1
|
Wang Y, Gong C, Liu L, Wang T. The invertase gene PWIN1 confers chilling tolerance of rice at the booting stage via mediating pollen development. PLANT, CELL & ENVIRONMENT 2024; 47:4651-4663. [PMID: 39051263 DOI: 10.1111/pce.15053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 06/27/2024] [Accepted: 07/02/2024] [Indexed: 07/27/2024]
Abstract
Pollen fertility is a primary regulator of grain yield and is highly susceptible to cold and other environmental stress. We revealed the roles of rice cell wall invertase gene PWIN1 in pollen development and chilling tolerance. We uncovered its preferential expression in microspores and bicellular pollen and identified its knock-down and knock-out mutants. pwin1 mutants produced a higher proportion of abnormal pollen than wild-type plants. The contents of sucrose, glucose, and fructose were increased, while ATP content and primary metabolism activity were reduced in the mutant pollen. Furthermore, the loss of function of PWIN1 coincided with an increase in SnRK1 activity and a decrease in TOR activity. Under chilling conditions, pwin1 mutants displayed significantly reduced pollen viability and seed-setting rate, while overexpressing PWIN1 notably increased pollen viability and seed-setting rate as compared with the wild-type, indicating that PWIN1 is essential for rice pollen development and grain yield under cold stress. This study provides insights into the molecular mechanisms underlying rice pollen fertility during chilling stress, and a new module to improve chilling tolerance of rice at the booting stage by molecular design.
Collapse
Affiliation(s)
- Yanli Wang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Chunyan Gong
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
| | - Lingtong Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
| | - Tai Wang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
| |
Collapse
|
2
|
Yu Y, Zhong Z, Ma L, Xiang C, Chen J, Huang XY, Xu P, Xiong Y. Sulfate-TOR signaling controls transcriptional reprogramming for shoot apex activation. THE NEW PHYTOLOGIST 2022; 236:1326-1338. [PMID: 36028982 DOI: 10.1111/nph.18441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 08/14/2022] [Indexed: 06/15/2023]
Abstract
Plants play a primary role for the global sulfur cycle in the earth ecosystems by reduction of inorganic sulfate from the soil to organic sulfur-containing compounds. How plants sense and transduce the sulfate availability to mediate their growth remains largely unclear. The target of rapamycin (TOR) kinase is an evolutionarily conserved master regulator of nutrient sensing and metabolic signaling to control cell proliferation and growth in all eukaryotes. By tissue-specific Western blotting and RNA-sequencing analysis, we investigated sulfate-TOR signal pathway in regulating shoot apex development. Here, we report that inorganic sulfate exhibits high potency activating TOR and cell proliferation to promote true leaf development in Arabidopsis in a glucose-energy parallel pathway. Genetic and metabolite analyses suggest that this sulfate activation of TOR is independent from the sulfate-assimilation process and glucose-energy signaling. Significantly, tissue specific transcriptome analyses uncover previously unknown sulfate-orchestrating genes involved in DNA replication, cell proliferation and various secondary metabolism pathways, which largely depends on TOR signaling. Systematic comparison between the sulfate- and glucose-TOR controlled transcriptome further reveals that TOR kinase, as the central growth integrator, responds to different nutrient signals to control both shared and unique transcriptome networks, therefore, precisely modulates plant proliferation, growth and stress responses.
Collapse
Affiliation(s)
- Yongdong Yu
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China
- Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhaochen Zhong
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liuyin Ma
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Chengbin Xiang
- Division of Life Sciences and Medicine, Division of Molecular and Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, 230027, China
| | - Jie Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xin-Yuan Huang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ping Xu
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China
| | - Yan Xiong
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| |
Collapse
|
3
|
Sun X, Chen H, Wang P, Chen F, Yuan L, Mi G. Low nitrogen induces root elongation via auxin-induced acid growth and auxin-regulated target of rapamycin (TOR) pathway in maize. JOURNAL OF PLANT PHYSIOLOGY 2020; 254:153281. [PMID: 32971423 DOI: 10.1016/j.jplph.2020.153281] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 09/04/2020] [Accepted: 09/04/2020] [Indexed: 05/23/2023]
Abstract
Under low nitrogen (N) supply, an important adaption of the maize root system is to promote the root elongation so as to increase N uptake from a larger soil space. The underlying physiological mechanism is largely unknown. In the present study, two maize inbred lines (Ye478 and Wu312) were used to study the possible involvement of the auxin and target of rapamycin (TOR) pathway in low-N-induced root elongation. Compared to Wu312, primary root elongation of Ye478 was more sensitive to low nitrate supply. Correspondingly, more auxin was accumulated in the root tip, and more protons were secreted, increasing the acidity of the apoplast space. On the other hand, low-N-induced root elongation was greatly reduced when shoot-to-root auxin transport was inhibited by applying N-1-naphthylphthalamic acid (NPA) at the plant base or by pruning the top leaf where auxin is mostly synthesized. Furthermore, exogenous application of TOR inhibitor also eliminated the response of root elongation under low N. The content of TOR kinase and the expression of TOR pathway-related genes were significantly changed when shoot-to-root auxin transport was reduced by NPA treatment. Taken together, it is concluded that low-N stress increases shoot-to-root auxin transport which enhances root elongation via auxin-dependent acid growth and the auxin-regulated TOR pathway in maize.
Collapse
Affiliation(s)
- Xichao Sun
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, 100193, China; Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China.
| | - Huan Chen
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, 100193, China.
| | - Peng Wang
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, 100193, China.
| | - Fanjun Chen
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, 100193, China.
| | - Lixing Yuan
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, 100193, China.
| | - Guohua Mi
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
4
|
Bakshi A, Moin M, Madhav MS, Kirti PB. Target of rapamycin, a master regulator of multiple signalling pathways and a potential candidate gene for crop improvement. PLANT BIOLOGY (STUTTGART, GERMANY) 2019; 21:190-205. [PMID: 30411830 DOI: 10.1111/plb.12935] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 11/05/2018] [Indexed: 06/08/2023]
Abstract
The target of rapamycin (TOR) protein regulates growth and development in photosynthetic and non-photosynthetic eukaryotes. Although the TOR regulatory networks are involved in nutrient and energy signalling, and transcriptional and translational control of multiple signalling pathways, the molecular mechanism of TOR regulation of plant abiotic stress responses is still unclear. The TOR-mediated transcriptional regulation of genes encoding ribosomal proteins (RP) is a necessity under stress conditions for balanced growth and productivity in plants. The activation of SnRKs (sucrose non-fermenting-related kinases) and the inactivation of TOR signalling in abiotic stresses is in line with the accumulation of ABA and transcriptional activation of stress responsive genes. Autophagy is induced under abiotic stress conditions, which results in degradation of proteins and the release of amino acids, which might possibly induce phosphorylation of TOR and, hence, its activation. TOR signalling also has a role in regulating ABA biosynthesis for transcriptional regulation of stress-related genes. The switch between activation and inactivation of TOR by its phosphorylation and de-phosphorylation maintains balanced growth in response to stresses. In the present review, we discuss the important signalling pathways that are regulated by TOR and try to assess the relationship between TOR signalling and tolerance to abiotic stresses in plants. The review also discusses possible cross-talk between TOR and RP genes in response to abiotic stresses.
Collapse
Affiliation(s)
- A Bakshi
- Department of Plant Sciences, University of Hyderabad, Hyderabad, India
| | - M Moin
- Department of Biotechnology, Indian Institute of Rice Research, Hyderabad, India
| | - M S Madhav
- Department of Biotechnology, Indian Institute of Rice Research, Hyderabad, India
| | - P B Kirti
- Department of Plant Sciences, University of Hyderabad, Hyderabad, India
| |
Collapse
|
5
|
Siqueira JA, Hardoim P, Ferreira PCG, Nunes-Nesi A, Hemerly AS. Unraveling Interfaces between Energy Metabolism and Cell Cycle in Plants. TRENDS IN PLANT SCIENCE 2018; 23:731-747. [PMID: 29934041 DOI: 10.1016/j.tplants.2018.05.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 05/01/2018] [Accepted: 05/08/2018] [Indexed: 05/22/2023]
Abstract
Oscillation in energy levels is widely variable in dividing and differentiated cells. To synchronize cell proliferation and energy fluctuations, cell cycle-related proteins have been implicated in the regulation of mitochondrial energy-generating pathways in yeasts and animals. Plants have chloroplasts and mitochondria, coordinating the cell energy flow. Recent findings suggest an integrated regulation of these organelles and the nuclear cell cycle. Furthermore, reports indicate a set of interactions between the cell cycle and energy metabolism, coordinating the turnover of proteins in plants. Here, we discuss how cell cycle-related proteins directly interact with energy metabolism-related proteins to modulate energy homeostasis and cell cycle progression. We provide interfaces between cell cycle and energy metabolism-related proteins that could be explored to maximize plant yield.
Collapse
Affiliation(s)
- João Antonio Siqueira
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21491-902, Brazil; These authors share first authorship
| | - Pablo Hardoim
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21491-902, Brazil; These authors share first authorship
| | - Paulo C G Ferreira
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21491-902, Brazil
| | - Adriano Nunes-Nesi
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900 Viçosa, MG, Brazil
| | - Adriana S Hemerly
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21491-902, Brazil.
| |
Collapse
|
6
|
Son O, Kim S, Hur YS, Cheon CI. Molecular details of the Raptor-binding motif on Arabidopsis S6 kinase. Biochem Biophys Res Commun 2017; 486:137-142. [PMID: 28285138 DOI: 10.1016/j.bbrc.2017.03.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 03/06/2017] [Indexed: 11/25/2022]
Abstract
A putative raptor-binding fragment was identified from Arabidopsis S6 kinase 1 (AtS6K1) N-terminal domain in our previous study. Here, we report a further characterization of this fragment, which identified a 12-amino acid core element absolutely required for the interaction. Although the amino acid sequence of the element per se had no significant homology with the canonical consensus of the TOS (TOR-signaling) motif found in the mammalian TOR (target of rapamycin) kinase substrates, its overall sequence composition is similar to that of the TOS motif in that the acidic and non-polar amino acids residues are arranged in alternating fashion and having one or two of the bulky hydrophobic amino acid (F) buried in the interior. Substitution of this bulky residue completely abolished the binding of the fragment to AtRaptor1, as in the case of the mammalian TOS motif. Taken together with its position relative to the catalytic domain of the kinase, which also shows a resemblance with the TOS motif, these results appear to suggest that this core binding element in the N-terminus of AtS6K1 represents a plant version of the TOS motif.
Collapse
Affiliation(s)
- Ora Son
- Department of Biological Science, Sookmyung Women's University, Seoul 140-742, South Korea
| | - Sunghan Kim
- Department of Biological Science, Sookmyung Women's University, Seoul 140-742, South Korea
| | - Yoon-Sun Hur
- Department of Biological Science, Sookmyung Women's University, Seoul 140-742, South Korea
| | - Choong-Ill Cheon
- Department of Biological Science, Sookmyung Women's University, Seoul 140-742, South Korea.
| |
Collapse
|
7
|
Nanjareddy K, Blanco L, Arthikala MK, Alvarado-Affantranger X, Quinto C, Sánchez F, Lara M. A Legume TOR Protein Kinase Regulates Rhizobium Symbiosis and Is Essential for Infection and Nodule Development. PLANT PHYSIOLOGY 2016; 172:2002-2020. [PMID: 27698253 PMCID: PMC5100775 DOI: 10.1104/pp.16.00844] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 09/28/2016] [Indexed: 05/14/2023]
Abstract
The target of rapamycin (TOR) protein kinase regulates metabolism, growth, and life span in yeast, animals, and plants in coordination with nutrient status and environmental conditions. The nutrient-dependent nature of TOR functionality makes this kinase a putative regulator of symbiotic associations involving nutrient acquisition. However, TOR's role in these processes remains to be understood. Here, we uncovered the role of TOR during the bean (Phaseolus vulgaris)-Rhizobium tropici (Rhizobium) symbiotic interaction. TOR was expressed in all tested bean tissues, with higher transcript levels in the root meristems and senesced nodules. We showed TOR promoter expression along the progressing infection thread and in the infected cells of mature nodules. Posttranscriptional gene silencing of TOR using RNA interference (RNAi) showed that this gene is involved in lateral root elongation and root cell organization and also alters the density, size, and number of root hairs. The suppression of TOR transcripts also affected infection thread progression and associated cortical cell divisions, resulting in a drastic reduction of nodule numbers. TOR-RNAi resulted in reduced reactive oxygen species accumulation and altered CyclinD1 and CyclinD3 expression, which are crucial factors for infection thread progression and nodule organogenesis. Enhanced expression of TOR-regulated ATG genes in TOR-RNAi roots suggested that TOR plays a role in the recognition of Rhizobium as a symbiont. Together, these data suggest that TOR plays a vital role in the establishment of root nodule symbiosis in the common bean.
Collapse
Affiliation(s)
- Kalpana Nanjareddy
- Ciencias Agrogenómicas, Escuela Nacional de Estudios Superiores Unidad León-Universidad Nacional Autónoma de México, Ciudad de Mexico C.P. 37684, Mexico (K.N., M.-K.A.)
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacan, Ciudad de Mexico C.P. 62210, Mexico (L.B.)
- Laboratorio Nacional de Microscopía Avanzada (X.A.-A.) and Instituto de Biotecnología (C.Q., F.S.), Universidad Nacional Autónoma de Mexico, Ciudad de Mexico C.P. 62210, Mexico; and
- Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacan, Ciudad de Mexico C.P. 04510, Mexico (M.L.)
| | - Lourdes Blanco
- Ciencias Agrogenómicas, Escuela Nacional de Estudios Superiores Unidad León-Universidad Nacional Autónoma de México, Ciudad de Mexico C.P. 37684, Mexico (K.N., M.-K.A.)
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacan, Ciudad de Mexico C.P. 62210, Mexico (L.B.)
- Laboratorio Nacional de Microscopía Avanzada (X.A.-A.) and Instituto de Biotecnología (C.Q., F.S.), Universidad Nacional Autónoma de Mexico, Ciudad de Mexico C.P. 62210, Mexico; and
- Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacan, Ciudad de Mexico C.P. 04510, Mexico (M.L.)
| | - Manoj-Kumar Arthikala
- Ciencias Agrogenómicas, Escuela Nacional de Estudios Superiores Unidad León-Universidad Nacional Autónoma de México, Ciudad de Mexico C.P. 37684, Mexico (K.N., M.-K.A.)
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacan, Ciudad de Mexico C.P. 62210, Mexico (L.B.)
- Laboratorio Nacional de Microscopía Avanzada (X.A.-A.) and Instituto de Biotecnología (C.Q., F.S.), Universidad Nacional Autónoma de Mexico, Ciudad de Mexico C.P. 62210, Mexico; and
- Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacan, Ciudad de Mexico C.P. 04510, Mexico (M.L.)
| | - Xóchitl Alvarado-Affantranger
- Ciencias Agrogenómicas, Escuela Nacional de Estudios Superiores Unidad León-Universidad Nacional Autónoma de México, Ciudad de Mexico C.P. 37684, Mexico (K.N., M.-K.A.)
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacan, Ciudad de Mexico C.P. 62210, Mexico (L.B.)
- Laboratorio Nacional de Microscopía Avanzada (X.A.-A.) and Instituto de Biotecnología (C.Q., F.S.), Universidad Nacional Autónoma de Mexico, Ciudad de Mexico C.P. 62210, Mexico; and
- Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacan, Ciudad de Mexico C.P. 04510, Mexico (M.L.)
| | - Carmen Quinto
- Ciencias Agrogenómicas, Escuela Nacional de Estudios Superiores Unidad León-Universidad Nacional Autónoma de México, Ciudad de Mexico C.P. 37684, Mexico (K.N., M.-K.A.)
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacan, Ciudad de Mexico C.P. 62210, Mexico (L.B.)
- Laboratorio Nacional de Microscopía Avanzada (X.A.-A.) and Instituto de Biotecnología (C.Q., F.S.), Universidad Nacional Autónoma de Mexico, Ciudad de Mexico C.P. 62210, Mexico; and
- Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacan, Ciudad de Mexico C.P. 04510, Mexico (M.L.)
| | - Federico Sánchez
- Ciencias Agrogenómicas, Escuela Nacional de Estudios Superiores Unidad León-Universidad Nacional Autónoma de México, Ciudad de Mexico C.P. 37684, Mexico (K.N., M.-K.A.)
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacan, Ciudad de Mexico C.P. 62210, Mexico (L.B.)
- Laboratorio Nacional de Microscopía Avanzada (X.A.-A.) and Instituto de Biotecnología (C.Q., F.S.), Universidad Nacional Autónoma de Mexico, Ciudad de Mexico C.P. 62210, Mexico; and
- Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacan, Ciudad de Mexico C.P. 04510, Mexico (M.L.)
| | - Miguel Lara
- Ciencias Agrogenómicas, Escuela Nacional de Estudios Superiores Unidad León-Universidad Nacional Autónoma de México, Ciudad de Mexico C.P. 37684, Mexico (K.N., M.-K.A.);
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacan, Ciudad de Mexico C.P. 62210, Mexico (L.B.);
- Laboratorio Nacional de Microscopía Avanzada (X.A.-A.) and Instituto de Biotecnología (C.Q., F.S.), Universidad Nacional Autónoma de Mexico, Ciudad de Mexico C.P. 62210, Mexico; and
- Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacan, Ciudad de Mexico C.P. 04510, Mexico (M.L.)
| |
Collapse
|
8
|
Quantitative phosphoproteomics reveals the role of the AMPK plant ortholog SnRK1 as a metabolic master regulator under energy deprivation. Sci Rep 2016; 6:31697. [PMID: 27545962 PMCID: PMC4992866 DOI: 10.1038/srep31697] [Citation(s) in RCA: 218] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 07/25/2016] [Indexed: 01/11/2023] Open
Abstract
Since years, research on SnRK1, the major cellular energy sensor in plants, has tried to define its role in energy signalling. However, these attempts were notoriously hampered by the lethality of a complete knockout of SnRK1. Therefore, we generated an inducible amiRNA::SnRK1α2 in a snrk1α1 knock out background (snrk1α1/α2) to abolish SnRK1 activity to understand major systemic functions of SnRK1 signalling under energy deprivation triggered by extended night treatment. We analysed the in vivo phosphoproteome, proteome and metabolome and found that activation of SnRK1 is essential for repression of high energy demanding cell processes such as protein synthesis. The most abundant effect was the constitutively high phosphorylation of ribosomal protein S6 (RPS6) in the snrk1α1/α2 mutant. RPS6 is a major target of TOR signalling and its phosphorylation correlates with translation. Further evidence for an antagonistic SnRK1 and TOR crosstalk comparable to the animal system was demonstrated by the in vivo interaction of SnRK1α1 and RAPTOR1B in the cytosol and by phosphorylation of RAPTOR1B by SnRK1α1 in kinase assays. Moreover, changed levels of phosphorylation states of several chloroplastic proteins in the snrk1α1/α2 mutant indicated an unexpected link to regulation of photosynthesis, the main energy source in plants.
Collapse
|
9
|
Pfeiffer A, Janocha D, Dong Y, Medzihradszky A, Schöne S, Daum G, Suzaki T, Forner J, Langenecker T, Rempel E, Schmid M, Wirtz M, Hell R, Lohmann JU. Integration of light and metabolic signals for stem cell activation at the shoot apical meristem. eLife 2016; 5. [PMID: 27400267 PMCID: PMC4969040 DOI: 10.7554/elife.17023] [Citation(s) in RCA: 134] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Accepted: 07/09/2016] [Indexed: 12/12/2022] Open
Abstract
A major feature of embryogenesis is the specification of stem cell systems, but in contrast to the situation in most animals, plant stem cells remain quiescent until the postembryonic phase of development. Here, we dissect how light and metabolic signals are integrated to overcome stem cell dormancy at the shoot apical meristem. We show on the one hand that light is able to activate expression of the stem cell inducer WUSCHEL independently of photosynthesis and that this likely involves inter-regional cytokinin signaling. Metabolic signals, on the other hand, are transduced to the meristem through activation of the TARGET OF RAPAMYCIN (TOR) kinase. Surprisingly, TOR is also required for light signal dependent stem cell activation. Thus, the TOR kinase acts as a central integrator of light and metabolic signals and a key regulator of stem cell activation at the shoot apex. DOI:http://dx.doi.org/10.7554/eLife.17023.001 Plants are able to grow and develop throughout their lives thanks to groups of stem cells at the tips of their shoots and roots, which can constantly divide to produce new cells. Energy captured from sunlight during a process called photosynthesis is the main source of energy for most plants. Therefore, the amount and quality of light in the environment has a big influence on how plants grow and develop. An enzyme called TOR kinase can sense energy levels in animal cells and regulate many processes including growth and cell division. Plants also have a TOR kinase, but it is less clear if it plays the same role in plants, and whether it can respond to light. Plant stem cells only start to divide after the seed germinates. In shoots, a protein called WUSCHEL is required to maintain stem cells in an active state. Here, Pfeiffer et al. studied how shoot stem cells are activated in response to environmental signals in a plant known as Arabidopsis. The experiments show that light is able to activate the production of WUSCHEL independently of photosynthesis via a signal pathway that depends on TOR kinase. The stem cells do not directly sense light; instead other cells detect the light and relay the information to the stem cells with the help of a hormone called cytokinin. Further experiments show that information about energy levels in cells is relayed via another signal pathway that also involves the TOR kinase. Therefore, Pfeiffer et al.’s findings suggest that the activation of TOR by light allows plant cells to anticipate how much energy will be available and efficiently tune their growth and development to cope with the environmental conditions. Future challenges are to understand how TOR kinase is regulated by light signals and how this enzyme is able to act on WUSCHEL to trigger stem cell division. DOI:http://dx.doi.org/10.7554/eLife.17023.002
Collapse
Affiliation(s)
- Anne Pfeiffer
- Department of Stem Cell Biology, Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
| | - Denis Janocha
- Department of Stem Cell Biology, Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
| | - Yihan Dong
- Department of Molecular Plant Biology, Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
| | - Anna Medzihradszky
- Department of Stem Cell Biology, Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
| | - Stefanie Schöne
- Department of Stem Cell Biology, Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
| | - Gabor Daum
- Department of Stem Cell Biology, Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
| | - Takuya Suzaki
- Department of Stem Cell Biology, Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
| | - Joachim Forner
- Department of Stem Cell Biology, Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
| | - Tobias Langenecker
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Eugen Rempel
- Department of Stem Cell Biology, Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
| | - Markus Schmid
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Markus Wirtz
- Department of Molecular Plant Biology, Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
| | - Rüdiger Hell
- Department of Molecular Plant Biology, Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
| | - Jan U Lohmann
- Department of Stem Cell Biology, Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
10
|
Son O, Kim S, Hur YS, Cheon CI. Identification of the Raptor-binding motif on Arabidopsis S6 kinase and its use as a TOR signaling suppressor. Biochem Biophys Res Commun 2016; 472:83-7. [PMID: 26920057 DOI: 10.1016/j.bbrc.2016.02.068] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 02/17/2016] [Indexed: 01/12/2023]
Abstract
TOR (target of rapamycin) kinase signaling plays central role as a regulator of growth and proliferation in all eukaryotic cells and its key signaling components and effectors are also conserved in plants. Unlike the mammalian and yeast counterparts, however, we found through yeast two-hybrid analysis that multiple regions of the Arabidopsis Raptor (regulatory associated protein of TOR) are required for binding to its substrate. We also identified that a 44-amino acid region at the N-terminal end of Arabidopsis ribosomal S6 kinase 1 (AtS6K1) specifically interacted with AtRaptor1, indicating that this region may contain a functional equivalent of the TOS (TOR-Signaling) motif present in the mammalian TOR substrates. Transient over-expression of this 44-amino acid fragment in Arabidopsis protoplasts resulted in significant decrease in rDNA transcription, demonstrating a feasibility of developing a new plant-specific TOR signaling inhibitor based upon perturbation of the Raptor-substrate interaction.
Collapse
Affiliation(s)
- Ora Son
- Department of Biological Science, Sookmyung Women's University, Seoul 041310, South Korea
| | - Sunghan Kim
- Department of Biological Science, Sookmyung Women's University, Seoul 041310, South Korea
| | - Yoon-Sun Hur
- Department of Biological Science, Sookmyung Women's University, Seoul 041310, South Korea
| | - Choong-Ill Cheon
- Department of Biological Science, Sookmyung Women's University, Seoul 041310, South Korea.
| |
Collapse
|
11
|
Xiong Y, Sheen J. Novel links in the plant TOR kinase signaling network. CURRENT OPINION IN PLANT BIOLOGY 2015; 28:83-91. [PMID: 26476687 PMCID: PMC4612364 DOI: 10.1016/j.pbi.2015.09.006] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2015] [Revised: 09/18/2015] [Accepted: 09/25/2015] [Indexed: 05/18/2023]
Abstract
Nutrient and energy sensing and signaling mechanisms constitute the most ancient and fundamental regulatory networks to control growth and development in all life forms. The target of rapamycin (TOR) protein kinase is modulated by diverse nutrient, energy, hormone and stress inputs and plays a central role in regulating cell proliferation, growth, metabolism and stress responses from yeasts to plants and animals. Recent chemical, genetic, genomic and metabolomic analyses have enabled significant progress toward molecular understanding of the TOR signaling network in multicellular plants. This review discusses the applications of new chemical tools to probe plant TOR functions and highlights recent findings and predictions on TOR-mediate biological processes. Special focus is placed on novel and evolutionarily conserved TOR kinase effectors as positive and negative signaling regulators that control transcription, translation and metabolism to support cell proliferation, growth and maintenance from embryogenesis to senescence in the plant system.
Collapse
Affiliation(s)
- Yan Xiong
- Shanghai Center for Plant Stress Biology, Chinese Academy of Sciences, Shanghai 200032, PR China
| | - Jen Sheen
- Department of Genetics, Harvard Medical School, USA; Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, MA 02114, USA.
| |
Collapse
|
12
|
Identification of nucleosome assembly protein 1 (NAP1) as an interacting partner of plant ribosomal protein S6 (RPS6) and a positive regulator of rDNA transcription. Biochem Biophys Res Commun 2015; 465:200-5. [PMID: 26241676 DOI: 10.1016/j.bbrc.2015.07.150] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 07/29/2015] [Indexed: 11/22/2022]
Abstract
The ribosomal protein S6 (RPS6) is a downstream component of the signaling mediated by the target of rapamycin (TOR) kinase that acts as a central regulator of the key metabolic processes, such as protein translation and ribosome biogenesis, in response to various environmental cues. In our previous study, we identified a novel role of plant RPS6, which negatively regulates rDNA transcription, forming a complex with a plant-specific histone deacetylase, AtHD2B. Here we report that the Arabidopsis RPS6 interacts additionally with a histone chaperone, nucleosome assembly protein 1(AtNAP1;1). The interaction does not appear to preclude the association of RPS6 with AtHD2B, as the AtNAP1 was also able to interact with AtHD2B as well as with an RPS6-AtHD2B fusion protein in the BiFC assay and pulldown experiment. Similar to a positive effect of the ribosomal S6 kinase 1 (AtS6K1) on rDNA transcription observed in this study, overexpression or down regulation of the AtNAP1;1 resulted in concomitant increase and decrease, respectively, in rDNA transcription suggesting a positive regulatory role played by AtNAP1 in plant rDNA transcription, possibly through derepression of the negative effect of the RPS6-AtHD2B complex.
Collapse
|
13
|
Browning KS, Bailey-Serres J. Mechanism of cytoplasmic mRNA translation. THE ARABIDOPSIS BOOK 2015; 13:e0176. [PMID: 26019692 PMCID: PMC4441251 DOI: 10.1199/tab.0176] [Citation(s) in RCA: 155] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Protein synthesis is a fundamental process in gene expression that depends upon the abundance and accessibility of the mRNA transcript as well as the activity of many protein and RNA-protein complexes. Here we focus on the intricate mechanics of mRNA translation in the cytoplasm of higher plants. This chapter includes an inventory of the plant translational apparatus and a detailed review of the translational processes of initiation, elongation, and termination. The majority of mechanistic studies of cytoplasmic translation have been carried out in yeast and mammalian systems. The factors and mechanisms of translation are for the most part conserved across eukaryotes; however, some distinctions are known to exist in plants. A comprehensive understanding of the complex translational apparatus and its regulation in plants is warranted, as the modulation of protein production is critical to development, environmental plasticity and biomass yield in diverse ecosystems and agricultural settings.
Collapse
Affiliation(s)
- Karen S. Browning
- Department of Molecular Biosciences and Institute for Cell and Molecular Biology, University of Texas at Austin, Austin TX 78712-0165
- Both authors contributed equally to this work
| | - Julia Bailey-Serres
- Department of Botany and Plant Sciences and Center for Plant Cell Biology, University of California, Riverside, CA, 92521 USA
- Both authors contributed equally to this work
| |
Collapse
|
14
|
Hur YS, Um JH, Kim S, Kim K, Park HJ, Lim JS, Kim WY, Jun SE, Yoon EK, Lim J, Ohme-Takagi M, Kim D, Park J, Kim GT, Cheon CI. Arabidopsis thaliana homeobox 12 (ATHB12), a homeodomain-leucine zipper protein, regulates leaf growth by promoting cell expansion and endoreduplication. THE NEW PHYTOLOGIST 2015; 205:316-28. [PMID: 25187356 DOI: 10.1111/nph.12998] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 07/21/2014] [Indexed: 05/07/2023]
Abstract
Arabidopsis thaliana homeobox 12 (ATHB12), a homeodomain-leucine zipper class I (HD-Zip I) gene, is highly expressed in leaves and stems, and induced by abiotic stresses, but its role in development remains obscure. To understand its function during plant development, we studied the effects of loss and gain of function. Expression of ATHB12 fused to the EAR-motif repression domain (SRDX) - P35 S ::ATHB12SRDX (A12SRDX) and PATHB 12 ::ATHB12SRDX - slowed both leaf and root growth, while the growth of ATHB12-overexpressing seedlings (A12OX) was accelerated. Microscopic examination revealed changes in the size and number of leaf cells. Ploidy was reduced in A12SRDX plants, accompanied by decreased cell expansion and increased cell numbers. By contrast, cell size was increased in A12OX plants, along with increased ploidy and elevated expression of cell cycle switch 52s (CCS52s), which are positive regulators of endoreduplication, indicating that ATHB12 promotes leaf cell expansion and endoreduplication. Overexpression of ATHB12 led to decreased phosphorylation of Arabidopsis thaliana ribosomal protein S6 (AtRPS6), a regulator of cell growth. In addition, induction of ATHB12 in the presence of cycloheximide increased the expression of several genes related to cell expansion, such as EXPANSIN A10 (EXPA10) and DWARF4 (DWF4). Our findings strongly suggest that ATHB12 acts as a positive regulator of endoreduplication and cell growth during leaf development.
Collapse
Affiliation(s)
- Yoon-Sun Hur
- Department of Biological Science, Sookmyung Women's University, Seoul, 140-742, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Lastdrager J, Hanson J, Smeekens S. Sugar signals and the control of plant growth and development. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:799-807. [PMID: 24453229 DOI: 10.1093/jxb/ert474] [Citation(s) in RCA: 340] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Sugars have a central regulatory function in steering plant growth. This review focuses on information presented in the past 2 years on key players in sugar-mediated plant growth regulation, with emphasis on trehalose 6-phosphate, target of rapamycin kinase, and Snf1-related kinase 1 regulatory systems. The regulation of protein synthesis by sugars is fundamental to plant growth control, and recent advances in our understanding of the regulation of translation by sugars will be discussed.
Collapse
Affiliation(s)
- Jeroen Lastdrager
- Molecular Plant Physiology, Institute of Environmental Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | | | | |
Collapse
|
16
|
Xiong Y, Sheen J. The role of target of rapamycin signaling networks in plant growth and metabolism. PLANT PHYSIOLOGY 2014; 164:499-512. [PMID: 24385567 PMCID: PMC3912084 DOI: 10.1104/pp.113.229948] [Citation(s) in RCA: 162] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 12/05/2013] [Indexed: 05/18/2023]
Abstract
The target of rapamycin (TOR) kinase, a master regulator that is evolutionarily conserved among yeasts (Saccharomyces cerevisiae), plants, animals, and humans, integrates nutrient and energy signaling to promote cell proliferation and growth. Recent breakthroughs made possible by integrating chemical, genetic, and genomic analyses have greatly increased our understanding of the molecular functions and dynamic regulation of the TOR kinase in photosynthetic plants. TOR signaling plays fundamental roles in embryogenesis, meristem activation, root and leaf growth, flowering, senescence, and life span determination. The molecular mechanisms underlying TOR-mediated ribosomal biogenesis, translation promotion, readjustment of metabolism, and autophagy inhibition are now being uncovered. Moreover, monitoring photosynthesis-derived Glc and bioenergetics relays has revealed that TOR orchestrates unprecedented transcriptional networks that wire central metabolism and biosynthesis for energy and biomass production. In addition, these networks integrate localized stem/progenitor cell proliferation through interorgan nutrient coordination to control developmental transitions and growth.
Collapse
|
17
|
Roy B, von Arnim AG. Translational Regulation of Cytoplasmic mRNAs. THE ARABIDOPSIS BOOK 2013; 11:e0165. [PMID: 23908601 PMCID: PMC3727577 DOI: 10.1199/tab.0165] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Translation of the coding potential of a messenger RNA into a protein molecule is a fundamental process in all living cells and consumes a large fraction of metabolites and energy resources in growing cells. Moreover, translation has emerged as an important control point in the regulation of gene expression. At the level of gene regulation, translational control is utilized to support the specific life histories of plants, in particular their responses to the abiotic environment and to metabolites. This review summarizes the diversity of translational control mechanisms in the plant cytoplasm, focusing on specific cases where mechanisms of translational control have evolved to complement or eclipse other levels of gene regulation. We begin by introducing essential features of the translation apparatus. We summarize early evidence for translational control from the pre-Arabidopsis era. Next, we review evidence for translation control in response to stress, to metabolites, and in development. The following section emphasizes RNA sequence elements and biochemical processes that regulate translation. We close with a chapter on the role of signaling pathways that impinge on translation.
Collapse
Affiliation(s)
- Bijoyita Roy
- Department of Biochemistry, Cellular and Molecular Biology, The University of Tennessee, Knoxville, TN 37996-0840
- Current address: University of Massachussetts Medical School, Worcester, MA 01655-0122, USA
| | - Albrecht G. von Arnim
- Department of Biochemistry, Cellular and Molecular Biology, The University of Tennessee, Knoxville, TN 37996-0840
- Graduate School of Genome Science and Technology, The University of Tennessee, Knoxville, TN 37996-0840
| |
Collapse
|
18
|
Henriques R, Magyar Z, Bögre L. S6K1 and E2FB are in mutually antagonistic regulatory links controlling cell growth and proliferation in Arabidopsis. PLANT SIGNALING & BEHAVIOR 2013; 8:e24367. [PMID: 23531690 PMCID: PMC3909064 DOI: 10.4161/psb.24367] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2013] [Accepted: 03/19/2013] [Indexed: 05/24/2023]
Abstract
Plant development is dependent on the coordination between growth and cell proliferation. The nutrient sensing TOR kinase and its downstream target, the 40S ribosomal S6 Kinase, are central controllers of cell growth that were also shown to determine cell size by inhibiting the onset of mitosis in yeast and animal cells. We have shown that the Arabidopsis S6 Kinase1 inhibits cell proliferation through the RBR-E2FB complex. S6K1 interacts with RBR via its N-terminal RBR binding motif, promotes its nuclear localization and consequent RBR-dependent repression of cell cycle genes through E2FB. Here we show that S6K1 and E2FB are in a mutually antagonistic relationship both in their protein abundance and in their activity. We propose that this double inhibitory regulatory connection between S6K1 and E2FB forms a regulatory switch that might be important to determine whether cells divide or grow.
Collapse
Affiliation(s)
- Rossana Henriques
- Royal Holloway; University of London; School of Biological Sciences; Egham, UK
| | - Zoltán Magyar
- Royal Holloway; University of London; School of Biological Sciences; Egham, UK
- Institute of Plant Biology; Biological Research Centre; Szeged, Hungary
| | - László Bögre
- Royal Holloway; University of London; School of Biological Sciences; Egham, UK
| |
Collapse
|
19
|
Tran F, Penniket C, Patel RV, Provart NJ, Laroche A, Rowland O, Robert LS. Developmental transcriptional profiling reveals key insights into Triticeae reproductive development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 74:971-88. [PMID: 23581995 DOI: 10.1111/tpj.12206] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Revised: 03/15/2013] [Accepted: 03/22/2013] [Indexed: 05/25/2023]
Abstract
Despite their importance, there remains a paucity of large-scale gene expression-based studies of reproductive development in species belonging to the Triticeae. As a first step to address this deficiency, a gene expression atlas of triticale reproductive development was generated using the 55K Affymetrix GeneChip(®) wheat genome array. The global transcriptional profiles of the anther/pollen, ovary and stigma were analyzed at concurrent developmental stages, and co-expressed as well as preferentially expressed genes were identified. Data analysis revealed both novel and conserved regulatory factors underlying Triticeae floral development and function. This comprehensive resource rests upon detailed gene annotations, and the expression profiles are readily accessible via a web browser.
Collapse
Affiliation(s)
- Frances Tran
- Agriculture and Agri-Food Canada, Eastern Cereal and Oilseed Research Centre, 960 Carling Avenue, Ottawa, ON K1A 0C6, Canada
| | | | | | | | | | | | | |
Collapse
|
20
|
Um JH, Kim S, Kim YK, Song SB, Lee SH, Verma DPS, Cheon CI. RNA interference-mediated repression of S6 kinase 1 impairs root nodule development in soybean. Mol Cells 2013; 35:243-8. [PMID: 23475423 PMCID: PMC3887909 DOI: 10.1007/s10059-013-2315-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 02/04/2013] [Accepted: 02/19/2013] [Indexed: 12/31/2022] Open
Abstract
Symbiotic nodule formation on legume roots is characterized with a series of developmental reprograming in root tissues, including extensive proliferation of cortical cells. We examined a possible involvement of the target of rapamycin (TOR) pathway, a central regulator of cell growth and proliferation in animals and yeasts, during soybean nodule development. Our results show that transcription of both GmTOR and its key downstream effector, GmS6K1, are activated during nodulation, which is paralleled with higher kinase activities of these gene products as well. RNAi-mediated knockdown of GmS6K1 impaired the nodule development with severely reduced nodule weight and numbers. In addition, expression of a few nodulins including leghemoglobin was also decreased, and consequently nitrogen fixation was found to be reduced by half. Proteomic analysis of the GmS6K1-RNAi nodules identified glutamine synthetase (GS), an essential enzyme for nitrogen assimilation in nodules, as one of the proteins that are significantly down regulated. These results appear to provide solid evidence for a functional link between GmS6K1 and nodule development.
Collapse
Affiliation(s)
- Ji-Hyun Um
- Department of Biological Science, Sookmyung Women’s University, Seoul 140–742,
Korea
| | - Sunghan Kim
- Department of Biological Science, Sookmyung Women’s University, Seoul 140–742,
Korea
| | - Yun-Kyoung Kim
- Department of Biological Science, Sookmyung Women’s University, Seoul 140–742,
Korea
| | - Seok-Bo Song
- Department of Functional Crop, National Institute of Crop Science, Milyang 627-130,
Korea
| | - Suk-Ha Lee
- Department of Plant Science, Seoul National University, Seoul 151–742,
Korea
| | - Desh Pal S. Verma
- Department of Molecular Genetics and Plant Biotechnology Center, The Ohio State University, Columbus, Ohio 43210,
USA
| | - Choong-Ill Cheon
- Department of Biological Science, Sookmyung Women’s University, Seoul 140–742,
Korea
| |
Collapse
|