1
|
Li K, Wang L, Zhang L. Screening diluents to optimize cesium contaminant separation using t-BAMBP extractant. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135410. [PMID: 39098200 DOI: 10.1016/j.jhazmat.2024.135410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/30/2024] [Accepted: 08/01/2024] [Indexed: 08/06/2024]
Abstract
The widespread use of nuclear energy has raised concerns about nuclear safety and radioactive waste management, particularly due to the release of radioactive cesium. This study investigates the use of t-BAMBP (4-tert-butyl-2-(α-methylbenzyl) phenol) for the extraction and separation of cesium from simulate high concentration cesium containing wastewater, focusing on the selection of suitable diluents to enhance the efficiency of the process. We performed a systematic study using density functional theory (DFT) calculations to evaluate the intrinsic properties and interactions of various common diluents with t-BAMBP. The diluents studied include aromatic hydrocarbons (benzene, toluene, xylene), alkanes (cyclohexane, hexane, heptane), and alcohols (hexanol, octanol). Our computational results revealed that cyclohexane is the most suitable diluent due to its moderate solvation-free energy, high nonpolarity, and optimal balance between solubility and reactivity. Experimental validation confirmed the computational findings. The cyclohexane-diluted t-BAMBP system achieved the highest cesium extraction efficiency of over 94 %, with a separation factor (βCs/K) of 767.67. Cyclohexane demonstrated the lowest toxicity and cost among the diluents evaluated, making it a safer and more economical choice for practical applications. The results of this study provide a comprehensive theoretical and experimental basis for the selection of diluents in the t-BAMBP extraction system, offering insights for the sustainable utilization of cesium resources and effective management of radioactive waste.
Collapse
Affiliation(s)
- Kaizhong Li
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China
| | - Li Wang
- College of Vanadium and Titanium, Panzhihua University, Sichuan 617000, China.
| | - Lei Zhang
- School of Physics and Materials Science, Nanchang University, Nanchang 330031, China.
| |
Collapse
|
2
|
Chen X, Zhu Y, Xu Y, Rao M, Pang P, Zhang B, Xu C, Ni W, Li G, Wu J, Li M, Chen Y, Geng Y. Design of Ultra-Narrow Bandgap Polymer Acceptors for High-Sensitivity Flexible All-Polymer Short-Wavelength Infrared Photodetectors. Angew Chem Int Ed Engl 2024:e202413965. [PMID: 39192743 DOI: 10.1002/anie.202413965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/25/2024] [Accepted: 08/28/2024] [Indexed: 08/29/2024]
Abstract
All-polymer photodetectors possess unique mechanical flexibility and are ideally suitable for the application in next-generation flexible, wearable short-wavelength infrared (SWIR, 1000-2700 nm) photodetectors. However, all-polymer photodetectors commonly suffer from low sensitivity, high noise, and low photoresponse speed in the SWIR region, which significantly diminish their application potential in wearable electronics. Herein, two polymer acceptors with absorption beyond 1000 nm, namely P4TOC-DCBT and P4TOC-DCBSe, were designed and synthesized. The two polymers possess rigid structure and good conformational stability, which is beneficial for reducing energetic disorder and suppressing dark current. Owing to the efficient charge generation and ultralow noise current, the P4TOC-DCBT-based all-polymer photodetector achieved a specific detectivity (D * ${{D}^{^{\ast}}}$ ) of over 1012 Jones from 650 (visible) to 1070 nm (SWIR) under zero bias, with a response time of 1.36 μs. These are the best results for reported all-polymer SWIR photodetectors in photovoltaic mode. More significantly, the all-polymer blend films exhibit good mechanical durability, and hence the P4TOC-DCBT-based flexible all-polymer photodetectors show a small performance attenuation (<4 %) after 2000 cycles of bending to a 3 mm radius. The all-polymer flexible SWIR organic photodetectors are successfully applied in pulse signal detection, optical communication and image capture.
Collapse
Affiliation(s)
- Xiaofeng Chen
- School of Materials Science and Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Science and Key Laboratory of Organic Integrated Circuits, Ministry of Education, Tianjin University, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350507, China
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore, Singapore
| | - Yu Zhu
- The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, Tianjin Key Laboratory of Functional Polymer Materials, College of Chemistry, and Renewable Energy Conversion and Storage Center, Nankai University, Tianjin, 300071, China
| | - Yan Xu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Science and Key Laboratory of Organic Integrated Circuits, Ministry of Education, Tianjin University, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Mei Rao
- School of Materials Science and Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Science and Key Laboratory of Organic Integrated Circuits, Ministry of Education, Tianjin University, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Pengfei Pang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Science and Key Laboratory of Organic Integrated Circuits, Ministry of Education, Tianjin University, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350507, China
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore, Singapore
| | - Bo Zhang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Science and Key Laboratory of Organic Integrated Circuits, Ministry of Education, Tianjin University, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Chenhui Xu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Science and Key Laboratory of Organic Integrated Circuits, Ministry of Education, Tianjin University, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Wang Ni
- Science and Technology on Power Sources Laboratory, Tianjin Institute of Power Sources, Tianjin, 300384, China
| | - Guanghui Li
- The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, Tianjin Key Laboratory of Functional Polymer Materials, College of Chemistry, and Renewable Energy Conversion and Storage Center, Nankai University, Tianjin, 300071, China
| | - Jishan Wu
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350507, China
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore, Singapore
| | - Miaomiao Li
- School of Materials Science and Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Science and Key Laboratory of Organic Integrated Circuits, Ministry of Education, Tianjin University, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Yongsheng Chen
- The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, Tianjin Key Laboratory of Functional Polymer Materials, College of Chemistry, and Renewable Energy Conversion and Storage Center, Nankai University, Tianjin, 300071, China
| | - Yanhou Geng
- School of Materials Science and Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Science and Key Laboratory of Organic Integrated Circuits, Ministry of Education, Tianjin University, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350507, China
| |
Collapse
|
3
|
Akor FO, Edo GD, Nelson FA, Johnson AU, Iyam SO, Abubakar MN, Gulack AO, Ubah CB, Ekpong BO, Benjamin I. Surface modification of graphene and fullerene with Sulfur (S), Selenium (Se), and Oxygen (O): DFT Simulation for enhanced zidovudine delivery in HIV treatment. BMC Chem 2024; 18:156. [PMID: 39192298 DOI: 10.1186/s13065-024-01259-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 08/02/2024] [Indexed: 08/29/2024] Open
Abstract
HIV is one of the most threatening health conditions with a highly increasing rate, affecting millions of people globally, and from its time of discovery until now, its potential cure cannot be explicitly defined. This challenge of having no/low effective drugs for the subjected virus has called for serious attention in the scientific world of virus disease therapeutics. Most of these drugs yields low effectiveness due to poor delivery; hence, there is a need for novel engineering methods for efficient delivery. In this study, two nanomaterilas (graphene; GP, and fullerene; C60) were modelled and investigated with sulfur (S), selenium (Se), and oxygen (O) atoms, to facilitate the delivery of zidovudine (ZVD). This investigation was computationally investigated using the density functional theory (DFT), calculated at B3LYP functional and Gd3bj/Def2svp level of theory. Results from the frontier molecular orbital (FMO), revealed that the GP/C60_S_ZVD complex calculated the least energy gap of 0.668 eV, thus suggesting a favourable interactions. The study of adsorption energy revealed chemisorption among all the interacting complexes wherein GP/C60_S_ZVD complex (-1.59949 eV) was highlighted as the most interacting system, thereby proving its potential for the delivery of ZVD. The outcome of this research urges that a combination of GP and C60 modified with chalcogen particularly, O, S, and Se can aid in facilitating the delivery of zidovudine.
Collapse
Affiliation(s)
- Faith O Akor
- Department of Science Laboratory Technology, University of Calabar, Calabar, Nigeria
| | - Godwin D Edo
- Department of Science Laboratory Technology, University of Calabar, Calabar, Nigeria
| | - Favour A Nelson
- Department of Chemistry, University of Calabar, Calabar, Nigeria
| | | | - Solomon O Iyam
- Department of Microbiology, University of Calabar, Calabar, Nigeria
| | - Muhammad N Abubakar
- Department of Biotechnology, Moddibo Adama University of Yola, Yola, Nigeria
| | - Alpha O Gulack
- Department of Science Laboratory Technology, University of Calabar, Calabar, Nigeria
| | - Chioma B Ubah
- Department of Microbiology, University of Calabar, Calabar, Nigeria
| | - Bassey O Ekpong
- Department of Microbiology, University of Calabar, Calabar, Nigeria.
| | | |
Collapse
|
4
|
Wang X, Fu J, Bhullar KS, Chen B, Liu H, Zhang Y, Wang C, Liu C, Su D, Ma X, Qiao Y. Identification, in silico selection, and mechanistic investigation of antioxidant peptides from corn gluten meal hydrolysate. Food Chem 2024; 446:138777. [PMID: 38402763 DOI: 10.1016/j.foodchem.2024.138777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/30/2023] [Accepted: 02/14/2024] [Indexed: 02/27/2024]
Abstract
Seven novel antioxidant peptides (AWF, LWQ, WIY, YLW, LAYW, LPWG, and LYFY) exhibiting a superior activity compared to trolox were identified through in silico screening. Among these, the four peptides (WIY, YLW, LAYW, and LYFY) displayed notably enhanced performance, with ABTS activity 2.58-3.26 times and ORAC activity 5.19-8.63 times higher than trolox. Quantum chemical calculations revealed that the phenolic hydroxyl group in tyrosine and the nitrogen-hydrogen bond in the indole ring of tryptophan serve as the critical sites for antioxidant activity. These findings likely account for the potent chemical antioxidant activity. The corn peptides also exerted a protective effect against AAPH-induced cytomorphologic changes in human erythrocytes by modulating the antioxidant system. Notably, LAYW exhibited the most pronounced cytoprotective effects, potentially due to its high content of hydrophobic amino acids.
Collapse
Affiliation(s)
- Xiao Wang
- Crop Breeding and Cultivation Research Institution, Research Center for Agricultural Products Preservation and Processing, Shanghai Academy of Agricultural Sciences, Shanghai, PR China
| | - Juan Fu
- Crop Breeding and Cultivation Research Institution, Research Center for Agricultural Products Preservation and Processing, Shanghai Academy of Agricultural Sciences, Shanghai, PR China; School of Flavor and Fragrance Technology and Engineering, Shanghai Institute of Technology, Shanghai, PR China
| | - Khushwant S Bhullar
- Department of Agricultural Food & Nutritional Science, University of Alberta, Edmonton T6G 2P5, Canada
| | - Bingjie Chen
- Crop Breeding and Cultivation Research Institution, Research Center for Agricultural Products Preservation and Processing, Shanghai Academy of Agricultural Sciences, Shanghai, PR China
| | - Hongru Liu
- Crop Breeding and Cultivation Research Institution, Research Center for Agricultural Products Preservation and Processing, Shanghai Academy of Agricultural Sciences, Shanghai, PR China
| | - Yi Zhang
- Crop Breeding and Cultivation Research Institution, Research Center for Agricultural Products Preservation and Processing, Shanghai Academy of Agricultural Sciences, Shanghai, PR China
| | - Chunfang Wang
- Crop Breeding and Cultivation Research Institution, Research Center for Agricultural Products Preservation and Processing, Shanghai Academy of Agricultural Sciences, Shanghai, PR China
| | - Chenxia Liu
- Crop Breeding and Cultivation Research Institution, Research Center for Agricultural Products Preservation and Processing, Shanghai Academy of Agricultural Sciences, Shanghai, PR China
| | - Di Su
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China
| | - Xia Ma
- School of Flavor and Fragrance Technology and Engineering, Shanghai Institute of Technology, Shanghai, PR China
| | - Yongjin Qiao
- Crop Breeding and Cultivation Research Institution, Research Center for Agricultural Products Preservation and Processing, Shanghai Academy of Agricultural Sciences, Shanghai, PR China.
| |
Collapse
|
5
|
Han M, Du K, He X, Li H, Li J, Li X, Chang Y. Advancing green extraction of bioactive compounds using deep eutectic solvent-based ultrasound-assisted matrix solid-phase dispersion: Application to UHPLC-PAD analysis of alkaloids and organic acids in Coptidis rhizoma. Talanta 2024; 274:125983. [PMID: 38537350 DOI: 10.1016/j.talanta.2024.125983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/18/2024] [Accepted: 03/21/2024] [Indexed: 05/04/2024]
Abstract
The utilization of deep eutectic solvents (DES) in sustainable extracting and separating of phytochemicals shows promising prospect. An exceptionally fast, eco-friendly, and sustainable approach was proposed for extracting bioactive compounds from Coptidis Rhizoma based on deep eutectic solvent-based ultrasound-assisted matrix solid phase dispersion (DES-UA-MSPD). Single-factor experiments and Box-Behnken design were utilized to explore the optimal extraction conditions. The analysis indicated that the acidic DES, especially betaine-acrylic acid (Bet-Aa 1:4 mol/mol) with 50% water content, was proved to be the most effective medium for the extraction of alkaloids (magnoflorine, groenlandicine, coptisine, epiberberine, berberine and palmatine) and organic acid (chlorogenic acid). With the parameters optimized, the total maximum extraction yield of alkaloids and organic acids reached 128.83 mg g-1 applying the optimal DES, which was 1.33-5.33 folds higher than conventional extraction solvents. Additionally, through microstructure analysis using scanning electron microscopy, density functional theory , and frontier molecular orbitals theory, a deeper understanding of the extraction principle was gained, and the molecular mechanism of DES synthesis and the interactions between target compounds were systematically elucidated. The sustainable and green potential of the DES-UA-MSPD method was demonstrated through Green Analytical Procedure Indexanalysis. The overall results of this investigation revealed that the proposed technology was a highly promising and sustainable alternative for effective extraction and quantification of natural products.
Collapse
Affiliation(s)
- Min Han
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Kunze Du
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Xicheng He
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Haixiang Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Jin Li
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Xiaoxia Li
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Yanxu Chang
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
6
|
Isca VMS, Sitarek P, Merecz-Sadowska A, Małecka M, Owczarek M, Wieczfińska J, Zajdel R, Nowak P, Rijo P, Kowalczyk T. Anticancer Effects of Abietane Diterpene 7α-Acetoxy-6β-hydroxyroyleanone from Plectranthus grandidentatus and Its Semi-Synthetic Analogs: An In Silico Computational Approach. Molecules 2024; 29:1807. [PMID: 38675627 PMCID: PMC11052076 DOI: 10.3390/molecules29081807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/30/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
The abietane diterpenoid 7α-acetoxy-6β-hydroxyroyleanone (Roy) isolated from Plectranthus grandidentatus demonstrates cytotoxicity across numerous cancer cell lines. To potentiate anticancer attributes, a series of semi-synthetic Roy derivatives were generated and examined computationally. ADMET predictions were used to evaluate drug-likeness and toxicity risks. The antineoplastic potential was quantified by PASS. The DFT models were used to assess their reactivity and stability. Molecular docking determined cancer-related protein binding. MS simulations examined ligand-protein stability. Additionally, network pharmacology was used to identify potential targets and signaling pathways. Favorable ADME attributes and acceptable toxicity profiles were determined for all compounds. Strong anticancer potential was shown across derivatives (Pa 0.819-0.879). Strategic modifications altered HOMO-LUMO gaps (3.39-3.79 eV) and global reactivity indices. Favorable binding was revealed against cyclin-dependent kinases, BCL-2, caspases, receptor tyrosine kinases, and p53. The ligand exhibited a stable binding pose in MD simulations. Network analysis revealed involvement in cancer-related pathways. In silico evaluations predicted Roy and derivatives as effective molecules with anticancer properties. Experimental progress is warranted to realize their chemotherapeutic potential.
Collapse
Affiliation(s)
- Vera M. S. Isca
- Center for Research in Biosciences & Health Technologies (CBIOS), Universidade Lusófona de Humanidades e Tecnologias, 1749-024 Lisbon, Portugal;
| | - Przemysław Sitarek
- Department of Medical Biology, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland;
| | - Anna Merecz-Sadowska
- Department of Economic and Medical Informatics, University of Lodz, 90-214 Lodz, Poland; (A.M.-S.); (R.Z.); (P.N.)
- Department of Allergology and Respiratory Rehabilitation, Medical University of Lodz, 90-725 Lodz, Poland
| | - Magdalena Małecka
- Department of Physical Chemistry, Faculty of Chemistry, University of Lodz, Pomorska 163/165, 90-236 Lodz, Poland;
| | - Monika Owczarek
- Łukasiewicz Research Network, Lodz Institute of Technology, Skłodowskiej-Curie 19/27, 90-570 Lodz, Poland;
| | - Joanna Wieczfińska
- Department of Immunopathology, Medical University of Lodz, Zeligowskiego 7/9, 90-752 Lodz, Poland;
| | - Radosław Zajdel
- Department of Economic and Medical Informatics, University of Lodz, 90-214 Lodz, Poland; (A.M.-S.); (R.Z.); (P.N.)
- Department of Medical Informatics and Statistics, Medical University of Lodz, 90-645 Lodz, Poland
| | - Paweł Nowak
- Department of Economic and Medical Informatics, University of Lodz, 90-214 Lodz, Poland; (A.M.-S.); (R.Z.); (P.N.)
| | - Patricia Rijo
- Center for Research in Biosciences & Health Technologies (CBIOS), Universidade Lusófona de Humanidades e Tecnologias, 1749-024 Lisbon, Portugal;
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Tomasz Kowalczyk
- Department of Molecular Biotechnology and Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| |
Collapse
|
7
|
Wang S, Wang J. The correlation between electron exchange capacity of Fenton-like heterogeneous catalyst and catalytic activity. CHEMOSPHERE 2024; 354:141587. [PMID: 38494002 DOI: 10.1016/j.chemosphere.2024.141587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 03/19/2024]
Abstract
Electron transfer played key role in peroxymonosulfate (PMS) activation for heterogeneous Fenton-like catalysts (HFCs). However, the relationship between electron exchange capacity (EEC) and catalytic activity of HFCs has not been elucidated. Herein, thirteen HFCs reported in our previous studies were selected to measure their EEC via electrochemical methods and to investigate the correlation between EEC and catalytic activity for PMS. The results show that nitrogen-doped graphene oxide had much higher EEC (5.299 mM(e) g-1), followed by reduced graphene oxide (3.23 mM(e) g-1), nitrogen-doped biochar-700 (2.032 mM(e) g-1), graphene oxdie (1.789 mM(e) g-1), nitrogen-doped biochar-300 (1.15 mM(e) g-1), g-C3N4 (0.752 mM(e) g-1) and biochar (0.351 mM(e) g-1). For carbon materials, their catalytic activity was not determined by electron donor capacity (EDC), electron acceptor capacity (EAC) and EEC (EDC + EAC), but was linear correlation with |EDC-EAC| that can characterize the extent of HFCs reacting with PMS. The higher the |EDC-EAC| is, the higher the catalytic activity of HFCs is. For carbonaceous materials, their catalytic activity was not proportional to EAC, but had good linear correlation with EDC and |EDC-EAC|. The discrepancy between carbon materials and carbonaceous materials could be due to the different activation mechanisms. Further analysis found that there was no correlation between EEC and the reactive species derived from PMS, indicating that the produced reactive species was not only controlled by EEC. This study firstly elucidated the correlation between EEC and catalytic activity of HFCs, and |EDC-EAC| could be used as an index for evaluating the catalytic activity of HFCs.
Collapse
Affiliation(s)
- Shizong Wang
- Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET, Tsinghua University, Beijing, 100084, PR China; Beijing Key Laboratory of Radioactive Wastes Treatment, Tsinghua University, Beijing, 100084, PR China.
| | - Jianlong Wang
- Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET, Tsinghua University, Beijing, 100084, PR China; Beijing Key Laboratory of Radioactive Wastes Treatment, Tsinghua University, Beijing, 100084, PR China.
| |
Collapse
|
8
|
Gordon AT, Hosten EC, van Vuuren S, Ogunlaja AS. Copper(II)-photocatalyzed Hydrocarboxylation of Schiff bases with CO 2: antimicrobial evaluation and in silico studies of Schiff bases and unnatural α-amino acids. J Biomol Struct Dyn 2024:1-14. [PMID: 38192072 DOI: 10.1080/07391102.2024.2301765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 12/30/2023] [Indexed: 01/10/2024]
Abstract
We synthesized and characterized two copper(II) complexes: [CuL2Cl]Cl and [CuL'2Cl]Cl, where L = 2,2'-bipyridine and L' = 4,4'-dimethyl-2,2'-bipyridine. We evaluated their photocatalytic hydrocarboxylation properties on a series of synthesized Schiff bases (SBs): (E)-1-(4-((5-bromo-2-hydroxybenzylidene)amino)phenyl)ethanone (SB1), (E)-N-(4-(dimethylamino)benzylidene)benzo[d]thiazol-2-amine (SB2), (E)-4-Bromo-2-((thiazol-2-ylimino)methyl)phenol (SB3), and (E)-4-((5-bromo-2-hydroxybenzylidene)amino)-1,5-dimethyl-2-phenyl-1H-pyrazol-3(2H)-one (SB4). Under mild photocatalytic reaction conditions (room temperature, 1 atm CO2, 30-watt Blue LED light), the derivatives of α-amino acids UAA1-4 were obtained with yields ranging from 5% to 44%. Experimental results demonstrated that [CuL2Cl]Cl exhibited superior photocatalytic efficiency compared to [CuL'2Cl]Cl, attributed to favourable electronic properties. In silico studies revealed strong binding strengths with E. faecalis DHFR (4M7U) for docked Schiff bases (SB) and unnatural α-amino acids (UAAs). In vitro studies further demonstrated significant antimicrobial and antifungal activity for SB2, SB3, and SB4, while none of the synthesized UAAs exhibited such properties, primarily due to the electronic and binding properties of these molecules.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Allen T Gordon
- Department of Chemistry, Nelson Mandela University, Port Elizabeth, South Africa
| | - Eric C Hosten
- Department of Chemistry, Nelson Mandela University, Port Elizabeth, South Africa
| | - Sandy van Vuuren
- Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the Witwatersrand, Parktown, South Africa
| | - Adeniyi S Ogunlaja
- Department of Chemistry, Nelson Mandela University, Port Elizabeth, South Africa
| |
Collapse
|
9
|
Raut B, Upadhyaya SR, Bashyal J, Parajuli N. In Silico and In Vitro Analyses to Repurpose Quercetin as a Human Pancreatic α-Amylase Inhibitor. ACS OMEGA 2023; 8:43617-43631. [PMID: 38027372 PMCID: PMC10666247 DOI: 10.1021/acsomega.3c05082] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 10/20/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023]
Abstract
Human pancreatic α-amylase (HPA), situated at the apex of the starch digestion hierarchy, is an attractive therapeutic approach to precisely regulate blood glucose levels, thereby efficiently managing diabetes. Polyphenols offer a natural and multifaceted approach to moderate postprandial sugar spikes, with their slight modulation in carbohydrate digestion and potential secondary benefits, such as antioxidant and anti-inflammatory effects. Taking into consideration the unfavorable side effects of currently available commercial medications, we aimed to study a library of polyphenols attributed to their remarkable antidiabetic properties and screened the most potent HPA inhibitor via a comprehensive in silico study encompassing molecular docking, molecular mechanics with generalized Born and surface area solvation (MM/GBSA) calculation, molecular dynamics (MD) simulation, density functional theory (DFT) study, and pharmacokinetic properties followed by an in vitro assay. Significant hydrogen bonding with the catalytic triad residues of HPA, prominent MM/GBSA binding energy of -27.03 kcal/mol, and the stable nature of the protein-ligand complex with regard to 100 ns MD simulation screened quercetin as the best HPA inhibitor. Additionally, quercetin showed strong reactivity in the substrate-binding pocket of HPA and exhibited favorable pharmacokinetic properties with a considerable inhibitory concentration (IC50) of 57.37 ± 0.9 μg/mL against α-amylase. This study holds prospects for HPA inhibition and suggests quercetin as an approach to therapy for diabetes; however, it is imperative to conduct further research.
Collapse
Affiliation(s)
- Bimal
K. Raut
- Central Department of Chemistry, Tribhuvan University, Kirtipur 44600, Kathmandu, Nepal
| | - Siddha Raj Upadhyaya
- Central Department of Chemistry, Tribhuvan University, Kirtipur 44600, Kathmandu, Nepal
| | - Jyoti Bashyal
- Central Department of Chemistry, Tribhuvan University, Kirtipur 44600, Kathmandu, Nepal
| | - Niranjan Parajuli
- Central Department of Chemistry, Tribhuvan University, Kirtipur 44600, Kathmandu, Nepal
| |
Collapse
|
10
|
Rehman F, Waqas M, Imran M, Ibrahim MAA, Iqbal J, Khera RA, Hadia NMA, Al-Saeedi SI, Shaban M. Approach toward Low Energy Loss in Symmetrical Nonfullerene Acceptor Molecules Inspired by Insertion of Different π-Spacers for Developing Efficient Organic Solar Cells. ACS OMEGA 2023; 8:43792-43812. [PMID: 38027352 PMCID: PMC10666235 DOI: 10.1021/acsomega.3c05665] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/16/2023] [Accepted: 10/19/2023] [Indexed: 12/01/2023]
Abstract
In this quantum approach, by adding bridge/π-spacer fragments between the donor and acceptor parts of a newly constructed DF-PCIC (A-D-A type) molecule, it is the aim to improve the photovoltaic characteristics of organic solar cells (OSCs). After π-spacer insertion into the reference molecule (DF-R), six new molecules (DF-M1 to DF-M6) were designed. The optoelectronic attributes of newly inspected molecules were theoretically calculated using MPW1PW91/6-31G(d,p) level of theory. All newly proposed molecules possessed a lower band gap (Eg), a higher value of absorption, lower reorganization energy, greater dipole moment, and lower energies of excitations than the DF-R molecule. The frontier molecular orbital study proclaimed that the DF-M1 molecule has the lowest band gap of 1.62 eV in comparison to the 2.41 eV value of DF-R. Absorption properties represented that DF-M1 and DF-M2 molecules show the highest absorption values of up to 1006 and 1004 nm, respectively, in the near-infrared region. Regarding the reorganization energy, DF-M2 has the lowest value of λe (0.0683896 eV) and the lowest value of λh (0.1566471 eV). DF-M2 and DF-M5 manifested greater dipole moments with the values of 5.514665 and 7.143434 D, respectively. The open circuit voltage (VOC) of all the acceptors was calculated with J61, a donor complex. DF-M4 and DF-M6 molecules showed higher values of VOC and fill factor than the DF-R molecule. Based on the given results, it was supposed that all the newly presented molecules might prove themselves to be better than the reference and thus might be of great interest to experimentalists. Thus, they are suggested to be used to develop proficient OSC devices with improved photovoltaic prospects in the near future.
Collapse
Affiliation(s)
- Faseh
ur Rehman
- Department
of Chemistry, University of Agriculture, Faisalabad 38000, Pakistan
| | - Muhammad Waqas
- Department
of Chemistry, University of Agriculture, Faisalabad 38000, Pakistan
| | - Muhammad Imran
- Chemistry
Department, Faculty of Science, King Khalid
University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Mahmoud A. A. Ibrahim
- Chemistry
Department, Faculty of Science, Minia University, Minia 61519, Egypt
- School
of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4000, South Africa
| | - Javed Iqbal
- Department
of Chemistry, University of Agriculture, Faisalabad 38000, Pakistan
| | - Rasheed Ahmad Khera
- Department
of Chemistry, University of Agriculture, Faisalabad 38000, Pakistan
| | - N. M. A. Hadia
- Physics
Department, College of Science, Jouf University, P.O. Box 2014, Sakaka 72388, Al-Jouf, Saudi Arabia
| | - Sameerah I. Al-Saeedi
- Department
of Chemistry, Collage of Science, Princess
Nourah Bint Abdulrahman University, P.O.Box
84428, Riyadh 11671, Saudi Arabia
| | - Mohamed Shaban
- Department
of Physics, Faculty of Science, Islamic
University of Madinah, Madinah 42351, Saudi Arabia
- Nanophotonics
and Applications (NPA) Lab, Physics Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt
| |
Collapse
|
11
|
Zeng F, Qiu H, Feng X, Guo X, Zhu K, Yao Q, Tang J. Density functional theory studies of Ti 3C 2T xMXene nanosheets decorated with Au for sensing SF 6/N 2nitrogen-containing decomposition gases. NANOTECHNOLOGY 2023; 35:035504. [PMID: 37666245 DOI: 10.1088/1361-6528/acf671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 09/03/2023] [Indexed: 09/06/2023]
Abstract
SF6/N2mixture is an alternative gas of SF6, which is already used in electrical equipment. When a malfunction occurs , SF6/N2will decompose and further react with trace water and oxygen to produce nitrogen-containing gases such as NO, NO2, N2O and NF3. It is necessary to monitor these gases to ensure the safe operation of the equipment. This paper is based on density functional theory (DFT), the nanomaterial Ti3C2Txdoped with Au atom was selected as sensing material. The result shows that Au/Ti3C2Txhas larger adsorption energy when NO and NO2adsorbed on the surface, the stable structures were conformed more easily with NO and NO2compared with N2O and NF3. The density of states analysis and the frontier molecule orbital analysis reveal more change of the system before and after NO and NO2adsorption, suggesting the material showed good sensitivity performance to NO and NO2. Thus, Au/Ti3C2Txis considered to have the potential for sensing NO and NO2.
Collapse
Affiliation(s)
- Fuping Zeng
- School of Electrical Engineering and Automation, Wuhan University, Wuhan 430072, People's Republic of China
- Hubei Key Laboratory of Power Equipment & System Security for Integrated Energy Resources, Wuhan, 430072, People's Republic of China
| | - Hao Qiu
- School of Electrical Engineering and Automation, Wuhan University, Wuhan 430072, People's Republic of China
| | - Xiaoxuan Feng
- State Grid Chengdu Electric Power Supply Company, Chengdu 610041, Sichuan Province, People's Republic of China
| | - Xinnuo Guo
- School of Electrical Engineering and Automation, Wuhan University, Wuhan 430072, People's Republic of China
| | - Kexin Zhu
- School of Electrical Engineering and Automation, Wuhan University, Wuhan 430072, People's Republic of China
| | - Qiang Yao
- State Grid Chongqing Electric Power Research Institute, Chongqing 401123, People's Republic of China
| | - Ju Tang
- School of Electrical Engineering and Automation, Wuhan University, Wuhan 430072, People's Republic of China
- Hubei Key Laboratory of Power Equipment & System Security for Integrated Energy Resources, Wuhan, 430072, People's Republic of China
- State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, Chongqing 400044, People's Republic of China
| |
Collapse
|
12
|
Alam M. Exploration of Binding Affinities of a 3β,6β-Diacetoxy-5α-cholestan-5-ol with Human Serum Albumin: Insights from Synthesis, Characterization, Crystal Structure, Antioxidant and Molecular Docking. Molecules 2023; 28:5942. [PMID: 37630192 PMCID: PMC10459092 DOI: 10.3390/molecules28165942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
The present study describes the synthesis, characterization, and in vitro molecular interactions of a steroid 3β,6β-diacetoxy-5α-cholestan-5-ol. Through conventional and solid-state methods, a cholestane derivative was successfully synthesized, and a variety of analytical techniques were employed to confirm its identity, including high-resolution mass spectrometry (HRMS), Fourier transforms infrared (FT-IR), nuclear magnetic resonance (NMR), elemental analysis, and X-ray single-crystal diffraction. Optimizing the geometry of the steroid was undertaken using density functional theory (DFT), and the results showed great concordance with the data from the experiments. Fluorescence spectral methods and ultraviolet-vis absorption titration were employed to study the in vitro molecular interaction of the steroid regarding human serum albumin (HSA). The Stern-Volmer, modified Stern-Volmer, and thermodynamic parameters' findings showed that steroids had a significant binding affinity to HSA and were further investigated by molecular docking studies to understand the participation of active amino acids in forming non-bonding interactions with steroids. Fluorescence studies have shown that compound 3 interacts with human serum albumin (HSA) through a static quenching mechanism. The binding affinity of compound 3 for HSA was found to be 3.18 × 104 mol-1, and the Gibbs free energy change (ΔG) for the binding reaction was -9.86 kcal mol-1 at 298 K. This indicates that the binding of compound 3 to HSA is thermodynamically favorable. The thermodynamic parameters as well as the binding score obtained from molecular docking at various Sudlow's sites was -8.2, -8.5, and -8.6 kcal/mol for Sites I, II, and III, respectively, supporting the system's spontaneity. Aside from its structural properties, the steroid demonstrated noteworthy antioxidant activity, as evidenced by its IC50 value of 58.5 μM, which is comparable to that of ascorbic acid. The findings presented here contribute to a better understanding of the pharmacodynamics of steroids.
Collapse
Affiliation(s)
- Mahboob Alam
- Department of Safety Engineering, Dongguk University Wise, 123 Dongdae-ro, Gyeongju-si 780714, Gyeongbuk, Republic of Korea
| |
Collapse
|
13
|
Mustafa MN, Channar PA, Ejaz SA, Afzal S, Aziz M, Shamim T, Saeed A, Alsfouk AA, Ujan R, Abbas Q, Hökelek T. Synthesis, DFT and molecular docking of novel (Z)-4-bromo-N-(4-butyl-3 (quinolin-3-yl)thiazol-2(3H)-ylidene)benzamide as elastase inhibitor. BMC Chem 2023; 17:95. [PMID: 37550776 PMCID: PMC10408170 DOI: 10.1186/s13065-023-00985-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 06/30/2023] [Indexed: 08/09/2023] Open
Abstract
A new compound, C23H20BrN3OS, containing a quinoline-based iminothiazoline with a thiazoline ring, was synthesized and its crystal and molecular structures were analyzed through single crystal X-ray analysis. The compound belongs to the triclinic system P - 1 space group, with dimensions of a = 9.2304 (6) Å, b = 11.1780 (8) Å, c = 11.3006 (6) Å, α = 107.146 (5)°, β = 93.701 (5)°, γ = 110.435 (6)°, Z = 2 and V = 1025.61 (12) Å3. The crystal structure showed that C-H···N and C-H···O hydrogen bond linkages, forming infinite double chains along the b-axis direction, and enclosing R22(14) and R22(16) ring motifs. The Hirshfeld surface analysis revealed that H…H (44.1%) and H…C/C…H (15.3%) interactions made the most significant contribution. The newly synthesized (Z)-4-bromo-N-(4-butyl-3 (quinolin-3-yl)thiazol-2(3H)-ylidene)benzamide, in comparison to oleanolic acid, exhibited more strong potential against elastase with an inhibition value of 1.21 µM. Additionally, the derivative was evaluated using molecular docking and molecular dynamics simulation studies, which showed that the quinoline based iminothiazoline derivative has the potential to be a novel inhibitor of elastase enzyme. Both theoretical and experimental findings suggested that this compound could have a number of biological activities.
Collapse
Affiliation(s)
| | - Pervaiz Ali Channar
- Department of Basic Sciences and Humanities, Faculty of Information Sciences and Humanities, Dawood University of Engineering and Technology Karachi, Karachi, 74800, Pakistan
| | - Syeda Abida Ejaz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan.
| | - Saira Afzal
- Faculty of Pharmacy, The University of Lahore, Lahore, Pakistan
| | - Mubashir Aziz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Tahira Shamim
- University College of Conventional Medicine, Faculty of Medicine and Allied Health Sciences, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Aamer Saeed
- Department of Chemistry, Quaid-I-Azam University, Islamabad, 45320, Pakistan.
| | - Aisha A Alsfouk
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O Box 84428, Riyadh, 11671, Saudi Arabia
| | - Rabail Ujan
- Dr. M. A. Kazi Institute of Chemistry, University of Sindh, Jamshoro, Pakistan
| | - Qamar Abbas
- Department of Biology, College of Science, University of Bahrain, Sakhir Campus, Sakhir, 32038, Bahrain
- College of Natural Sciences, Department of Biological Sciences, Kongju National University, Gongju, 32588, Republic of Korea
| | - Tuncer Hökelek
- Department of Physics, Faculty of Engineering, Hacettepe University, Beytepe-Ankara, Ankara, 06800, Turkey
| |
Collapse
|
14
|
Islam SI, Ahmed SS, Habib N, Ferdous MA, Sanjida S, Mou MJ. High-throughput virtual screening of marine algae metabolites as high-affinity inhibitors of ISKNV major capsid protein: An analysis of in-silico models and DFT calculation to find novel drug molecules for fighting infectious spleen and kidney necrosis virus (ISKNV). Heliyon 2023; 9:e16383. [PMID: 37292285 PMCID: PMC10245175 DOI: 10.1016/j.heliyon.2023.e16383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 04/27/2023] [Accepted: 05/15/2023] [Indexed: 06/10/2023] Open
Abstract
Infectious Spleen and Kidney Necrosis Virus (ISKNV) is linked to severe infections that cause significant financial losses in global aquaculture. ISKNV enters the host cell through its major capsid protein (MCP), and the resulting infection can lead to mass mortality of fish. Even though several drugs and vaccines are at various stages of clinical testing, none are currently available. Thus, we sought to assess the potential of seaweed compounds to block viral entrance by inhibiting the MCP. The Seaweed Metabolite Database (1110 compounds) was assessed for potential antiviral activity against ISKNV using high throughput virtual screening. Forty compounds with docking scores of ≥8.0 kcal/mol were screened further. The inhibitory molecules BC012, BC014, BS032, and RC009 were predicted by the docking and MD techniques to bind the MCP protein significantly with binding affinities of -9.2, -9.2, -9.9, and -9.4 kcal/mol, respectively. Also, ADMET characteristics of the compounds indicated drug-likeness. According to this study, marine seaweed compounds may operate as viral entrance inhibitors. For their efficacy to be established, in-vitro and in-vivo testing is required.
Collapse
Affiliation(s)
- Sk Injamamul Islam
- Department of Fisheries and Marine Bioscience, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Sheikh Sunzid Ahmed
- Department of Botany, Faculty of Biological Sciences, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Nasim Habib
- Department of Fisheries and Marine Bioscience, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Md Akib Ferdous
- Department of Fisheries and Marine Bioscience, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Saloa Sanjida
- Department of Environmental Science and Technology, Faculty of Applied Science and Technology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Moslema Jahan Mou
- Department of Genetic Engineering and Biotechnology, Faculty of Earth and Life Science, University of Rajshahi, Rajshahi, 00, Bangladesh
| |
Collapse
|
15
|
Divyashree NR, Revanasiddappa HD, Bhavya NR, Mahendra M, Jayalakshmi B, Shivamallu C, Prasad Kollur S. Azaneylylidene-based tetradentate Schiff base as a new "ON-OFF" fluorescent probe for the detection of Cu(II) ion: Synthesis, characterization and real sample analysis. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 292:122435. [PMID: 36758319 DOI: 10.1016/j.saa.2023.122435] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/29/2023] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
Herein we describe the synthesis of Cu2+ sensor, 2,2'-((1E,1'E)-((4-chloro-1,2-phenylene)bis(azaneylylidene))bis(methane-ylylidene))bis(4-bromophenol) (CPMB) and characterization using various spectral and analytical techniques. CPMB exhibited high selectivity towards Cu2+ ions via fluorescence quenching mechanism, which combined the character of high selectivity towards Cu2+ assay even in the presence of other common metal ions such as Cu2+, Al3+, Co2+, Ni2+, Mn2+, Zn2+ Pb2+ Cd2+, Fe2+, Hg2+, Mg2+ and Fe3+ (30 μM) ethanol-water (1:9 v/v) system. Upon the addition of the solution of Cu2+ ions to CPMB, the complexation of Cu2+ with CPMB leads to the immediate formation of light green color, indicating that CPMB can act as simple colorimetric sensor, particularly for Cu2+ in the presence of most interfering metal ions in ethanol-water medium. More interestingly, the ability of sensing behavior of CPMB for Cu2+ ion in the real water samples (tap water and lake water samples) was also investigated. Further, Job's plot confirmed that the complexation occurred in 1:1 ratio (ligand:metal). Furthermore, the fluorescence inhibiting factor showed a good linear relationship with the concentration of Cu2+ with detection limit of 0.302 μM. The electronic transitions of the complex in ethanol were studied using DFT calculations.
Collapse
Affiliation(s)
- N R Divyashree
- Department of Studies in Chemistry, University of Mysore, Manasagangotri, Mysuru, Karnataka 570 006, India
| | - H D Revanasiddappa
- Department of Studies in Chemistry, University of Mysore, Manasagangotri, Mysuru, Karnataka 570 006, India.
| | - N R Bhavya
- Department of Studies in Physics, University of Mysore, Manasagangotri, Mysuru, Karnataka 570 006, India; Department of Studies in Physics, Vidyavardhaka College of Engineering, Mysore, 570 002 Karnataka, India
| | - M Mahendra
- Department of Studies in Physics, University of Mysore, Manasagangotri, Mysuru, Karnataka 570 006, India
| | - B Jayalakshmi
- Department of Botany, Government College for Women (Autonomous), Mandya 571 401, Karnataka, India
| | - Chandan Shivamallu
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education & Research, Myuru 570015, Karnataka, India
| | - Shiva Prasad Kollur
- School of Physical Sciences, Amrita Vishwa Vidyapeetham, Mysuru Campus, Mysuru, Karnataka 570 026, India
| |
Collapse
|
16
|
Optimized Baccharis dracunculifolia extract as photoprotective and antioxidant: in vitro and in silico assessment. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2023.114654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
17
|
Klyukin IN, Kolbunova AV, Novikov AS, Nelyubin AV, Zhdanov AP, Kubasov AS, Selivanov NA, Bykov AY, Zhizhin KY, Kuznetsov NT. Synthesis of Disubstituted Carboxonium Derivatives of Closo-Decaborate Anion [2,6-B 10H 8O 2CC 6H 5] -: Theoretical and Experimental Study. Molecules 2023; 28:1757. [PMID: 36838745 PMCID: PMC9966448 DOI: 10.3390/molecules28041757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/09/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
A comprehensive study focused on the preparation of disubstituted carboxonium derivatives of closo-decaborate anion [2,6-B10H8O2CC6H5]- was carried out. The proposed synthesis of the target product was based on the interaction between the anion [B10H11]- and benzoic acid C6H5COOH. It was shown that the formation of this product proceeds stepwise through the formation of a mono-substituted product [B10H9OC(OH)C6H5]-. In addition, an alternative one-step approach for obtaining the target derivative is postulated. The structure of tetrabutylammonium salts of carboxonium derivative ((C4H9)4N)[2,6-B10H8O2CC6H5] was established with the help of X-ray structure analysis. The reaction pathway for the formation of [2,6-B10H8O2CC6H5]- was investigated with the help of density functional theory (DFT) calculations. This process has an electrophile induced nucleophilic substitution (EINS) mechanism, and intermediate anionic species play a key role. Such intermediates have a structure in which one boron atom coordinates two hydrogen atoms. The regioselectivity for the process of formation for the 2,6-isomer was also proved by theoretical calculations. Generally, in the experimental part, the simple and available approach for producing disubstituted carboxonium derivative was introduced, and the mechanism of this process was investigated with the help of theoretical calculations. The proposed approach can be applicable for the preparation of a wide range of disubstituted derivatives of closo-borate anions.
Collapse
Affiliation(s)
- Ilya N. Klyukin
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskii Pr. 31, 117907 Moscow, Russia
| | - Anastasia V. Kolbunova
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskii Pr. 31, 117907 Moscow, Russia
| | - Alexander S. Novikov
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya nab. 7–9, 199034 Saint Petersburg, Russia
- Research Institute of Chemistry, Peoples’ Friendship University of Russia (RUDN University), Miklukho-Maklaya St. 6, 117198 Moscow, Russia
| | - Alexey V. Nelyubin
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskii Pr. 31, 117907 Moscow, Russia
| | - Andrey P. Zhdanov
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskii Pr. 31, 117907 Moscow, Russia
| | - Alexey S. Kubasov
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskii Pr. 31, 117907 Moscow, Russia
| | - Nikita A. Selivanov
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskii Pr. 31, 117907 Moscow, Russia
| | - Alexander Yu. Bykov
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskii Pr. 31, 117907 Moscow, Russia
| | - Konstantin Yu. Zhizhin
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskii Pr. 31, 117907 Moscow, Russia
| | - Nikolay T. Kuznetsov
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskii Pr. 31, 117907 Moscow, Russia
| |
Collapse
|
18
|
Synthesis of Synthetic Musks: A Theoretical Study Based on the Relationships between Structure and Properties at Molecular Scale. Int J Mol Sci 2023; 24:ijms24032768. [PMID: 36769089 PMCID: PMC9917709 DOI: 10.3390/ijms24032768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 01/28/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023] Open
Abstract
Synthetic musks (SMs), as an indispensable odor additive, are widely used in various personal care products. However, due to their physico-chemical properties, SMs were detected in various environmental media, even in samples from arctic regions, leading to severe threats to human health (e.g., abortion risk). Environmentally friendly and functionally improved SMs have been theoretically designed in previous studies. However, the synthesizability of these derivatives has barely been proven. Thus, this study developed a method to verify the synthesizability of previously designed SM derivatives using machine learning, 2D-QSAR, 3D-QSAR, and high-throughput density functional theory in order to screen for synthesizable, high-performance (odor sensitivity), and environmentally friendly SM derivatives. In this study, three SM derivatives (i.e., D52, D37, and D25) were screened and recommended due to their good performances (i.e., high synthesizability and odor sensitivity; low abortion risk; and bioaccumulation ability in skin keratin). In addition, the synthesizability mechanism of SM derivatives was also analyzed. Results revealed that high intramolecular hydrogen bond strength, electrostatic interaction, qH+ value, energy gap, and low EHOMO would lead to a higher synthesizability of SMs and their derivatives. This study broke the synthesizability bottleneck of theoretically designed environment-friendly SM derivatives and advanced the mechanism of screening functional derivatives.
Collapse
|
19
|
N. R. D, Revanasiddappa HD, Yathirajan HS, N. R. B, M. M, Iqbal M, Shivamallu C, Amachawadi RG, Kollur SP. Highly selective and sensitive fluorescent “TURN-ON” furan-based Schiff base for zinc( ii) ion probing: chemical synthesis, DFT studies, and X-ray crystal structure. NEW J CHEM 2023; 47:17420-17433. [DOI: 10.1039/d3nj02466k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2024]
Abstract
A simple and efficient fluorescent probe (E)-4-bromo-2-((((5-methylfuran-2-yl)methyl)imino)methyl)phenol (BFMP) for the detection of Zn2+ ions was synthesized by the condensation of 5-methyl-furfurylamine and 5-bromosalicylaldehyde.
Collapse
Affiliation(s)
- Divyashree N. R.
- Department of Studies in Chemistry, University of Mysore, Manasagangotri, Mysuru-570 006, India
| | | | - H. S. Yathirajan
- Department of Studies in Chemistry, University of Mysore, Manasagangotri, Mysuru-570 006, India
| | - Bhavya N. R.
- Department of Studies in Physics, University of Mysore, Manasagangotri, Mysuru-570 006, India
- Department of Studies in Physics, Vidyavardhaka College of Engineering, Mysore, 570 002, Karnataka, India
| | - Mahendra M.
- Department of Studies in Physics, University of Mysore, Manasagangotri, Mysuru-570 006, India
| | - Muzaffar Iqbal
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Chandan Shivamallu
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education & Research, Myuru-570015, Karnataka, India
| | - Raghavendra G. Amachawadi
- Department of Clinical Sciences, College of Veterinary Medicine, Kansas State University, Manhattan, KS, 66506-5606, USA
| | - Shiva Prasad Kollur
- School of Physical Sciences, Amrita Vishwa Vidyapeetham, Mysuru Campus, Mysuru-570 026, Karnataka, India
| |
Collapse
|
20
|
Qi Y, Liu Y, Zhang B, Wang M, Cao L, Song L, Jin N, Zhang H. Comparative antibacterial analysis of the anthraquinone compounds based on the AIM theory, molecular docking, and dynamics simulation analysis. J Mol Model 2022; 29:16. [PMID: 36547745 DOI: 10.1007/s00894-022-05406-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 12/04/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Hydroxyanthraquinones and anthraquinone glucoside derivatives are always considered as the active antibacterial components. METHODS Comparison of structure characteristics and antibacterial effect of these compounds was performed by applying quantum chemical calculations, atoms in molecules theory, molecular docking, and dynamics simulation procedure. Density functional theory calculation with B3LYP using 6-31G (d, p) basis set has been used to determine ground state molecular geometries. RESULTS The molecular geometric stability, electrostatic potential, frontier orbital energies, and topological properties were analyzed at the active site. Once glucose ring is introduced into the hydroxyanthraquinone rings, almost all of the positive molecular potentials are distributed among the hydroxyl hydrogen atoms of the glucose rings. In addition, low electron density ρ (r) and positive Laplacian value of the O-H bond of the anthraquinone glucoside are the evidences of the highly polarized and covalently decreased bonding interactions. The anthraquinone glucoside compounds have generally higher intermolecular binding energies than the corresponding aglycones due to the strong interaction between the glucose rings and the surrounding amino acids. Molecular dynamics simulations further explored the stability and dynamic behavior of the anthraquinone compound and protein complexes through RMSD, RMSF, SASA, and Rg. CONCLUSION The type of carboxyl, hydroxyl, and hydroxymethyl groups on phenyl ring and the substituent glucose rings is important to the interactions with the topoisomerase type II enzyme DNA gyrase B.
Collapse
Affiliation(s)
- Yanjiao Qi
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, 730000, Lanzhou, People's Republic of China.,Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in Universities of Gansu Province, 730000, Lanzhou, People's Republic of China
| | - Yue Liu
- Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in Universities of Gansu Province, 730000, Lanzhou, People's Republic of China
| | - Bo Zhang
- Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in Universities of Gansu Province, 730000, Lanzhou, People's Republic of China
| | - Mingyang Wang
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, 730000, Lanzhou, People's Republic of China
| | - Long Cao
- Department of Chemical Engineering, Northwest Minzu University, 730124, Lanzhou, People's Republic of China
| | - Li Song
- Gansu Hualing Dairy Co. LTD., Lanzhou, People's Republic of China
| | - Nengzhi Jin
- Gansu Province Computing Center, 730000, Lanzhou, People's Republic of China
| | - Hong Zhang
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, 730000, Lanzhou, People's Republic of China.
| |
Collapse
|
21
|
Szewczuk NA, Duchowicz PR, Pomilio AB, Lobayan RM. Resonance structure contributions, flexibility, and frontier molecular orbitals (HOMO-LUMO) of pelargonidin, cyanidin, and delphinidin throughout the conformational space: application to antioxidant and antimutagenic activities. J Mol Model 2022; 29:2. [PMID: 36480114 DOI: 10.1007/s00894-022-05392-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 11/15/2022] [Indexed: 12/13/2022]
Abstract
This research refers to the study and understanding of the conformational space of the positive-charged anthocyanidin structures in relation with the known chemical reactivities and bioactivities of these compounds. Therefore, the planar (P) and nonplanar (Z) conformers of the three hydroxylated anthocyanidins pelargonidin, cyanidin, and delphinidin were analyzed throughout the conformational space at the B3LYP/6-311 ++ G** level of theory. The outcome displayed eleven new conformers for pelargonidin, fifty-four for cyanidin, and thirty-one for delphinidin. Positive-charged quinoidal structures showed a significant statistical weight in the conformational space, thus coexisting simultaneously with other resonance structures, such that under certain reaction conditions, the anthocyanidins behave as positive-charged quinoidal structures instead of oxonium salts. The calculations of the permanent dipole moment and the polarizability showed relationships with the quantity and arrangement of hydroxyls in the structure. In addition, theoretical calculations were used to analyze the frontier molecular orbitals (HOMO-LUMO) of the three anthocyanidins. The novel conception of this work lies in the fact that dipole moment, polarizability, and HOMO-LUMO values were related to the reactivity/bioactivity of these three anthocyanidins. HOMO-LUMO energy gaps were useful to explain the antioxidant activity, while the percent atom contributions to HOMO were appropriate to demonstrate the antimutagenic activity as enzyme inhibitors, as well as the steric and electrostatic requirements to form the pharmacophore. Delphinidin was the strongest antioxidant anthocyanidin, and pelargonidin the best anthocyanidin with antimutagenic activity.
Collapse
Affiliation(s)
- Nicolas A Szewczuk
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), CONICET, Universidad Nacional de La Plata (UNLP), Diag. 113 Y 64, C.C. 16, Sucursal 4, B1900, La Plata, Argentina
| | - Pablo R Duchowicz
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), CONICET, Universidad Nacional de La Plata (UNLP), Diag. 113 Y 64, C.C. 16, Sucursal 4, B1900, La Plata, Argentina
| | - Alicia B Pomilio
- Laboratorio de Química y Bioquímica Estructural, Departamento de Bioquímica Clínica, Área Hematología, Hospital de Clínicas "José de San Martín", Universidad de Buenos Aires, Av. Córdoba 2351, C1120AAF, Buenos Aires, Argentina
| | - Rosana M Lobayan
- Departamento de Física, Facultad de Ciencias Exactas y Naturales y Agrimensura, Universidad Nacional del Nordeste, Avda. Libertad 5300, 3400, Corrientes, Argentina.
| |
Collapse
|
22
|
Ali U, Abbas F. An extension of electron acceptor sites around Thiazolothiazole unit for evaluation of large power conversion efficiency: A theoretical insight. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 281:121610. [PMID: 35841860 DOI: 10.1016/j.saa.2022.121610] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
Small organic solar cells containing thiazolothiazole unit as an electron acceptor for solution processed bulk heterojunction (BHJ) small donor-acceptor-donor (D-A-D) type materials have been designed and studied theoretically with state-of-the-art density functional theory and time-dependent density functional theory (TD-DFT) for reliable estimation of their excited state and charge transfer photophysical characteristics for estimating their power conversion efficiencies. The suggested possible synthetic routes with complete reaction information have been also provided for synthesis. The electron acceptor sites around the thiazolothiazole unit have been enlarged by introducing different strong electron withdrawing groups and checked their effects on the voltages (VOC) and fill factor (FF) which are the two main parameters directly influences on power conversion efficiencies. Out of five theoretically studied molecules, the experimental reported data of TT-TTPA (Thiazolothiazole-thiaophene triphenyl amine) has been compared with four designed molecules and concluded that extension of acceptor sites significantly contributed towards the better charge transport properties of electron and hole.
Collapse
Affiliation(s)
- Usman Ali
- Beijing National Laboratories for Molecular Sciences, Key Laboratories of Organic Solids, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, PR China; University of Chinese Academy of Science, Beijing 100049, PR China; Department of Chemistry, University of Agriculture, Faisalabad 38040, Pakistan
| | - Faheem Abbas
- Department of Chemistry, University of Agriculture, Faisalabad 38040, Pakistan; Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, PR China
| |
Collapse
|
23
|
Wang J, Tang S, Guo S, Gu D, Wang Y, Tian J, Yang Y. Fermentation of Agaricus bisporus for antioxidant activity: response surface optimization, chemical components, and mechanism. Prep Biochem Biotechnol 2022:1-11. [PMID: 36345997 DOI: 10.1080/10826068.2022.2142941] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Agaricus bisporus is one of the most widely cultivated edible mushrooms in the world. The chemical components of A. bisporus have a wide range of biological activities. In order to deeply understand the antioxidant properties of A. bisporus, this study conducted an investigation on the components of A. bisporus fermentation. Through the single factor experiment and response surface optimization, it was found that when the C/N ratio was 45:1, the inoculum concentration was 10%, and the fermentation time was 7 d, the n-butanol extract of the fermentation product had the strongest scavenging capacity for free radical generated through 2,2'-azino-bis(3-ethylbenzothiazoline)-6-sulphonic acid (ABTS·+). The concentration for 50% of the maximal effect (EC50) was 0.33 ± 0.01 mg/mL. Moreover, in order to identify the two main components, the elution-extrusion counter-current chromatography (EECCC) was employed for separation, where 5,5'-oxy-dimethyl-bis(2-furfuraldehyde) and 5-(butoxymethyl) furfural were obtained. The antioxidant activity of 5,5'-oxy-dimethyl-bis(2-furfuraldehyde) (EC50 = 0.26 ± 0.01 mg/mL) was superior to that of 5-butylmethyl furfural (EC50 = 1.52 ± 0.02 mg/mL), indicating that 5,5'-oxy-dimethyl-bis(2-furfuraldehyde) was the main antioxidant in the fermentation products. The thermodynamic parameters and frontier molecular orbitals of 5,5'-oxy-dimethyl-bis (2-furanaldehyde) was evaluated by density functional theory (DFT). The result indicated 5,5'-oxy-dimethyl-bis(2-furanaldehyde) scavenged free radicals in polar media through single electron transfer followed by proton transfer (SET-PT).
Collapse
Affiliation(s)
- Jifeng Wang
- School of Biological Engineering, Dalian Polytechnic University, Dalian, P. R. China
| | - Shanshan Tang
- School of Biological Engineering, Dalian Polytechnic University, Dalian, P. R. China
| | - Shuang Guo
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, P. R. China
| | - Dongyu Gu
- College of Marine Science and Environment, Dalian Ocean University, Dalian, P. R. China
| | - Yi Wang
- School of Biological Engineering, Dalian Polytechnic University, Dalian, P. R. China
| | - Jing Tian
- School of Biological Engineering, Dalian Polytechnic University, Dalian, P. R. China
| | - Yi Yang
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, P. R. China
| |
Collapse
|
24
|
Makarenkov AV, Kiselev SS, Kononova EG, Dolgushin FM, Peregudov AS, Borisov YA, Ol’shevskaya VA. Synthesis, Characterization and DFT Study of a New Family of High-Energy Compounds Based on s-Triazine, Carborane and Tetrazoles. Molecules 2022; 27:7484. [PMID: 36364313 PMCID: PMC9656522 DOI: 10.3390/molecules27217484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 06/21/2024] Open
Abstract
An efficient one-pot synthesis of carborane-containing high-energy compounds was developed via the exploration of carbon-halogen bond functionalization strategies in commercially available 2,4,6-trichloro-1,3,5-triazine. The synthetic pathway first included the substitution of two chlorine atoms in s-triazine with 5-R-tetrazoles (R = H, Me, Et) units to form disubstituted tetrazolyl 1,3,5-triazines followed by the sequential substitution of the remaining chlorine atom in 1,3,5-triazine with carborane N- or S-nucleophiles. All new compounds were characterized by IR- and NMR spectroscopy. The structure of four new compounds was confirmed by single crystal X-ray diffraction analysis. The density functional theory method (DFT B3LYP/6-311 + G*) was used to study the geometrical structures, enthalpies of formation (EOFs), energetic properties and highest occupied and lowest unoccupied molecular orbital (HOMO and LUMO) energies and the detonation properties of synthesized compounds. The DFT calculation revealed compounds processing the maximum value of the detonation velocity or the maximum value of the detonation pressure. Theoretical terahertz frequencies for potential high-energy density materials (HEDMs) were computed, which allow the opportunity for the remote detection of these compounds.
Collapse
Affiliation(s)
- Anton V. Makarenkov
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28, bld. 1 Vavilova Street, 119334 Moscow, Russia
| | - Sergey S. Kiselev
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28, bld. 1 Vavilova Street, 119334 Moscow, Russia
| | - Elena G. Kononova
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28, bld. 1 Vavilova Street, 119334 Moscow, Russia
| | - Fedor M. Dolgushin
- N.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, 31 Leninsky Prosp., 119071 Moscow, Russia
| | - Alexander S. Peregudov
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28, bld. 1 Vavilova Street, 119334 Moscow, Russia
| | - Yurii A. Borisov
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28, bld. 1 Vavilova Street, 119334 Moscow, Russia
| | - Valentina A. Ol’shevskaya
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28, bld. 1 Vavilova Street, 119334 Moscow, Russia
| |
Collapse
|
25
|
Synthesis and investigations of reactive properties, photophysical properties and biological activities of a pyrazole-triazole hybrid molecule. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133363] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
26
|
Adekoya OC, Adekoya GJ, Sadiku ER, Hamam Y, Ray SS. Application of DFT Calculations in Designing Polymer-Based Drug Delivery Systems: An Overview. Pharmaceutics 2022; 14:1972. [PMID: 36145719 PMCID: PMC9505803 DOI: 10.3390/pharmaceutics14091972] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 01/18/2023] Open
Abstract
Drug delivery systems transfer medications to target locations throughout the body. These systems are often made up of biodegradable and bioabsorbable polymers acting as delivery components. The introduction of density functional theory (DFT) has tremendously aided the application of computational material science in the design and development of drug delivery materials. The use of DFT and other computational approaches avoids time-consuming empirical processes. Therefore, this review explored how the DFT computation may be utilized to explain some of the features of polymer-based drug delivery systems. First, we went through the key aspects of DFT and provided some context. Then we looked at the essential characteristics of a polymer-based drug delivery system that DFT simulations could predict. We observed that the Gaussian software had been extensively employed by researchers, particularly with the B3LYP functional and 6-31G(d, p) basic sets for polymer-based drug delivery systems. However, to give researchers a choice of basis set for modelling complicated organic systems, such as polymer-drug complexes, we then offered possible resources and presented the future trend.
Collapse
Affiliation(s)
- Oluwasegun Chijioke Adekoya
- Department of Chemical, Metallurgical and Materials Engineering, Faculty of Engineering and the Built Environment, Institute of NanoEngineering Research (INER), Tshwane University of Technology, Pretoria 0183, South Africa
| | - Gbolahan Joseph Adekoya
- Department of Chemical, Metallurgical and Materials Engineering, Faculty of Engineering and the Built Environment, Institute of NanoEngineering Research (INER), Tshwane University of Technology, Pretoria 0183, South Africa
- Department of Electrical Engineering, French South African Institute of Technology (F’SATI), Tshwane University of Technology, Pretoria 0001, South Africa
| | - Emmanuel Rotimi Sadiku
- Department of Chemical, Metallurgical and Materials Engineering, Faculty of Engineering and the Built Environment, Institute of NanoEngineering Research (INER), Tshwane University of Technology, Pretoria 0183, South Africa
| | - Yskandar Hamam
- Department of Electrical Engineering, French South African Institute of Technology (F’SATI), Tshwane University of Technology, Pretoria 0001, South Africa
- École Supérieure d’Ingénieurs en Électrotechnique et Électronique, Cité Descartes, 2 Boulevard Blaise Pascal, Noisy-le-Grand, 93160 Paris, France
| | - Suprakas Sinha Ray
- Centre for Nanostructures and Advanced Materials, DSI-CSIR Nanotechnology Innovation Centre, Council for Scientific and Industrial Research, CSIR, Pretoria 0001, South Africa
- Department of Chemical Sciences, University of Johannesburg, Doornforntein, Johannesburg 2028, South Africa
| |
Collapse
|
27
|
Sepay N, Banerjee M, Islam R, Dey SP, Halder UC. Crystallography-based exploration of non-covalent interactions for the design and synthesis of coumarin for stronger protein binding. Phys Chem Chem Phys 2022; 24:6605-6615. [PMID: 35234237 DOI: 10.1039/d2cp00082b] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Protein molecules are a good target for the inhibition or promotion of biological processes. Different methods like QSAR and molecular docking have been developed to accurately design small binder molecules for target proteins. An alternative model has been developed wherein a statistical method is used to find the propensity of different non-covalent interactions between small molecules and amino acid residues of the protein. The results give hints as to the choice of substituents required at the SM to strongly bind to a protein. In this case, 75 different types of proteins bound with coumarin derivatives have been investigated and the non-covalent interactions observed between the basic coumarin moiety and amino acids have been analyzed. Density functional theory (DFT) calculations were used to identify the electronic features of coumarin to understand the feasibility of the observed non-covalent interactions and to find appropriate groups that can modulate these interactions. The binding affinity towards a protein (β-lactoglobulin (BLG)) and the stability of the protein complex have been investigated through docking and molecular dynamics of 100 ns, respectively. The modeled compounds were synthesized and investigated with regards to their interactions with the model carrier protein. The thermodynamics of the interactions were also investigated and the binding is governed by the Le Chatelier principle.
Collapse
Affiliation(s)
- Nayim Sepay
- Department of Chemistry, Lady Brabourne College, Kolkata-700017, India.
| | - Manami Banerjee
- Department of Chemistry, Diamond Harbour Women's University, Sarisha-743368, India
| | - Rajibul Islam
- Department of Chemistry, Jadavpur University, Kolkata-700032, India
| | | | | |
Collapse
|
28
|
Harismah K, Hajali N, Mirzaei M, Salarrezaei E. Quantum processing of cytidine derivatives and evaluating their in silico interactions with the COVID-19 main protease. MAIN GROUP CHEMISTRY 2021. [DOI: 10.3233/mgc-210134] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This work was performed by the importance of exploring possible medications for COVID-19 pandemic. In this regard, cytidine (Cyd) derivatives were investigated to reach a point to see their benefit of employing for the purpose. Each of halogenated models of Cyd including CydF, CydCl, CydBr, and CydI were investigated in addition to the original CydH model. Density functional theory (DFT) based quantum processing were performed to obtain stabilized structures in addition to evaluation of frontier molecular orbitals features. Next, molecular docking (MD) simulations were performed to reach a point of formations of interacting ligand-target complexes. Among the investigated models CydH and CydI were working better than other model for reaching the purpose of this work, in which the derived CydI model was indeed the ligand with the highest suitability for formation of ligand-target complexes. As a consequence, such ligands of original and halogenated Cyd models might work for inhibition of main protease (MPro) enzyme of COVID-19 based on the obtained meaningful vales for complex strengths in addition interacting with the amino acids of active site. More precisely, the CydI model could be proposed as promising ligand for showing the inhibitory effects towards the MPro target of COVID-19.
Collapse
Affiliation(s)
- Kun Harismah
- Department of Chemical Engineering, Faculty of Engineering, Universitas Muhammadiyah Surakarta, Surakarta, Indonesia
| | - Narjes Hajali
- Department of Chemistry, Faculty of Science, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Mahmoud Mirzaei
- Medical Image & Signal Processing Research Center, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Elham Salarrezaei
- Department of Biomaterials, Nanotechnology and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
29
|
Potential antidiabetic molecule involving a new chromium(III) complex of dipicolinic and metformin as a counter ion: Synthesis, structure, spectroscopy, and bioactivity in mice. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
30
|
Ganai SA, Srinivasan P, Rajamanikandan S, Shah BA, Mohan S, Gani M, Padder BA, Qadri RA, Bhat MA, Baba ZA, Yatoo MA. Delineating binding potential, stability of Sulforaphane-N-acetyl-cysteine in the active site of histone deacetylase 2 and testing its cytotoxicity against distinct cancer lines through stringent molecular dynamics, DFT and cell-based assays. Chem Biol Drug Des 2021; 98:363-376. [PMID: 33966346 DOI: 10.1111/cbdd.13854] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 03/29/2021] [Accepted: 04/25/2021] [Indexed: 12/12/2022]
Abstract
Histone deacetylase 2 (HDAC2), an isozyme of Class I HDACs has potent imputations in actuating neurodegenerative signaling. Currently, there are sizeable therapeutic disquiets with the use of synthetic histone deacetylase inhibitors in disease management. This strongly suggests the unfulfilled medical necessity of plant substitutes for therapeutic intervention. Sulforaphane-N-acetyl-cysteine (SFN-N-acetylcysteine or SFN-NAC), a sulforaphane metabolite has shown significantly worthier activity against HDACs under in vitro conditions. However, the atomistic studies of SFN-NAC against HDAC2 are currently lacking. Thus, the present study employed a hybrid strategy including extra-precision (XP) grid-based flexible molecular docking, molecular mechanics generalized born surface area (MM-GBSA), e-Pharmacophores method, and molecular dynamics simulation for exploring the binding strengh, mode of interaction, e-Pharmacophoric features, and stability of SFN-NAC towards HDAC2. Further, the globally acknowledged density functional theory (DFT) study was performed on SFN-NAC and entinostat individually in complex state with HDAC2. Apart from this, these inhibitors were tested against three distinct cancer cell models and one transformed cell line for cytotoxic activity. Moreover, double mutant of HDAC2 was generated and the binding orientation and interaction of SFN-NAC was scrutinized in this state. On the whole, this study unbosomed and explained the comparatively higher binding affinity of entinostat for HDAC2 and its wide spectrum cytotoxicity than SFN-NAC.
Collapse
Affiliation(s)
- Shabir Ahmad Ganai
- Division of Basic Sciences and Humanities, FoA, SKUAST-Kashmir, 193201, India
| | - Pappu Srinivasan
- Department of Animal Health and Management, Alagappa University, Karaikudi, India
| | - Sundaraj Rajamanikandan
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics, Bengaluru, India
| | - Basit Amin Shah
- Department of Biotechnology, University of Kashmir, Srinagar, India
| | - Suma Mohan
- SCBT, Shanmugha Arts Science Technology and Research Academy, 613401, India
| | - Mudasir Gani
- Division of Entomology, FoA, SKUAST-Kashmir, 193201, India
| | | | - Raies A Qadri
- Department of Biotechnology, University of Kashmir, Srinagar, India
| | - M A Bhat
- Division of Genetics and Plant Breeding, SKUAST-Kashmir, 193201, India
| | - Zahoor Ahmad Baba
- Division of Basic Sciences and Humanities, FoA, SKUAST-Kashmir, 193201, India
| | - Manzoor Ahmad Yatoo
- Division of Basic Sciences and Humanities, FoA, SKUAST-Kashmir, 193201, India
| |
Collapse
|
31
|
Mao S, Wu C, Gao Y, Hao J, He X, Tao P, Li J, Shang S, Song Z, Song J. Pine Rosin as a Valuable Natural Resource in the Synthesis of Fungicide Candidates for Controlling Fusarium oxysporum on Cucumber. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:6475-6484. [PMID: 34075747 DOI: 10.1021/acs.jafc.1c01887] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
To improve the effect of pine rosin in plant fungicides, four series of dehydroabietyl-1,3,4-thiadiazole derivatives from the natural product rosin were synthesized. Based on the evaluation of the in vitro antifungal activity against Sclerotinia sclerotiorum, Botrytis cinerea, Fusarium oxysporum, and Magnaporthe oryzae, rosin-based 1,3,4-thiadiazole compounds containing thiophene heterocycles were screened. Notably, compound 3e [dehydroabietyl-(1,3,4-thiadiazol-2-yl)-5-nitrothiophene-2-carboxamide] exhibited excellent antifungal property against F. oxysporum with an EC50 of 0.618 mg/L, which was lower than that of the positive control carbendazim (0.649 mg/L). The in vivo antifungal activity results showed that 3e exerted a protective effect on cucumber plants. Physiological and biochemical studies showed that the primary mechanism of action of compound 3e on F. oxysporum was it changed the mycelial morphology, increased the cell membrane permeability, and inhibited the synthesis of ergosterol in the mycelia. Furthermore, the quantitative structure-activity relationship studies revealed that the frontier orbital energy in the molecule had a key role in the antifungal activity through the conjugation and electrostatic interaction between compound 3e and the receptors of the target. Thus, the present study highlighted the application of rosin-based fungicidal candidates and exploited efficient plant pesticides for sustainable crop production.
Collapse
Affiliation(s)
- Shiying Mao
- Shaanxi Key Laboratory of Economic Plant Resources Development and Utilization, College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Chengyu Wu
- Shaanxi Key Laboratory of Economic Plant Resources Development and Utilization, College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Yanqing Gao
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Jin Hao
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Xiaohua He
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Pan Tao
- Shaanxi Key Laboratory of Economic Plant Resources Development and Utilization, College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Jian Li
- Shaanxi Key Laboratory of Economic Plant Resources Development and Utilization, College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Shibin Shang
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing, Jiangsu 210042, People's Republic of China
| | - Zhanqian Song
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing, Jiangsu 210042, People's Republic of China
| | - Jie Song
- Department of Chemistry and Biochemistry, University of Michigan-Flint, Flint, Michigan 48502, United States
| |
Collapse
|
32
|
Ovung A, Bhattacharyya J. Sulfonamide drugs: structure, antibacterial property, toxicity, and biophysical interactions. Biophys Rev 2021; 13:259-272. [PMID: 33936318 PMCID: PMC8046889 DOI: 10.1007/s12551-021-00795-9] [Citation(s) in RCA: 130] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 03/03/2021] [Indexed: 12/11/2022] Open
Abstract
Sulfonamide (or sulphonamide) functional group chemistry (SN) forms the basis of several groups of drug. In vivo sulfonamides exhibit a range of pharmacological activities, such as anti-carbonic anhydrase and anti-t dihydropteroate synthetase allowing them to play a role in treating a diverse range of disease states such as diuresis, hypoglycemia, thyroiditis, inflammation, and glaucoma. Sulfamethazine (SMZ) is a commonly used sulphonamide drug in veterinary medicine that acts as an antibacterial compound to treat livestock diseases such as gastrointestinal and respiratory tract infections. Sulfadiazine (SDZ) is another frequently employed sulphonamide drug that is used in combination with the anti-malarial drug pyrimethamine to treat toxoplasmosis in warm-blooded animals. This study explores the research findings and the work behaviours of SN (SMZ and SDZ) drugs. The areas covered include SN drug structure, SN drug antibacterial activity, SN drug toxicity, and SN environmental toxicity.
Collapse
Affiliation(s)
- Aben Ovung
- Department of Chemistry, National Institute of Technology Nagaland, Chumukedima, Dimapur, 797103 India
| | - Jhimli Bhattacharyya
- Department of Chemistry, National Institute of Technology Nagaland, Chumukedima, Dimapur, 797103 India
| |
Collapse
|
33
|
Ohashi S, Rachita E, Baxley S, Zhou J, Erlichman A, Ishida H. The first observation on polymerization of 1,3-benzothiazines: synthesis of mono- and bis-thiazine monomers and thermal properties of their polymers. Polym Chem 2021. [DOI: 10.1039/d0py01521k] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Mono and difunctional 1,3-benzothiazines (PH-a-BZT, PH-ddm-BZT) have been synthesized by a method different from the one reported in the literature.
Collapse
Affiliation(s)
- Seishi Ohashi
- Department of Macromolecular Science and Engineering
- Case Western Reserve University
- Cleveland
- USA
| | - Eric Rachita
- Department of Macromolecular Science and Engineering
- Case Western Reserve University
- Cleveland
- USA
| | - Sean Baxley
- Department of Macromolecular Science and Engineering
- Case Western Reserve University
- Cleveland
- USA
| | - Jessica Zhou
- Department of Macromolecular Science and Engineering
- Case Western Reserve University
- Cleveland
- USA
| | - Adam Erlichman
- Department of Macromolecular Science and Engineering
- Case Western Reserve University
- Cleveland
- USA
| | - Hatsuo Ishida
- Department of Macromolecular Science and Engineering
- Case Western Reserve University
- Cleveland
- USA
| |
Collapse
|
34
|
Chang SJ, Bai HL, Ren FD, Luo XC, Xu JJ. Theoretical prediction of the impact sensitivities of energetic C-nitro compounds. J Mol Model 2020; 26:219. [PMID: 32728987 DOI: 10.1007/s00894-020-04481-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 07/15/2020] [Indexed: 10/23/2022]
Abstract
In order to design high-energetic and insensitive explosives, the frontier orbital energy gaps, surface electrostatic potentials, nitro group charges, bond dissociation energies (BDEs) of the C-NO2 trigger bonds, and intermolecular interactions obtained by the M06-2X/6-311++G(2d,p) method were quantitatively correlated with the experimental drop hammer potential energies of 10 typical C-nitro explosives. The changes of several information-theoretic quantities (ITQs) in the density functional reactivity theory were discussed upon the formation of complexes. The BDEs in the explosives with six-membered ring are larger than those with five-membered ring. The frontier orbital energy gaps of the compounds with benzene ring are larger than those with N-heterocycle. The models involving the intermolecular interaction energies and the energy gaps could be used to predict the impact sensitivity of the C-nitro explosives, while those involving ΔSS, ΔIF, and ΔSGBP are invalid. With the more and more ITQs, the further studies are needed to seek for a good correlation between impact sensitivity measurements and ITQs for the energetic C-nitro compounds. The origin of sensitivity was revealed by the reduced density gradient method.
Collapse
Affiliation(s)
- Shuang-Jun Chang
- School of Environment and safety Engineering, North University of China, Taiyuan, 030051, China.
| | - Hai-Long Bai
- School of Environment and safety Engineering, North University of China, Taiyuan, 030051, China
| | - Fu-de Ren
- School of Chemical Engineering and Technology, North University of China, Taiyuan, 030051, China
| | - Xiang-Cheng Luo
- School of Environment and safety Engineering, North University of China, Taiyuan, 030051, China
| | - Jun-Jie Xu
- School of Environment and safety Engineering, North University of China, Taiyuan, 030051, China
| |
Collapse
|
35
|
|
36
|
Yu D, Rong C, Lu T, Geerlings P, De Proft F, Alonso M, Liu S. Switching between Hückel and Möbius aromaticity: a density functional theory and information-theoretic approach study. Phys Chem Chem Phys 2020; 22:4715-4730. [PMID: 32057037 DOI: 10.1039/c9cp06120g] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Benziporphyrins are versatile macrocycles exhibiting aromaticity switching behaviors. The existence of both Hückel and Möbius (anti)aromaticity has been reported in these systems, whose validity is respectively governed by the [4n + 2] and [4n] π-electron rule on the macrocyclic pathway. Despite the experimental evidence on the floppiness of benziporphyrins, the switching mechanism between Hückel and Möbius structures is still not clear, as well as the factors influencing the stability of the different π-conjugation topologies. For these reasons, we performed a systematic study on A,D-di-p-benzihexaphyrins(1.1.1.1.1.1) with two redox states corresponding to [28] and [30] π-electron conjugation pathways. Whereas benzi[28]hexaphyrin obeys Möbius aromaticity, benzi[30]hexaphyrin follows Hückel aromaticity. The dynamic interconversion between Möbius and Hückel aromaticity is investigated through the rotation of a phenylene ring, which acts as the topology selector. Further analyses of the energy profiles using energy decomposition and information-theoretic approaches provide new insights into conformational stability, aromaticity and antiaromaticity for these species. Strong and opposite cross correlations between aromaticity indexes and information-theoretic quantities were found for the two macrocyclic systems with opposite global aromaticity and antiaromaticity behaviors. These results indicate that Hückel and Möbius aromaticity and antiaromaticity, though qualitatively different, are closely related and can be interchanged, and information-theoretic quantities provide a novel understanding about their relevance. Our present results should provide in-depth insights to appreciate the nature and origin about Möbius (anti)aromaticity and its close relationship with Hückel (anti)aromaticity.
Collapse
Affiliation(s)
- Donghai Yu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, China.
| | | | | | | | | | | | | |
Collapse
|
37
|
Rong C, Wang B, Zhao D, Liu S. Information‐theoretic approach in density functional theory and its recent applications to chemical problems. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2019. [DOI: 10.1002/wcms.1461] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Chunying Rong
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China) Hunan Normal University Changsha P.R. China
- Department of Chemistry, College of Chemistry and Chemical Engineering Hunan Normal University Changsha P.R. China
| | - Bin Wang
- Department of Chemistry, College of Chemistry and Chemical Engineering Hunan Normal University Changsha P.R. China
| | - Dongbo Zhao
- Department of Chemistry, School of Chemistry and Chemical Engineering Nanjing University Nanjing P.R. China
| | - Shubin Liu
- Research Computing Centre University of North Carolina Chapel Hill North Carolina
| |
Collapse
|
38
|
Computational approach to study the synthesis of noscapine and potential of stereoisomers against nsP3 protease of CHIKV. Heliyon 2019; 5:e02795. [PMID: 32382664 PMCID: PMC7201138 DOI: 10.1016/j.heliyon.2019.e02795] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 09/11/2019] [Accepted: 10/31/2019] [Indexed: 11/29/2022] Open
Abstract
Chikungunya fever is a major public health issue in India affecting millions of people and occurs due to Chikungunya. Chikungunya virus (CHIKV) is a single stranded RNA virus from the family of Togaviridae and genus alpha virus. It contain three structural proteins: glycosylated E1 and E2, embedded in the viral envelope, and a non-glycosylated nucleocapsid protein. Till date, researchers are working on inhibition of CHIKV but till now no cheap and effective medicine is available in the market. Therefore, the authors of this work thought of isoquinoline based noscapine to inhibit the nsP3 protease of CHIKV. The aim of the work is to understand the mechanism for the synthesis of noscapine theoretically using DFT. Further study the potential of all four isomers of noscapines {(13 (S,R), 14 (R,R), 15 (R,S) and 16 (S,S)} against nsP3 protease of CHIKV with the help of docking and MD simulation. The integrated e-pharmacophore binding affinity based virtual screening, docking and molecular dynamics simulation recognized four hits isomers as inhibition nsP3 protease of CHIKV. The docking energies of all the isomers of noscapine (13–16) with nsP3 protease CHIKV was found out to be more negative than baicalin (−8.06 kcal/mol) on selected sites. Amongst the isomers of noscapine, CMPD 13 possessed best binding affinity with four hydrogen bonding interactions. Further, ADME properties and blood-brain barrier permeability properties have been calculated. DFT studies of all the isomers of noscapine was investigated.
Collapse
|
39
|
A model to study the inhibition of nsP2B-nsP3 protease of dengue virus with imidazole, oxazole, triazole thiadiazole, and thiazolidine based scaffolds. Heliyon 2019; 5:e02124. [PMID: 31406937 PMCID: PMC6684460 DOI: 10.1016/j.heliyon.2019.e02124] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 04/26/2019] [Accepted: 07/18/2019] [Indexed: 12/20/2022] Open
Abstract
A theoretical model was developed to allosterically inhibit the biological activity of dengue virus (DENV) by targeting the non-structural protein ns2B-nsP3 protease based on the in silico studies. The imidazole, oxazole, triazole, thiadiazole, and thiazolidine based scaffolds were imported from the ZINC database, reported by various research group with different biological activity. They were found biologically active as they contain heterocyclic fragments. Generic evolutionary based molecular docking was performed to screen the highly potent molecule. The docking results show that the molecule having ZINC ID-633972 is best inhibitor. Further, the bioavailability and other physiochemical parameters were also calculated for the top four molecule. The highly potent molecule was further refined by the density functional theory and molecular dynamic (MD) simulation. The MD analysis coroborate the successful docking of the molecule in the binding cavity of nsP2B-nsP3 protease of DENV. The Molecular Mechanics Poisson-Boltzmann Surface Area approach was also applied and result coroborate the docking and MD result.
Collapse
|
40
|
Shannon, Rényi, Tsallis Entropies and Onicescu Information Energy for Low-Lying Singly Excited States of Helium. ATOMS 2019. [DOI: 10.3390/atoms7030070] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Knowledge of the electronic structures of atomic and molecular systems deepens our understanding of the desired system. In particular, several information-theoretic quantities, such as Shannon entropy, have been applied to quantify the extent of electron delocalization for the ground state of various systems. To explore excited states, we calculated Shannon entropy and two of its one-parameter generalizations, Rényi entropy of order α and Tsallis entropy of order α , and Onicescu Information Energy of order α for four low-lying singly excited states (1s2s 1 S e , 1s2s 3 S e , 1s3s 1 S e , and 1s3s 3 S e states) of helium. This paper compares the behavior of these three quantities of order 0.5 to 9 for the ground and four excited states. We found that, generally, a higher excited state had a larger Rényi entropy, larger Tsallis entropy, and smaller Onicescu information energy. However, this trend was not definite and the singlet–triplet reversal occurred for Rényi entropy, Tsallis entropy and Onicescu information energy at a certain range of order α .
Collapse
|
41
|
Insights into the electronic properties of diphenyl chalcogenides compounds: A combined experimental and theoretical study. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.02.075] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
42
|
A DFT study of the degradation mechanism of anticancer drug carmustine in an aqueous medium. Struct Chem 2019. [DOI: 10.1007/s11224-019-1285-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
43
|
Yu D, Rong C, Lu T, De Proft F, Liu S. Baird's Rule in Substituted Fulvene Derivatives: An Information-Theoretic Study on Triplet-State Aromaticity and Antiaromaticity. ACS OMEGA 2018; 3:18370-18379. [PMID: 31458411 PMCID: PMC6643592 DOI: 10.1021/acsomega.8b02881] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 12/14/2018] [Indexed: 06/10/2023]
Abstract
Originated from the cyclic delocalization of electrons resulting in extra stability and instability, aromaticity and antiaromaticity are important chemical concepts whose appreciation and quantification are still much of recent interest in the literature. Employing information-theoretic quantities can provide us with more insights and better understanding about them, as we have previously demonstrated. In this work, we examine the triplet-state aromaticity and antiaromaticity, which are governed by Baird's 4n rule, instead of Hückel's 4n + 2 rule for the singlet state. To this end, we have made use of 4 different aromaticity indexes and 8 information-theoretic quantities, examined a total of 22 substituted fulvene derivatives, and compared the results both in singlet and triplet states. It is found that cross-correlations of these two categories of molecular property descriptors enable us to better understand the nature and propensity of aromaticity and antiaromaticity for the triplet state. Our results have not only demonstrated the existence and validity of Baird's rule but also shown that Hückel's rule and Baird's rule indeed share the same theoretical foundation because with these cross-correlation patterns we are able to distinguish them from each other simultaneously in both singlet and triplet states. Our results should provide new insights into the nature of aromaticity and antiaromaticity in the triplet state and pave the road toward new ways to quantify this pair of important chemical concepts.
Collapse
Affiliation(s)
- Donghai Yu
- Key Laboratory of
Chemical Biology and Traditional Chinese Medicine Research (Ministry
of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
- Research Group of General Chemistry (ALGC), Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Brussels, Belgium
| | - Chunying Rong
- Key Laboratory of
Chemical Biology and Traditional Chinese Medicine Research (Ministry
of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Tian Lu
- Beijing Kein Research Center for Natural Sciences, Beijing 100022, China
| | - Frank De Proft
- Research Group of General Chemistry (ALGC), Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Brussels, Belgium
| | - Shubin Liu
- Research Computing Center, University of North Carolina, Chapel Hill, North Carolina 27599-3420, United States
| |
Collapse
|
44
|
Rong C, Zhao D, Yu D, Liu S. Quantification and origin of cooperativity: insights from density functional reactivity theory. Phys Chem Chem Phys 2018; 20:17990-17998. [PMID: 29927447 DOI: 10.1039/c8cp03092h] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Cooperativity is a widely used chemical concept whose existence is ubiquitous in chemical and biological systems but whose quantification is still controversial and origin much less appreciated. In this work, using the interaction energy of a molecular system, which is composed of multiple copies of a building block, we propose a quantitative measurement to evaluate the cooperativity effect. This quantification approach is then applied to six molecular systems, i.e., water cluster, argon cluster, protonated water cluster, zinc atom cluster, water cluster on top of a graphene sheet, and alpha helix of glycine amino acids, each with up to 20 copies of the building block. Cooperativity is seen in all these systems. Both positive and negative cooperativity effects are observed. Employing the two energy partition schemes in density functional theory and the information-theoretic quantities such as Shannon entropy, Fisher information, information gain, etc., we then examine the origin of the cooperativity effect for these systems. Strong linear correlations between the cooperativity measure and some of these theoretical quantities have been unveiled. With these correlations, we are able to quantitatively account for their origin of cooperativity. Our results show that the interactions governing the existence and validity of the cooperativity effect are complicated. An opposite mechanism in enthalpy-entropy compensation for positive and negative cooperativity has been unveiled. These results should provide new insights and understandings from a different viewpoint about the nature and origin of cooperativity to appreciate this vastly important chemical concept.
Collapse
Affiliation(s)
- Chunying Rong
- College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha Hunan 410081, P. R. China
| | | | | | | |
Collapse
|
45
|
Dong J, Liu B, Liang G, Yang B. Synthesis, biological activity and toxicity of chromium(III) metformin complex as potential insulin-mimetic agent in C57BL/6 mice. J COORD CHEM 2018. [DOI: 10.1080/00958972.2018.1459580] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jinlong Dong
- Key Laboratory of Chemical Biology of Molecular Engineering of Education Ministry, Institute of Molecular Science, Shanxi University, Taiyuan, China
- Department of Chemistry, Taiyuan Normal University, Taiyuan, China
| | - Bin Liu
- Key Laboratory of Chemical Biology of Molecular Engineering of Education Ministry, Institute of Molecular Science, Shanxi University, Taiyuan, China
| | - Gang Liang
- Department of Pathology, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Binsheng Yang
- Key Laboratory of Chemical Biology of Molecular Engineering of Education Ministry, Institute of Molecular Science, Shanxi University, Taiyuan, China
| |
Collapse
|
46
|
Devi N, Sarma K, Rahaman R, Barman P. Synthesis of a new series of Ni(ii), Cu(ii), Co(ii) and Pd(ii) complexes with an ONS donor Schiff base: crystal structure, DFT study and catalytic investigation of palladium and nickel complexes towards deacylative sulfenylation of active methylenes and regioselective 3-sulfenylation of indoles via thiouronium salt formation. Dalton Trans 2018. [PMID: 29517777 DOI: 10.1039/c7dt04635a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of Ni(ii), Cu(ii), Co(ii), and Pd(ii) complexes have been synthesized with a chelating Schiff base ligand coordinated to a metal center with ONS donor atoms. The ligand and complexes are characterized by elemental analysis and spectroscopic techniques like FT-IR, 1H-NMR, and UV-Visible spectroscopy. The single crystal structure of the Pd(ii) complex is obtained by X-ray diffraction analysis and exhibits slightly distorted square planar geometry. The structure is optimized by DFT, TD-DFT calculation to elaborate the electronic structure and NBO for the charge distribution analysis of the Pd(ii) complex. The synthesized Pd(ii) and Ni(ii) complexes as catalysts have been investigated in the C-S cross-coupling of indoles and active methylenes. The metal propelled regioselective transformation afforded 3-sulfenylated indoles while β-diketones favored deacylated monosulfenyl ketones in an excellent yield via thiouronium salt formation. The Pd(ii) complex displays slightly better reactivity whereas the Ni(ii) complex is cost-efficient. The method is fast, easy to handle and cost effective in terms of high reactivity of catalysts, use of non-toxic solvents, and cheaper aryl halides and thiourea replace conventional sulfur sources, providing a practical access to organic transformations.
Collapse
Affiliation(s)
- Namita Devi
- National Institute of Technology, Silchar, India.
| | | | | | | |
Collapse
|
47
|
Abstract
Steric charge is an informative descriptor providing novel insights to appreciate the steric effect and stereoselectivity for chemical processes and transformations.
Collapse
Affiliation(s)
- Shubin Liu
- Research Computing Center, University of North Carolina
- Chapel Hill
- USA
| | - Lianghong Liu
- Department of Pharmacy, Hunan University of Medicine
- P. R. China
| | - Donghai Yu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University
- P. R. China
| | - Chunying Rong
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University
- P. R. China
| | - Tian Lu
- Beijing Kein Research Center for Natural Sciences
- Beijing 100022
- P. R. China
| |
Collapse
|
48
|
Deng Y, Yu D, Cao X, Liu L, Rong C, Lu T, Liu S. Structure, aromaticity and reactivity of corannulene and its analogues: a conceptual density functional theory and density functional reactivity theory study. Mol Phys 2017. [DOI: 10.1080/00268976.2017.1403657] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Youer Deng
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, P.R. China
| | - Donghai Yu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, P.R. China
| | - Xiaofang Cao
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, P.R. China
| | - Lianghong Liu
- Department of Pharmacy, Hunan University of Medicine, Huaihua, P.R. China
| | - Chunying Rong
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, P.R. China
| | - Tian Lu
- Beijing Kein Research Center for Natural Sciences, Beijing, P.R. China
| | - Shubin Liu
- Research Computing Center, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
49
|
Cao X, Liu S, Rong C, Lu T, Liu S. Is there a generalized anomeric effect? Analyses from energy components and information-theoretic quantities from density functional reactivity theory. Chem Phys Lett 2017. [DOI: 10.1016/j.cplett.2017.09.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
50
|
Cao X, Rong C, Zhong A, Lu T, Liu S. Molecular acidity: An accurate description with information-theoretic approach in density functional reactivity theory. J Comput Chem 2017; 39:117-129. [PMID: 29076175 DOI: 10.1002/jcc.25090] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 09/14/2017] [Accepted: 10/06/2017] [Indexed: 11/10/2022]
Abstract
Molecular acidity is one of the important physiochemical properties of a molecular system, yet its accurate calculation and prediction are still an unresolved problem in the literature. In this work, we propose to make use of the quantities from the information-theoretic (IT) approach in density functional reactivity theory and provide an accurate description of molecular acidity from a completely new perspective. To illustrate our point, five different categories of acidic series, singly and doubly substituted benzoic acids, singly substituted benzenesulfinic acids, benzeneseleninic acids, phenols, and alkyl carboxylic acids, have been thoroughly examined. We show that using IT quantities such as Shannon entropy, Fisher information, Ghosh-Berkowitz-Parr entropy, information gain, Onicescu information energy, and relative Rényi entropy, one is able to simultaneously predict experimental pKa values of these different categories of compounds. Because of the universality of the quantities employed in this work, which are all density dependent, our approach should be general and be applicable to other systems as well. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Xiaofang Cao
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan, 410081, People's Republic of China
| | - Chunying Rong
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan, 410081, People's Republic of China
| | - Aiguo Zhong
- School of Pharmaceutical and Chemical Engineering, Taizhou University, 1139 Shifu Road, Linhai, Zhejiang, 318000, People's Republic of China
| | - Tian Lu
- Beijing Kein Research Center for Natural Sciences, Beijing, 100022, People's Republic of China
| | - Shubin Liu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan, 410081, People's Republic of China.,Research Computing Center, University of North Carolina, Chapel Hill, North Carolina, 27599-3420
| |
Collapse
|