate Au sources, namely, Au nanocrystals coated with amino-terminated polyethylene glycol (PEG). In this process, amino groups at the PEG terminal played a crucial role in the coprecipitation with CaP through affinity interactions, and thus in the formation of Au-CaP composite nanoparticles; however, the molecular weight of the PEG chain was not a controlling factor in the coprecipitation. The important role of the functional groups at the PEG terminal was suggested by comparison with Au nanocrystals coated with carboxyl- and methoxy-terminated PEG, both of which barely coprecipitated with CaP and failed to form Au-CaP composite nanoparticles. Au nanocrystals coated with amino-terminated PEG were immobilized on the CaP nanoparticles, thereby regulating their size (∼140 nm in hydrodynamic diameter) and their dispersion in water. This coprecipitation process and the resulting Au-CaP composite nanoparticles have great potential in biomedical applications.
Collapse
Affiliation(s)
- Maki Nakamura
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan.
| | - Ayako Oyane
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Kiyoko Kuroiwa
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Hisanori Kosuge
- Department of Cardiology, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo 160-0023, Japan
| |
Collapse
|
39
|
Near IR responsive targeted integrated lipid polymer nanoconstruct for enhanced magnolol cytotoxicity in breast cancer. Sci Rep 2020; 10:8771. [PMID: 32472087 PMCID: PMC7260181 DOI: 10.1038/s41598-020-65521-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 04/29/2020] [Indexed: 11/12/2022] Open
Abstract
Advances in cancer nanotechnology aim at improving specificity and effectiveness for tumor treatment. Amalgamation of different treatment modalities is expected to provide better cancer combating. Herein, We developed a long circulating nanocarrier comprising trastuzumab (TZB) surface modified polylactic-co-glycolic acid (PLGA) nanoparticles (NPs) co-encapsulating magnolol (Mag) and gold nanoparticles (GNPs). A modified single step nanoprecipitation method was adopted ensuring particle coating with D-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) while co-encapsulating GNPs. TZB was then anchored on NPs surface using a carbodiimide chemistry. The cytotoxicity of the developed system was evaluated with and without photothermal irradiation. NPs cellular uptake was then followed using confocal microscopical imaging. A hybrid matrix composed of PLGA/TPGS and surface decorated with TZB with a conjugation efficiency of ˃65%, was confirmed via FTIR, 1HNMR. GNPs could only be included in the NPs, when placed in the organic phase as evidenced by the shifted GNPs surface plasmonic resonance and confirmed via imaging coupled with energy dispersive X-ray analysis. Optimized NPs (136.1 ± 1.3 nm, −8.2 ± 1 mV and Mag encapsulation efficiency of 81.4 ± 1.8%) were able to boost Mag cytotoxicity on breast cancer cells while providing a selective multifunctional therapy with an added photothermal effect.
Collapse
|
40
|
Matysiak-Kucharek M, Czajka M, Jodłowska-Jędrych B, Sawicki K, Wojtyła-Buciora P, Kruszewski M, Kapka-Skrzypczak L. Two Sides to the Same Coin-Cytotoxicity vs. Potential Metastatic Activity of AgNPs Relative to Triple-Negative Human Breast Cancer MDA-MB-436 Cells. Molecules 2020; 25:E2375. [PMID: 32443890 PMCID: PMC7287686 DOI: 10.3390/molecules25102375] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/07/2020] [Accepted: 05/18/2020] [Indexed: 12/24/2022] Open
Abstract
Silver nanoparticles (AgNPs) are used in many fields of industry and medicine. Despite the well-established antimicrobial activity, AgNPs are foreseen to be used as anticancer drugs due to the unusual feature-inability to induce drug resistance in cancer cells. The aim of the study was to assess biological activity of AgNPs against MDA-MB-436 cells. The cells were derived from triple-negative breast cancer, a type of breast cancer with poor prognosis and is particularly difficult to cure. AgNPs were toxic to MDA-MB-436 cells and the probable mechanism of toxicity was the induction of oxidative stress. These promising effects, giving the opportunity to use AgNPs as an anti-cancer agent should, however, be treated with caution in the light of further results. Namely, the treatment of MDA-MB-436 cells with AgNPs was associated with the increased secretion of several cytokines and chemokines, which were important in breast cancer metastasis. Finally, changes in the actin cytoskeleton of MDA-MB-436 cells under the influence of AgNPs treatment were also observed.
Collapse
Affiliation(s)
- Magdalena Matysiak-Kucharek
- Department of Molecular Biology and Translational Research, Institute of Rural Health, 20-090 Lublin, Poland; (M.C.); (K.S.); (L.K.-S.)
| | - Magdalena Czajka
- Department of Molecular Biology and Translational Research, Institute of Rural Health, 20-090 Lublin, Poland; (M.C.); (K.S.); (L.K.-S.)
| | - Barbara Jodłowska-Jędrych
- Department of Histology and Embryology with Experimental Cytology Unit, Medical University of Lublin, 20-059 Lublin, Poland;
| | - Krzysztof Sawicki
- Department of Molecular Biology and Translational Research, Institute of Rural Health, 20-090 Lublin, Poland; (M.C.); (K.S.); (L.K.-S.)
| | - Paulina Wojtyła-Buciora
- The President Stanisław Wojciechowski State University of Applied Sciences, 62-800 Kalisz, Poland;
| | - Marcin Kruszewski
- Center for Radiobiology and Biological Dosimetry, Institute of Nuclear Chemistry and Technology, 03-195 Warsaw, Poland;
| | - Lucyna Kapka-Skrzypczak
- Department of Molecular Biology and Translational Research, Institute of Rural Health, 20-090 Lublin, Poland; (M.C.); (K.S.); (L.K.-S.)
| |
Collapse
|
41
|
De Angelis B, Depalo N, Petronella F, Quintarelli C, Curri ML, Pani R, Calogero A, Locatelli F, De Sio L. Stimuli-responsive nanoparticle-assisted immunotherapy: a new weapon against solid tumours. J Mater Chem B 2020; 8:1823-1840. [DOI: 10.1039/c9tb02246e] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The interplay between photo-thermal therapy and immunotherapy allows the realization of new nanotechnology-based cancer treatments for solid tumors.
Collapse
Affiliation(s)
- Biagio De Angelis
- Department of Onco-Haematology and Cell and Gene Therapy
- Bambino Gesù Children's Hospital
- IRCCS
- Rome
- Italy
| | - Nicoletta Depalo
- CNR-IPCF
- National Research Council of Italy
- Institute for Physical and Chemical Processes-Bari Division
- I-70126 Bari
- Italy
| | - Francesca Petronella
- CNR-IC
- National Research Council of Italy
- Institute Crystallography
- 00015 Monterotondo – Rome
- Italy
| | - Concetta Quintarelli
- Department of Onco-Haematology and Cell and Gene Therapy
- Bambino Gesù Children's Hospital
- IRCCS
- Rome
- Italy
| | - M. Lucia Curri
- CNR-IPCF
- National Research Council of Italy
- Institute for Physical and Chemical Processes-Bari Division
- I-70126 Bari
- Italy
| | - Roberto Pani
- Center for Biophotonics and Department of Medico-surgical Sciences and Biotechnologies
- Sapienza University of Rome
- Latina
- Italy
| | - Antonella Calogero
- Center for Biophotonics and Department of Medico-surgical Sciences and Biotechnologies
- Sapienza University of Rome
- Latina
- Italy
| | - Franco Locatelli
- Department of Onco-Haematology and Cell and Gene Therapy
- Bambino Gesù Children's Hospital
- IRCCS
- Rome
- Italy
| | - Luciano De Sio
- Center for Biophotonics and Department of Medico-surgical Sciences and Biotechnologies
- Sapienza University of Rome
- Latina
- Italy
| |
Collapse
|
42
|
Afzal M, Ameeduzzafar, Alharbi KS, Alruwaili NK, Al-Abassi FA, Al-Malki AAL, Kazmi I, Kumar V, Kamal MA, Nadeem MS, Aslam M, Anwar F. Nanomedicine in treatment of breast cancer - A challenge to conventional therapy. Semin Cancer Biol 2019; 69:279-292. [PMID: 31870940 DOI: 10.1016/j.semcancer.2019.12.016] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 11/18/2019] [Accepted: 12/03/2019] [Indexed: 02/06/2023]
Abstract
Amongst the various types of cancer, breast cancer is a highly heterogeneous disease and known as the leading cause of death among women globally. The extensive interdisciplinary investigation in nanotechnology and cancer biomedical research has been evolved over the years for its effective treatment. However, the advent of chemotherapeutic resistance in breast cancer is one of the major confront researchers are facing in achieving successful chemotherapy. Research in the area of cancer nanotechnology over the years have now been revolutionized through the development of smart polymers, lipids, inorganic materials and eventually their surface-engineering with targeting ligands. Moreover, nanotechnology further extended and brings in the notice the new theranostic approach which combining the therapy and imaging simultaneously. Currently, research is being envisaged in the area of novel nano-pharmaceutical design viz. liposome, nanotubes, polymer lipid hybrid system, which focuses to make the chemotherapy curative and long-lasting. In this review, we aimed to discuss the recent advancement of different surface-engineered/targeted nanomedicines that improved the drug efficacy in breast cancer.
Collapse
Affiliation(s)
- Muhammad Afzal
- College of Pharmacy, Jouf University, Al-Jouf, Sakaka, Saudi Arabia
| | - Ameeduzzafar
- College of Pharmacy, Jouf University, Al-Jouf, Sakaka, Saudi Arabia
| | | | | | - Fahad A Al-Abassi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University Jeddah 21589 Saudi Arabia
| | | | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University Jeddah 21589 Saudi Arabia
| | - Vikas Kumar
- Department of Pharmaceutical Sciences, Faculty of Health Sciences, Natural Product Drug Discovery Laboratory, Sam Higginbottom University of Agriculture, Technology & Sciences, Allahabad, India
| | - Mohammad Amjad Kamal
- King Fahd Medical Research Center, King Abdulaziz University, P. O. Box 80216, Jeddah 21589, Saudi Arabia; Enzymoics, 7 Peterlee Place, Hebersham, NSW 2770, Australia; Novel Global Community Educational Foundation, Australia
| | - Muhammad Shahid Nadeem
- Department of Biochemistry, Faculty of Science, King Abdulaziz University Jeddah 21589 Saudi Arabia
| | - Muhammad Aslam
- Statistics Department, Faculty of Science, King Abdulaziz University Jeddah 21589 Saudi Arabia
| | - Firoz Anwar
- Department of Biochemistry, Faculty of Science, King Abdulaziz University Jeddah 21589 Saudi Arabia.
| |
Collapse
|
43
|
Therapeutic efficacy of nanoparticles and routes of administration. Biomater Res 2019; 23:20. [PMID: 31832232 PMCID: PMC6869321 DOI: 10.1186/s40824-019-0166-x] [Citation(s) in RCA: 464] [Impact Index Per Article: 92.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 09/20/2019] [Indexed: 12/13/2022] Open
Abstract
In modern-day medicine, nanotechnology and nanoparticles are some of the indispensable tools in disease monitoring and therapy. The term “nanomaterials” describes materials with nanoscale dimensions (< 100 nm) and are broadly classified into natural and synthetic nanomaterials. However, “engineered” nanomaterials have received significant attention due to their versatility. Although enormous strides have been made in research and development in the field of nanotechnology, it is often confusing for beginners to make an informed choice regarding the nanocarrier system and its potential applications. Hence, in this review, we have endeavored to briefly explain the most commonly used nanomaterials, their core properties and how surface functionalization would facilitate competent delivery of drugs or therapeutic molecules. Similarly, the suitability of carbon-based nanomaterials like CNT and QD has been discussed for targeted drug delivery and siRNA therapy. One of the biggest challenges in the formulation of drug delivery systems is fulfilling targeted/specific drug delivery, controlling drug release and preventing opsonization. Thus, a different mechanism of drug targeting, the role of suitable drug-laden nanocarrier fabrication and methods to augment drug solubility and bioavailability are discussed. Additionally, different routes of nanocarrier administration are discussed to provide greater understanding of the biological and other barriers and their impact on drug transport. The overall aim of this article is to facilitate straightforward perception of nanocarrier design, routes of various nanoparticle administration and the challenges associated with each drug delivery method.
Collapse
|
44
|
Al Aboody MS. Silver/silver chloride (Ag/AgCl) nanoparticles synthesized from Azadirachta indica lalex and its antibiofilm activity against fluconazole resistant Candida tropicalis. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:2107-2113. [PMID: 31137983 DOI: 10.1080/21691401.2019.1620257] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In this study, latex of Azadirachta indica was used for the synthesis of silver nanoparticles (AgNP). UV-visible spectroscopy revealed the formation of AgNPs and the absorption band optimized at 442 nm. Fourier transform infrared (FTIR) spectroscopy shows different functional groups (carboxyl, amine and hydroxyl) of biomolecule which are responsible for reduction and capping process. X-ray diffraction (XRD) analysis confirms the nanoparticles are crystalline silver and cubic (AgCl) with face-centered cubic (Ag) types. Electron microscopics (SEM and TEM) were used to characterize the shape and size of the nanoparticles. The anticandidal and antibiofilm activity of AgNPs was using Fluconazole resistant clinical isolate of Candida tropicalis. The new approach of plant-mediated AgNPs synthesis appears to be cost-effective, eco-friendly and easy methods. The synthesized AgNPs considered as a novel and alternative agent to prevent C. tropicalis biofilms.
Collapse
Affiliation(s)
- Mohammed Saleh Al Aboody
- a Department of Biology, College of Science, Al-Zulfi-, Majmaah University , Majmaah , Riyadh Region , Kingdom of Saudi Arabia
| |
Collapse
|
45
|
Aizik G, Waiskopf N, Agbaria M, Ben-David-Naim M, Levi-Kalisman Y, Shahar A, Banin U, Golomb G. Liposomes of Quantum Dots Configured for Passive and Active Delivery to Tumor Tissue. NANO LETTERS 2019; 19:5844-5852. [PMID: 31424944 DOI: 10.1021/acs.nanolett.9b01027] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The majority of developed and approved anticancer nanomedicines have been designed to exploit the dogma of the enhanced permeability and retention (EPR) effect, which is based on the leakiness of the tumor's blood vessels accompanied by impeded lymphatic drainage. However, the EPR effect has been under scrutiny recently because of its variable manifestation across tumor types and animal species and its poor translation to human cancer therapy. To facilitate the EPR effect, systemically injected NPs should overcome the obstacle of rapid recognition and elimination by the mononuclear phagocyte system (MPS). We hypothesized that circulating monocytes, major cells of the MPS that infiltrate the tumor, may serve as an alternative method for achieving increased tumor accumulation of NPs, independent of the EPR effect. We describe here the accumulation of liposomal quantum dots (LipQDs) designed for active delivery via monocytes, in comparison to LipQDs designed for passive delivery (via the EPR effect), following IV administration in a mammary carcinoma model. Hydrophilic QDs were synthesized and entrapped in functionalized liposomes, conferring passive ("stealth" NPs; PEGylated, neutral charge) and active (monocyte-mediated delivery; positively charged) properties by differing in their lipid composition, membrane PEGylation, and charge (positively, negatively, and neutrally charged). The various physicochemical parameters affecting the entrapment yield and optical stability were examined in vitro and in vivo. Biodistribution in the blood, various organs, and in the tumor was determined by the fluorescence intensity and Cd analyses. Following the treatment of animals (intact and mammary-carcinoma-bearing mice) with disparate formulations of LipQDs (differing by their lipid composition, neutrally and positively charged surfaces, and hydrophilic membrane), we demonstrate comparable tumor uptake of QDs delivered by the passive and the active routes (mainly by Ly-6Chi monocytes). Our findings suggest that entrapping QDs in nanosized liposomal formulations, prepared by a new facile method, imparts superior structural and optical stability and a suitable biodistribution profile leading to increased tumor uptake of fluorescently stable QDs.
Collapse
|
46
|
Valenzuela-Salas LM, Girón-Vázquez NG, García-Ramos JC, Torres-Bugarín O, Gómez C, Pestryakov A, Villarreal-Gómez LJ, Toledano-Magaña Y, Bogdanchikova N. Antiproliferative and Antitumour Effect of Nongenotoxic Silver Nanoparticles on Melanoma Models. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:4528241. [PMID: 31428226 PMCID: PMC6683800 DOI: 10.1155/2019/4528241] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 04/25/2019] [Accepted: 05/29/2019] [Indexed: 12/15/2022]
Abstract
During the last 3 decades, there has been a slow advance to obtain new treatments for malignant melanoma that improve patient survival. In this work, we present a systematic study focused on the antiproliferative and antitumour effect of AgNPs. These nanoparticles are fully characterized, are coated with polyvinylpyrrolidone (PVP), and have an average size of 35 ± 15 nm and a metallic silver content of 1.2% wt. Main changes on cell viability, induction of apoptosis and necrosis, and ROS generation were found on B16-F10 cells after six hours of exposure to AgNPs (IC50 = 4.2 μg/mL) or Cisplatin (IC50 = 2.0 μg/mL). Despite the similar response for both AgNPs and Cisplatin on antiproliferative potency (cellular viability of 53.95 ± 1.88 and 53.62 ± 1.04) and ROS production (20.27 ± 1.09% and 19.50 ± 0.35%), significantly different cell death pathways were triggered. While AgNPs induce only apoptosis (45.98 ± 1.88%), Cisplatin induces apoptosis and necrosis at the same rate (22.31 ± 1.72% and 24.07 ± 1.10%, respectively). In addition to their antiproliferative activity, in vivo experiments showed that treatments of 3, 6, and 12 mg/kg of AgNPs elicit a survival rate almost 4 times higher (P < 0.05) compared with the survival rate obtained with Cisplatin (2 mg/kg). Furthermore, the survivor mice treated with AgNPs do not show genotoxic damage determined by micronuclei frequency quantification on peripheral blood cells. These results exhibit the remarkable antitumour activity of a nongenotoxic AgNP formulation and constitute the first advance toward the application of these AgNPs for melanoma treatment, which could considerably reduce adverse effects provoked by currently applied chemotherapeutics.
Collapse
Affiliation(s)
- Lucía M. Valenzuela-Salas
- Escuela de Ciencias de la Salud, Universidad Autónoma de Baja California, Tijuana, Baja California, Mexico
| | - Nayeli G. Girón-Vázquez
- Facultad de Ingeniería, Arquitectura y Diseño, Universidad Autónoma de Baja California, Ensenada, Baja California, Mexico
| | - Juan C. García-Ramos
- Departamento de Fisicoquímica de Nanomateriales, CONACyT-UNAM-CNyN, Ensenada, Baja California, Mexico
| | - Olivia Torres-Bugarín
- Programa Internacional de Medicina, Universidad Autónoma de Guadalajara, Zapopan, Jalisco, Mexico
| | - Claudia Gómez
- Facultad de Ingeniería, Arquitectura y Diseño, Universidad Autónoma de Baja California, Ensenada, Baja California, Mexico
| | - Alexey Pestryakov
- Department of Technology of Organic Substances and Polymer Materials, Tomsk Polytechnic University, Tomsk, Russia
| | - Luis J. Villarreal-Gómez
- Escuela de Ciencias de la Ingeniería y Tecnología, Universidad Autónoma de Baja California, Tijuana, Baja California, Mexico
| | - Yanis Toledano-Magaña
- Departamento de Fisicoquímica de Nanomateriales, CONACyT-UNAM-CNyN, Ensenada, Baja California, Mexico
| | - Nina Bogdanchikova
- Departamento de Fisicoquímica de Nanomateriales, Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Ensenada, Baja California, Mexico
| |
Collapse
|
47
|
Abbasalipourkabir R, Ziamajidi N. An Overview of the Role of Nanoparticles in Handling the Breast Cancer. AVICENNA JOURNAL OF MEDICAL BIOCHEMISTRY 2019. [DOI: 10.34172/ajmb.2019.01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
| | - Nasrin Ziamajidi
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Iran
| |
Collapse
|
48
|
Orlova M, Nikolaev A, Trofimova T, Orlov A, Severin A, Kalmykov S. Hydroxyapatite and porphyrin-fullerene nanoparticles for diagnostic and therapeutic delivery of paramagnetic ions and radionuclides. Nanomedicine (Lond) 2018. [DOI: 10.24075/brsmu.2018.075] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Nanoparticles for drug delivery are the subject of extensive research. Importantly, they can transform in size during synthesis or actual use, thereby changing their cytotoxic properties. The aim of the present work was to study the tendency of [67Zn] porphyrin-fullerene nanoparticles (BFNP) to aggregate over time and to compare the properties of hydroxyapatite (HAP) nanoparticles obtained through 3 different techniques. We found that aggregation of BFNP nanoparticles does not affect their function but attenuates their cytotoxicity against leukemia cells. We were also able to obtain HAP nanoparticles with programmable properties (such as size, shape or the capacity to adsorb metal ions, ligands and chemical complexes) through enzymatic synthesis by varying its conditions. The synthesized HAP nanoparticles contain short-lived isotopes of zinc and copper (in the form of ions and complexes with pyrimidine or thiazine derivatives). These tumoricidal components (a radionuclide and a ligand or a complex) determine the diagnostic and therapeutic potential of the obtained radiopharmaceutical agents.
Collapse
Affiliation(s)
- M.A. Orlova
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow; Department of Biochemistry and Pharmacology, Dmitry Rogachev National Medical Research Centre of Hematology, Oncology and Immunology, Moscow
| | - A.L. Nikolaev
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow
| | - T.P. Trofimova
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow; Institute of Physiological Active Compounds of RAS, Chernogolovka
| | - A.P. Orlov
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow
| | - A.V. Severin
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow
| | - S.N. Kalmykov
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow
| |
Collapse
|
49
|
Reprogramming Cells for Synergistic Combination Therapy with Nanotherapeutics against Uveal Melanoma. Biomimetics (Basel) 2018; 3:biomimetics3040028. [PMID: 31105250 PMCID: PMC6352695 DOI: 10.3390/biomimetics3040028] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 07/27/2018] [Accepted: 07/28/2018] [Indexed: 12/17/2022] Open
Abstract
Uveal melanoma (UM) is the most common primary intraocular malignant tumor in adults and around half of the patients develop metastasis and die shortly after because of the lack of effective therapies for metastatic UM. Consequently, new therapeutic approaches to this disease are welcome. In this regard, microRNAs have been shown to have a key role in neoplasia progression and have the potential to be used as therapeutic tools. In addition, in different cancers including UM, a particular microRNA signature appears that is different from healthy cells. Thus, restoring the regular levels of microRNAs could restore the normal behavior of cells. In this study, four microRNAs downregulated in UM have been chosen to reprogram cancer cells, to promote cell death or increase their sensitivity to the chemotherapeutic SN38. Furthermore, to improve the internalization, stability and/or solubility of the therapeutic molecules employed in this approach, gold nanoparticles (AuNPs) were used as carriers. Remarkably, this study found a synergistic effect when the four oligonucleotides were employed and when the chemotherapeutic drug was added.
Collapse
|
50
|
Huang Q, Li M, Wang L, Yuan H, Wang M, Wu Y, Li T. Synthesis of novel cyclodextrin-modified reduced graphene oxide composites by a simple hydrothermal method. RSC Adv 2018; 8:37623-37630. [PMID: 35558627 PMCID: PMC9089399 DOI: 10.1039/c8ra07807f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 10/19/2018] [Indexed: 11/21/2022] Open
Abstract
Cyclodextrin (β-CD)-functionalized reduced graphene oxide was successfully synthesized by a simple hydrothermal method, followed by conjugating with polyethylene glycol (PEG) and folic acid (FA). Microscopic and spectroscopic techniques were used to characterize the nanocomposites. Photothermal experiments showed that β-CD-functionalized reduced graphene oxide exhibited higher photothermal conversion efficiency in the near infrared region than reduced graphene oxide functionalized with other molecules under the same conditions. Cytotoxicity experiments indicated that rGO@CD@PEG@FA possessed good biocompatibility even at high concentration. When doxorubicin (DOX) was loaded on the rGO@CD@PEG@FA nanocomposite, it showed the stimulative effect of heat, pH response, and sustained drug release. Cytotoxicity experiments also confirmed the targeted effect and high efficiency of the combined therapy. The findings of the present study provide an ideal drug delivery system for malignant cancer therapy due to the advanced synergistic chemo-photothermal targeted therapy and good drug release properties. The rGO@CD@PEG@FA nanocomposite showed the stimulative effect of heat, pH response, and sustained drug release for cancer therapy![]()
Collapse
Affiliation(s)
- Qingli Huang
- Department of Pathology
- Laboratory of Clinical and Experimental Pathology
- Xuzhou Medical University
- Xuzhou
- China
| | - MingYan Li
- Department of Pathology
- Laboratory of Clinical and Experimental Pathology
- Xuzhou Medical University
- Xuzhou
- China
| | - LiLi Wang
- Research Facility Center for Morphology of Xuzhou Medical University
- Xuzhou
- China
| | - Honghua Yuan
- Research Facility Center for Morphology of Xuzhou Medical University
- Xuzhou
- China
| | - Meng Wang
- Research Facility Center for Morphology of Xuzhou Medical University
- Xuzhou
- China
| | - Yongping Wu
- Department of Pathology
- Laboratory of Clinical and Experimental Pathology
- Xuzhou Medical University
- Xuzhou
- China
| | - Ting Li
- Research Facility Center for Morphology of Xuzhou Medical University
- Xuzhou
- China
| |
Collapse
|