1
|
Li D, Wang Y, Wang J, Tang Q. Identification of key proteins in early-onset Alzheimer's disease based on WGCNA. Front Aging Neurosci 2024; 16:1412222. [PMID: 39444808 PMCID: PMC11496171 DOI: 10.3389/fnagi.2024.1412222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 09/20/2024] [Indexed: 10/25/2024] Open
Abstract
Introduction Early-onset Alzheimer's disease (EOAD) is sporadic, highly heterogeneous, and its underlying pathogenic mechanisms remain largely elusive. Proteomics research aims to uncover the biological processes and key proteins involved in disease progression. However, no proteomic studies to date have specifically focused on EOAD brain tissue. Method We integrated proteomic data from brain tissues of two Alzheimer's disease (AD) cohorts and constructed a protein co-expression network using weighted gene co-expression network analysis (WGCNA). We identified modules associated with EOAD, conducted functional enrichment analysis to understand the biological processes involved in EOAD, and pinpointed potential key proteins within the core modules most closely linked to AD pathology. Results In this study, we identified a total of 2,749 proteins associated with EOAD. Through protein co-expression network analysis, we discovered 41 distinct co-expression modules. Notably, the proteins within the core module most closely linked to AD pathology were significantly enriched in neutrophil degranulation. Additionally, we identified two potential key proteins within this core module that have not been previously reported in AD and validated their expression levels in 5xFAD mice. Conclusion In summary, through a protein co-expression network analysis, we identified EOAD-related biological processes and molecular pathways, and screened and validated two key proteins, ERBB2IP and LSP1. These proteins may play an important role in the progression of EOAD, suggesting they could serve as potential therapeutic targets for the disease.
Collapse
Affiliation(s)
| | | | | | - Qiqiang Tang
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
2
|
Martá-Ariza M, Leitner DF, Kanshin E, Suazo J, Pedrosa AG, Thierry M, Lee EB, Devinsky O, Drummond E, Fortea J, Lleó A, Ueberheide B, Wisniewski T. Comparison of the Amyloid Plaque Proteome in Down Syndrome, Early-Onset Alzheimer's Disease and Late-Onset Alzheimer's Disease. RESEARCH SQUARE 2024:rs.3.rs-4469045. [PMID: 39070643 PMCID: PMC11275979 DOI: 10.21203/rs.3.rs-4469045/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Background Down syndrome (DS) is strongly associated with Alzheimer's disease (AD), attributable to APP overexpression. DS exhibits Amyloid-β (Aβ) and Tau pathology similar to early-onset AD (EOAD) and late-onset AD (LOAD). The study aimed to evaluate the Aβ plaque proteome of DS, EOAD and LOAD. Methods Using unbiased localized proteomics, we analyzed amyloid plaques and adjacent plaque-devoid tissue ('non-plaque') from post-mortem paraffin-embedded tissues in four cohorts (n = 20/group): DS (59.8 ± 4.99 y/o), EOAD (63 ± 4.07 y/o), LOAD (82.1 ± 6.37 y/o) and controls (66.4 ± 13.04). We assessed functional associations using Gene Ontology (GO) enrichment and protein interaction networks. Results We identified differentially abundant Aβ plaque proteins vs. non-plaques (FDR < 5%, fold-change > 1.5) in DS (n = 132), EOAD (n = 192) and in LOAD (n = 128); there were 43 plaque-associated proteins shared between all groups. Positive correlations (p < 0.0001) were observed between plaque-associated proteins in DS and EOAD (R2 = 0.77), DS and LOAD (R2 = 0.73), and EOAD vs. LOAD (R2 = 0.67). Top Biological process (BP) GO terms (p < 0.0001) included lysosomal transport for DS, immune system regulation for EOAD, and lysosome organization for LOAD. Protein networks revealed a plaque enriched signature across all cohorts involving APP metabolism, immune response, and lysosomal functions. In DS, EOAD and LOAD non-plaque vs. control tissue, we identified 263, 269, and 301 differentially abundant proteins, including 65 altered non-plaque proteins across all cohorts. Differentially abundant non-plaque proteins in DS showed a significant (p < 0.0001) but weaker positive correlation with EOAD (R2 = 0.59) and LOAD (R2 = 0.33) compared to the stronger correlation between EOAD and LOAD (R2 = 0.79). The top BP GO term for all groups was chromatin remodeling (DS p = 0.0013, EOAD p = 5.79×10- 9, and LOAD p = 1.69×10- 10). Additional GO terms for DS included extracellular matrix (p = 0.0068), while EOAD and LOAD were associated with protein-DNA complexes and gene expression regulation (p < 0.0001). Conclusions We found strong similarities among the Aβ plaque proteomes in individuals with DS, EOAD and LOAD, and a robust association between the plaque proteomes and lysosomal and immune-related pathways. Further, non-plaque proteomes highlighted altered pathways related to chromatin structure and extracellular matrix (ECM), the latter particularly associated with DS. We identified novel Aβ plaque proteins, which may serve as biomarkers or therapeutic targets.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Edward B Lee
- University of Pennsylvania Perelman School of Medicine
| | | | | | - Juan Fortea
- Universitat Autònoma de Barcelona: Universitat Autonoma de Barcelona
| | - Alberto Lleó
- Universitat Autònoma de Barcelona: Universitat Autonoma de Barcelona
| | | | | |
Collapse
|
3
|
Vincent B, Shukla M. The Common Denominators of Parkinson's Disease Pathogenesis and Methamphetamine Abuse. Curr Neuropharmacol 2024; 22:2113-2156. [PMID: 37691228 PMCID: PMC11337683 DOI: 10.2174/1570159x21666230907151226] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 09/12/2023] Open
Abstract
The pervasiveness and mortality associated with methamphetamine abuse have doubled during the past decade, suggesting a possible worldwide substance use crisis. Epitomizing the pathophysiology and toxicology of methamphetamine abuse proclaims severe signs and symptoms of neurotoxic and neurobehavioral manifestations in both humans and animals. Most importantly, chronic use of this drug enhances the probability of developing neurodegenerative diseases manifolds. Parkinson's disease is one such neurological disorder, which significantly and evidently not only shares a number of toxic pathogenic mechanisms induced by methamphetamine exposure but is also interlinked both structurally and genetically. Methamphetamine-induced neurodegeneration involves altered dopamine homeostasis that promotes the aggregation of α-synuclein protofibrils in the dopaminergic neurons and drives these neurons to make them more vulnerable to degeneration, as recognized in Parkinson's disease. Moreover, the pathologic mechanisms such as mitochondrial dysfunction, oxidative stress, neuroinflammation and decreased neurogenesis detected in methamphetamine abusers dramatically resemble to what is observed in Parkinson's disease cases. Therefore, the present review comprehensively cumulates a holistic illustration of various genetic and molecular mechanisms putting across the notion of how methamphetamine administration and intoxication might lead to Parkinson's disease-like pathology and Parkinsonism.
Collapse
Affiliation(s)
- Bruno Vincent
- Institute of Molecular and Cellular Pharmacology, Laboratory of Excellence DistALZ, Université Côte d'Azur, INSERM, CNRS, Sophia-Antipolis, 06560, Valbonne, France
| | - Mayuri Shukla
- Chulabhorn Graduate Institute, Chulabhorn Royal Academy, 10210, Bangkok, Thailand
| |
Collapse
|
4
|
Sziraki A, Lu Z, Lee J, Banyai G, Anderson S, Abdulraouf A, Metzner E, Liao A, Banfelder J, Epstein A, Schaefer C, Xu Z, Zhang Z, Gan L, Nelson PT, Zhou W, Cao J. A global view of aging and Alzheimer's pathogenesis-associated cell population dynamics and molecular signatures in human and mouse brains. Nat Genet 2023; 55:2104-2116. [PMID: 38036784 PMCID: PMC10703679 DOI: 10.1038/s41588-023-01572-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 10/17/2023] [Indexed: 12/02/2023]
Abstract
Conventional methods fall short in unraveling the dynamics of rare cell types related to aging and diseases. Here we introduce EasySci, an advanced single-cell combinatorial indexing strategy for exploring age-dependent cellular dynamics in the mammalian brain. Profiling approximately 1.5 million single-cell transcriptomes and 400,000 chromatin accessibility profiles across diverse mouse brains, we identified over 300 cell subtypes, uncovering their molecular characteristics and spatial locations. This comprehensive view elucidates rare cell types expanded or depleted upon aging. We also investigated cell-type-specific responses to genetic alterations linked to Alzheimer's disease, identifying associated rare cell types. Additionally, by profiling 118,240 human brain single-cell transcriptomes, we discerned cell- and region-specific transcriptomic changes tied to Alzheimer's pathogenesis. In conclusion, this research offers a valuable resource for probing cell-type-specific dynamics in both normal and pathological aging.
Collapse
Affiliation(s)
- Andras Sziraki
- Laboratory of Single Cell Genomics and Population Dynamics, The Rockefeller University, New York, NY, USA
- The David Rockefeller Graduate Program in Bioscience, The Rockefeller University, New York, NY, USA
| | - Ziyu Lu
- Laboratory of Single Cell Genomics and Population Dynamics, The Rockefeller University, New York, NY, USA
- The David Rockefeller Graduate Program in Bioscience, The Rockefeller University, New York, NY, USA
| | - Jasper Lee
- Laboratory of Single Cell Genomics and Population Dynamics, The Rockefeller University, New York, NY, USA
| | - Gabor Banyai
- Laboratory of Single Cell Genomics and Population Dynamics, The Rockefeller University, New York, NY, USA
| | - Sonya Anderson
- Department of Pathology and Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | - Abdulraouf Abdulraouf
- Laboratory of Single Cell Genomics and Population Dynamics, The Rockefeller University, New York, NY, USA
- The Tri-Institutional MD-PhD Program, New York, NY, USA
| | - Eli Metzner
- Laboratory of Single Cell Genomics and Population Dynamics, The Rockefeller University, New York, NY, USA
- The Tri-Institutional PhD Program in Computational Biology and Medicine, New York, NY, USA
| | - Andrew Liao
- Laboratory of Single Cell Genomics and Population Dynamics, The Rockefeller University, New York, NY, USA
- The Tri-Institutional MD-PhD Program, New York, NY, USA
| | - Jason Banfelder
- High Performance Computing Resource Center, The Rockefeller University, New York, NY, USA
| | - Alexander Epstein
- Laboratory of Single Cell Genomics and Population Dynamics, The Rockefeller University, New York, NY, USA
- The David Rockefeller Graduate Program in Bioscience, The Rockefeller University, New York, NY, USA
| | - Chloe Schaefer
- Laboratory of Single Cell Genomics and Population Dynamics, The Rockefeller University, New York, NY, USA
| | - Zihan Xu
- Laboratory of Single Cell Genomics and Population Dynamics, The Rockefeller University, New York, NY, USA
- The David Rockefeller Graduate Program in Bioscience, The Rockefeller University, New York, NY, USA
| | - Zehao Zhang
- Laboratory of Single Cell Genomics and Population Dynamics, The Rockefeller University, New York, NY, USA
- The David Rockefeller Graduate Program in Bioscience, The Rockefeller University, New York, NY, USA
| | - Li Gan
- Helen and Robert Appel Alzheimer's Disease Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Peter T Nelson
- Department of Pathology and Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | - Wei Zhou
- Laboratory of Single Cell Genomics and Population Dynamics, The Rockefeller University, New York, NY, USA.
| | - Junyue Cao
- Laboratory of Single Cell Genomics and Population Dynamics, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
5
|
Jongsma E, Goyala A, Mateos JM, Ewald CY. Removal of extracellular human amyloid beta aggregates by extracellular proteases in C. elegans. eLife 2023; 12:e83465. [PMID: 37728486 PMCID: PMC10541181 DOI: 10.7554/elife.83465] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 09/19/2023] [Indexed: 09/21/2023] Open
Abstract
The amyloid beta (Aβ) plaques found in Alzheimer's disease (AD) patients' brains contain collagens and are embedded extracellularly. Several collagens have been proposed to influence Aβ aggregate formation, yet their role in clearance is unknown. To investigate the potential role of collagens in forming and clearance of extracellular aggregates in vivo, we created a transgenic Caenorhabditis elegans strain that expresses and secretes human Aβ1-42. This secreted Aβ forms aggregates in two distinct places within the extracellular matrix. In a screen for extracellular human Aβ aggregation regulators, we identified different collagens to ameliorate or potentiate Aβ aggregation. We show that a disintegrin and metalloprotease a disintegrin and metalloprotease 2 (ADM-2), an ortholog of ADAM9, reduces the load of extracellular Aβ aggregates. ADM-2 is required and sufficient to remove the extracellular Aβ aggregates. Thus, we provide in vivo evidence of collagens essential for aggregate formation and metalloprotease participating in extracellular Aβ aggregate removal.
Collapse
Affiliation(s)
- Elisabeth Jongsma
- Laboratory of Extracellular Matrix Regeneration, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH ZürichSchwerzenbachSwitzerland
| | - Anita Goyala
- Laboratory of Extracellular Matrix Regeneration, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH ZürichSchwerzenbachSwitzerland
| | - José Maria Mateos
- Center for Microscopy and Image Analysis, University of ZurichZurichSwitzerland
| | - Collin Yvès Ewald
- Laboratory of Extracellular Matrix Regeneration, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH ZürichSchwerzenbachSwitzerland
| |
Collapse
|
6
|
Shi C, Gottschalk WK, Colton CA, Mukherjee S, Lutz MW. Alzheimer's Disease Protein Relevance Analysis Using Human and Mouse Model Proteomics Data. FRONTIERS IN SYSTEMS BIOLOGY 2023; 3:1085577. [PMID: 37650081 PMCID: PMC10467016 DOI: 10.3389/fsysb.2023.1085577] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
The principles governing genotype-phenotype relationships are still emerging(1-3), and detailed translational as well as transcriptomic information is required to understand complex phenotypes, such as the pathogenesis of Alzheimer's disease. For this reason, the proteomics of Alzheimer disease (AD) continues to be studied extensively. Although comparisons between data obtained from humans and mouse models have been reported, approaches that specifically address the between-species statistical comparisons are understudied. Our study investigated the performance of two statistical methods for identification of proteins and biological pathways associated with Alzheimer's disease for cross-species comparisons, taking specific data analysis challenges into account, including collinearity, dimensionality reduction and cross-species protein matching. We used a human dataset from a well-characterized cohort followed for over 22 years with proteomic data available. For the mouse model, we generated proteomic data from whole brains of CVN-AD and matching control mouse models. We used these analyses to determine the reliability of a mouse model to forecast significant proteomic-based pathological changes in the brain that may mimic pathology in human Alzheimer's disease. Compared with LASSO regression, partial least squares discriminant analysis provided better statistical performance for the proteomics analysis. The major biological finding of the study was that extracellular matrix proteins and integrin-related pathways were dysregulated in both the human and mouse data. This approach may help inform the development of mouse models that are more relevant to the study of human late-onset Alzheimer's disease.
Collapse
Affiliation(s)
- Cathy Shi
- Department of Statistical Science, Duke University, Durham, NC 27708, USA
| | - W. Kirby Gottschalk
- Division of Translational Brain Sciences, Department of Neurology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Carol A. Colton
- Division of Translational Brain Sciences, Department of Neurology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Sayan Mukherjee
- Department of Statistical Science, Duke University, Durham, NC 27708, USA
- Departments of Mathematics, Computer Science, and Biostatistics & Bioinformatics Duke University, Durham, NC 27708, USA
| | - Michael W. Lutz
- Division of Translational Brain Sciences, Department of Neurology, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
7
|
Stevenson M, Varghese R, Hebron ML, Liu X, Ratliff N, Smith A, Turner RS, Moussa C. Inhibition of discoidin domain receptor (DDR)-1 with nilotinib alters CSF miRNAs and is associated with reduced inflammation and vascular fibrosis in Alzheimer's disease. J Neuroinflammation 2023; 20:116. [PMID: 37194065 PMCID: PMC10186647 DOI: 10.1186/s12974-023-02802-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/10/2023] [Indexed: 05/18/2023] Open
Abstract
Discoidin Domain Receptor (DDR)-1 is activated by collagen. Nilotinib is a tyrosine kinase inhibitor that is FDA-approved for leukemia and potently inhibits DDR-1. Individuals diagnosed with mild-moderate Alzheimer's disease (AD) treated with nilotinib (versus placebo) for 12 months showed reduction of amyloid plaque and cerebrospinal fluid (CSF) amyloid, and attenuation of hippocampal volume loss. However, the mechanisms are unclear. Here, we explored unbiased next generation whole genome miRNA sequencing from AD patients CSF and miRNAs were matched with their corresponding mRNAs using gene ontology. Changes in CSF miRNAs were confirmed via measurement of CSF DDR1 activity and plasma levels of AD biomarkers. Approximately 1050 miRNAs are detected in the CSF but only 17 miRNAs are specifically altered between baseline and 12-month treatment with nilotinib versus placebo. Treatment with nilotinib significantly reduces collagen and DDR1 gene expression (upregulated in AD brain), in association with inhibition of CSF DDR1. Pro-inflammatory cytokines, including interleukins and chemokines are reduced along with caspase-3 gene expression. Specific genes that indicate vascular fibrosis, e.g., collagen, Transforming Growth Factors (TGFs) and Tissue Inhibitors of Metalloproteases (TIMPs) are altered by DDR1 inhibition with nilotinib. Specific changes in vesicular transport, including the neurotransmitters dopamine and acetylcholine, and autophagy genes, including ATGs, indicate facilitation of autophagic flux and cellular trafficking. Inhibition of DDR1 with nilotinib may be a safe and effective adjunct treatment strategy involving an oral drug that enters the CNS and adequately engages its target. DDR1 inhibition with nilotinib exhibits multi-modal effects not only on amyloid and tau clearance but also on anti-inflammatory markers that may reduce cerebrovascular fibrosis.
Collapse
Affiliation(s)
- Max Stevenson
- Translational Neurotherapeutics Program, Laboratory for Dementia and Parkinsonism, Department of Neurology, Georgetown University Medical Center, Building D, Room 265, 4000 Reservoir Rd, NW, Washington, DC, 20057, USA
| | - Rency Varghese
- Genomics and Epigenomics Shared Resource, Department of Oncology, Georgetown University Medical Center, Building D, 4000 Reservoir Rd, NW, Washington, DC, 20057, USA
| | - Michaeline L Hebron
- Translational Neurotherapeutics Program, Laboratory for Dementia and Parkinsonism, Department of Neurology, Georgetown University Medical Center, Building D, Room 265, 4000 Reservoir Rd, NW, Washington, DC, 20057, USA
| | - Xiaoguang Liu
- Translational Neurotherapeutics Program, Laboratory for Dementia and Parkinsonism, Department of Neurology, Georgetown University Medical Center, Building D, Room 265, 4000 Reservoir Rd, NW, Washington, DC, 20057, USA
| | - Nick Ratliff
- Translational Neurotherapeutics Program, Laboratory for Dementia and Parkinsonism, Department of Neurology, Georgetown University Medical Center, Building D, Room 265, 4000 Reservoir Rd, NW, Washington, DC, 20057, USA
| | - Amelia Smith
- Translational Neurotherapeutics Program, Laboratory for Dementia and Parkinsonism, Department of Neurology, Georgetown University Medical Center, Building D, Room 265, 4000 Reservoir Rd, NW, Washington, DC, 20057, USA
| | - R Scott Turner
- Memory Disorders Program, Department of Neurology, Georgetown University Medical Center, 4000 Reservoir Rd, NW, Washington, DC, 20057, USA
| | - Charbel Moussa
- Translational Neurotherapeutics Program, Laboratory for Dementia and Parkinsonism, Department of Neurology, Georgetown University Medical Center, Building D, Room 265, 4000 Reservoir Rd, NW, Washington, DC, 20057, USA.
| |
Collapse
|
8
|
Mavropalias G, Boppart M, Usher KM, Grounds MD, Nosaka K, Blazevich AJ. Exercise builds the scaffold of life: muscle extracellular matrix biomarker responses to physical activity, inactivity, and aging. Biol Rev Camb Philos Soc 2023; 98:481-519. [PMID: 36412213 DOI: 10.1111/brv.12916] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 10/23/2022] [Accepted: 10/25/2022] [Indexed: 11/23/2022]
Abstract
Skeletal muscle extracellular matrix (ECM) is critical for muscle force production and the regulation of important physiological processes during growth, regeneration, and remodelling. ECM remodelling is a tightly orchestrated process, sensitive to multi-directional tensile and compressive stresses and damaging stimuli, and its assessment can convey important information on rehabilitation effectiveness, injury, and disease. Despite its profound importance, ECM biomarkers are underused in studies examining the effects of exercise, disuse, or aging on muscle function, growth, and structure. This review examines patterns of short- and long-term changes in the synthesis and concentrations of ECM markers in biofluids and tissues, which may be useful for describing the time course of ECM remodelling following physical activity and disuse. Forces imposed on the ECM during physical activity critically affect cell signalling while disuse causes non-optimal adaptations, including connective tissue proliferation. The goal of this review is to inform researchers, and rehabilitation, medical, and exercise practitioners better about the role of ECM biomarkers in research and clinical environments to accelerate the development of targeted physical activity treatments, improve ECM status assessment, and enhance function in aging, injury, and disease.
Collapse
Affiliation(s)
- Georgios Mavropalias
- Centre for Human Performance, School of Medical and Health Sciences, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA, 6027, Australia
- Centre for Molecular Medicine and Innovative Therapeutics, and Centre for Healthy Aging, Health Futures Institute, Murdoch University, Murdoch, WA, 6150, Australia
- Discipline of Exercise Science, Murdoch University, Murdoch, WA, 6150, Australia
| | - Marni Boppart
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, 1206 South Fourth St, Urbana, IL, 61801, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana- Champaign, 405 N. Mathews Avenue, Urbana, IL, 61801, USA
| | - Kayley M Usher
- School of Biomedical Sciences, University of Western Australia (M504), 35 Stirling Highway, Crawley, WA, 6009, Australia
| | - Miranda D Grounds
- School of Human Sciences, University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia
| | - Kazunori Nosaka
- Centre for Human Performance, School of Medical and Health Sciences, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA, 6027, Australia
| | - Anthony J Blazevich
- Centre for Human Performance, School of Medical and Health Sciences, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA, 6027, Australia
| |
Collapse
|
9
|
Li G, Yang X, Li J, Zhang B. Genome-Wide Analysis of lncRNA and mRNA Expression in the Uterus of Laying Hens during Aging. Genes (Basel) 2023; 14:genes14030639. [PMID: 36980911 PMCID: PMC10048286 DOI: 10.3390/genes14030639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/13/2023] [Accepted: 02/24/2023] [Indexed: 03/08/2023] Open
Abstract
Eggshell plays an essential role in preventing physical damage and microbial invasions. Therefore, the analysis of genetic regulatory mechanisms of eggshell quality deterioration during aging in laying hens is important for the biosecurity and economic performance of poultry egg production worldwide. This study aimed to compare the differences in the expression profiles of long non-coding RNAs (lncRNAs) and mRNAs between old and young laying hens by the method of high-throughput RNA sequencing to identify candidate genes associated with aging in the uterus of laying hens. Overall, we detected 176 and 383 differentially expressed (DE) lncRNAs and mRNAs, respectively. Moreover, functional annotation analysis based on the Gene Ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) databases revealed that DE-lncRNAs and DE-mRNAs were significantly enriched in “phosphate-containing compound metabolic process”, “mitochondrial proton-transporting ATP synthase complex”, “inorganic anion transport”, and other terms related to eggshell calcification and cuticularization. Through integrated analysis, we found that some important genes such as FGF14, COL25A1, GPX8, and GRXCR1 and their corresponding lncRNAs were expressed differentially between two groups, and the results of quantitative real-time polymerase chain reaction (qPCR) among these genes were also in excellent agreement with the sequencing data. In addition, our study found that TCONS_00181492, TCONS_03234147, and TCONS_03123639 in the uterus of laying hens caused deterioration of eggshell quality in the late laying period by up-regulating their corresponding target genes FGF14, COL25A1, and GRXCR1 as well as down-regulating the target gene GPX8 by TCONS_01464392. Our findings will provide a valuable reference for the development of breeding programs aimed at breeding excellent poultry with high eggshell quality or regulating dietary nutrient levels to improve eggshell quality.
Collapse
Affiliation(s)
- Guang Li
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China
| | - Xinyue Yang
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China
| | - Junyou Li
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 319-0206, Japan
| | - Bingkun Zhang
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China
- Correspondence: ; Tel.: +86-010-6273-4978
| |
Collapse
|
10
|
Seabury CM, Lockwood MA, Nichols TA. Genotype by environment interactions for chronic wasting disease in farmed US white-tailed deer. G3 (BETHESDA, MD.) 2022; 12:jkac109. [PMID: 35536181 PMCID: PMC9258584 DOI: 10.1093/g3journal/jkac109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 04/25/2022] [Indexed: 11/21/2022]
Abstract
Despite implementation of enhanced management practices, chronic wasting disease in US white-tailed deer (Odocoileus virginianus) continues to expand geographically. Herein, we perform the largest genome-wide association analysis to date for chronic wasting disease (n = 412 chronic wasting disease-positive; n = 758 chronic wasting disease-nondetect) using a custom Affymetrix Axiom single-nucleotide polymorphism array (n = 121,010 single-nucleotide polymorphisms), and confirm that differential susceptibility to chronic wasting disease is a highly heritable (h2= 0.611 ± 0.056) polygenic trait in farmed US white-tailed deer, but with greater trait complexity than previously appreciated. We also confirm PRNP codon 96 (G96S) as having the largest-effects on risk (P ≤ 3.19E-08; phenotypic variance explained ≥ 0.025) across 3 US regions (Northeast, Midwest, South). However, 20 chronic wasting disease-positive white-tailed deer possessing codon 96SS genotypes were also observed, including one that was lymph node and obex positive. Beyond PRNP, we also detected 23 significant single-nucleotide polymorphisms (P-value ≤ 5E-05) implicating ≥24 positional candidate genes; many of which have been directly implicated in Parkinson's, Alzheimer's and prion diseases. Genotype-by-environment interaction genome-wide association analysis revealed a single-nucleotide polymorphism in the lysosomal enzyme gene ARSB as having the most significant regional heterogeneity of effects on chronic wasting disease (P ≤ 3.20E-06); with increasing copy number of the minor allele increasing susceptibility to chronic wasting disease in the Northeast and Midwest; but with opposite effects in the South. In addition to ARSB, 38 significant genotype-by-environment single-nucleotide polymorphisms (P-value ≤ 5E-05) were also detected, thereby implicating ≥ 36 positional candidate genes; the majority of which have also been associated with aspects of Parkinson's, Alzheimer's, and prion diseases.
Collapse
Affiliation(s)
- Christopher M Seabury
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX 77843, USA
| | | | - Tracy A Nichols
- USDA-APHIS-VS-Cervid Health Program, Fort Collins, CO 80526-8117, USA
| |
Collapse
|
11
|
Drummond E, Kavanagh T, Pires G, Marta-Ariza M, Kanshin E, Nayak S, Faustin A, Berdah V, Ueberheide B, Wisniewski T. The amyloid plaque proteome in early onset Alzheimer's disease and Down syndrome. Acta Neuropathol Commun 2022; 10:53. [PMID: 35418158 PMCID: PMC9008934 DOI: 10.1186/s40478-022-01356-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/28/2022] [Indexed: 11/17/2022] Open
Abstract
Amyloid plaques contain many proteins in addition to beta amyloid (Aβ). Previous studies examining plaque-associated proteins have shown these additional proteins are important; they provide insight into the factors that drive amyloid plaque development and are potential biomarkers or therapeutic targets for Alzheimer's disease (AD). The aim of this study was to comprehensively identify proteins that are enriched in amyloid plaques using unbiased proteomics in two subtypes of early onset AD: sporadic early onset AD (EOAD) and Down Syndrome (DS) with AD. We focused our study on early onset AD as the drivers of the more aggressive pathology development in these cases is unknown and it is unclear whether amyloid-plaque enriched proteins differ between subtypes of early onset AD. Amyloid plaques and neighbouring non-plaque tissue were microdissected from human brain sections using laser capture microdissection and label-free LC-MS was used to quantify the proteins present. 48 proteins were consistently enriched in amyloid plaques in EOAD and DS. Many of these proteins were more significantly enriched in amyloid plaques than Aβ. The most enriched proteins in amyloid plaques in both EOAD and DS were: COL25A1, SMOC1, MDK, NTN1, OLFML3 and HTRA1. Endosomal/lysosomal proteins were particularly highly enriched in amyloid plaques. Fluorescent immunohistochemistry was used to validate the enrichment of four proteins in amyloid plaques (moesin, ezrin, ARL8B and SMOC1) and to compare the amount of total Aβ, Aβ40, Aβ42, phosphorylated Aβ, pyroglutamate Aβ species and oligomeric species in EOAD and DS. These studies showed that phosphorylated Aβ, pyroglutamate Aβ species and SMOC1 were significantly higher in DS plaques, while oligomers were significantly higher in EOAD. Overall, we observed that amyloid plaques in EOAD and DS largely contained the same proteins, however the amount of enrichment of some proteins was different in EOAD and DS. Our study highlights the significant enrichment of many proteins in amyloid plaques, many of which may be potential therapeutic targets and/or biomarkers for AD.
Collapse
Affiliation(s)
- Eleanor Drummond
- Brain and Mind Centre and School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, 94 Mallett Street, Camperdown, NSW, Australia.
- Centre for Cognitive Neurology, Department of Neurology, New York University Grossman School of Medicine, Science Building, Rm 1017, 435 East 30th Street, New York, NY, 10016, USA.
| | - Tomas Kavanagh
- Brain and Mind Centre and School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, 94 Mallett Street, Camperdown, NSW, Australia
| | - Geoffrey Pires
- Centre for Cognitive Neurology, Department of Neurology, New York University Grossman School of Medicine, Science Building, Rm 1017, 435 East 30th Street, New York, NY, 10016, USA
| | - Mitchell Marta-Ariza
- Centre for Cognitive Neurology, Department of Neurology, New York University Grossman School of Medicine, Science Building, Rm 1017, 435 East 30th Street, New York, NY, 10016, USA
| | - Evgeny Kanshin
- Proteomics Laboratory, Division of Advanced Research Technologies, New York University Grossman School of Medicine, New York, NY, USA
| | - Shruti Nayak
- Merck & Co., Inc, Computational & Structural Chemistry, Kenilworth, NJ, USA
| | - Arline Faustin
- Centre for Cognitive Neurology, Department of Neurology, New York University Grossman School of Medicine, Science Building, Rm 1017, 435 East 30th Street, New York, NY, 10016, USA
| | - Valentin Berdah
- Centre for Cognitive Neurology, Department of Neurology, New York University Grossman School of Medicine, Science Building, Rm 1017, 435 East 30th Street, New York, NY, 10016, USA
| | - Beatrix Ueberheide
- Centre for Cognitive Neurology, Department of Neurology, New York University Grossman School of Medicine, Science Building, Rm 1017, 435 East 30th Street, New York, NY, 10016, USA
- Proteomics Laboratory, Division of Advanced Research Technologies, New York University Grossman School of Medicine, New York, NY, USA
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY, USA
| | - Thomas Wisniewski
- Centre for Cognitive Neurology, Department of Neurology, New York University Grossman School of Medicine, Science Building, Rm 1017, 435 East 30th Street, New York, NY, 10016, USA.
- Departments of Pathology and Psychiatry, Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
12
|
Knoedler JR, Inoue S, Bayless DW, Yang T, Tantry A, Davis CH, Leung NY, Parthasarathy S, Wang G, Alvarado M, Rizvi AH, Fenno LE, Ramakrishnan C, Deisseroth K, Shah NM. A functional cellular framework for sex and estrous cycle-dependent gene expression and behavior. Cell 2022; 185:654-671.e22. [PMID: 35065713 PMCID: PMC8956134 DOI: 10.1016/j.cell.2021.12.031] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/22/2021] [Accepted: 12/20/2021] [Indexed: 01/05/2023]
Abstract
Sex hormones exert a profound influence on gendered behaviors. How individual sex hormone-responsive neuronal populations regulate diverse sex-typical behaviors is unclear. We performed orthogonal, genetically targeted sequencing of four estrogen receptor 1-expressing (Esr1+) populations and identified 1,415 genes expressed differentially between sexes or estrous states. Unique subsets of these genes were distributed across all 137 transcriptomically defined Esr1+ cell types, including estrous stage-specific ones, that comprise the four populations. We used differentially expressed genes labeling single Esr1+ cell types as entry points to functionally characterize two such cell types, BNSTprTac1/Esr1 and VMHvlCckar/Esr1. We observed that these two cell types, but not the other Esr1+ cell types in these populations, are essential for sex recognition in males and mating in females, respectively. Furthermore, VMHvlCckar/Esr1 cell type projections are distinct from those of other VMHvlEsr1 cell types. Together, projection and functional specialization of dimorphic cell types enables sex hormone-responsive populations to regulate diverse social behaviors.
Collapse
Affiliation(s)
- Joseph R Knoedler
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Sayaka Inoue
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Daniel W Bayless
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Taehong Yang
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Adarsh Tantry
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Chung-Ha Davis
- Neurosciences Graduate Program, Stanford University, Stanford, CA 94305, USA
| | - Nicole Y Leung
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | | | - Grace Wang
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Maricruz Alvarado
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Abbas H Rizvi
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Lief E Fenno
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | | | - Karl Deisseroth
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA; Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Nirao M Shah
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA; Department of Neurobiology, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
13
|
Neuronal Phenotype of col4a1 and col25a1: An Intriguing Hypothesis in Vertebrates Brain Aging. Int J Mol Sci 2022; 23:ijms23031778. [PMID: 35163698 PMCID: PMC8836537 DOI: 10.3390/ijms23031778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 01/25/2022] [Accepted: 01/27/2022] [Indexed: 12/11/2022] Open
Abstract
Collagens are the most abundant proteins in vertebrates and constitute the major components of the extracellular matrix. Collagens play an important and multifaceted role in the development and functioning of the nervous system and undergo structural remodeling and quantitative modifications during aging. Here, we investigated the age-dependent regulation of col4a1 and col25a1 in the brain of the short-lived vertebrate Nothobranchius furzeri, a powerful model organism for aging research due to its natural fast-aging process and further characterized typical hallmarks of brain aging in this species. We showed that col4a1 and col25a1 are relatively well conserved during vertebrate evolution, and their expression significantly increases in the brain of N. furzeri upon aging. Noteworthy, we report that both col4a1 and col25a1 are expressed in cells with a neuronal phenotype, unlike what has already been documented in mammalian brain, in which only col25a1 is considered a neuronal marker, whereas col4a1 seems to be expressed only in endothelial cells. Overall, our findings encourage further investigation on the role of col4a1 and col25a1 in the biology of the vertebrate brain as well as the onset of aging and neurodegenerative diseases.
Collapse
|
14
|
Deep post-GWAS analysis identifies potential risk genes and risk variants for Alzheimer's disease, providing new insights into its disease mechanisms. Sci Rep 2021; 11:20511. [PMID: 34654853 PMCID: PMC8519945 DOI: 10.1038/s41598-021-99352-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 09/23/2021] [Indexed: 12/27/2022] Open
Abstract
Alzheimer’s disease (AD) is a genetically complex, multifactorial neurodegenerative disease. It affects more than 45 million people worldwide and currently remains untreatable. Although genome-wide association studies (GWAS) have identified many AD-associated common variants, only about 25 genes are currently known to affect the risk of developing AD, despite its highly polygenic nature. Moreover, the risk variants underlying GWAS AD-association signals remain unknown. Here, we describe a deep post-GWAS analysis of AD-associated variants, using an integrated computational framework for predicting both disease genes and their risk variants. We identified 342 putative AD risk genes in 203 risk regions spanning 502 AD-associated common variants. 246 AD risk genes have not been identified as AD risk genes by previous GWAS collected in GWAS catalogs, and 115 of 342 AD risk genes are outside the risk regions, likely under the regulation of transcriptional regulatory elements contained therein. Even more significantly, for 109 AD risk genes, we predicted 150 risk variants, of both coding and regulatory (in promoters or enhancers) types, and 85 (57%) of them are supported by functional annotation. In-depth functional analyses showed that AD risk genes were overrepresented in AD-related pathways or GO terms—e.g., the complement and coagulation cascade and phosphorylation and activation of immune response—and their expression was relatively enriched in microglia, endothelia, and pericytes of the human brain. We found nine AD risk genes—e.g., IL1RAP, PMAIP1, LAMTOR4—as predictors for the prognosis of AD survival and genes such as ARL6IP5 with altered network connectivity between AD patients and normal individuals involved in AD progression. Our findings open new strategies for developing therapeutics targeting AD risk genes or risk variants to influence AD pathogenesis.
Collapse
|
15
|
Pharmacological relevance of CDK inhibitors in Alzheimer's disease. Neurochem Int 2021; 148:105115. [PMID: 34182065 DOI: 10.1016/j.neuint.2021.105115] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/22/2021] [Accepted: 06/24/2021] [Indexed: 12/11/2022]
Abstract
Evidence suggests that cell cycle activation plays a role in the pathophysiology of neurodegenerative diseases. Alzheimer's disease is a progressive, terminal neurodegenerative disease that affects memory and other important mental functions. Intracellular deposition of Tau protein, a hyperphosphorylated form of a microtubule-associated protein, and extracellular aggregation of Amyloid β protein, which manifests as neurofibrillary tangles (NFT) and senile plaques, respectively, characterize this condition. In recent years, however, several studies have concluded that cell cycle re-entry is one of the key causes of neuronal death in the pathogenesis of Alzheimer's disease. The eukaryotic cell cycle is well-coordinated machinery that performs critical functions in cell replenishment, such as DNA replication, cell creation, repair, and the birth of new daughter cells from the mother cell. The complex interplay between the levels of various cyclins and cyclin-dependent kinases (CDKs) at different checkpoints is needed for cell cycle synchronization. CDKIs (cyclin-dependent kinase inhibitors) prevent cyclin degradation and CDK inactivation. Different external and internal factors regulate them differently, and they have different tissue expression and developmental functions. The checkpoints ensure that the previous step is completed correctly before starting the new cell cycle phase, and they protect against the transfer of defects to the daughter cells. Due to the development of more selective and potent ATP-competitive CDK inhibitors, CDK inhibitors appear to be on the verge of having a clinical impact. This avenue is likely to yield new and effective medicines for the treatment of cancer and other neurodegenerative diseases. These new methods for recognizing CDK inhibitors may be used to create non-ATP-competitive agents that target CDK4, CDK5, and other CDKs that have been recognized as important therapeutic targets in Alzheimer's disease treatment.
Collapse
|
16
|
Khatun M, Monir MM, Xu T, Xu H, Zhu J. Genome-wide conditional association study reveals the influences of lifestyle cofactors on genetic regulation of body surface area in MESA population. PLoS One 2021; 16:e0253167. [PMID: 34143809 PMCID: PMC8213052 DOI: 10.1371/journal.pone.0253167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 05/29/2021] [Indexed: 11/18/2022] Open
Abstract
Body surface area (BSA) is an important trait used for many clinical purposes. People's BSA may vary due to genetic background, race, and different lifestyle factors (such as walking, exercise, reading, smoking, transportation, etc.). GWAS of BSA was conducted on 5,324 subjects of four ethnic populations of European-American, African-American, Hispanic-American, and Chinese-American from the Multi-Ethnic Study of Atherocloris (MESA) data using unconditional and conditional full genetic models. In this study, fifteen SNPs were identified (Experiment-wise PEW < 1×10-5) using unconditional full genetic model, of which thirteen SNPs had individual genetic effects and seven SNPs were involved in four pairs of epistasis interactions. Seven single SNPs and eight pairs of epistasis SNPs were additionally identified using exercise, smoking, and transportation cofactor-conditional models. By comparing association analysis results from unconditional and cofactor conditional models, we observed three different scenarios: (i) genetic effects of several SNPs did not affected by cofactors, e.g., additive effect of gene CREB5 (a≙ -0.013 for T/T and 0.013 for G/G, -Log10 PEW = 8.240) did not change in the cofactor models; (ii) genetic effects of several SNPs affected by cofactors, e.g., the genetic additive effect (a≙ 0.012 for A/A and -0.012 for G/G, -Log10 PEW = 7.185) of SNP of the gene GRIN2A was not significant in transportation cofactor model; and (iii) genetic effects of several SNPs suppressed by cofactors, e.g., additive (a≙ -0.018 for G/G and 0.018 for C/C, -Log10 PEW = 19.737) and dominance (d≙ -0.038 for G/C, -Log10 PEW = 27.734) effects of SNP of gene ERBB4 was identified using only transportation cofactor model. Gene ontology analysis showed that several genes are related to the metabolic pathway of calcium compounds, coronary artery disease, type-2 Diabetes, Alzheimer disease, childhood obesity, sleeping duration, Parkinson disease, and cancer. This study revealed that lifestyle cofactors could contribute, suppress, increase or decrease the genetic effects of BSA associated genes.
Collapse
Affiliation(s)
- Mita Khatun
- Institute of Bioinformatics, Zhejiang University, Hangzhou, China
| | - Md. Mamun Monir
- Institute of Bioinformatics, Zhejiang University, Hangzhou, China
| | - Ting Xu
- Department of Mathematics, Zhejiang University, Hangzhou, China
| | - Haiming Xu
- Institute of Bioinformatics, Zhejiang University, Hangzhou, China
- * E-mail: (HX); (JZ)
| | - Jun Zhu
- Institute of Bioinformatics, Zhejiang University, Hangzhou, China
- * E-mail: (HX); (JZ)
| |
Collapse
|
17
|
Borden EA, Furey M, Gattone NJ, Hambardikar VD, Liang XH, Scoma ER, Abou Samra A, D-Gary LR, Dennis DJ, Fricker D, Garcia C, Jiang Z, Khan SA, Kumarasamy D, Kuppala H, Ringrose S, Rosenheim EJ, Van Exel K, Vudhayagiri HS, Zhang J, Zhang Z, Guitart-Mampel M, Urquiza P, Solesio ME. Is there a link between inorganic polyphosphate (polyP), mitochondria, and neurodegeneration? Pharmacol Res 2021; 163:105211. [PMID: 33010423 PMCID: PMC7855267 DOI: 10.1016/j.phrs.2020.105211] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/08/2020] [Accepted: 09/15/2020] [Indexed: 12/14/2022]
Abstract
Mitochondrial dysfunction - including increased apoptosis, calcium and protein dyshomeostasis within the organelle, and dysfunctional bioenergetics and oxidative status - is a common, early feature in all the major neurodegenerative diseases, including Alzheimer's Disease (AD) and Parkinson's Disease (PD). However, the exact molecular mechanisms that drive the organelle to dysfunction and ultimately to failure in these conditions are still not well described. Different authors have shown that inorganic polyphosphate (polyP), an ancient and well-conserved molecule, plays a key role in the regulation of mitochondrial physiology under basal conditions. PolyP, which is present in all studied organisms, is composed of chains of orthophosphates linked together by highly energetic phosphoanhydride bonds, similar to those found in ATP. This polymer shows a ubiquitous distribution, even if a high co-localization with mitochondria has been reported. It has been proposed that polyP might be an alternative to ATP for cellular energy storage in different organisms, as well as the implication of polyP in the regulation of many of the mitochondrial processes affected in AD and PD, including protein and calcium homeostasis. Here, we conduct a comprehensive review and discussion of the bibliography available regarding the role of polyP in the mitochondrial dysfunction present in AD and PD. Taking into account the data presented in this review, we postulate that polyP could be a valid, innovative and, plausible pharmacological target against mitochondrial dysfunction in AD and PD. However, further research should be conducted to better understand the exact role of polyP in neurodegeneration, as well as the metabolism of the polymer, and the effect of different lengths of polyP on cellular and mitochondrial physiology.
Collapse
Affiliation(s)
- Emily A Borden
- Department of Biology, College of Arts and Sciences, Rutgers University, NJ, USA
| | - Matthew Furey
- Department of Biology, College of Arts and Sciences, Rutgers University, NJ, USA
| | - Nicholas J Gattone
- Department of Biology, College of Arts and Sciences, Rutgers University, NJ, USA
| | | | - Xiao Hua Liang
- Department of Biology, College of Arts and Sciences, Rutgers University, NJ, USA
| | - Ernest R Scoma
- Department of Biology, College of Arts and Sciences, Rutgers University, NJ, USA
| | - Antonella Abou Samra
- Department of Biology, College of Arts and Sciences, Rutgers University, NJ, USA
| | - LaKeshia R D-Gary
- Department of Biology, College of Arts and Sciences, Rutgers University, NJ, USA
| | - Dayshaun J Dennis
- Department of Biology, College of Arts and Sciences, Rutgers University, NJ, USA
| | - Daniel Fricker
- Department of Biology, College of Arts and Sciences, Rutgers University, NJ, USA
| | - Cindy Garcia
- Department of Biology, College of Arts and Sciences, Rutgers University, NJ, USA
| | - ZeCheng Jiang
- Department of Biology, College of Arts and Sciences, Rutgers University, NJ, USA
| | - Shariq A Khan
- Department of Biology, College of Arts and Sciences, Rutgers University, NJ, USA
| | | | - Hasmitha Kuppala
- Department of Biology, College of Arts and Sciences, Rutgers University, NJ, USA
| | - Savannah Ringrose
- Department of Biology, College of Arts and Sciences, Rutgers University, NJ, USA
| | - Evan J Rosenheim
- Department of Biology, College of Arts and Sciences, Rutgers University, NJ, USA
| | - Kimberly Van Exel
- Center for Computational and Integrative Biology, Rutgers University, NJ, USA
| | | | - Jiarui Zhang
- Center for Computational and Integrative Biology, Rutgers University, NJ, USA
| | - Zhaowen Zhang
- Department of Biology, College of Arts and Sciences, Rutgers University, NJ, USA
| | | | - Pedro Urquiza
- Department of Biology, College of Arts and Sciences, Rutgers University, NJ, USA
| | - Maria E Solesio
- Department of Biology, College of Arts and Sciences, Rutgers University, NJ, USA; Center for Computational and Integrative Biology, Rutgers University, NJ, USA.
| |
Collapse
|
18
|
Ma J, Ma C, Li J, Sun Y, Ye F, Liu K, Zhang H. Extracellular Matrix Proteins Involved in Alzheimer's Disease. Chemistry 2020; 26:12101-12110. [PMID: 32207199 DOI: 10.1002/chem.202000782] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/22/2020] [Indexed: 01/19/2023]
Abstract
Alzheimer's disease (AD) is one of the most common neurodegenerative diseases and characterized by cognitive and memory impairments. Emerging evidence suggests that the extracellular matrix (ECM) in the brain plays an important role in the etiology of AD. It has been detected that the levels of ECM proteins have changed in the brains of AD patients and animal models. Some ECM components, for example, elastin and heparan sulfate proteoglycans, are considered to promote the upregulation of extracellular amyloid-beta (Aβ) proteins. In addition, collagen VI and laminin are shown to have interactions with Aβ peptides, which might lead to the clearance of those peptides. Thus, ECM proteins are involved in both amyloidosis and neuroprotection in the AD process. However, the molecular mechanism of neuronal ECM proteins on the pathophysiology of AD remains elusive. More investigation of ECM proteins with AD pathogenesis is needed, and this may lead to novel therapeutic strategies and biomarkers for AD.
Collapse
Affiliation(s)
- Jun Ma
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, P.R. China.,State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P.R. China
| | - Chao Ma
- School of Engineering and Applied Sciences & Department of Physics, Harvard University, 29 Oxford Street, Cambridge, MA, 02138, USA
| | - Jingjing Li
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P.R. China
| | - Yao Sun
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P.R. China
| | - Fangfu Ye
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, P.R. China.,Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P.R. China
| | - Kai Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P.R. China.,Department of Chemistry, Tsinghua University, Beijing, 100084, P.R. China
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P.R. China.,Department of Chemistry, Tsinghua University, Beijing, 100084, P.R. China
| |
Collapse
|
19
|
Shukla M, Vincent B. The multi-faceted impact of methamphetamine on Alzheimer's disease: From a triggering role to a possible therapeutic use. Ageing Res Rev 2020; 60:101062. [PMID: 32304732 DOI: 10.1016/j.arr.2020.101062] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 03/05/2020] [Accepted: 03/28/2020] [Indexed: 12/15/2022]
Abstract
Although it has been initially synthesized for therapeutic purposes and currently FDA-approved and prescribed for obesity, attention-deficit/hyperactivity disorder, narcolepsy and depression, methamphetamine became a recreational drug that is nowadays massively manufactured illegally. Because it is a powerful and extremely addictive psychotropic agent, its abuse has turned out to become a major health problem worldwide. Importantly, the numerous effects triggered by this drug induce neurotoxicity in the brain ultimately leading to serious neurological impairments, tissue damage and neuropsychological disturbances that are reminiscent to most of the symptoms observed in Alzheimer's disease and other pathological manifestations in aging brain. In this context, there is a growing number of compelling evidence linking methamphetamine abuse with a higher probability of developing premature Alzheimer's disease and consequent neurodegeneration. This review proposes to establish a broad assessment of the effects that this drug can generate at the cellular and molecular levels in connection with the development of the age-related Alzheimer's disease. Altogether, the objective is to warn against the long-term effects that methamphetamine abuse may convey on young consumers and the increased risk of developing this devastating brain disorder at later stages of their lives, but also to discuss a more recently emerging concept suggesting a possible use of methamphetamine for treating this pathology under proper and strictly controlled conditions.
Collapse
|
20
|
Exploring the roles of MACIT and multiplexin collagens in stem cells and cancer. Semin Cancer Biol 2019; 62:134-148. [PMID: 31479735 DOI: 10.1016/j.semcancer.2019.08.033] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/20/2019] [Accepted: 08/30/2019] [Indexed: 02/07/2023]
Abstract
The extracellular matrix (ECM) is ubiquitously involved in neoplastic transformation, tumour growth and metastatic dissemination, and the interplay between tumour and stromal cells and the ECM is now considered crucial for the formation of a tumour-supporting microenvironment. The 28 different collagens (Col) form a major ECM protein family and display extraordinary functional diversity in tissue homeostasis as well as in pathological conditions, with functions ranging from structural support for tissues to regulatory binding activities and storage of biologically active cryptic domains releasable through ECM proteolysis. Two subfamilies of collagens, namely the plasma membrane-associated collagens with interrupted triple-helices (MACITs, including ColXIII, ColXXIII and ColXXV) and the basement membrane-associated collagens with multiple triple-helix domains with interruptions (multiplexins, including ColXV and ColXVIII), have highly interesting regulatory functions in tissue and organ development, as well as in various diseases, including cancer. An increasing, albeit yet sparse, data suggest that these collagens play crucial roles in conveying regulatory signals from the extracellular space to cells. We summarize here the current knowledge about MACITs and multiplexins as regulators of stemness and oncogenic processes, as well as their roles in influencing cell fate decisions in healthy and cancerous tissues. In addition, we present a bioinformatic analysis of the impacts of MACITs and multiplexins transcript levels on the prognosis of patients representing a wide array of malignant diseases, to aid future diagnostic and therapeutic efforts.
Collapse
|
21
|
Aberrant Expression of Collagen Gene Family in the Brain Regions of Male Mice with Behavioral Psychopathologies Induced by Chronic Agonistic Interactions. BIOMED RESEARCH INTERNATIONAL 2019; 2019:7276389. [PMID: 31183373 PMCID: PMC6512038 DOI: 10.1155/2019/7276389] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 03/04/2019] [Accepted: 03/27/2019] [Indexed: 11/17/2022]
Abstract
Chronic agonistic interactions promote the development of experimental psychopathologies in animals: a depression-like state in chronically defeated mice and the pathology of aggressive behavior in the mice with repeated wins. The abundant research data indicate that such psychopathological states are associated with significant molecular and cellular changes in the brain. This paper aims to study the influence of a 20-day period of agonistic interactions on the expression patterns of collagen family genes encoding the proteins which are basic components of extracellular matrix (ECM) in different brain regions of mice using the RNA-Seq database. Most of differentially expressed collagen genes were shown to be upregulated in the hypothalamus and striatum of chronically aggressive and defeated mice and in the hippocampus of defeated mice, whereas downregulation of collagen genes was demonstrated in the ventral tegmental areas in both experimental groups. Aberrant expression of collagen genes induced by chronic agonistic interactions may be indicative of specific ECM defects in the brain regions of mice with alternative social experience. This is the first study demonstrating remodeling of ECM under the development of experimental disorders.
Collapse
|
22
|
Yuan Y, Chen Z, Li L, Li X, Xia Q, Zhang H, Duan Q, Zhao Y. High intraocular pressure produces learning and memory impairments in rats. Brain Res 2017; 1675:78-86. [PMID: 28893580 DOI: 10.1016/j.brainres.2017.09.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 08/17/2017] [Accepted: 09/01/2017] [Indexed: 01/14/2023]
Abstract
Primary open angle glaucoma (POAG) is a leading cause of irreversible blindness worldwide. Previous MRI studies have revealed that POAG can be associated with alterations in hippocampal function. Thus, the aim of this study was to investigate a relationship between chronic high intraocular pressure (IOP) and hippocampal changes in a rat model. We used behavioural tests to assess learning and memory ability, and additionally investigated the hippocampal expression of pathological amyloid beta (Aβ), phospho-tau, and related pathway proteins. Chronic high IOP impaired learning and memory in rats and concurrently increased Aβ and phospho-tau expression in the hippocampus by altering the activation of different kinase (GSK-3β, BACE1) and phosphatase (PP2A) proteins in the hippocampus. This study provides novel evidence for the relationship between high IOP and hippocampal alterations, especially in the context of learning and memory.
Collapse
Affiliation(s)
- Yuxiang Yuan
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhiqi Chen
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Lu Li
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xing Li
- Department of Neurobiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Neurological Diseases, Ministry of Education, Wuhan 430030, China
| | - Qian Xia
- Department of Neurobiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Neurological Diseases, Ministry of Education, Wuhan 430030, China
| | - Hong Zhang
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qiming Duan
- Gladstone Institutes, San Francisco, CA 94158, USA
| | - Yin Zhao
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
23
|
Giri M, Shah A, Upreti B, Rai JC. Unraveling the genes implicated in Alzheimer's disease. Biomed Rep 2017; 7:105-114. [PMID: 28781776 DOI: 10.3892/br.2017.927] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 05/29/2017] [Indexed: 12/17/2022] Open
Abstract
Alzheimer's disease (AD) is a heterogeneous neurodegenerative disorder and it is the most common form of dementia in the elderly. Early onset AD is caused by mutations in three genes: Amyloid-β precursor protein, presenilin 1 (PSEN1) and PSEN2. Late onset AD (LOAD) is complex and apolipoprotein E is the only unanimously accepted genetic risk factor for its development. Various genes implicated in AD have been identified using advanced genetic technologies, however, there are many additional genes that remain unidentified. The present review highlights the genetics of early and LOAD and summarizes the genes involved in different signaling pathways. This may provide insight into neurodegenerative disease research and will facilitate the development of effective strategies to combat AD.
Collapse
Affiliation(s)
- Mohan Giri
- National Center for Rheumatic Diseases, Ratopul, Kathmandu 44600, Nepal
| | - Abhilasha Shah
- National Center for Rheumatic Diseases, Ratopul, Kathmandu 44600, Nepal
| | - Bibhuti Upreti
- National Center for Rheumatic Diseases, Ratopul, Kathmandu 44600, Nepal
| | | |
Collapse
|
24
|
Hallmarks of Alzheimer's Disease in Stem-Cell-Derived Human Neurons Transplanted into Mouse Brain. Neuron 2017; 93:1066-1081.e8. [PMID: 28238547 DOI: 10.1016/j.neuron.2017.02.001] [Citation(s) in RCA: 173] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 12/12/2016] [Accepted: 01/31/2017] [Indexed: 01/11/2023]
Abstract
Human pluripotent stem cells (PSCs) provide a unique entry to study species-specific aspects of human disorders such as Alzheimer's disease (AD). However, in vitro culture of neurons deprives them of their natural environment. Here we transplanted human PSC-derived cortical neuronal precursors into the brain of a murine AD model. Human neurons differentiate and integrate into the brain, express 3R/4R Tau splice forms, show abnormal phosphorylation and conformational Tau changes, and undergo neurodegeneration. Remarkably, cell death was dissociated from tangle formation in this natural 3D model of AD. Using genome-wide expression analysis, we observed upregulation of genes involved in myelination and downregulation of genes related to memory and cognition, synaptic transmission, and neuron projection. This novel chimeric model for AD displays human-specific pathological features and allows the analysis of different genetic backgrounds and mutations during the course of the disease.
Collapse
|
25
|
Esipova NG, Tumanyan VG. Omnipresence of the polyproline II helix in fibrous and globular proteins. Curr Opin Struct Biol 2017; 42:41-49. [DOI: 10.1016/j.sbi.2016.10.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 10/10/2016] [Accepted: 10/14/2016] [Indexed: 10/20/2022]
|
26
|
Yan X, Hu G, Yan W, Chen T, Yang F, Zhang X, Zhao G, Liu J. Ginsenoside Rd promotes non-amyloidogenic pathway of amyloid precursor protein processing by regulating phosphorylation of estrogen receptor alpha. Life Sci 2016; 168:16-23. [PMID: 27825720 DOI: 10.1016/j.lfs.2016.11.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 10/26/2016] [Accepted: 11/02/2016] [Indexed: 11/19/2022]
Abstract
AIMS Previous study demonstrated that Ginsenoside Rd. (GS-Rd) could improve cognitive and memory function in animal model of Alzheimer's disease. This study was aimed to investigate whether GS-Rd could improve non-amyloidogenic pathway by activating estrogen receptor (ER). MAIN METHODS 10mg/kg GS-Rd in ovariectomy (OVX)+GS-Rd group and equivalent volume of saline in sham operated group and OVX group were administrated intraperitoneally for two months, respectively. The Morris Water Maze was used to examine cognitive function of rats, with sAPPα and Aβ levels in the hippocampi measured. The culture medium of HT22 hippocampal neuronal cells were incubated with GS-Rd, ER antagonist ICI182.780, MAPK inhibitor PD98059, or PI3Kinhibitor LY294002, respectively. sAPPα levels was measured, and expression of α-secretase, sAPPα, β-secretase, Aβ, phosphorylation form of AKT (p-AKT), total AKT, p-ERK, total ERK, p-ERα, total ERα, p-ERβ and total ERβ were examined by Western blot to explore the estrogenic-like activity of GS-Rd. KEY FINDINGS GS-Rd attenuate cognitive and memory impairment, increased levels of sAPPα and reduced extracellular Aβ of OVX rats. In HT22, GS-Rd could upregulate sAPPα level, which can be inhibited by inhibitor of MAPK and PI3K pathway. In addition, inhibitor of estrogen receptor prevented GS-Rd triggered release of sAPPα and activation of MAPK and PI3K pathways. GS-Rd could increase expression of α-secretase and sAPPα, while decrease expression of β-secretase and Aβ. Besides, GS-Rd promoted phosphorylation of estrogen receptor alpha at Ser118 residue. SIGNIFICANCE Our findings show that GS-Rd enhances learning and memory function of OVX rats by activating estrogen-like activity.
Collapse
Affiliation(s)
- Xiaodong Yan
- Department of Orthopaedics, Tangdu Hospital, The Fourth Military Medical University, Xi'an 710032, China
| | - Gengyao Hu
- Department of Neurology, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China
| | - Weiming Yan
- Department of Clinical Aerospace Medicine, The Fourth Military Medical University, Xi'an 710032, China
| | - Tao Chen
- Department of Clinical Aerospace Medicine, The Fourth Military Medical University, Xi'an 710032, China; Department of Health Service, Faculty of Aerospace, The Fourth Military Medical University, Xi'an 710032, China
| | - Feng Yang
- Department of Orthopaedics, Tangdu Hospital, The Fourth Military Medical University, Xi'an 710032, China; Diagnosis, Treatment and Rehabilitation Center of Neurological Diseases, Second Sanatorium, Qingdao 266071, China
| | - Xiao Zhang
- Department of Neurology, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China
| | - Gang Zhao
- Department of Neurology, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China.
| | - Juanfang Liu
- Department of Clinical Aerospace Medicine, The Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
27
|
Genome-wide identification of microRNA-related variants associated with risk of Alzheimer's disease. Sci Rep 2016; 6:28387. [PMID: 27328823 PMCID: PMC4916596 DOI: 10.1038/srep28387] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 06/03/2016] [Indexed: 01/16/2023] Open
Abstract
MicroRNAs (miRNAs) serve as key post-transcriptional regulators of gene expression. Genetic variation in miRNAs and miRNA-binding sites may affect miRNA function and contribute to disease risk. Here, we investigated the extent to which variants within miRNA-related sequences could constitute a part of the functional variants involved in developing Alzheimer’s disease (AD), using the largest available genome-wide association study of AD. First, among 237 variants in miRNAs, we found rs2291418 in the miR-1229 precursor to be significantly associated with AD (p-value = 6.8 × 10−5, OR = 1.2). Our in-silico analysis and in-vitro miRNA expression experiments demonstrated that the variant’s mutant allele enhances the production of miR-1229-3p. Next, we found miR-1229-3p target genes that are associated with AD and might mediate the miRNA function. We demonstrated that miR-1229-3p directly controls the expression of its top AD-associated target gene (SORL1) using luciferase reporter assays. Additionally, we showed that miR-1229-3p and SORL1 are both expressed in the human brain. Second, among 42,855 variants in miRNA-binding sites, we identified 10 variants (in the 3′ UTR of 9 genes) that are significantly associated with AD, including rs6857 that increases the miR-320e-mediated regulation of PVRL2. Collectively, this study shows that miRNA-related variants are associated with AD and suggests miRNA-dependent regulation of several AD genes.
Collapse
|
28
|
Matveev SV, Spielmann HP, Metts BM, Chen J, Onono F, Zhu H, Scheff SW, Walker LC, LeVine H. A distinct subfraction of Aβ is responsible for the high-affinity Pittsburgh compound B-binding site in Alzheimer's disease brain. J Neurochem 2014; 131:356-68. [PMID: 24995708 DOI: 10.1111/jnc.12815] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 06/18/2014] [Accepted: 06/29/2014] [Indexed: 12/27/2022]
Abstract
The positron emission tomography (PET) ligand (11) C-labeled Pittsburgh compound B (PIB) is used to image β-amyloid (Aβ) deposits in the brains of living subjects with the intent of detecting early stages of Alzheimer's disease (AD). However, deposits of human-sequence Aβ in amyloid precursor protein transgenic mice and non-human primates bind very little PIB. The high stoichiometry of PIB:Aβ binding in human AD suggests that the PIB-binding site may represent a particularly pathogenic entity and/or report local pathologic conditions. In this study, (3) H-PIB was employed to track purification of the PIB-binding site in > 90% yield from frontal cortical tissue of autopsy-diagnosed AD subjects. The purified PIB-binding site comprises a distinct, highly insoluble subfraction of the Aβ in AD brain with low buoyant density because of the sodium dodecyl sulfate-resistant association with a limited subset of brain proteins and lipids with physical properties similar to lipid rafts and to a ganglioside:Aβ complex in AD and Down syndrome brain. Both the protein and lipid components are required for PIB binding. Elucidation of human-specific biological components and pathways will be important in guiding improvement of the animal models for AD and in identifying new potential therapeutic avenues. A lipid-associated subpopulation of Aβ accounts for the high-affinity binding of Pittsburgh compound B (PIB) in Alzheimer's disease brain. Mass spectrometry of the isolated PIB-binding site from frontal cortex identified Aβ peptides and a set of plaque-associated proteins in AD but not age-matched normal brain. The PIB-binding site may represent a particularly pathogenic entity and/or report local pathologic conditions.
Collapse
Affiliation(s)
- Sergey V Matveev
- Center on Aging, University of Kentucky, Lexington, Kentucky, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Roussotte FF, Daianu M, Jahanshad N, Leonardo CD, Thompson PM. Neuroimaging and genetic risk for Alzheimer's disease and addiction-related degenerative brain disorders. Brain Imaging Behav 2014; 8:217-233. [PMID: 24142306 PMCID: PMC3992278 DOI: 10.1007/s11682-013-9263-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Neuroimaging offers a powerful means to assess the trajectory of brain degeneration in a variety of disorders, including Alzheimer's disease (AD). Here we describe how multi-modal imaging can be used to study the changing brain during the different stages of AD. We integrate findings from a range of studies using magnetic resonance imaging (MRI), positron emission tomography (PET), functional MRI (fMRI) and diffusion weighted imaging (DWI). Neuroimaging reveals how risk genes for degenerative disorders affect the brain, including several recently discovered genetic variants that may disrupt brain connectivity. We review some recent neuroimaging studies of genetic polymorphisms associated with increased risk for late-onset Alzheimer's disease (LOAD). Some genetic variants that increase risk for drug addiction may overlap with those associated with degenerative brain disorders. These common associations offer new insight into mechanisms underlying neurodegeneration and addictive behaviors, and may offer new leads for treating them before severe and irreversible neurological symptoms appear.
Collapse
Affiliation(s)
- Florence F Roussotte
- Imaging Genetics Center, Laboratory of Neuro Imaging, Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Madelaine Daianu
- Imaging Genetics Center, Laboratory of Neuro Imaging, Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Neda Jahanshad
- Imaging Genetics Center, Laboratory of Neuro Imaging, Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Cassandra D Leonardo
- Imaging Genetics Center, Laboratory of Neuro Imaging, Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Paul M Thompson
- Imaging Genetics Center, Laboratory of Neuro Imaging, Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| |
Collapse
|
30
|
Bhattacharya S, Haertel C, Maelicke A, Montag D. Galantamine slows down plaque formation and behavioral decline in the 5XFAD mouse model of Alzheimer's disease. PLoS One 2014; 9:e89454. [PMID: 24586789 PMCID: PMC3931790 DOI: 10.1371/journal.pone.0089454] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 01/21/2014] [Indexed: 11/19/2022] Open
Abstract
The plant alkaloid galantamine is an established symptomatic drug treatment for Alzheimer's disease (AD), providing temporary cognitive and global relief in human patients. In this study, the 5X Familial Alzheimer's Disease (5XFAD) mouse model was used to investigate the effect of chronic galantamine treatment on behavior and amyloid β (Aβ) plaque deposition in the mouse brain. Quantification of plaques in untreated 5XFAD mice showed a gender specific phenotype; the plaque density increased steadily reaching saturation in males after 10 months of age, whereas in females the density further increased until after 14 months of age. Moreover, females consistently displayed a higher plaque density in comparison to males of the same age. Chronic oral treatment with galantamine resulted in improved performance in behavioral tests, such as open field and light-dark avoidance, already at mildly affected stages compared to untreated controls. Treated animals of both sexes showed significantly lower plaque density in the brain, i.e., the entorhinal cortex and hippocampus, gliosis being always positively correlated to plaque load. A high dose treatment with a daily uptake of 26 mg/kg body weight was tolerated well and produced significantly larger positive effects than a lower dose treatment (14 mg/kg body weight) in terms of plaque density and behavior. These results strongly support that galantamine, in addition to improving cognitive and behavioral symptoms in AD, may have disease-modifying and neuroprotective properties, as is indicated by delayed Aβ plaque formation and reduced gliosis.
Collapse
Affiliation(s)
- Soumee Bhattacharya
- Neurogenetics Special Laboratory, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Christin Haertel
- Neurogenetics Special Laboratory, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | | | - Dirk Montag
- Neurogenetics Special Laboratory, Leibniz Institute for Neurobiology, Magdeburg, Germany
- * E-mail:
| |
Collapse
|
31
|
Abstract
Chemical synapses allow neurons to perform complex computations and regulate other systems of the body. At a chemical synapse, pre- and postsynaptic sites are separated by a small space (the synaptic cleft) and surrounded by astrocytes. The basement membrane (BM), a sheetlike, specialized extracellular matrix (ECM), is found ubiquitously in the PNS. It has become clear that the ECMs not only play a structural role but also serve as barriers and filters in the PNS and CNS. Moreover, proteoglycans and tenascin family proteins in the ECM regulate synapse formation and synaptic plasticity. Although CNS synapses lack the BMs, recent results indicate that the BM-associated collagens are also present in the CNS synaptic cleft and affect synaptogenesis in both the CNS and the PNS. The C1q domain-containing family proteins are important components of the CNS synaptic cleft in regulating synapse formation, maintenance, and the pruning process. The ECM is regarded as a crucial component of the tetrapartite synapse, consisting of pre- and postsynaptic neurons, astrocyte, and ECM.
Collapse
Affiliation(s)
- Anne Heikkinen
- Oulu Center for Cell-Matrix Research, Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Taina Pihlajaniemi
- Oulu Center for Cell-Matrix Research, Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Andreas Faissner
- Department of Cell Morphology and Molecular Neurobiology, Ruhr-University, Bochum, Germany
| | - Michisuke Yuzaki
- Department of Physiology, School of Medicine, Keio University, Tokyo, Japan.
| |
Collapse
|
32
|
He X, Sanders SJ, Liu L, De Rubeis S, Lim ET, Sutcliffe JS, Schellenberg GD, Gibbs RA, Daly MJ, Buxbaum JD, State MW, Devlin B, Roeder K. Integrated model of de novo and inherited genetic variants yields greater power to identify risk genes. PLoS Genet 2013; 9:e1003671. [PMID: 23966865 PMCID: PMC3744441 DOI: 10.1371/journal.pgen.1003671] [Citation(s) in RCA: 179] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 06/10/2013] [Indexed: 01/31/2023] Open
Abstract
De novo mutations affect risk for many diseases and disorders, especially those with early-onset. An example is autism spectrum disorders (ASD). Four recent whole-exome sequencing (WES) studies of ASD families revealed a handful of novel risk genes, based on independent de novo loss-of-function (LoF) mutations falling in the same gene, and found that de novo LoF mutations occurred at a twofold higher rate than expected by chance. However successful these studies were, they used only a small fraction of the data, excluding other types of de novo mutations and inherited rare variants. Moreover, such analyses cannot readily incorporate data from case-control studies. An important research challenge in gene discovery, therefore, is to develop statistical methods that accommodate a broader class of rare variation. We develop methods that can incorporate WES data regarding de novo mutations, inherited variants present, and variants identified within cases and controls. TADA, for Transmission And De novo Association, integrates these data by a gene-based likelihood model involving parameters for allele frequencies and gene-specific penetrances. Inference is based on a Hierarchical Bayes strategy that borrows information across all genes to infer parameters that would be difficult to estimate for individual genes. In addition to theoretical development we validated TADA using realistic simulations mimicking rare, large-effect mutations affecting risk for ASD and show it has dramatically better power than other common methods of analysis. Thus TADA's integration of various kinds of WES data can be a highly effective means of identifying novel risk genes. Indeed, application of TADA to WES data from subjects with ASD and their families, as well as from a study of ASD subjects and controls, revealed several novel and promising ASD candidate genes with strong statistical support. The genetic underpinnings of autism spectrum disorder (ASD) have proven difficult to determine, despite a wealth of evidence for genetic causes and ongoing effort to identify genes. Recently investigators sequenced the coding regions of the genomes from ASD children along with their unaffected parents (ASD trios) and identified numerous new candidate genes by pinpointing spontaneously occurring (de novo) mutations in the affected offspring. A gene with a severe (de novo) mutation observed in more than one individual is immediately implicated in ASD; however, the majority of severe mutations are observed only once per gene. These genes create a short list of candidates, and our results suggest about 50% are true risk genes. To strengthen our inferences, we develop a novel statistical method (TADA) that utilizes inherited variation transmitted to affected offspring in conjunction with (de novo) mutations to identify risk genes. Through simulations we show that TADA dramatically increases power. We apply this approach to nearly 1000 ASD trios and 2000 subjects from a case-control study and identify several promising genes. Through simulations and application we show that TADA's integration of sequencing data can be a highly effective means of identifying risk genes.
Collapse
Affiliation(s)
- Xin He
- Lane Center of Computational Biology, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Stephan J. Sanders
- Departments of Psychiatry and Genetics, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Li Liu
- Department of Statistics, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Silvia De Rubeis
- Seaver Autism Center for Research and Treatment, Icahn Mount Sinai School of Medicine, New York, New York, United States of America
- Department of Psychiatry, Icahn Mount Sinai School of Medicine, New York, New York, United States of America
| | - Elaine T. Lim
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, United States of America
| | - James S. Sutcliffe
- Vanderbilt Brain Institute, Departments of Molecular Physiology & Biophysics and Psychiatry, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Gerard D. Schellenberg
- Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Richard A. Gibbs
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, United States of America
| | - Mark J. Daly
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, United States of America
| | - Joseph D. Buxbaum
- Seaver Autism Center for Research and Treatment, Icahn Mount Sinai School of Medicine, New York, New York, United States of America
- Department of Psychiatry, Icahn Mount Sinai School of Medicine, New York, New York, United States of America
- Department of Genetics and Genomic Sciences, Icahn Mount Sinai School of Medicine, New York, New York, United States of America
- Friedman Brain Institute, Icahn Mount Sinai School of Medicine, New York, New York, United States of America
| | - Matthew W. State
- Departments of Psychiatry and Genetics, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Bernie Devlin
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Kathryn Roeder
- Lane Center of Computational Biology, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
- Department of Statistics, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
33
|
Verhoeven WM, Egger JI, Goffin L, van Zutven LJ, Mancini GM. Behavioural phenotype of a patient with a de novo 1.2 Mb chromosome 4q25 microdeletion. Eur J Med Genet 2013; 56:331-5. [DOI: 10.1016/j.ejmg.2013.03.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 03/11/2013] [Indexed: 11/27/2022]
|
34
|
Lendvai Á, Johannes F, Grimm C, Eijsink JJH, Wardenaar R, Volders HH, Klip HG, Hollema H, Jansen RC, Schuuring E, Wisman GBA, van der Zee AGJ. Genome-wide methylation profiling identifies hypermethylated biomarkers in high-grade cervical intraepithelial neoplasia. Epigenetics 2012; 7:1268-78. [PMID: 23018867 DOI: 10.4161/epi.22301] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Epigenetic modifications, such as aberrant DNA promoter methylation, are frequently observed in cervical cancer. Identification of hypermethylated regions allowing discrimination between normal cervical epithelium and high-grade cervical intraepithelial neoplasia (CIN2/3), or worse, may improve current cervical cancer population-based screening programs. In this study, the DNA methylome of high-grade CIN lesions was studied using genome-wide DNA methylation screening to identify potential biomarkers for early diagnosis of cervical neoplasia. Methylated DNA Immunoprecipitation (MeDIP) combined with DNA microarray was used to compare DNA methylation profiles of epithelial cells derived from high-grade CIN lesions with normal cervical epithelium. Hypermethylated differentially methylated regions (DMRs) were identified. Validation of nine selected DMRs using BSP and MSP in cervical tissue revealed methylation in 63.2-94.7% high-grade CIN and in 59.3-100% cervical carcinomas. QMSP for the two most significant high-grade CIN-specific methylation markers was conducted exploring test performance in a large series of cervical scrapings. Frequency and relative level of methylation were significantly different between normal and cancer samples. Clinical validation of both markers in cervical scrapings from patients with an abnormal cervical smear confirmed that frequency and relative level of methylation were related with increasing severity of the underlying CIN lesion and that ROC analysis was discriminative. These markers represent the COL25A1 and KATNAL2 and their observed increased methylation upon progression could intimate the regulatory role in carcinogenesis. In conclusion, our newly identified hypermethylated DMRs represent specific DNA methylation patterns in high-grade CIN lesions and are candidate biomarkers for early detection.
Collapse
Affiliation(s)
- Ágnes Lendvai
- Department of Gynaecological Oncology, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Parmar AS, Nunes AM, Baum J, Brodsky B. A peptide study of the relationship between the collagen triple-helix and amyloid. Biopolymers 2012; 97:795-806. [PMID: 22806499 DOI: 10.1002/bip.22070] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Type XXV collagen, or collagen-like amyloidogenic component, is a component of amyloid plaques, and recent studies suggest this collagen affects amyloid fibril elongation and has a genetic association with Alzheimer's disease. The relationship between the collagen triple helix and amyloid fibrils was investigated by studying peptide models, including a very stable triple helical peptide (Pro-Hyp-Gly)₁₀ , an amyloidogenic peptide GNNQQNY, and a hybrid peptide where the GNNQQNY sequence was incorporated between (GPO)(n) domains. Circular dichroism and nuclear magnetic resonance (NMR) spectroscopy showed the GNNQQNY peptide formed a random coil structure, whereas the hybrid peptide contained a central disordered GNNQQNY region transitioning to triple-helical ends. Light scattering confirmed the GNNQQNY peptide had a high propensity to form amyloid fibrils, whereas amyloidogenesis was delayed in the hybrid peptide. NMR data suggested the triple-helix constraints on the GNNQQNY sequence within the hybrid peptide may disfavor the conformational change necessary for aggregation. Independent addition of a triple-helical peptide to the GNNQQNY peptide under aggregating conditions delayed nucleation and amyloid fibril growth. The inhibition of amyloid nucleation depended on the Gly-Xaa-Yaa sequence and required the triple-helix conformation. The inhibitory effect of the collagen triple-helix on an amyloidogenic sequence, when in the same molecule or when added separately, suggests Type XXV collagen, and possibly other collagens, may play a role in regulating amyloid fibril formation.
Collapse
Affiliation(s)
- Avanish S Parmar
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | | | | | | |
Collapse
|
36
|
Zhang X, Wang J, Xing Y, Gong L, Li H, Wu Z, Li Y, Wang J, Wang Y, Dong L, Li S. Effects of ginsenoside Rg1 or 17β-estradiol on a cognitively impaired, ovariectomized rat model of Alzheimer's disease. Neuroscience 2012; 220:191-200. [PMID: 22728092 DOI: 10.1016/j.neuroscience.2012.06.027] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Revised: 06/08/2012] [Accepted: 06/11/2012] [Indexed: 01/08/2023]
Abstract
Ginsenoside Rg1, which could improve spatial learning and memory, might be a useful agent for preventing and treating cognitive impairment in Alzheimer's disease (AD). The present study was designed to test the neuroprotective effects of ginsenoside Rg1 on an ovariectomized (OVX) and d-galactose (d-gal)-injected rat model of AD, which is characterized with progressive learning and memory deficits, AD-related molecules alteration and differentiation/apoptosis imbalance in hippocampal neurons. OVX Wistar rats received daily injections of d-gal (100mg/kg) combined with different concentrations of ginsenoside Rg1 (5, 10, 20mg/kg) or 17-β-estradiol (E2, 100 μg/kg), or normal saline (NS, 1.0 ml/kg) for 6 weeks. Ovarian steroid deprivation plus d-gal injection led to spatial learning and memory capacity impairments, as well as increased Aβ(1-42) production. Ginsenoside Rg1 and E2-treatment significantly ameliorated these deteriorations in AD rats. Seven weeks after surgery, α-secretase a disintegrin and metallopeptidase domain 10 (ADAM 10) in hippocampus of AD rats was dramatically decreased, while β-secretase β-site APP-cleaving enzyme 1 (BACE 1) increased compared with those in sham-operated ones (P<0.05). Levels of cleaved caspase 3 were increased in the hippocampus of AD rats. Ginsenoside Rg1 and E2-treatment increased ADAM 10 level while reduced BACE 1 level and apoptosis. Moreover, moderate i.e. 10mg/kg/d and high i.e. 20mg/kg/d ginsenoside Rg1 displayed more effective function than low i.e. 5mg/kg/d ginsenoside Rg1. Our findings demonstrate the neuroprotective effects of ginsenoside Rg1 and E2 on AD rats and support the potential application of ginsenoside Rg1 in the treatment of learning and memory impairments in postmenopausal women.
Collapse
Affiliation(s)
- X Zhang
- Department of Traditional Chinese Integrated Western Medicine, Qi Lu Hospital, Shandong University, Jinan 250012, PR China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Ivanova VP, Krivchenko AI. A current viewpoint on structure and evolution of collagens. I. Fibrillar collagens. J EVOL BIOCHEM PHYS+ 2012. [DOI: 10.1134/s0022093012020016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
38
|
Li D, Zhao H, Kranzler HR, Oslin D, Anton RF, Farrer LA, Gelernter J. Association of COL25A1 with comorbid antisocial personality disorder and substance dependence. Biol Psychiatry 2012; 71:733-40. [PMID: 22297151 PMCID: PMC3548659 DOI: 10.1016/j.biopsych.2011.12.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Revised: 12/12/2011] [Accepted: 12/13/2011] [Indexed: 10/14/2022]
Abstract
BACKGROUND Antisocial personality disorder (ASPD) is a psychiatric disorder characterized by a long-term pattern of manipulating, exploiting, or violating the rights of others. METHODS Subjects ascertained for genetic studies of substance dependence (SD) and diagnosed with ASPD and comorbid SD were included in a two-stage genetic association study. In the discovery stage, 627 single nucleotide polymorphisms (SNPs) located in 179 candidate genes for addiction were analyzed in a case-control cohort and family-based cohort. The significant findings were replicated in an independent case-control cohort. RESULTS One SNP, rs13134663, in the collagen XXV alpha 1 gene (COL25A1) was significantly associated with ASPD in both African Americans and European Americans (smallest p values were .0002 and .0004, respectively). There was also evidence of association with the same SNP in independent samples of African American and European American cases and control subjects (p = .035 and .033, respectively). Analysis of the combined set of case-control subjects yielded an allelic p value of 9 × 10(-6) with odds ratio (95% confidence interval) of 1.3 (1.16, 1.47) (smallest p = 1 × 10(-7); Bonferroni threshold p = .00012). CONCLUSIONS The COL25A1 gene, located at chromosome 4q25, encodes the collagen-like Alzheimer amyloid plaque component precursor, a type II transmembrane protein specifically expressed in neurons; it co-localizes with amyloid β in senile plaques in Alzheimer disease brains. This SNP maps to the transcription factor binding site and is conserved in 17 vertebrates, including mice and rats. Our findings suggest that COL25A1 may be associated with ASPD, especially in the context of SD.
Collapse
Affiliation(s)
- Dawei Li
- Department of Psychiatry, School of Medicine, Yale University, New Haven, Connecticut
| | - Hongyu Zhao
- Department of Epidemiology and Public Health, School of Medicine, Yale University, New Haven, Connecticut,Department of Genetics, School of Medicine, Yale University, New Haven, Connecticut
| | - Henry R. Kranzler
- Department of Psychiatry, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania,VISN 4 MIRECC, Philadelphia VAMC, Philadelphia, Pennsylvania
| | - David Oslin
- Department of Psychiatry, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania,VISN 4 MIRECC, Philadelphia VAMC, Philadelphia, Pennsylvania
| | - Raymond F Anton
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, South Carolina
| | - Lindsay A Farrer
- Departments of Medicine (Biomedical Genetics), Neurology, Ophthalmology, Genetics & Genomics, Biostatistics, and Epidemiology, Boston University Schools of Medicine and Public Health, Boston, Massachusetts
| | - Joel Gelernter
- Department of Psychiatry, School of Medicine, Yale University, New Haven, Connecticut,Department of Genetics, School of Medicine, Yale University, New Haven, Connecticut,VA Connecticut Healthcare Center, West Haven, Connecticut,Department of Neurobiology, Yale University School of Medicine, New Haven, Connecticut,To whom correspondence should be addressed: Joel Gelernter, Department of Psychiatry, Yale University School of Medicine, VA CT Healthcare Center, 950 Campbell Avenue, 116A2, West Haven, CT 06516.
| |
Collapse
|
39
|
Wexler EM, Rosen E, Lu D, Osborn GE, Martin E, Raybould H, Geschwind DH. Genome-wide analysis of a Wnt1-regulated transcriptional network implicates neurodegenerative pathways. Sci Signal 2012; 4:ra65. [PMID: 21971039 DOI: 10.1126/scisignal.2002282] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Wnt proteins are critical to mammalian brain development and function. The canonical Wnt signaling pathway involves the stabilization and nuclear translocation of β-catenin; however, Wnt also signals through alternative, noncanonical pathways. To gain a systems-level, genome-wide view of Wnt signaling, we analyzed Wnt1-stimulated changes in gene expression by transcriptional microarray analysis in cultured human neural progenitor (hNP) cells at multiple time points over a 72-hour time course. We observed a widespread oscillatory-like pattern of changes in gene expression, involving components of both the canonical and the noncanonical Wnt signaling pathways. A higher-order, systems-level analysis that combined independent component analysis, waveform analysis, and mutual information-based network construction revealed effects on pathways related to cell death and neurodegenerative disease. Wnt effectors were tightly clustered with presenilin1 (PSEN1) and granulin (GRN), which cause dominantly inherited forms of Alzheimer's disease and frontotemporal dementia (FTD), respectively. We further explored a potential link between Wnt1 and GRN and found that Wnt1 decreased GRN expression by hNPs. Conversely, GRN knockdown increased WNT1 expression, demonstrating that Wnt and GRN reciprocally regulate each other. Finally, we provided in vivo validation of the in vitro findings by analyzing gene expression data from individuals with FTD. These unbiased and genome-wide analyses provide evidence for a connection between Wnt signaling and the transcriptional regulation of neurodegenerative disease genes.
Collapse
Affiliation(s)
- Eric M Wexler
- Department of Psychiatry, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90024, USA.
| | | | | | | | | | | | | |
Collapse
|
40
|
Brawand D, Soumillon M, Necsulea A, Julien P, Csárdi G, Harrigan P, Weier M, Liechti A, Aximu-Petri A, Kircher M, Albert FW, Zeller U, Khaitovich P, Grützner F, Bergmann S, Nielsen R, Pääbo S, Kaessmann H. The evolution of gene expression levels in mammalian organs. Nature 2011; 478:343-8. [PMID: 22012392 DOI: 10.1038/nature10532] [Citation(s) in RCA: 839] [Impact Index Per Article: 64.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Accepted: 09/05/2011] [Indexed: 01/01/2023]
Abstract
Changes in gene expression are thought to underlie many of the phenotypic differences between species. However, large-scale analyses of gene expression evolution were until recently prevented by technological limitations. Here we report the sequencing of polyadenylated RNA from six organs across ten species that represent all major mammalian lineages (placentals, marsupials and monotremes) and birds (the evolutionary outgroup), with the goal of understanding the dynamics of mammalian transcriptome evolution. We show that the rate of gene expression evolution varies among organs, lineages and chromosomes, owing to differences in selective pressures: transcriptome change was slow in nervous tissues and rapid in testes, slower in rodents than in apes and monotremes, and rapid for the X chromosome right after its formation. Although gene expression evolution in mammals was strongly shaped by purifying selection, we identify numerous potentially selectively driven expression switches, which occurred at different rates across lineages and tissues and which probably contributed to the specific organ biology of various mammals.
Collapse
Affiliation(s)
- David Brawand
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
A role for collagen XXIII in cancer cell adhesion, anchorage-independence and metastasis. Oncogene 2011; 31:2362-72. [PMID: 21963851 DOI: 10.1038/onc.2011.406] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Collagen XXIII is a transmembrane collagen previously shown to be upregulated in metastatic prostate cancer that has been used as a tissue and fluid biomarker for non-small cell lung cancer and prostate cancer. To determine whether collagen XXIII facilitates cancer cell metastasis in vivo and to establish a function for collagen XXIII in cancer progression, collagen XXIII knockdown cells were examined for alterations in in vivo metastasis as well as in vitro cell adhesion. In experimental and spontaneous xenograft models of metastasis, H460 cells expressing collagen XXIII shRNA formed fewer lung metastases than control cells. Loss of collagen XXIII in H460 cells also impaired cell adhesion, anchorage-independent growth and cell seeding to the lung, but did not affect cell proliferation. Corroborating a role for collagen XXIII in cell adhesion, overexpression of collagen XXIII in H1299 cells, which do not express endogenous collagen XXIII, enhanced cell adhesion. Consequent reduction in OB-cadherin, alpha-catenin, gamma-catenin, beta-catenin, vimentin and galectin-3 protein expression was also observed in response to loss of collagen XXIII. This study suggests a potential role for collagen XXIII in mediating metastasis by facilitating cell-cell and cell-matrix adhesion as well as anchorage-independent cell growth.
Collapse
|
42
|
Sporadic dementia of Alzheimer's type induced by streptozotocin promotes anxiogenic behavior in mice. Behav Brain Res 2011; 223:1-6. [DOI: 10.1016/j.bbr.2011.04.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Revised: 04/02/2011] [Accepted: 04/10/2011] [Indexed: 11/24/2022]
|
43
|
Wang KS, Liu X, Zhang Q, Aragam N, Pan Y. Genome-wide association analysis of age at onset in schizophrenia in a European-American sample. Am J Med Genet B Neuropsychiatr Genet 2011; 156B:671-80. [PMID: 21688384 DOI: 10.1002/ajmg.b.31209] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Accepted: 05/26/2011] [Indexed: 12/19/2022]
Abstract
We performed a genome-wide association analysis to identify genetic variants influencing age at onset (AAO) and examine gene × gender interactions for AAO in schizophrenia (SCZ) using a European-American sample (1,162 cases). Linear regression model in PLINK was used to test for associations with AAO while the GxE option was chosen to test for the influence of gene × gender interactions. The most significant association with AAO was observed with SNP rs7819815 (P = 3.10×10(-7)) at 8q24.22. The next best signal was at 4q25 in COL25A1 gene (rs17039583, P = 4.30×10(-6)) and the third region was at 4p16.1 (rs17407555, P = 4.56×10(-6) , near RAF1P1, and rs4697924, P = 1.23×10(-5) within WDR1 gene). Conditional analysis on chromosome 4 indicated that 4p16.1 and 4q25 loci were independent. Furthermore, 2 SNPs (rs16834822 and rs16834824) at 1q43 in RYR2 showed strong associations in the female sample (P = 2.10×10(-6) and 2.33×10(-6) , respectively) and strong gene × gender interactions in influencing AAO (P = 9.23×10(-7) and 1.15×10(-6) , respectively) while the second best region showing gene × gender interaction was at 7q22.3 (rs179863, P = 2.33×10(-6) ). Using an independent sample of 1,068 cases, we could not replicate the associations for above top SNPs; however, we found nominal significance associations for their flanking SNPs (P < 0.05). These findings provide evidence of several genetic variants influencing AAO of SCZ.
Collapse
Affiliation(s)
- Ke-Sheng Wang
- Department of Biostatistics and Epidemiology, College of Public Health, East Tennessee State University, Johnson City, 37614-1700, USA.
| | | | | | | | | |
Collapse
|
44
|
Gene expression profiling and association with prion-related lesions in the medulla oblongata of symptomatic natural scrapie animals. PLoS One 2011; 6:e19909. [PMID: 21629698 PMCID: PMC3101219 DOI: 10.1371/journal.pone.0019909] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Accepted: 04/06/2011] [Indexed: 02/04/2023] Open
Abstract
The pathogenesis of natural scrapie and other prion diseases remains unclear. Examining transcriptome variations in infected versus control animals may highlight new genes potentially involved in some of the molecular mechanisms of prion-induced pathology. The aim of this work was to identify disease-associated alterations in the gene expression profiles of the caudal medulla oblongata (MO) in sheep presenting the symptomatic phase of natural scrapie. The gene expression patterns in the MO from 7 sheep that had been naturally infected with scrapie were compared with 6 controls using a Central Veterinary Institute (CVI) custom designed 4×44K microarray. The microarray consisted of a probe set on the previously sequenced ovine tissue library by CVI and was supplemented with all of the Ovis aries transcripts that are currently publicly available. Over 350 probe sets displayed greater than 2-fold changes in expression. We identified 148 genes from these probes, many of which encode proteins that are involved in the immune response, ion transport, cell adhesion, and transcription. Our results confirm previously published gene expression changes that were observed in murine models with induced scrapie. Moreover, we have identified new genes that exhibit differential expression in scrapie and could be involved in prion neuropathology. Finally, we have investigated the relationship between gene expression profiles and the appearance of the main scrapie-related lesions, including prion protein deposition, gliosis and spongiosis. In this context, the potential impacts of these gene expression changes in the MO on scrapie development are discussed.
Collapse
|
45
|
|