1
|
Ruiz‐Vera UM, Balikian R, Larson TH, Ort DR. Evaluation of the effects of elevated CO 2 concentrations on the growth of cassava storage roots by destructive harvests and ground penetrating radar scanning approaches. PLANT, CELL & ENVIRONMENT 2023; 46:93-105. [PMID: 36305507 PMCID: PMC10099964 DOI: 10.1111/pce.14474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/18/2022] [Accepted: 10/22/2022] [Indexed: 06/16/2023]
Abstract
Cassava (Manihot esculenta Crantz) production will need to be improved to meet future food demands in Sub-Saharan Africa. The selection of high-yielding cassava cultivars requires a better understanding of storage root development. Additionally, since future production will happen under increasing atmospheric CO2 concentrations ([CO2 ]), cultivar selection should include responsiveness to elevated [CO2 ]. Five farmer-preferred African cassava cultivars were grown for three and a half months in a Free Air CO2 Enrichment experiment in central Illinois. Compared to ambient [CO2 ] (~400 ppm), cassava storage roots grown under elevated [CO2 ] (~600 ppm) had a higher biomass with some cultivars having lower storage root water content. The elevated [CO2 ] stimulation in storage root biomass ranged from 33% to 86% across the five cultivars tested documenting the importance of this trait in developing new cultivars. In addition to the destructive harvests to obtain storage root parameters, we explored ground penetrating radar as a nondestructive method to determine storage root growth across the growing season.
Collapse
Affiliation(s)
- Ursula M. Ruiz‐Vera
- Genomic Ecology of Global Change Research Theme, Carl R. Woese Institute for Genomic BiologyUniversity of Illinois at Urbana‐ChampaignIllinoisUrbanaUSA
- Present address:
Bayer CropScience LLC, Bayer Marana Greenhouse9475 N Sanders Rd, Tucson, AZ 85743, USA
| | - Riley Balikian
- Hydrogeology and Geophysics, Illinois State Geological SurveyUniversity of Illinois at Urbana‐ChampaignChampaignIllinoisUSA
| | - Timothy H. Larson
- Hydrogeology and Geophysics, Illinois State Geological SurveyUniversity of Illinois at Urbana‐ChampaignChampaignIllinoisUSA
| | - Donald R. Ort
- Genomic Ecology of Global Change Research Theme, Carl R. Woese Institute for Genomic BiologyUniversity of Illinois at Urbana‐ChampaignIllinoisUrbanaUSA
- Departments of Plant Biology & Crop SciencesUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA
| |
Collapse
|
2
|
Mulero G, Jiang D, Bonfil DJ, Helman D. Use of thermal imaging and the photochemical reflectance index (PRI) to detect wheat response to elevated CO 2 and drought. PLANT, CELL & ENVIRONMENT 2023; 46:76-92. [PMID: 36289576 PMCID: PMC10098568 DOI: 10.1111/pce.14472] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 09/05/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
The spectral-based photochemical reflectance index (PRI) and leaf surface temperature (Tleaf ) derived from thermal imaging are two indicative metrics of plant functioning. The relationship of PRI with radiation-use efficiency (RUE) and Tleaf with leaf transpiration could be leveraged to monitor crop photosynthesis and water use from space. Yet, it is unclear how such relationships will change under future high carbon dioxide concentrations ([CO2 ]) and drought. Here we established an [CO2 ] enrichment experiment in which three wheat genotypes were grown at ambient (400 ppm) and elevated (550 ppm) [CO2 ] and exposed to well-watered and drought conditions in two glasshouse rooms in two replicates. Leaf transpiration (Tr ) and latent heat flux (LE) were derived to assess evaporative cooling, and RUE was calculated from assimilation and radiation measurements on several dates along the season. Simultaneous hyperspectral and thermal images were taken at~ $\unicode{x0007E}$ 1.5 m from the plants to derive PRI and the temperature difference between the leaf and its surrounding air (∆ $\unicode{x02206}$ Tleaf-air ). We found significant PRI and RUE and∆ $\unicode{x02206}$ Tleaf-air and Tr correlations, with no significant differences among the genotypes. A PRI-RUE decoupling was observed under drought at ambient [CO2 ] but not at elevated [CO2 ], likely due to changes in photorespiration. For a LE range of 350 W m-2 , the ΔTleaf-air range was~ $\unicode{x0007E}$ 10°C at ambient [CO2 ] and only~ $\unicode{x0007E}$ 4°C at elevated [CO2 ]. Thicker leaves in plants grown at elevated [CO2 ] suggest higher leaf water content and consequently more efficient thermoregulation at high [CO2 ] conditions. In general, Tleaf was maintained closer to the ambient temperature at elevated [CO2 ], even under drought. PRI, RUE, ΔTleaf -air , and Tr decreased linearly with canopy depth, displaying a single PRI-RUE and ΔTleaf -air Tr model through the canopy layers. Our study shows the utility of these sensing metrics in detecting wheat responses to future environmental changes.
Collapse
Affiliation(s)
- Gabriel Mulero
- Department of Soil & Water Sciences, Institute of Environmental Sciences, The Robert H. Smith Faculty of Agriculture, Food and EnvironmentThe Hebrew University of JerusalemRehovotIsrael
| | - Duo Jiang
- Department of Soil & Water Sciences, Institute of Environmental Sciences, The Robert H. Smith Faculty of Agriculture, Food and EnvironmentThe Hebrew University of JerusalemRehovotIsrael
| | - David J. Bonfil
- Department of Vegetable and Field Crop ResearchAgricultural Research Organization, Gilat Research CenterGilatIsrael
| | - David Helman
- Department of Soil & Water Sciences, Institute of Environmental Sciences, The Robert H. Smith Faculty of Agriculture, Food and EnvironmentThe Hebrew University of JerusalemRehovotIsrael
- The Advanced School for Environmental StudiesThe Hebrew University of JerusalemJerusalemIsrael
| |
Collapse
|
3
|
Mueller KE, Ocheltree TW, Kray JA, Bushey JA, Blumenthal DM, Williams DG, Pendall E. Trading water for carbon in the future: Effects of elevated CO 2 and warming on leaf hydraulic traits in a semiarid grassland. GLOBAL CHANGE BIOLOGY 2022; 28:5991-6001. [PMID: 35751572 PMCID: PMC9544398 DOI: 10.1111/gcb.16314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
The effects of climate change on plants and ecosystems are mediated by plant hydraulic traits, including interspecific and intraspecific variability of trait phenotypes. Yet, integrative and realistic studies of hydraulic traits and climate change are rare. In a semiarid grassland, we assessed the response of several plant hydraulic traits to elevated CO2 (+200 ppm) and warming (+1.5 to 3°C; day to night). For leaves of five dominant species (three graminoids and two forbs), and in replicated plots exposed to 7 years of elevated CO2 , warming, or ambient climate, we measured: stomatal density and size, xylem vessel size, turgor loss point, and water potential (pre-dawn). Interspecific differences in hydraulic traits were larger than intraspecific shifts induced by elevated CO2 and/or warming. Effects of elevated CO2 were greater than effects of warming, and interactions between treatments were weak or not detected. The forbs showed little phenotypic plasticity. The graminoids had leaf water potentials and turgor loss points that were 10% to 50% less negative under elevated CO2 ; thus, climate change might cause these species to adjust their drought resistance strategy away from tolerance and toward avoidance. The C4 grass also reduced allocation of leaf area to stomata under elevated CO2 , which helps explain observations of higher soil moisture. The shifts in hydraulic traits under elevated CO2 were not, however, simply due to higher soil moisture. Integration of our results with others' indicates that common species in this grassland are more likely to adjust stomatal aperture in response to near-term climate change, rather than anatomical traits; this contrasts with apparent effects of changing CO2 on plant anatomy over evolutionary time. Future studies should assess how plant responses to drought may be constrained by the apparent shift from tolerance (via low turgor loss point) to avoidance (via stomatal regulation and/or access to deeper soil moisture).
Collapse
Affiliation(s)
- Kevin E. Mueller
- Department of Biological, Geological and Environmental SciencesCleveland State UniversityClevelandOhioUSA
| | - Troy W. Ocheltree
- Department of Forest and Rangeland StewardshipColorado State UniversityFort CollinsColoradoUSA
| | - Julie A. Kray
- Rangeland Resources & Systems Research, Agricultural Research Service, United States Department of AgricultureFort CollinsColoradoUSA
| | - Julie A. Bushey
- Water Management Research, Agricultural Research Service, United States Department of AgricultureFort CollinsColoradoUSA
| | - Dana M. Blumenthal
- Rangeland Resources & Systems Research, Agricultural Research Service, United States Department of AgricultureFort CollinsColoradoUSA
| | | | - Elise Pendall
- Hawkesbury Institute for the EnvironmentWestern Sydney UniversityPenrithNew South WalesAustralia
| |
Collapse
|
4
|
Meeran K, Ingrisch J, Reinthaler D, Canarini A, Müller L, Pötsch EM, Richter A, Wanek W, Bahn M. Warming and elevated CO 2 intensify drought and recovery responses of grassland carbon allocation to soil respiration. GLOBAL CHANGE BIOLOGY 2021; 27:3230-3243. [PMID: 33811716 DOI: 10.1111/gcb.15628] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 03/07/2021] [Accepted: 03/15/2021] [Indexed: 05/26/2023]
Abstract
Photosynthesis and soil respiration represent the two largest fluxes of CO2 in terrestrial ecosystems and are tightly linked through belowground carbon (C) allocation. Drought has been suggested to impact the allocation of recently assimilated C to soil respiration; however, it is largely unknown how drought effects are altered by a future warmer climate under elevated atmospheric CO2 (eT_eCO2 ). In a multifactor experiment on managed C3 grassland, we studied the individual and interactive effects of drought and eT_eCO2 (drought, eT_eCO2 , drought × eT_eCO2 ) on ecosystem C dynamics. We performed two in situ 13 CO2 pulse-labeling campaigns to trace the fate of recent C during peak drought and recovery. eT_eCO2 increased soil respiration and the fraction of recently assimilated C in soil respiration. During drought, plant C uptake was reduced by c. 50% in both ambient and eT_eCO2 conditions. Soil respiration and the amount and proportion of 13 C respired from soil were reduced (by 32%, 70% and 30%, respectively), the effect being more pronounced under eT_eCO2 (50%, 84%, 70%). Under drought, the diel coupling of photosynthesis and SR persisted only in the eT_eCO2 scenario, likely caused by dynamic shifts in the use of freshly assimilated C between storage and respiration. Drought did not affect the fraction of recent C remaining in plant biomass under ambient and eT_eCO2 , but reduced the small fraction remaining in soil under eT_eCO2 . After rewetting, C uptake and the proportion of recent C in soil respiration recovered more rapidly under eT_eCO2 compared to ambient conditions. Overall, our findings suggest that in a warmer climate under elevated CO2 drought effects on the fate of recent C will be amplified and the coupling of photosynthesis and soil respiration will be sustained. To predict the future dynamics of terrestrial C cycling, such interactive effects of multiple global change factors should be considered.
Collapse
Affiliation(s)
| | | | - David Reinthaler
- Department of Ecology, University of Innsbruck, Innsbruck, Austria
| | - Alberto Canarini
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Lena Müller
- Department of Ecology, University of Innsbruck, Innsbruck, Austria
| | - Erich M Pötsch
- Institute of Plant Production and Cultural Landscape, Agricultural Research and Education Centre, Raumberg-Gumpenstein, Austria
| | - Andreas Richter
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Wolfgang Wanek
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Michael Bahn
- Department of Ecology, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
5
|
Sage E, Heisler-White J, Morgan J, Pendall E, Williams DG. Climate warming alters photosynthetic responses to elevated CO 2 in prairie plants. AMERICAN JOURNAL OF BOTANY 2020; 107:1238-1252. [PMID: 32931042 DOI: 10.1002/ajb2.1532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 06/02/2020] [Indexed: 06/11/2023]
Abstract
PREMISE The impact of elevated CO2 concentration ([CO2 ]) and climate warming on plant productivity in dryland ecosystems is influenced strongly by soil moisture availability. We predicted that the influence of warming on the stimulation of photosynthesis by elevated [CO2 ] in prairie plants would operate primarily through direct and indirect effects on soil water. METHODS We measured light-saturated photosynthesis (Anet ), stomatal conductance (gs ), maximum Rubisco carboxylation rate (Vcmax ), maximum electron transport capacity (Jmax ) and related variables in four C3 plant species in the Prairie Heating and CO2 Enrichment (PHACE) experiment in southeastern Wyoming. Measurements were conducted over two growing seasons that differed in the amount of precipitation and soil moisture content. RESULTS Anet in the C3 subshrub Artemisia frigida and the C3 forb Sphaeralcea coccinea was stimulated by elevated [CO2 ] under ambient and warmed temperature treatments. Warming by itself reduced Anet in all species during the dry year, but stimulated photosynthesis in S. coccinea in the wet year. In contrast, Anet in the C3 grass Pascopyrum smithii was not stimulated by elevated [CO2 ] or warming under wet or dry conditions. Photosynthetic downregulation under elevated [CO2 ] in this species countered the potential stimulatory effect under improved water relations. Warming also reduced the magnitude of CO2 -induced down-regulation in this grass, possibly by sustaining high levels of carbon utilization. CONCLUSIONS Direct and indirect effects of elevated [CO2 ] and warming on soil water was an overriding factor influencing patterns of Anet in this semi-arid temperate grassland, emphasizing the important role of water relations in driving grassland responses to global change.
Collapse
Affiliation(s)
- Emma Sage
- Department of Botany, University of Wyoming, 1000 E. University Ave., Laramie, WY, 82071, USA
| | | | - Jack Morgan
- USDA-ARS Crops Research Laboratory, 1701 Center Ave., Fort Collins, CO, 80526, USA
| | - Elise Pendall
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | - David G Williams
- Department of Botany, University of Wyoming, 1000 E. University Ave., Laramie, WY, 82071, USA
| |
Collapse
|
6
|
Identification of suites of traits that explains drought resistance and phenological patterns of plants in a semi-arid grassland community. Oecologia 2020; 192:55-66. [PMID: 31932921 DOI: 10.1007/s00442-019-04567-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 11/22/2019] [Indexed: 11/25/2022]
Abstract
Grassland ecosystems are comprised of plants that occupy a wide array of phenological niches and vary considerably in their ability to resist the stress of seasonal soil-water deficits. Yet, the link between plant drought resistance and phenology remains unclear in perennial grassland ecosystems. To evaluate the role of soil water availability and plant drought tolerance in driving phenology, we measured leaf hydraulic conductance (Ksat), resistance to hydraulic failure (P50), leaf gas exchange, plant and soil water stable isotope ratios (δ18O), and several phenology metrics on ten perennial herbaceous species in mixed-grass prairie. The interaction between P50 and δ18O of xylem water explained 67% of differences in phenology, with lower P50 values associated with later season activity, but only among shallow-rooted species. In addition, stomatal control and high water-use efficiency also contributed to the late flowering and late senescence strategies of plants that had low P50 values and relied upon shallow soil water. Alternatively, plants with deeper roots did not possess drought-tolerant leaves, but had high hydraulic efficiency, contributing to their ability to efficiently move water longer distances while maintaining leaf water potential at relatively high values. The suites of traits that characterize these contrasting strategies provide a mechanistic link between phenology and plant-water relations; thus, these traits could help predict grassland community responses to changes in water availability, both temporally and vertically within the soil profile.
Collapse
|