1
|
Sundar PKS, Kundapura S. Spatiotemporal variation in the water quality of Vembanad Lake, Kerala, India: a remote sensing approach. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1097. [PMID: 37626276 DOI: 10.1007/s10661-023-11746-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023]
Abstract
Water quality is one of the essential parameters of environmental monitoring; even a slight variation in its characteristics may significantly influence the ecosystem. The water quality of Vembanad Lake is affected by anthropogenic effects such as industrial effluents and tourism. The optical parameters representing water quality, such as diffuse attenuation (Kd), turbidity, suspended particulate matter (SPM), and chlorophyll-a (Chl-a), are considered in this study to evaluate the water quality of Vembanad Lake, Kerala, India. As this lake is regarded as of ecological importance by the Ramsar Convention and has faced severe concerns over recent years, there was a substantial change in the water quality during the lockdowns of the COVID-19 pandemic. This research is aimed at examining the change in water quality using optical data from Sentinel-2 satellites in the ACOLITE processing software from 2016 to 2021. The analyses showed a 2.5% decrease in the values of Kd, whereas SPM and turbidity show a reduction of about 4.3% from the year 2016 to 2021. The flood and the COVID lockdown had an impact on the improvement in the quality of water from 2018 to 2021. The findings indicated that the reduction in industrial activities and tourism had a more significant effect on the improvement in the water quality of the lake. There was no substantial change in the Chl-a until 2020, whereas an average decrease of 12% in Chl-a values was observed throughout 2021. This decrease can be attributed to the reduction in the lake's hydrological residence time (HRT). Thus, these findings will be a valuable reference to help the government and non-government organizations (NGO) during strategic planning.
Collapse
Affiliation(s)
| | - Subrahmanya Kundapura
- Faculty of Water Resources Engineering, Department of Water Resources and Ocean Engineering, National Institute of Technology Karnataka, Mangaluru, 575 025, India
| |
Collapse
|
2
|
Zhang P, Jiao R, Gong C, Wang F, Yan W, Li Q, Wang D. Turnover of dissolved organic carbon fuels nocturnal CO 2 emissions from a headwater catchment reservoir, Southeastern China: Effects of ecosystem metabolism on source partitioning of CO 2 emissions. J Environ Sci (China) 2022; 121:98-111. [PMID: 35654520 DOI: 10.1016/j.jes.2021.09.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/15/2021] [Accepted: 09/15/2021] [Indexed: 06/15/2023]
Abstract
Dam reservoirs in headwater catchments, as critical zones for their proximity to terrestrial sources, play important roles in dissolved organic carbon (DOC) cycling. However, the effects of ecosystem metabolism (EM) on DOC cycling are not well known. Here, in-situ diurnal and monthly observations were conducted to measure EM (including gross primary production (GPP), ecosystem respiration (ER) and heterotrophic respiration (HR)), DOC turnover and CO2 emissions in a headwater catchment reservoir in Southeastern China in 2020. Our study showed the nocturnal CO2 emission rate was about twice as high as in daytime, and was strongly driven by EM. The values for DOC turnover velocity ranged from 0.10 to 1.59 m/day, and the average DOC turnover rate was 0.13 day-1, with the average removal efficiency of 12%. The contribution of respired DOC to daily CO2 emissions ranged from 17% to 61%. The accumulated efficiencies were estimated to be 13% for the selected 15 reservoirs throughout the Changjiang River network, corresponding to about 0.34 Tg C/year of the respired DOC. The modified CO2 flux was 0.75 Tg C/year, and respired DOC accounted for about 45% of total emitted CO2 from the 15 larger reservoirs. Our research emphasizes the necessity of incorporating the effects of EM into studies of reservoir DOC removal and CO2 emissions.
Collapse
Affiliation(s)
- Peipei Zhang
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruyuan Jiao
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Yangtze River Delta Branch, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Zhejiang 322000, China
| | - Chen Gong
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fang Wang
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing100101, China
| | - Weijin Yan
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing100101, China.
| | - Qingqian Li
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing100101, China
| | - Dongsheng Wang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Yangtze River Delta Branch, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Zhejiang 322000, China
| |
Collapse
|
3
|
Chételat J, McKinney MA, Amyot M, Dastoor A, Douglas TA, Heimbürger-Boavida LE, Kirk J, Kahilainen KK, Outridge PM, Pelletier N, Skov H, St Pierre K, Vuorenmaa J, Wang F. Climate change and mercury in the Arctic: Abiotic interactions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 824:153715. [PMID: 35149079 DOI: 10.1016/j.scitotenv.2022.153715] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 02/02/2022] [Accepted: 02/03/2022] [Indexed: 06/14/2023]
Abstract
Dramatic environmental shifts are occuring throughout the Arctic from climate change, with consequences for the cycling of mercury (Hg). This review summarizes the latest science on how climate change is influencing Hg transport and biogeochemical cycling in Arctic terrestrial, freshwater and marine ecosystems. As environmental changes in the Arctic continue to accelerate, a clearer picture is emerging of the profound shifts in the climate and cryosphere, and their connections to Hg cycling. Modeling results suggest climate influences seasonal and interannual variability of atmospheric Hg deposition. The clearest evidence of current climate change effects is for Hg transport from terrestrial catchments, where widespread permafrost thaw, glacier melt and coastal erosion are increasing the export of Hg to downstream environments. Recent estimates suggest Arctic permafrost is a large global reservoir of Hg, which is vulnerable to degradation with climate warming, although the fate of permafrost soil Hg is unclear. The increasing development of thermokarst features, the formation and expansion of thaw lakes, and increased soil erosion in terrestrial landscapes are increasing river transport of particulate-bound Hg and altering conditions for aquatic Hg transformations. Greater organic matter transport may also be influencing the downstream transport and fate of Hg. More severe and frequent wildfires within the Arctic and across boreal regions may be contributing to the atmospheric pool of Hg. Climate change influences on Hg biogeochemical cycling remain poorly understood. Seasonal evasion and retention of inorganic Hg may be altered by reduced sea-ice cover and higher chloride content in snow. Experimental evidence indicates warmer temperatures enhance methylmercury production in ocean and lake sediments as well as in tundra soils. Improved geographic coverage of measurements and modeling approaches are needed to better evaluate net effects of climate change and long-term implications for Hg contamination in the Arctic.
Collapse
Affiliation(s)
- John Chételat
- Environment and Climate Change Canada, Ecotoxicology and Wildlife Health Division, National Wildlife Research Centre, Ottawa, ON K1A 0H3, Canada.
| | - Melissa A McKinney
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada
| | - Marc Amyot
- Groupe de recherche interuniversitaire en limnologie (GRIL), Département de sciences biologiques, Complexe des Sciences, Montréal, QC H2V 0B3, Canada
| | - Ashu Dastoor
- Environment and Climate Change Canada, Air Quality Research Division, Dorval, QC H9P 1J3, Canada
| | - Thomas A Douglas
- U.S. Army Cold Regions Research and Engineering Laboratory, Fort Wainwright, AK 99709, USA
| | - Lars-Eric Heimbürger-Boavida
- Aix Marseille Université, CNRS/INSU, Université de Toulon, IRD, Mediterranean Institute of Oceanography (MIO) UM 110, Marseille, France
| | - Jane Kirk
- Environment and Climate Change Canada, Aquatic Contaminants Research Division, Burlington, ON L7S 1A1, Canada
| | - Kimmo K Kahilainen
- Lammi Biological Station, University of Helsinki, Pääjärventie 320, FI-16900 Lammi, Finland
| | - Peter M Outridge
- Geological Survey of Canada, Natural Resources Canada, Ottawa, ON K1A 0E8, Canada
| | - Nicolas Pelletier
- Geography and Environmental Studies, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Henrik Skov
- Department of Environmental Science, iClimate, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark
| | - Kyra St Pierre
- Institute for the Oceans and Fisheries, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Jussi Vuorenmaa
- Finnish Environment Institute (SYKE), Latokartanonkaari 11, FI-00790 Helsinki, Finland
| | - Feiyue Wang
- Centre for Earth Observation Sciences (CEOS), Dept. of Environment and Geography, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
4
|
Lin HC, Tsai JW, Tada K, Matsumoto H, Chiu CY, Nakayama K. The impacts of the hydraulic retention effect and typhoon disturbance on the carbon flux in shallow subtropical mountain lakes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 803:150044. [PMID: 34525696 DOI: 10.1016/j.scitotenv.2021.150044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/12/2021] [Accepted: 08/26/2021] [Indexed: 06/13/2023]
Abstract
A typhoon is extreme weather that flushes terrestrial carbon (C) loads and temporally mixes the entire water columns of lakes in subtropical regions. A C flux varies based on the trophic level associated with the ecological cycle related to hydraulic retention time (residence time). Herein, we sought to clarify how the hydraulic retention time and the disturbance from a typhoon affect the C flux regimes in two subtropical mountain lakes in a humid region of Taiwan with different trophic levels-oligotrophic and mesotrophic. We investigated the meteorological data and vertical profiles of the water temperature, dissolved inorganic carbon (DIC), dissolved organic C (DOC), and chlorophyll a (Chl. a) during the pre-typhoon period (April-July), during the typhoon period (August-November), and the post-typhoon period (December-March) for five years (2009-2010 and 2015-2017). We applied a three-dimensional environmental model (Fantom) to investigate the hydraulic retention effect on the net ecosystem production (NEP) using the residence time in stratified lakes. The results demonstrate that typhoon-induced mixing associated with the hydraulic retention effect plays one of the critical roles in controlling the NEP and C flux in shallow subtropical lakes.
Collapse
Affiliation(s)
- Hao-Chi Lin
- Graduate School of Engineering, Kobe University, 1-1 Rokkodai-Cho, Nada-Ku, Kobe 658-8501, Japan
| | - Jeng-Wei Tsai
- Department of Biological Science and Technology, China Medical University, No. 100, Sec. 1, Jingmao Rd., Beitun Dist., Taichung City 406040, Taiwan
| | - Kazufumi Tada
- Chuden Engineering Consultants, 2-3-30 Deshio, Minami-Ku, Hiroshima 734-8510, Japan
| | - Hiroki Matsumoto
- Graduate School of Engineering, Kobe University, 1-1 Rokkodai-Cho, Nada-Ku, Kobe 658-8501, Japan
| | - Chih-Yu Chiu
- Biodiversity Research Center, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 11529, Taiwan.
| | - Keisuke Nakayama
- Graduate School of Engineering, Kobe University, 1-1 Rokkodai-Cho, Nada-Ku, Kobe 658-8501, Japan.
| |
Collapse
|
5
|
Oleksy IA, Jones SE, Solomon CT. Hydrologic Setting Dictates the Sensitivity of Ecosystem Metabolism to Climate Variability in Lakes. Ecosystems 2021. [DOI: 10.1007/s10021-021-00718-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
AbstractGlobal change is influencing production and respiration in ecosystems across the globe. Lakes in particular are changing in response to climatic variability and cultural eutrophication, resulting in changes in ecosystem metabolism. Although the primary drivers of production and respiration such as the availability of nutrients, light, and carbon are well known, heterogeneity in hydrologic setting (for example, hydrological connectivity, morphometry, and residence) across and within regions may lead to highly variable responses to the same drivers of change, complicating our efforts to predict these responses. We explored how differences in hydrologic setting among lakes influenced spatial and inter annual variability in ecosystem metabolism, using high-frequency oxygen sensor data from 11 lakes over 8 years. Trends in mean metabolic rates of lakes generally followed gradients of nutrient and carbon concentrations, which were lowest in seepage lakes, followed by drainage lakes, and higher in bog lakes. We found that while ecosystem respiration (ER) was consistently higher in wet years in all hydrologic settings, gross primary production (GPP) only increased in tandem in drainage lakes. However, interannual rates of ER and GPP were relatively stable in drainage lakes, in contrast to seepage and bog lakes which had coefficients of variation in metabolism between 22–32%. We explored how the geospatial context of lakes, including hydrologic residence time, watershed area to lake area, and landscape position influenced the sensitivity of individual lake responses to climatic variation. We propose a conceptual framework to help steer future investigations of how hydrologic setting mediates the response of metabolism to climatic variability.
Collapse
|
6
|
A Classification Framework to Assess Ecological, Biogeochemical, and Hydrologic Synchrony and Asynchrony. Ecosystems 2021; 25:989-1005. [DOI: 10.1007/s10021-021-00700-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
7
|
de Wit HA, Stoddard JL, Monteith DT, Sample JE, Austnes K, Couture S, Fölster J, Higgins SN, Houle D, Hruška J, Krám P, Kopacek J, Paterson AM, Valinia S, Van Dam H, Vuorenmaa J, Evans CD. Cleaner air reveals growing influence of climate on dissolved organic carbon trends in northern headwaters. ENVIRONMENTAL RESEARCH LETTERS : ERL [WEB SITE] 2021; 16:1-13. [PMID: 35874907 PMCID: PMC9306449 DOI: 10.1088/1748-9326/ac2526] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Surface water browning, the result of increasing concentrations of dissolved organic matter (DOM), has been widespread in northern ecosystems in recent decades. Here, we assess a database of 426 undisturbed headwater lakes and streams in Europe and North America for evidence of trends in DOM between 1990 and 2016. We describe contrasting changes in DOM trends in Europe (decelerating) and North America (accelerating), which are consistent with organic matter solubility responses to declines in sulfate deposition. While earlier trends (1990-2004) were almost entirely related to changes in atmospheric chemistry, climatic and chemical drivers were equally important in explaining recent DOM trends (2002-2016). We estimate that riverine DOM export from northern ecosystems increased by 27% during the study period. Increased summer precipitation strengthened upward dissolved organic carbon trends while warming apparently damped browning. Our results suggest strong but changing influences of air quality and climate on the terrestrial carbon cycle, and on the magnitude of carbon export from land to water.
Collapse
Affiliation(s)
- Heleen A de Wit
- Norwegian Institute for Water Research, N-0349 Oslo, Norway
- Centre for Biogeochemistry in the Anthropocene, University of Oslo, N-0315 Oslo, Norway
| | | | - Donald T Monteith
- UK Centre for Ecology and Hydrology, Lancaster Environment Centre, LA1 4AP Bailrigg, Lancaster, United Kingdom
| | - James E Sample
- Norwegian Institute for Water Research, N-0349 Oslo, Norway
| | - Kari Austnes
- Norwegian Institute for Water Research, N-0349 Oslo, Norway
| | - Suzanne Couture
- Environment and Climate Change Canada (ECCC), Montreal, QC H2Y 2E7, Canada
| | - Jens Fölster
- Swedish University of Agricultural Sciences, SE-75007 Uppsala, Sweden
| | | | - Daniel Houle
- Environment and Climate Change Canada (ECCC), Montreal, QC H2Y 2E7, Canada
| | - Jakub Hruška
- Czech Geological Survey, 152 00 Prague, Czech Republic
- Global Change Research Institute, CAS, 603 00 Brno, Czech Republic
| | - Pavel Krám
- Czech Geological Survey, 152 00 Prague, Czech Republic
- Global Change Research Institute, CAS, 603 00 Brno, Czech Republic
| | - Jiří Kopacek
- Biology Centre, CAS, Institute of Hydrobiology, 37005 Ceske Budejovice, Czech Republic
| | - Andrew M Paterson
- Dorset Environmental Science Centre, Ontario Ministry of the Environment, Conservation and Parks, Dorset, ON, Canada
| | - Salar Valinia
- Norwegian Institute for Water Research, N-0349 Oslo, Norway
- Swedish Environmental Protection Agency, 106 42 Stockholm, Sweden
| | - Herman Van Dam
- Consultancy for Water and Nature, NL-1034 WR, Amsterdam, The Netherlands
| | | | - Chris D Evans
- Swedish University of Agricultural Sciences, SE-75007 Uppsala, Sweden
- UK Centre for Ecology and Hydrology, LL57 2UW Bangor, United Kingdom
| |
Collapse
|
8
|
Timescale Methods for Simplifying, Understanding and Modeling Biophysical and Water Quality Processes in Coastal Aquatic Ecosystems: A Review. WATER 2020. [DOI: 10.3390/w12102717] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In this article, we describe the use of diagnostic timescales as simple tools for illuminating how aquatic ecosystems work, with a focus on coastal systems such as estuaries, lagoons, tidal rivers, reefs, deltas, gulfs, and continental shelves. Intending this as a tutorial as well as a review, we discuss relevant fundamental concepts (e.g., Lagrangian and Eulerian perspectives and methods, parcels, particles, and tracers), and describe many of the most commonly used diagnostic timescales and definitions. Citing field-based, model-based, and simple algebraic methods, we describe how physical timescales (e.g., residence time, flushing time, age, transit time) and biogeochemical timescales (e.g., for growth, decay, uptake, turnover, or consumption) are estimated and implemented (sometimes together) to illuminate coupled physical-biogeochemical systems. Multiple application examples are then provided to demonstrate how timescales have proven useful in simplifying, understanding, and modeling complex coastal aquatic systems. We discuss timescales from the perspective of “holism”, the degree of process richness incorporated into them, and the value of clarity in defining timescales used and in describing how they were estimated. Our objective is to provide context, new applications and methodological ideas and, for those new to timescale methods, a starting place for implementing them in their own work.
Collapse
|
9
|
Did the COVID-19 Lockdown-Induced Hydrological Residence Time Intensify the Primary Productivity in Lakes? Observational Results Based on Satellite Remote Sensing. WATER 2020. [DOI: 10.3390/w12092573] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The novel coronavirus pandemic (COVID-19) has brought countries around the world to a standstill in the early part of 2020. Several nations and territories around the world insisted their population stay indoors for practicing social distance in order to avoid infecting the disease. Consequently, industrial activities, businesses, and all modes of traveling have halted. On the other hand, the pollution level decreased ‘temporarily’ in our living environment. As fewer pollutants are supplied in to the hydrosphere, and human recreational activities are stopped completely during the lockdown period, we hypothesize that the hydrological residence time (HRT) has increased in the semi-enclosed or closed lake bodies, which can in turn increase the primary productivity. To validate our hypothesis, and to understand the effect of lockdown on primary productivity in aquatic systems, we quantitatively estimated the chlorophyll-a (Chl-a) concentrations in different lake bodies using established Chl-a retrieval algorithm. The Chl-a monitored using Landsat-8 and Sentinel-2 sensor in the lake bodies of Wuhan, China, showed an elevated concentration of Chl-a. In contrast, no significant changes in Chl-a are observed for Vembanad Lake in India. Further analysis of different geo-environments is necessary to validate the hypothesis.
Collapse
|
10
|
Dugan HA, Skaff NK, Doubek JP, Bartlett SL, Burke SM, Krivak-Tetley FE, Summers JC, Hanson PC, Weathers KC. Lakes at Risk of Chloride Contamination. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:6639-6650. [PMID: 32353225 DOI: 10.1021/acs.est.9b07718] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Lakes in the Midwest and Northeast United States are at risk of anthropogenic chloride contamination, but there is little knowledge of the prevalence and spatial distribution of freshwater salinization. Here, we use a quantile regression forest (QRF) to leverage information from 2773 lakes to predict the chloride concentration of all 49 432 lakes greater than 4 ha in a 17-state area. The QRF incorporated 22 predictor variables, which included lake morphometry characteristics, watershed land use, and distance to the nearest road and interstate. Model predictions had an r2 of 0.94 for all chloride observations, and an r2 of 0.86 for predictions of the median chloride concentration observed at each lake. The four predictors with the largest influence on lake chloride concentrations were low and medium intensity development in the watershed, crop density in the watershed, and distance to the nearest interstate. Almost 2000 lakes are predicted to have chloride concentrations above 50 mg L-1 and should be monitored. We encourage management and governing agencies to use lake-specific model predictions to assess salt contamination risk as well as to augment their monitoring strategies to more comprehensively protect freshwater ecosystems from salinization.
Collapse
Affiliation(s)
- Hilary A Dugan
- Center for Limnology, University of Wisconsin-Madison. 680 North Park Street Madison, Wisconsin 53706, United States
| | - Nicholas K Skaff
- Department of Fisheries and Wildlife, Michigan State University, 13 Natural Resources Building, East Lansing, Michigan 48824, United States
| | - Jonathan P Doubek
- School of Natural Resources & Environment and Center for Freshwater Research and Education, Lake Superior State University, Sault Sainte Marie, Michigan 49783, United States
| | - Sarah L Bartlett
- NEW Water, 2231 North Quincy Street Green Bay, Wisconsin 54302, United States
| | - Samantha M Burke
- University of Guelph, School of Environmental Sciences, Guelph, Ontario N1G 2W1, Canada
- Aquatic Contaminants Research Division, Environment & Climate Change Canada, Burlington, Ontario L7S 1A1, Canada
| | - Flora E Krivak-Tetley
- Department of Biological Sciences, Dartmouth College, 78 College Street, Hanover, New Hampshire 03768, United States
| | - Jamie C Summers
- WSP Canada Incorporated, 2300 Yonge Street, Toronto, Ontario M4P 1E4, Canada
| | - Paul C Hanson
- Center for Limnology, University of Wisconsin-Madison. 680 North Park Street Madison, Wisconsin 53706, United States
| | - Kathleen C Weathers
- Cary Institute of Ecosystem Studies, Millbrook, New York 12545, United States
| |
Collapse
|
11
|
Woolway RI, Simpson JH, Spiby D, Feuchtmayr H, Powell B, Maberly SC. Physical and chemical impacts of a major storm on a temperate lake: a taste of things to come? CLIMATIC CHANGE 2018; 151:333-347. [PMID: 30930507 PMCID: PMC6404735 DOI: 10.1007/s10584-018-2302-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 09/15/2018] [Indexed: 06/09/2023]
Abstract
Extreme weather can have a substantial influence on lakes and is expected to become more frequent with climate change. We explored the influence of one particular extreme event, Storm Ophelia, on the physical and chemical environment of England's largest lake, Windermere. We found that the substantial influence of Ophelia on meteorological conditions at Windermere, in particular wind speed, resulted in a 25-fold increase (relative to the study-period average) in the wind energy flux at the lake-air interface. Following Ophelia, there was a short-lived mixing event in which the Schmidt stability decreased by over 100 Jm-2 and the thermocline deepened by over 10 m during a 12-h period. As a result of changes to the strength of stratification, Ophelia also changed the internal seiche regime of Windermere with the dominant seiche period increasing from ~ 17 h pre-storm to ~ 21 h post-storm. Following Ophelia, there was an upwelling of cold and low-oxygenated waters at the southern-end of the lake. This had a substantial influence on the main outflow of Windermere, the River Leven, where dissolved oxygen concentrations decreased by ~ 48%, from 9.3 to 4.8 mg L-1, while at the mid-lake monitoring station in Windermere, it decreased by only ~ 3%. This study illustrates that the response of a lake to extreme weather can cause important effects downstream, the influence of which may not be evident at the lake surface. To understand the impact of future extreme events fully, the whole lake and downstream-river system need to be studied together.
Collapse
Affiliation(s)
| | - John H. Simpson
- School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey, UK
| | | | | | - Ben Powell
- School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey, UK
| | | |
Collapse
|
12
|
Creed IF, Bergström AK, Trick CG, Grimm NB, Hessen DO, Karlsson J, Kidd KA, Kritzberg E, McKnight DM, Freeman EC, Senar OE, Andersson A, Ask J, Berggren M, Cherif M, Giesler R, Hotchkiss ER, Kortelainen P, Palta MM, Vrede T, Weyhenmeyer GA. Global change-driven effects on dissolved organic matter composition: Implications for food webs of northern lakes. GLOBAL CHANGE BIOLOGY 2018; 24:3692-3714. [PMID: 29543363 DOI: 10.1111/gcb.14129] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 02/05/2018] [Indexed: 05/21/2023]
Abstract
Northern ecosystems are experiencing some of the most dramatic impacts of global change on Earth. Rising temperatures, hydrological intensification, changes in atmospheric acid deposition and associated acidification recovery, and changes in vegetative cover are resulting in fundamental changes in terrestrial-aquatic biogeochemical linkages. The effects of global change are readily observed in alterations in the supply of dissolved organic matter (DOM)-the messenger between terrestrial and lake ecosystems-with potentially profound effects on the structure and function of lakes. Northern terrestrial ecosystems contain substantial stores of organic matter and filter or funnel DOM, affecting the timing and magnitude of DOM delivery to surface waters. This terrestrial DOM is processed in streams, rivers, and lakes, ultimately shifting its composition, stoichiometry, and bioavailability. Here, we explore the potential consequences of these global change-driven effects for lake food webs at northern latitudes. Notably, we provide evidence that increased allochthonous DOM supply to lakes is overwhelming increased autochthonous DOM supply that potentially results from earlier ice-out and a longer growing season. Furthermore, we assess the potential implications of this shift for the nutritional quality of autotrophs in terms of their stoichiometry, fatty acid composition, toxin production, and methylmercury concentration, and therefore, contaminant transfer through the food web. We conclude that global change in northern regions leads not only to reduced primary productivity but also to nutritionally poorer lake food webs, with discernible consequences for the trophic web to fish and humans.
Collapse
Affiliation(s)
- Irena F Creed
- School of Environment and Sustainability, University of Saskatchewan, Saskatoon, SK, Canada
| | | | - Charles G Trick
- Interfaculty Program on Public Health & Department of Biology, Western University, London, ON, Canada
| | - Nancy B Grimm
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Dag O Hessen
- Section for Aquatic Biology and Toxicology, University of Oslo, Oslo, Norway
| | - Jan Karlsson
- Climate Impacts Research Centre, Department of Ecology and Environmental Science, Umeå University, Umeå, Sweden
| | - Karen A Kidd
- Department of Biology and Canadian Rivers Institute, University of New Brunswick, Saint John, NB, Canada
| | | | | | - Erika C Freeman
- Department of Geography, Western University, London, ON, Canada
| | - Oscar E Senar
- Department of Geography, Western University, London, ON, Canada
| | - Agneta Andersson
- Department of Ecology and Environmental Science, Umeå University, Umeå, Sweden
| | - Jenny Ask
- Department of Ecology and Environmental Science, Umeå University, Umeå, Sweden
| | - Martin Berggren
- Department of Physical Geography and Ecosystem Science, Lund University, Lund, Sweden
| | - Mehdi Cherif
- Department of Ecology and Environmental Science, Umeå University, Umeå, Sweden
| | - Reiner Giesler
- Climate Impacts Research Centre, Department of Ecology and Environmental Science, Umeå University, Umeå, Sweden
| | - Erin R Hotchkiss
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | | | - Monica M Palta
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Tobias Vrede
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Gesa A Weyhenmeyer
- Department of Ecology and Genetics, Limnology, Uppsala University, Uppsala, Sweden
| |
Collapse
|