1
|
Hong BK, You S, Kim JG, Kim M, Lee N, Lee K, Baek IP, Ju JH, Kim WU, Kim HY. Upregulation of interferon-γ response genes in monocytes and T cells identified by single-cell transcriptomics in patients with anti-citrullinated peptide antibody-positive early rheumatoid arthritis. Front Immunol 2025; 15:1439082. [PMID: 39877346 PMCID: PMC11772891 DOI: 10.3389/fimmu.2024.1439082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 12/16/2024] [Indexed: 01/31/2025] Open
Abstract
Introduction Our aim was to investigate the insufficiently understood differences in the immune system between anti-citrullinated peptide antibody (ACPA)-positive (ACPA+) and ACPA-negative (ACPA-) early rheumatoid arthritis (eRA) patients. Methods We performed multiple cytokine assays using sera from drug-naïve ACPA+ and ACPA- eRA patients. Additionally, we conducted single-cell RNA sequencing of CD45+ cells from peripheral blood samples to analyze and compare the distribution and functional characteristics of the cell subsets based on the ACPA status. Results Serum concentrations of interferon-γ (IFN-γ) and interleukin (IL)-12 were higher in ACPA+ eRA than in ACPA- eRA. Single-cell transcriptome analysis of 37,318 cells identified 17 distinct cell types and revealed the expansion of IL1B+ proinflammatory monocytes, IL7R+ T cells, and CD8+ CCL4+ T cells in ACPA+ eRA. Furthermore, we observed an enrichment of IFN-γ response genes in nearly all monocytes and T cells of ACPA+ eRA subsets. Heightened interactions between IFN-γ and IFN-γ receptors were observed in ACPA+ eRA, particularly between monocytes and T cells. We examined IFITM2 and IFITM3 as potential key markers in ACPA+ eRA given their pronounced upregulation and association with the IFN response. Specifically, the expression of these genes was elevated in IL1B+ proinflammatory monocytes (likely M1 monocytes), correlating with serum IFN-γ levels. Discussion Compared to ACPA- eRA, ACPA+ eRA showed higher serum IFN-γ and IL-12 levels, upregulated IFN-γ response genes, and enhanced IFN-γ-driven monocyte-T cell interactions. These distinct immune features of the peripheral circulation in ACPA+ eRA suggest a role for type 1 helper T cell-related immunity in its pathogenesis.
Collapse
Affiliation(s)
- Bong-Ki Hong
- Center for Integrative Rheumatoid Transcriptomics and Dynamics, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sungyong You
- Urology and Computational Biomedicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Jung Gon Kim
- Center for Integrative Rheumatoid Transcriptomics and Dynamics, The Catholic University of Korea, Seoul, Republic of Korea
- Division of Rheumatology, Department of Internal Medicine, Inje University Ilsan Paik Hospital, Goyang, Republic of Korea
| | - Minhyung Kim
- Urology and Computational Biomedicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Naeun Lee
- Center for Integrative Rheumatoid Transcriptomics and Dynamics, The Catholic University of Korea, Seoul, Republic of Korea
| | - Kijun Lee
- Catholic iPSC Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- YiPSCELL, Inc., Seoul, Republic of Korea
| | | | - Ji Hyeon Ju
- Catholic iPSC Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- YiPSCELL, Inc., Seoul, Republic of Korea
- Department of Internal Medicine, The Catholic University of Korea, Seoul St. Mary’s Hospital, Seoul, Republic of Korea
| | - Wan-Uk Kim
- Center for Integrative Rheumatoid Transcriptomics and Dynamics, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Internal Medicine, The Catholic University of Korea, Seoul St. Mary’s Hospital, Seoul, Republic of Korea
| | - Ho-Youn Kim
- The Catholic University of Korea and Ho-Youn Kim’s Clinic for Arthritis Rheumatism, Seoul, Republic of Korea
| |
Collapse
|
2
|
Mallick S, Duttaroy AK, Bose B. A Snapshot of Cytokine Dynamics: A Fine Balance Between Health and Disease. J Cell Biochem 2025; 126:e30680. [PMID: 39668456 DOI: 10.1002/jcb.30680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/23/2024] [Accepted: 11/08/2024] [Indexed: 12/14/2024]
Abstract
Health and disease are intricately intertwined and often determined by the delicate balance of biological processes. Cytokines, a family of small signalling molecules, are pivotal in maintaining this balance, ensuring the body's immune system functions optimally. In a healthy condition, cytokines act as potent mediators of immune responses. They orchestrate the activities of immune cells, coordinating their proliferation, differentiation, and migration. This intricate role of cytokine signalling enables the body to effectively combat infections, repair damaged tissues, and regulate inflammation. However, the delicate equilibrium of cytokine production is susceptible to disruption. Excessive or abnormal cytokine levels can lead to a cascade of pathological conditions, including autoimmune diseases, chronic inflammation, infections, allergies, and even cancer. Interestingly, from the bunch of cytokines, few cytokines play an essential role in maintaining the balance between normal physiological status and diseases. In this review, we have appraised key cytokines' potential role and feedback loops in augmenting the imbalances in the body's biological functions, presenting a critical link between inflammation and disease pathology. Moreover, we have also highlighted the significance of cytokines and their molecular interplay, particularly in the recent viral pandemic COVID-19 disease. Hence, understandings regarding the interplay between viral infection and cytokine responses are essential and fascinating for developing effective therapeutic strategies.
Collapse
Affiliation(s)
- Sumit Mallick
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangalore, Karnataka, India
| | - Asim K Duttaroy
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Bipasha Bose
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangalore, Karnataka, India
| |
Collapse
|
3
|
Peng XC, Yin R, Luo LP, Xu S, Shuai Z. Rheumatoid Factor Titer as an Indicator of the Risk of Rheumatoid Arthritis Activity: Dose-Effect Analysis with the Restricted Cubic Spline Model. J Inflamm Res 2024; 17:10699-10709. [PMID: 39677284 PMCID: PMC11645955 DOI: 10.2147/jir.s488605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 12/03/2024] [Indexed: 12/17/2024] Open
Abstract
Background Rheumatoid factor (RF) titer is known to be correlated to rheumatoid arthritis (RA) activity, but the ideal cut-off titer of RF remains unclear. Here, the relationship between RF titer and RA activity was investigated in order to determine the ideal RF value indicative of the risk of RA activity. Methods Clinical data from 2044 eligible patients were collected from the First Affiliated Hospital of Anhui Medical University from February 2022 to October 2023. A restricted cubic spline (RCS) model was used to evaluate the relationship between RF titer and RA activity. Results Data from a total of 2044 patients with RA were collected and analyzed. Multivariate logistic regression analysis revealed that higher RF levels were significant predictors of the risk of RA activity calculated according to the disease activity score 28 (DAS28)-erythrocyte sedimentation rate (ESR) (OR = 2.020, 95% CI = 1.457-2.801, P < 0.001) and DAS28-C reactive protein (CRP) (OR = 1.526, 95% CI = 1.092-2.131, P = 0.013), after the results were adjusted for potential covariates. The relationship between log2RF and the risk of RA activity was non‑linear in the RCS model (P < 0.05). The cutoff value of RF titers for determining the risk of RA activity was 65.80 IU/mL. When RF exceeded the cutoff value, the risk of RA activity based on DAS28-ESR increased by 99.2% and the risk of RA activity based on DAS28-CRP increased by 62.8% (P < 0.001). Conclusion The risk of RA activity increased non-linearly with the continuous change in RF titer.
Collapse
Affiliation(s)
- Xin-Chen Peng
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, People’s Republic of China
| | - Ruoyanran Yin
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, People’s Republic of China
| | - Li-Ping Luo
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, People’s Republic of China
| | - Shengqian Xu
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, People’s Republic of China
| | - Zongwen Shuai
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, People’s Republic of China
| |
Collapse
|
4
|
Hao K, Lin P, Li J, Hu J, Wang J, Li F. IL21 inhibits miR-361-5p to promote MAP3K9 and further aggravate the progression of shoulder arthritis. Aging (Albany NY) 2024; 16:7915-7927. [PMID: 38728237 PMCID: PMC11132011 DOI: 10.18632/aging.205793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 03/13/2024] [Indexed: 05/12/2024]
Abstract
OBJECTIVE This research aimed to explore IL-21/miR-361-5p/MAP3K9 expression in shoulder arthritis and identify its regulatory pathways. METHODS We established a rat shoulder arthritis model, then quantified IL21 and miR-361-5p in synovial fluid using ELISA and monitored the arthritis development. Additionally, IL21's effect on miR-361-5p levels in cultured human chondrocytes (HC-a) was assessed. Chondrocyte cell cycle status and apoptosis were measured via flow cytometry. Interactions between miR-361-5p and MAP3K9 were confirmed through dual-luciferase reporting and bioinformatic scrutiny. Protein levels of MAP3K9, p-ERK1/2, p-NF-κB, MMP1, and MMP9 were analyzed by Western blots. RESULTS IL21 levels were elevated, while miR-361-5p was reduced in the synovial fluid from arthritic rats compared to healthy rats. IL21 was shown to suppress miR-361-5p in chondrocytes leading to hindered cell proliferation and increased apoptosis. Western blots indicated that miR-361-5p curbed MAP3K9 expression, reducing MMP activity by attenuating the ERK1/2/NF-κB pathway in chondrocytes. CONCLUSION IL21 upregulation and miR-361-5p downregulation characterize shoulder arthritis, resulting in MAP3K9 overexpression. This chain of molecular events boosts MMP expression in chondrocytes and exacerbates the condition's progression.
Collapse
Affiliation(s)
- Kangning Hao
- Department of Orthopedic Surgery, The Third Hospital of Shijiazhuang, Shijiazhuang 050011, Hebei, P.R. China
| | - Pengchao Lin
- Department of Orthopedic Surgery, The Third Hospital of Shijiazhuang, Shijiazhuang 050011, Hebei, P.R. China
| | - Jing Li
- Department of Nursing, Hebei Province Eighth People’s Hospital, Shijiazhuang 050011, Hebei, P.R. China
| | - Jie Hu
- Department of Radiology, The Third Hospital of Shijiazhuang, Shijiazhuang 050011, Hebei, P.R. China
| | - Jiangyong Wang
- Department of Orthopedic Surgery, The Third Hospital of Shijiazhuang, Shijiazhuang 050011, Hebei, P.R. China
| | - Fei Li
- Department of Orthopedic Surgery, The Third Hospital of Shijiazhuang, Shijiazhuang 050011, Hebei, P.R. China
| |
Collapse
|
5
|
Jiang C, Chi S, Wang F, Zhao C, Yang X, Liu M, Ma B, Chen J, Su C, Duan X. The changes of intestinal flora and its relevance with memory Tfh and B cells in rheumatoid arthritis patients treated with csDMARDs and csDMARDs + bDMARDs. Immunobiology 2024; 229:152798. [PMID: 38537424 DOI: 10.1016/j.imbio.2024.152798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/02/2024] [Accepted: 03/20/2024] [Indexed: 06/05/2024]
Abstract
BACKGROUND A growing body of experimental and clinical evidence has implicated gut microbiota in the onset and course of rheumatoid arthritis (RA). The imbalance of intestinal flora in RA patients may lead to abnormal expression of immune cells and related cytokines. PURPOSE Conventional synthetic disease-modifying antirheumatic drugs (csDMARDs) and conventional synthetic disease-modifying antirheumatic drugs combined with biological disease-modifying antirheumatic drugs (csDMARDs + bDMARDs) are widely used to treat RA, but the characteristics of gut microbiota before and after treatment and their relationship with memory Tfh/B cells and cytokines remain unclear. METHODS Stool samples were collected from 50 RA patients and 25 healthy controls (HCs) for 16SrRNA gene sequencing. We examined the proportion of lymphocyte subsets in healthy controls and RA patients. Enzyme linked immunosorbent assay (ELISA) was used to detect the levels of related cytokines in serum. The α and β diversity of intestinal flora, and the correlation between intestinal flora and clinical indicators, lymphocyte subsets, cytokines were analyzed. RESULT At the genus level, Ruminococcaceae_Ruminococcus was decreased in the csDMARDs and csDMARDs + bDMARDs treatment group, whereas Faecalibacterium was reduced in the csDMARDs treatment group, compared to untreated group. CD4+CD45RO+CCR7+CXCR5+central memory Tfh cells and CD4+CD45RO+CCR7-CXCR5+effector memory Tfh cells were significantly lower in the csDMARDs + bDMARDs treatment group than in untreated group. CD19+CD27+IgD+pre-switched memory B cells were higher in the csDMARDs and csDMARDs + bDMARDs treatment groups, whereas CD19+CD27+IgD-switched memory B cells were significantly lower than in untreated group. Ruminococcaceae_Ruminococcus was negatively correlated with CD19+CD27+IgD+ pre-switched memory B cells but positively correlated with CD4+CD45RO+CCR7-CXCR5+effector memory Tfh and CD19+CD27+IgD-switched memory B cells in patients with RA treated with DMARDs. CONCLUSION The gut microbiota, memory Tfh cells, memory B cells, and cytokines of patients with RA changed significantly under different treatment regimens and had certain correlations with the clinical indicators of RA.
Collapse
Affiliation(s)
- Chunlei Jiang
- The First School of Clinical Medicine, Ningxia Medical University, Yinchuan, China; Department of Rheumatology, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Shuhong Chi
- The First School of Clinical Medicine, Ningxia Medical University, Yinchuan, China; Department of Rheumatology, General Hospital of Ningxia Medical University, Yinchuan, China.
| | - Fengkui Wang
- Department of Nuclear Medicine, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Chenyang Zhao
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Xiaojuan Yang
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Miao Liu
- The First School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Bin Ma
- Department of Oncology Surgery, The First People's Hospital of Yinchuan, Yinchuan, China
| | | | - Chunxia Su
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China.
| | - Xiangguo Duan
- School of Inspection, Ningxia Medical University, China.
| |
Collapse
|
6
|
Zhang G, Xu J, Du D, Liu Y, Dai L, Zhao Y. Diagnostic values, association with disease activity and possible risk factors of anti-PAD4 in rheumatoid arthritis: a meta-analysis. Rheumatology (Oxford) 2024; 63:914-924. [PMID: 37824204 DOI: 10.1093/rheumatology/kead545] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 09/02/2023] [Accepted: 09/08/2023] [Indexed: 10/14/2023] Open
Abstract
OBJECTIVE Anti-peptidyl arginine deaminase 4 (anti-PAD4) antibody has been a subject of investigation in RA in the last two decades. This meta-analysis investigated the diagnostic values, association with disease activity and possible risk factors of anti-PAD4 antibody in rheumatoid arthritis. METHOD We searched studies from five databases up to 1 December 2022. Bivariate mixed-effect models were used to pool the diagnostic accuracy indexes, and the summary receiver operating characteristics (SROC) curve was plotted. The quality of diagnostic studies was assessed using QUADAS-2. Non-diagnostic meta-analyses were conducted using the random-effects model. Sensitivity analysis, meta-regression, subgroup analyses and Deeks' funnel plot asymmetry test were used to address heterogeneity. RESULT Finally, 24 journal articles and one letter were included. Anti-PAD4 antibody had a good diagnostic value between RA and healthy individuals, but it might be lower between RA and other rheumatic diseases. Moreover, anti-PAD4 could slightly enhance RA diagnostic sensitivity with a combination of ACPA or ACPA/RF. Anti-PAD4 antibody was positively correlated with HLA-SE and negatively correlated with ever or current smoking in patients with RA. RA patients with anti-PAD4 antibody had higher DAS28, ESR, swollen joint count (SJC) and the possibility of having interstitial lung disease (ILD) and pulmonary fibrosis compared with those without. CONCLUSION Our study suggests that anti-PAD4 antibody is a potentially useful diagnostic biomarker and clinical indicator for RA. Further mechanistic studies are required to understand the impact of HLA-SE and smoking on the production of anti-PAD4 antibody.
Collapse
Affiliation(s)
- Guangyue Zhang
- West China School of Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Jiayi Xu
- West China School of Medicine, West China Hospital, Sichuan University, Chengdu, China
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Dongru Du
- West China School of Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Liu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Lunzhi Dai
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Zhao
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
- Clinical Institute of Inflammation and Immunology (CIII), Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
7
|
Agger AE, Reseland JE, Hjelkrem E, Lian AM, Hals EKB, Zandi H, Sunde PT. Are comorbidities associated with the cytokine/chemokine profile of persistent apical periodontitis? Clin Oral Investig 2023; 27:5203-5215. [PMID: 37434075 PMCID: PMC10492720 DOI: 10.1007/s00784-023-05139-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 07/02/2023] [Indexed: 07/13/2023]
Abstract
OBJECTIVES This study aimed to identify disease-related markers in persistent apical periodontitis (PAP) biopsies and examine whether these were associated with comorbidities like rheumatoid arthritis (RA) and cardiovascular diseases (CVD). MATERIALS AND METHOD The levels of the cytokines/chemokines GM-CSF, IFN-γ, IL-2, IL-6, IL-9, IL-10, IL-13, IL-15, IL-17E/IL-25, IL-21, IL-23, IL-27, IL-28A/IFN -λ2, IL-33, MIP-3α/CCL20, and TNF-α were determined in lesions from patients with PAP (n = 20) and compared to healthy bone samples (n = 20). RESULTS We identified eleven cytokines to be differently expressed, and among them, IL-2, IL-6, IL-17E, IL-21, and IL-27 appeared to drive the discrepancy between the disease and healthy groups. The levels of T follicular helper (Tfh) cell promoting cytokines (IL-21, IL-6, IL-27) were enhanced while T helper (Th) 1 cell promoting cytokine (IL-2), Th2 cell promoting cytokine (IL-13), and Th17 cell promoting cytokine (IL-17E) were reduced in the PAP group. The data also indicate that Tfh cell differentiation (IL-21), along with Th1 (GM-CSF, IFNγ), Th2 (IL-13), and Th17 (GM-CSF) cell differentiation, might be increased in the subpopulation of patients suffering from RA, whereas no differences were found in patients with CVD. CONCLUSIONS Levels of cytokines/chemokines in PAP were identified, and cluster analyzes indicated that these markers may be associated with the differentiation of different T cell populations. Patients with PAP and RA comorbidities showed elevated levels of markers reinforcing this association. CLINICAL RELEVANCE Molecular analyses of PAP may result in identification of prognostic markers.
Collapse
Affiliation(s)
- Anne Eriksson Agger
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, Oslo, Norway
| | - Janne Elin Reseland
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, Oslo, Norway
| | - Erik Hjelkrem
- Department of Endodontics, Institute of Clinical Dentistry, University of Oslo, Oslo, Norway
| | - Aina-Mari Lian
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, Oslo, Norway
| | - Else K Breivik Hals
- TAKO-Centre, National Resource Centre for Oral Health in Rare Medical Conditions, Lovisenberg Diakonale Hospital, Oslo, Norway
| | - Homan Zandi
- Department of Endodontics, Institute of Clinical Dentistry, University of Oslo, Oslo, Norway
| | - Pia Titterud Sunde
- Department of Endodontics, Institute of Clinical Dentistry, University of Oslo, Oslo, Norway.
- Department of Endodontics, Institute of Clinical Dentistry, University of Oslo, Postboks 1109 Blindern, N-0317, Oslo, Norway.
| |
Collapse
|
8
|
Carreño-Saavedra NM, Reyes-Pérez IV, Machado-Sulbaran AC, Martínez-Bonilla GE, Ramírez-Dueñas MG, Muñoz-Valle JF, Olaya-Valdiviezo V, García-Iglesias T, Martínez-García EA, Sánchez-Hernández PE. IL-21 (rs2055979 and rs2221903)/ IL-21R (rs3093301) Polymorphism and High Levels of IL-21 Are Associated with Rheumatoid Arthritis in Mexican Patients. Genes (Basel) 2023; 14:genes14040878. [PMID: 37107636 PMCID: PMC10137781 DOI: 10.3390/genes14040878] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/04/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
Rheumatoid Arthritis (RA) is characterized by joint destruction, chronic inflammation, and autoantibody production. IL-21/IL-21R plays an essential role in the immunopathology of RA. Elevated IL-21 serum levels have been associated with RA and disease activity. Here, we evaluated the association of IL-21/IL-21R polymorphisms and IL-21 serum levels with RA. The study included 275 RA patients and 280 Control subjects (CSs). Single nucleotide polymorphisms IL-21 (rs2055979 and rs2221903) and IL-21R (rs3093301) were genotyped using PCR-RFLP. Clinical activity was evaluated by DAS28-ESR; IL-21 and anti-CCP serum levels were quantified by ELISA. The IL-21 rs2055979 AA genotype was higher in RA patients than in the CS group (p = 0.0216, OR = 1.761, 95% CI = 1.085-2.859); furthermore, RA patients showed anti-CCP elevated levels compared to the CA genotype (p = 0.0296). The IL21R rs3093301 AA genotype was also higher in RA patients than in the CS group (p = 0.0122, OR = 1.965, 95% CI = 1.153-3.348). The AT haplotypes of IL-21 rs2055979 and rs2221903 were more frequent (49%) in the RA group (p = 0.006). IL-21 serum levels were significantly elevated in the RA group, but without an association with IL-21 polymorphisms. In conclusion, IL-21 rs2255979 and IL-21R rs3093301 are associated with a higher risk of RA, and could be a genetic marker. Moreover, the elevated IL-21 levels in RA suggest that IL-21/IL-21R could be a therapeutic target in RA.
Collapse
Affiliation(s)
- Noemi Magdalena Carreño-Saavedra
- Laboratorio de Inmunología, Departamento de Fisiología, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara (UDG), Guadalajara 44340, Jalisco, Mexico
- Doctorado en Ciencias Biomédicas, Departamento de Fisiología, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara (UDG), Guadalajara 44340, Jalisco, Mexico
- Instituto de Investigación en Ciencias Biomédicas, Departamento de Clínicas Médicas, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara (UDG), Guadalajara 44340, Jalisco, Mexico
| | - Itzel Viridiana Reyes-Pérez
- Laboratorio de Inmunología, Departamento de Fisiología, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara (UDG), Guadalajara 44340, Jalisco, Mexico
| | - Andrea Carolina Machado-Sulbaran
- Laboratorio de Inmunología, Departamento de Fisiología, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara (UDG), Guadalajara 44340, Jalisco, Mexico
- Cuerpo Académico UDG-CA-1135 "Biomarcadores Inmunogenéticos y Factores Farmacológicos en Enfermedades Crónico-Degenerativas", Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara (UDG), Guadalajara 44340, Jalisco, Mexico
- Instituto de Investigación en Cáncer en la Infancia y Adolescencia, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara (UDG), Guadalajara 44340, Jalisco, Mexico
| | | | - María Guadalupe Ramírez-Dueñas
- Instituto de Investigación en Ciencias Biomédicas, Departamento de Clínicas Médicas, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara (UDG), Guadalajara 44340, Jalisco, Mexico
- Cuerpo Académico UDG-CA-1135 "Biomarcadores Inmunogenéticos y Factores Farmacológicos en Enfermedades Crónico-Degenerativas", Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara (UDG), Guadalajara 44340, Jalisco, Mexico
| | - José Francisco Muñoz-Valle
- Instituto de Investigación en Ciencias Biomédicas, Departamento de Clínicas Médicas, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara (UDG), Guadalajara 44340, Jalisco, Mexico
| | - Valeria Olaya-Valdiviezo
- Laboratorio de Inmunología, Departamento de Fisiología, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara (UDG), Guadalajara 44340, Jalisco, Mexico
| | - Trinidad García-Iglesias
- Laboratorio de Inmunología, Departamento de Fisiología, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara (UDG), Guadalajara 44340, Jalisco, Mexico
- Cuerpo Académico UDG-CA-1135 "Biomarcadores Inmunogenéticos y Factores Farmacológicos en Enfermedades Crónico-Degenerativas", Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara (UDG), Guadalajara 44340, Jalisco, Mexico
- Instituto de Investigación en Cáncer en la Infancia y Adolescencia, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara (UDG), Guadalajara 44340, Jalisco, Mexico
| | - Erika Aurora Martínez-García
- Departamento de Biología Molecular y Genómica, Instituto de Investigación en Reumatología y del Sistema Músculo Esquelético (IIRSME), Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara (UDG), Guadalajara 44340, Jalisco, Mexico
| | - Pedro Ernesto Sánchez-Hernández
- Laboratorio de Inmunología, Departamento de Fisiología, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara (UDG), Guadalajara 44340, Jalisco, Mexico
- Doctorado en Ciencias Biomédicas, Departamento de Fisiología, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara (UDG), Guadalajara 44340, Jalisco, Mexico
- Cuerpo Académico UDG-CA-1135 "Biomarcadores Inmunogenéticos y Factores Farmacológicos en Enfermedades Crónico-Degenerativas", Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara (UDG), Guadalajara 44340, Jalisco, Mexico
- Instituto de Investigación en Cáncer en la Infancia y Adolescencia, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara (UDG), Guadalajara 44340, Jalisco, Mexico
| |
Collapse
|
9
|
Ren H, Lin F, Wu L, Tan L, Lu L, Xie X, Zhang Y, Bao Y, Ma Y, Huang X, Wang F, Jin Y. The prevalence and the effect of interferon -γ in the comorbidity of rheumatoid arthritis and depression. Behav Brain Res 2023; 439:114237. [PMID: 36464027 DOI: 10.1016/j.bbr.2022.114237] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/17/2022] [Accepted: 11/26/2022] [Indexed: 12/05/2022]
Abstract
BACKGROUND Depression is the most common comorbidities associated with rheumatoid arthritis (RA). We aimed to explore the mechanism of association between RA and depression. METHODS 120 subjects were enrolled and depression was diagnosed and assessed using DSM-5 and 24-item version of Hamilton Depression Scale. Pain intensity and joint function in patients with RA were assessed using the visual analog scale (VAS) and health assessment questionnaire (HAQ). Serum levels of interferon-gamma (IFN-γ), indoleamine 2,3-dioxygenase (IDO), kynurenine (KYN), tryptophan (TRP), and quinolinic acid (QUIN)were detected. In animal experiments, K/BxN mice with RA-like phenotype was used and depressive behavior was observed. The protein expression level of N-methyl -D- aspartate receptor 2B (NR2B) in the hippocampus was detected. RESULTS In this study, 36.67 % of patients with RA also had depression. The working status, month family income, tender joint count, the VAS and HAQ score were the main factors influencing the depression in RA patients. HAQ score was found to be an independent risk factor for depression in RA. Serum IDO, IFN-γ, KYN were increased and TRP contents were decreased in RA group. K/BxN mice with RA-like phenotype showed depressive behavior. However, injection of IFN-γ neutralizing antibody could inhibit kynurenine pathway and reverse the depressive behavior in mice. The levels of QUIN in the neurotoxic metabolic pathway were increased and N-methyl -D- aspartate receptors (NMDAR) were activated, which may be the mechanism behind the onset of depression. CONCLUSIONS From clinical and preclinical aspects, the occurrence of depression in RA was explored and the related mechanism was revealed.
Collapse
Affiliation(s)
- Huan Ren
- Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, Anhui, China; The Key Laboratory of Anti-inflammatory and Immune medicines, Ministry of Education, Hefei, China.
| | - Fengmei Lin
- Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, Anhui, China; Pharmacy Department, The First People's Hospital of ChuZhou, China.
| | - Lifang Wu
- Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, Anhui, China; The Key Laboratory of Anti-inflammatory and Immune medicines, Ministry of Education, Hefei, China
| | - Lina Tan
- Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, Anhui, China; The Key Laboratory of Anti-inflammatory and Immune medicines, Ministry of Education, Hefei, China
| | - Lili Lu
- Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, Anhui, China; The Key Laboratory of Anti-inflammatory and Immune medicines, Ministry of Education, Hefei, China
| | - Xiuli Xie
- Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, Anhui, China; The Key Laboratory of Anti-inflammatory and Immune medicines, Ministry of Education, Hefei, China
| | - Yang Zhang
- Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, Anhui, China; The Key Laboratory of Anti-inflammatory and Immune medicines, Ministry of Education, Hefei, China
| | - Yanni Bao
- Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, Anhui, China; The Key Laboratory of Anti-inflammatory and Immune medicines, Ministry of Education, Hefei, China
| | - Yuchen Ma
- Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, Anhui, China; The Key Laboratory of Anti-inflammatory and Immune medicines, Ministry of Education, Hefei, China
| | - Xiaoqin Huang
- Department of Psychology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Fang Wang
- Department of Psychology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yong Jin
- Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, Anhui, China; The Key Laboratory of Anti-inflammatory and Immune medicines, Ministry of Education, Hefei, China.
| |
Collapse
|
10
|
Wei X, Niu X. T follicular helper cells in autoimmune diseases. J Autoimmun 2023; 134:102976. [PMID: 36525939 DOI: 10.1016/j.jaut.2022.102976] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 12/15/2022]
Abstract
T follicular helper (Tfh) cells with the phenotype of mainly expressing surface molecules C-X-C motif chemokine receptor type 5 (CXCR5), inducible co-stimulator (ICOS), secreting cytokine interleukin-21 (IL-21) and requiring the transcription factor B cell lymphoma 6 (BCL-6) have been recently defined as a new subset of CD4+ T cells. They exist in germinal centers (GCs) of lymphoid organs and in peripheral blood. With the ability to promote B cell development, GC formation and antibody production, Tfh cells play critical roles in the pathogenesis of many autoimmune diseases, such as systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), primary Sjögren's syndrome (pSS), etc. The aberrant proliferation and function of Tfh cells will cause the pathological process like autoantibody production and tissue injury. In this paper, we review the recent advances in Tfh cell biology and their roles in autoimmune diseases, with a mention of their use as therapeutic targets, which will shed more light on the pathogenesis and treatment of certain autoimmune diseases.
Collapse
Affiliation(s)
- Xindi Wei
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Immunology, Shanghai, 200025, China; Department of Oral and Maxillo-facial Implantology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Xiaoyin Niu
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Immunology, Shanghai, 200025, China.
| |
Collapse
|
11
|
Activities and Molecular Mechanisms of Diterpenes, Diterpenoids, and Their Derivatives in Rheumatoid Arthritis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:4787643. [PMID: 35368757 PMCID: PMC8975657 DOI: 10.1155/2022/4787643] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/11/2021] [Accepted: 02/02/2022] [Indexed: 12/11/2022]
Abstract
Diterpenes and their derivatives have many biological activities, including anti-inflammatory and immunomodulatory effects. To date, several diterpenes, diterpenoids, and their laboratory-derived products have been demonstrated for antiarthritic activities. This study summarizes the literature about diterpenes and their derivatives acting against rheumatoid arthritis (RA) depending on the database reports until 31 August 2021. For this, we have conducted an extensive search in databases such as PubMed, Science Direct, Google Scholar, and Clinicaltrials.gov using specific relevant keywords. The search yielded 2708 published records, among which 48 have been included in this study. The findings offer several potential diterpenes and their derivatives as anti-RA in various test models. Among the diterpenes and their derivatives, andrographolide, triptolide, and tanshinone IIA have been found to exhibit anti-RA activity through diverse pathways. In addition, some important derivatives of triptolide and tanshinone IIA have also been shown to have anti-RA effects. Overall, findings suggest that these substances could reduce arthritis score, downregulate oxidative, proinflammatory, and inflammatory biomarkers, modulate various arthritis pathways, and improve joint destruction and clinical arthritic conditions, signs, symptoms, and physical functions in humans and numerous experimental animals, mainly through cytokine and chemokine as well as several physiological protein interaction pathways. Taken all together, diterpenes, diterpenoids, and their derivatives may be promising tools for RA management.
Collapse
|
12
|
Huang J, Fu X, Chen X, Li Z, Huang Y, Liang C. Promising Therapeutic Targets for Treatment of Rheumatoid Arthritis. Front Immunol 2021; 12:686155. [PMID: 34305919 PMCID: PMC8299711 DOI: 10.3389/fimmu.2021.686155] [Citation(s) in RCA: 126] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/23/2021] [Indexed: 12/12/2022] Open
Abstract
Rheumatoid arthritis (RA) is a systemic poly-articular chronic autoimmune joint disease that mainly damages the hands and feet, which affects 0.5% to 1.0% of the population worldwide. With the sustained development of disease-modifying antirheumatic drugs (DMARDs), significant success has been achieved for preventing and relieving disease activity in RA patients. Unfortunately, some patients still show limited response to DMARDs, which puts forward new requirements for special targets and novel therapies. Understanding the pathogenetic roles of the various molecules in RA could facilitate discovery of potential therapeutic targets and approaches. In this review, both existing and emerging targets, including the proteins, small molecular metabolites, and epigenetic regulators related to RA, are discussed, with a focus on the mechanisms that result in inflammation and the development of new drugs for blocking the various modulators in RA.
Collapse
Affiliation(s)
- Jie Huang
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Xuekun Fu
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Xinxin Chen
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Zheng Li
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Yuhong Huang
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Chao Liang
- Department of Biology, Southern University of Science and Technology, Shenzhen, China.,Institute of Integrated Bioinfomedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| |
Collapse
|
13
|
Rioseras B, Moro-García MA, García-Torre A, Bueno-García E, López-Martínez R, Iglesias-Escudero M, Diaz-Peña R, Castro-Santos P, Arias-Guillén M, Alonso-Arias R. Acquisition of New Migratory Properties by Highly Differentiated CD4+CD28 null T Lymphocytes in Rheumatoid Arthritis Disease. J Pers Med 2021; 11:jpm11070594. [PMID: 34202487 PMCID: PMC8306508 DOI: 10.3390/jpm11070594] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 02/07/2023] Open
Abstract
Expanded CD4+CD28null T lymphocytes are found in the tissues and peripheral blood of patients with many autoimmune diseases, such as rheumatoid arthritis (RA). These highly differentiated cells present potent inflammatory activity and capability to induce tissue destruction, which has been suggested to predispose to the development of more aggressive disease. In fact, preferential migration to inflammatory sites has been proposed to be a contributing factor in the progression of autoimmune and cardiovascular diseases frequently found in these patients. The functional activity of CD4+CD28null T lymphocytes is largely dependent on interleukin 15 (IL-15), and this cytokine may also act as a selective attractor of these cells to local inflammatory infiltrates in damaged tissues. We have analysed, in RA patients, the migratory properties and transcriptional motility profile of CD4+CD28null T lymphocytes compared to their counterparts CD28+ T lymphocytes and the enhancing role of IL-15. Identification of the pathways involved in this process will allow us to design strategies directed to block effector functions that CD4+CD28null T lymphocytes have in the target tissue, which may represent therapeutic approaches in this immune disorder.
Collapse
Affiliation(s)
- Beatriz Rioseras
- Immunology Department, Medicine Laboratory, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain; (B.R.); (A.G.-T.); (E.B.-G.); rociolopez-@hotmail.com (R.L.-M.)
- Health Research Institute of the Principality of Asturias—ISPA, 33011 Oviedo, Spain;
| | - Marco Antonio Moro-García
- Health Research Institute of the Principality of Asturias—ISPA, 33011 Oviedo, Spain;
- Medicine Laboratory, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
| | - Alejandra García-Torre
- Immunology Department, Medicine Laboratory, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain; (B.R.); (A.G.-T.); (E.B.-G.); rociolopez-@hotmail.com (R.L.-M.)
- Health Research Institute of the Principality of Asturias—ISPA, 33011 Oviedo, Spain;
| | - Eva Bueno-García
- Immunology Department, Medicine Laboratory, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain; (B.R.); (A.G.-T.); (E.B.-G.); rociolopez-@hotmail.com (R.L.-M.)
- Health Research Institute of the Principality of Asturias—ISPA, 33011 Oviedo, Spain;
| | - Rocio López-Martínez
- Immunology Department, Medicine Laboratory, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain; (B.R.); (A.G.-T.); (E.B.-G.); rociolopez-@hotmail.com (R.L.-M.)
- Health Research Institute of the Principality of Asturias—ISPA, 33011 Oviedo, Spain;
| | | | - Roberto Diaz-Peña
- Faculty of Health Sciences, Universidad Autónoma de Chile, Talca 3460000, Chile;
| | - Patricia Castro-Santos
- Inmunologia, Centro de Investigaciones Biomédicas (CINBIO), Universidad de Vigo, 36310 Vigo, Spain;
| | - Miguel Arias-Guillén
- Health Research Institute of the Principality of Asturias—ISPA, 33011 Oviedo, Spain;
- Servicio de Neumología, Hospital Universitario Central Asturias, 33011 Oviedo, Spain;
- CIBER—Enfermedades Respiratorias, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Rebeca Alonso-Arias
- Immunology Department, Medicine Laboratory, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain; (B.R.); (A.G.-T.); (E.B.-G.); rociolopez-@hotmail.com (R.L.-M.)
- Health Research Institute of the Principality of Asturias—ISPA, 33011 Oviedo, Spain;
- Correspondence:
| |
Collapse
|
14
|
Lu J, Wu J, Xia X, Peng H, Wang S. Follicular helper T cells: potential therapeutic targets in rheumatoid arthritis. Cell Mol Life Sci 2021; 78:5095-5106. [PMID: 33880615 PMCID: PMC11073436 DOI: 10.1007/s00018-021-03839-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/26/2021] [Accepted: 04/08/2021] [Indexed: 02/08/2023]
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease with joint and systemic inflammation that is accompanied by the production of autoantibodies, such as rheumatoid factor and anti-cyclic citrullinated peptide (anti-CCP) antibodies. Follicular helper T (Tfh) cells, which are a subset of CD4+ T cells, facilitate germinal center (GC) reactions by providing signals required for high-affinity antibody production and the generation of long-lived antibody-secreting plasma cells. Uncontrolled expansion of Tfh cells is observed in various systemic autoimmune diseases. Particularly, the frequencies of circulating Tfh-like (cTfh-like) cells, their subtypes and synovial-infiltrated T helper cells correlate with disease activity in RA patients. Therefore, reducing autoantibody production and restricting excessive Tfh cell responses are ideal ways to control RA pathogenesis. The present review summarizes current knowledge of the involvement of Tfh cells in RA pathogenesis and highlights the potential of these cells as therapeutic targets.
Collapse
Affiliation(s)
- Jian Lu
- Department of Laboratory Medicine, Affiliated People's Hospital, Jiangsu University, Zhenjiang, 212002, China
- Institute of Laboratory Medicine, Jiangsu Key Laboratory for Laboratory Medicine, Jiangsu University School of Medicine, Zhenjiang, China
| | - Jing Wu
- Institute of Laboratory Medicine, Jiangsu Key Laboratory for Laboratory Medicine, Jiangsu University School of Medicine, Zhenjiang, China
| | - Xueli Xia
- Institute of Laboratory Medicine, Jiangsu Key Laboratory for Laboratory Medicine, Jiangsu University School of Medicine, Zhenjiang, China
| | - Huiyong Peng
- Department of Laboratory Medicine, Affiliated People's Hospital, Jiangsu University, Zhenjiang, 212002, China.
| | - Shengjun Wang
- Department of Laboratory Medicine, Affiliated People's Hospital, Jiangsu University, Zhenjiang, 212002, China.
- Institute of Laboratory Medicine, Jiangsu Key Laboratory for Laboratory Medicine, Jiangsu University School of Medicine, Zhenjiang, China.
| |
Collapse
|
15
|
Makuch S, Więcek K, Woźniak M. The Immunomodulatory and Anti-Inflammatory Effect of Curcumin on Immune Cell Populations, Cytokines, and In Vivo Models of Rheumatoid Arthritis. Pharmaceuticals (Basel) 2021; 14:ph14040309. [PMID: 33915757 PMCID: PMC8065689 DOI: 10.3390/ph14040309] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/26/2021] [Accepted: 03/29/2021] [Indexed: 02/07/2023] Open
Abstract
Rheumatoid arthritis (RA) is a widespread chronic autoimmune disorder affecting the joints, causing irreversible cartilage, synovium, and bone degradation. During the course of the disease, many immune and joint cells are activated, causing inflammation. Immune cells including macrophages, lymphocytes, neutrophils, mast cells, natural killer cells, innate lymphoid cells, as well as synovial tissue cells, like fibroblast-like synoviocytes, chondrocytes, and osteoclasts secrete different proinflammatory factors, including many cytokines, angiogenesis-stimulating molecules and others. Recent studies reveal that curcumin, a natural dietary anti-inflammatory compound, can modulate the response of the cells engaging in RA course. This review comprises detailed data about the pathogenesis and inflammation process in rheumatoid arthritis and demonstrates scientific investigations about the molecular interactions between curcumin and immune cells responsible for rheumatoid arthritis development to discuss this herbal drug’s immunoregulatory role in RA treatment.
Collapse
Affiliation(s)
- Sebastian Makuch
- Department of Pathology, Wroclaw Medical University, 50-367 Wroclaw, Poland;
| | - Kamil Więcek
- Department of Biotechnology, Wroclaw University, 50-383 Wroclaw, Poland;
| | - Marta Woźniak
- Department of Pathology, Wroclaw Medical University, 50-367 Wroclaw, Poland;
- Correspondence:
| |
Collapse
|
16
|
Paradowska-Gorycka A, Wajda A, Romanowska-Próchnicka K, Walczuk E, Kuca-Warnawin E, Kmiolek T, Stypinska B, Rzeszotarska E, Majewski D, Jagodzinski PP, Pawlik A. Th17/Treg-Related Transcriptional Factor Expression and Cytokine Profile in Patients With Rheumatoid Arthritis. Front Immunol 2020; 11:572858. [PMID: 33362761 PMCID: PMC7759671 DOI: 10.3389/fimmu.2020.572858] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 11/06/2020] [Indexed: 12/15/2022] Open
Abstract
Objectives The aim of our study was to determine whether there is a correlation between transcription factors expression and Th17/Treg ratio, cytokine profile in the RA phenotype as well as to identify transcription factors that could be a potential biomarker for RA. Methods The study was conducted on 45 patients with RA, 27 patients with OA and 46 healthy controls (HCs). Th17 and Treg frequency was determined by flow cytometry (15 patients with RA/OA and 15 subjects of HC). Gene expression was estimated by qPCR, and the serum cytokine levels were determined by ELISA. Results The percentage of Treg (CD4+CD25highCD127-) cells in RA patients was lower than in OA patients or HCs. Proportions of Th17 (CD4+CCR6+CXCR3-) cells were higher in RA and OA in comparison to HCs. STAT5 showed a very high expression in the blood of RA patients compared to healthy subjects. The expression of STAT5 and HELIOS was not detected in Th17 cells. A positive correlation between SMAD3 and STAT3 in RA patients was observed. Negative correlations between HIF-1A and SMAD2 in RA Treg cells and DAS-28 score were observed. The range of serum of IL-17 and IL-21 were higher in RA patients than in OA patients. Concentrations of serum IL-2 and IFN-γ were higher in RA and OA patients than in healthy subjects. Based on the ROC analysis, the diagnostic potential of the combination of HIF1A, SMAD3 and STAT3, was determined at AUC 0.95 for distinguishing RA patients from HCs. For distinguishing RA patients from OA patients the diagnostic potential of the combination of SMAD2, SMAD3, SMAD4 and STAT3, was determined at AUC 0.95. Conclusion Based on our study, we conclude that SMAD3 and STAT3 could be potential diagnostic biomarkers for RA.
Collapse
Affiliation(s)
- Agnieszka Paradowska-Gorycka
- Department of Molecular Biology, National Institute of Geriatrics, Rheumatology and Rehabilitation, Warsaw, Poland
| | - Anna Wajda
- Department of Molecular Biology, National Institute of Geriatrics, Rheumatology and Rehabilitation, Warsaw, Poland
| | - Katarzyna Romanowska-Próchnicka
- Department of Connective Tissue Diseases, National Institute of Geriatrics, Rheumatology and Rehabilitation, Warsaw, Poland.,Department of Pathophysiology, Warsaw Medical University, Warsaw, Poland
| | - Ewa Walczuk
- Department of Molecular Biology, National Institute of Geriatrics, Rheumatology and Rehabilitation, Warsaw, Poland
| | - Ewa Kuca-Warnawin
- Department of Pathophysiology and Immunology, National Institute of Geriatrics, Rheumatology and Rehabilitation, Warsaw, Poland
| | - Tomasz Kmiolek
- Department of Molecular Biology, National Institute of Geriatrics, Rheumatology and Rehabilitation, Warsaw, Poland
| | - Barbara Stypinska
- Department of Molecular Biology, National Institute of Geriatrics, Rheumatology and Rehabilitation, Warsaw, Poland
| | - Ewa Rzeszotarska
- Department of Molecular Biology, National Institute of Geriatrics, Rheumatology and Rehabilitation, Warsaw, Poland
| | - Dominik Majewski
- Department of Rheumatology and Internal Medicine, Poznan University of Medical Science, Poznan, Poland
| | - Pawel Piotr Jagodzinski
- Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, Poznan, Poland
| | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| |
Collapse
|
17
|
Tavasolian F, Hosseini AZ, Soudi S, Naderi M. miRNA-146a Improves Immunomodulatory Effects of MSC-derived Exosomes in Rheumatoid Arthritis. Curr Gene Ther 2020; 20:297-312. [DOI: 10.2174/1566523220666200916120708] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/13/2020] [Accepted: 08/27/2020] [Indexed: 12/15/2022]
Abstract
Background:
Rheumatoid arthritis (RA) is a severe inflammatory joint disorder, and several
studies have taken note of the probability that microRNAs (miRNAs) play an important role in
RA pathogenesis. MiR-146 and miR-155 arose as primary immune response regulators. Mesenchymal
stem cells (MSCs) immunomodulatory function is primarily regulated by paracrine factors,
such as exosomes. Exosomes, which serve as carriers of genetic information in cell-to-cell communication,
transmit miRNAs between cells and have been studied as vehicles for the delivery of therapeutic
molecules.
Aims:
The current research aimed to investigate the therapeutic effect of miR-146a/miR-155 transduced
mesenchymal stem cells (MSC)-derived exosomes on the immune response.
Methods:
Here, exosomes were extracted from normal MSCs with over-expressed
miR-146a/miR-155; Splenocytes were isolated from collagen-induced arthritis (CIA) and control
mice. Expression levels miR-146a and miR-155 were then monitored. Flow cytometry was performed
to assess the impact of the exosomes on regulatory T-cell (Treg) levels. Expression of some
key autoimmune response genes and their protein products, including retinoic acid-related orphan
receptor (ROR)-γt, tumor necrosis factor (TNF)-α, interleukin (IL)-17, -6, -10, and transforming
growth factor (TGF)-β in the Splenocytes was determined using both quantitative real-time PCR
and ELISA. The results showed that miR-146a was mainly down-regulated in CIA mice. Treatment
with MSC-derived exosomes and miR-146a/miR-155-transduced MSC-derived exosomes significantly
altered the CIA mice Treg cell levels compared to in control mice.
Results:
Ultimately, such modulation may promote the recovery of appropriate T-cell responses in
inflammatory situations such as RA.
Conclusion:
miR-146a-transduced MSC-derived exosomes also increased forkhead box P3 (Fox-
P3), TGFβ and IL-10 gene expression in the CIA mice; miR-155 further increased the gene expressions
of RORγt, IL-17, and IL-6 in these mice. Based on the findings here, Exosomes appears to
promote the direct intracellular transfer of miRNAs between cells and to represent a possible therapeutic
strategy for RA. The manipulation of MSC-derived exosomes with anti-inflammatory miRNA
may increase Treg cell populations and anti-inflammatory cytokines.
Collapse
Affiliation(s)
- Fataneh Tavasolian
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ahmad Zavaran Hosseini
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Sara Soudi
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mahmood Naderi
- Cell-Based Therapies Research Center, Digestive Disease Research Institute, Sciences, Tehran, Iran
| |
Collapse
|
18
|
Ishikawa Y, Terao C. The Impact of Cigarette Smoking on Risk of Rheumatoid Arthritis: A Narrative Review. Cells 2020; 9:cells9020475. [PMID: 32092988 PMCID: PMC7072747 DOI: 10.3390/cells9020475] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/10/2020] [Accepted: 02/11/2020] [Indexed: 12/13/2022] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease characterized by chronic inflammation and subsequent proliferation of synovial tissues, which eventually leads to cartilage and bone destruction without effective treatments. Anti-citrullinated cyclic peptide/protein antibody (ACPA) and rheumatoid factor (RF) are two main characteristic autoantibodies found in RA patients and are associated with unfavorable disease outcomes. Although etiologies and causes of the disease have not been fully clarified yet, it is likely that interactive contributions of genetic and environmental factors play a main role in RA pathology. Previous works have demonstrated several genetic and environmental factors as risks of RA development and/or autoantibody productions. Among these, cigarette smoking and HLA-DRB1 are the well-established environmental and genetic risks, respectively. In this narrative review, we provide a recent update on genetic contributions to RA and the environmental risks of RA with a special focus on cigarette smoking and its impacts on RA pathology. We also describe gene–environmental interaction in RA pathogenesis with an emphasis on cigarette smoking and HLA-DRB1.
Collapse
Affiliation(s)
- Yuki Ishikawa
- Section for Immunobiology, Joslin Diabetes Center, Harvard Medical School, One Joslin Place, Boston, MA 02215, USA;
- Laboratory for Statistical and Translational Genetics, Center for Integrative Medical Sciences, RIKEN, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Chikashi Terao
- Laboratory for Statistical and Translational Genetics, Center for Integrative Medical Sciences, RIKEN, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
- Clinical Research Center, Shizuoka General Hospital, 4 Chome-27-1 Kitaando, Aoi Ward, Shizuoka 420-8527, Japan
- Department of Applied Genetics, The School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
- Correspondence: ; Tel.: +81-(0)45-503-9121
| |
Collapse
|