1
|
Siemaszko J, Łacina P, Szymczak D, Szeremet A, Majcherek M, Czyż A, Sobczyk-Kruszelnicka M, Fidyk W, Solarska I, Nasiłowska-Adamska B, Skowrońska P, Bieniaszewska M, Tomaszewska A, Basak GW, Giebel S, Wróbel T, Bogunia-Kubik K. Soluble MICA concentrations and genetic variability of MICA and its NKG2D receptor as factors affecting Graft-versus-Host Disease development after allogeneic haematopoietic stem cell transplantation. Hum Immunol 2024; 85:111147. [PMID: 39332041 DOI: 10.1016/j.humimm.2024.111147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/22/2024] [Accepted: 09/17/2024] [Indexed: 09/29/2024]
Abstract
Despite new treatment strategies, graft-versus-host disease (GvHD) remains a formidable complication after allogeneic hematopoietic stem cell transplantation (HSCT). This study aimed to investigate the impact of polymorphisms and expression of MICA and NKG2D receptor on the development of GvHD in allogeneic HSCT recipients. Soluble MICA (sMICA) concentration was measured in serum collected 30 days after transplantation and the genetic variability of MICA and NKG2D genes was evaluated. The frequency of NKG2D+NK cells was determined by flow cytometry before and (21, 30, 60 and 90 days) after transplantation. Recipients with acute GvHD grades II-IV carried the NKG2D rs1049174 C allele more frequently than controls or patients with no or mild disease. Patients with chronic GvHD had higher frequency of NKG2D expressing NK cells posttransplant, reflecting increased activity of their NK cells. Although no direct relationship between MICA SNPs and GvHD were observed, the presence of MICA rs1051792 GG genotype correlated with elevated sMICA levels and increased serum level of sMICA was associated with higher risk of chronic GvHD. Our findings suggest that sMICA concentration may serve as a potential biomarker for chronic GvHD and emphasize the impact of genetic variability of NKG2D and its surface expression on the HSCT outcome.
Collapse
Affiliation(s)
- Jagoda Siemaszko
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Piotr Łacina
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Donata Szymczak
- Department and Clinic of Hematology, Cellular Therapies and Internal Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Agnieszka Szeremet
- Department and Clinic of Hematology, Cellular Therapies and Internal Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Maciej Majcherek
- Department and Clinic of Hematology, Cellular Therapies and Internal Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Anna Czyż
- Department and Clinic of Hematology, Cellular Therapies and Internal Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Małgorzata Sobczyk-Kruszelnicka
- Department of Bone Marrow Transplantation and Hematology-Oncology, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice, Poland
| | - Wojciech Fidyk
- Department of Bone Marrow Transplantation and Hematology-Oncology, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice, Poland
| | - Iwona Solarska
- Institute of Hematology and Blood Transfusion Medicine, Warsaw, Poland
| | | | | | - Maria Bieniaszewska
- Department of Hematology and Transplantology, Medical University of Gdansk, Gdansk, Poland
| | - Agnieszka Tomaszewska
- Department of Hematology, Transplantation and Internal Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Grzegorz W Basak
- Department of Hematology, Transplantation and Internal Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Sebastian Giebel
- Department of Bone Marrow Transplantation and Hematology-Oncology, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice, Poland
| | - Tomasz Wróbel
- Department and Clinic of Hematology, Cellular Therapies and Internal Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Katarzyna Bogunia-Kubik
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland.
| |
Collapse
|
2
|
Yue Y, Zi M, Feng J, Wang W, Ren Z, Wu C, Yang Z. Efficacy of nature killer cell combination chemotherapy for post-radical gastric cancer metastases: Case report. SAGE Open Med Case Rep 2024; 12:2050313X241254743. [PMID: 38803362 PMCID: PMC11129568 DOI: 10.1177/2050313x241254743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 04/25/2024] [Indexed: 05/29/2024] Open
Abstract
Nature killer cell therapy has shown strong efficacy in the field of oncology in recent years and has been applied to patients with metastases with the aim of improving the prognosis of advanced gastric cancer. A 59-year-old male with gastric adenocarcinoma with pancreatic metastasis (T4N0M1) who underwent radical surgery for gastric cancer with tumor metastasis was treated with oxaliplatin and tegafur combined with cellular reinfusion in stages. Computed tomograpy scan and serum tumor markers were monitored continuously after the treatment course. After five courses of combined treatment, the patient was in disease control with no significant side effects. At the last follow-up, the alpha fetoprotein had returned to its normal value with a poor display of low-density shadows in the body of the pancreas. Pancreatic cancer is insidious in origin and has a high mortality rate. The report provides clinical evidence for cell therapy of pancreatic metastatic cancer with improved quality of life.
Collapse
Affiliation(s)
- Yongting Yue
- North China University of Science and Technology, Tangshan, China
| | - Mengmeng Zi
- North China University of Science and Technology Affiliated Hospital, Tangshan, China
| | - Jianing Feng
- North China University of Science and Technology, Tangshan, China
| | - Wenbang Wang
- North China University of Science and Technology, Tangshan, China
| | - Zhaoqi Ren
- Department of Transfusion Medicine, PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Chuntao Wu
- North China University of Science and Technology Affiliated Hospital, Tangshan, China
| | - Zhaoyong Yang
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
3
|
Lupo KB, Yao X, Borde S, Wang J, Torregrosa-Allen S, Elzey BD, Utturkar S, Lanman NA, McIntosh M, Matosevic S. synNotch-programmed iPSC-derived NK cells usurp TIGIT and CD73 activities for glioblastoma therapy. Nat Commun 2024; 15:1909. [PMID: 38429294 PMCID: PMC10907695 DOI: 10.1038/s41467-024-46343-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 02/23/2024] [Indexed: 03/03/2024] Open
Abstract
Severe heterogeneity within glioblastoma has spurred the notion that disrupting the interplay between multiple elements on immunosuppression is at the core of meaningful anti-tumor responses. T cell immunoreceptor with Ig and ITIM domains (TIGIT) and its glioblastoma-associated antigen, CD155, form a highly immunosuppressive axis in glioblastoma and other solid tumors, yet targeting of TIGIT, a functionally heterogeneous receptor on tumor-infiltrating immune cells, has largely been ineffective as monotherapy, suggesting that disruption of its inhibitory network might be necessary for measurable responses. It is within this context that we show that the usurpation of the TIGIT - CD155 axis via engineered synNotch-mediated activation of induced pluripotent stem cell-derived natural killer (NK) cells promotes transcription factor-mediated activation of a downstream signaling cascade that results in the controlled, localized blockade of CD73 to disrupt purinergic activity otherwise resulting in the production and accumulation of immunosuppressive extracellular adenosine. Such "decoy" receptor engages CD155 binding to TIGIT, but tilts inhibitory TIGIT/CD155 interactions toward activation via downstream synNotch signaling. Usurping activities of TIGIT and CD73 promotes the function of adoptively transferred NK cells into intracranial patient-derived models of glioblastoma and enhances their natural cytolytic functions against this tumor to result in complete tumor eradication. In addition, targeting both receptors, in turn, reprograms the glioblastoma microenvironment via the recruitment of T cells and the downregulation of M2 macrophages. This study demonstrates that TIGIT/CD155 and CD73 are targetable receptor partners in glioblastoma. Our data show that synNotch-engineered pluripotent stem cell-derived NK cells are not only effective mediators of anti-glioblastoma responses within the setting of CD73 and TIGIT/CD155 co-targeting, but represent a powerful allogeneic treatment option for this tumor.
Collapse
Affiliation(s)
- Kyle B Lupo
- Department of Industrial and Molecular Pharmaceutics, Purdue University, West Lafayette, IN, USA
| | - Xue Yao
- Department of Industrial and Molecular Pharmaceutics, Purdue University, West Lafayette, IN, USA
| | - Shambhavi Borde
- Department of Industrial and Molecular Pharmaceutics, Purdue University, West Lafayette, IN, USA
| | - Jiao Wang
- Department of Industrial and Molecular Pharmaceutics, Purdue University, West Lafayette, IN, USA
| | | | - Bennett D Elzey
- Institute for Cancer Research, Purdue University, West Lafayette, IN, USA
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, USA
| | - Sagar Utturkar
- Institute for Cancer Research, Purdue University, West Lafayette, IN, USA
| | - Nadia A Lanman
- Institute for Cancer Research, Purdue University, West Lafayette, IN, USA
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, USA
| | - MacKenzie McIntosh
- Histology Research Laboratory, Center for Comparative Translational Research, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA
| | - Sandro Matosevic
- Department of Industrial and Molecular Pharmaceutics, Purdue University, West Lafayette, IN, USA.
- Institute for Cancer Research, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
4
|
Zheng S, Li H, Li Y, Chen X, Shen J, Chen M, Zhang C, Wu J, Sun Q. The emerging role of glycolysis and immune evasion in gastric cancer. Cancer Cell Int 2023; 23:317. [PMID: 38071310 PMCID: PMC10710727 DOI: 10.1186/s12935-023-03169-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 11/27/2023] [Indexed: 08/21/2024] Open
Abstract
Gastric cancer (GC) is the fifth most common malignancy and the third leading cause of cancer-related deaths worldwide. Similar to other types of tumors, GC cells undergo metabolic reprogramming and switch to a "predominantly glycolytic" metabolic pattern to promote its survival and metastasis, also known as "the Warburg effect", which is characterized by enhanced glucose uptake and lactate production. A large number of studies have shown that targeting cancer cells to enhanced glycolysis is a promising strategy, that can make cancer cells more susceptible to other conventional treatment methods of treatment, including chemotherapy, radiotherapy and immunotherapy, and so on. Therefore, this review summarizes the metabolic characteristics of glycolysis in GC cells and focuses on how abnormal lactate concentration can lead to immunosuppression through its effects on the differentiation, metabolism, and function of infiltrating immune cells, and how targeting this phenomenon may be a potential strategy to improve the therapeutic efficacy of GC.
Collapse
Affiliation(s)
- Shanshan Zheng
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangyin Hospital of Traditional Chinese Medicine, Jiangyin Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangsu, China
- No.1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
| | - Huaizhi Li
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangyin Hospital of Traditional Chinese Medicine, Jiangyin Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangsu, China
- No.1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
| | - Yaqi Li
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangyin Hospital of Traditional Chinese Medicine, Jiangyin Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangsu, China
- No.1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
| | - Xu Chen
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangyin Hospital of Traditional Chinese Medicine, Jiangyin Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangsu, China
| | - Junyu Shen
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangyin Hospital of Traditional Chinese Medicine, Jiangyin Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangsu, China
- No.1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
| | - Menglin Chen
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangyin Hospital of Traditional Chinese Medicine, Jiangyin Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangsu, China
- No.1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
| | - Cancan Zhang
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangyin Hospital of Traditional Chinese Medicine, Jiangyin Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangsu, China
- No.1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
| | - Jian Wu
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangyin Hospital of Traditional Chinese Medicine, Jiangyin Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangsu, China.
| | - Qingmin Sun
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangyin Hospital of Traditional Chinese Medicine, Jiangyin Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangsu, China.
| |
Collapse
|
5
|
Mamun MAA, Zhang Y, Zhao JY, Shen DD, Guo T, Zheng YC, Zhao LJ, Liu HM. LSD1: an emerging face in altering the tumor microenvironment and enhancing immune checkpoint therapy. J Biomed Sci 2023; 30:60. [PMID: 37525190 PMCID: PMC10391765 DOI: 10.1186/s12929-023-00952-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 07/17/2023] [Indexed: 08/02/2023] Open
Abstract
Dysregulation of various cells in the tumor microenvironment (TME) causes immunosuppressive functions and aggressive tumor growth. In combination with immune checkpoint blockade (ICB), epigenetic modification-targeted drugs are emerging as attractive cancer treatments. Lysine-specific demethylase 1 (LSD1) is a protein that modifies histone and non-histone proteins and is known to influence a wide variety of physiological processes. The dysfunction of LSD1 contributes to poor prognosis, poor patient survival, drug resistance, immunosuppression, etc., making it a potential epigenetic target for cancer therapy. This review examines how LSD1 modulates different cell behavior in TME and emphasizes the potential use of LSD1 inhibitors in combination with ICB therapy for future cancer research studies.
Collapse
Affiliation(s)
- M A A Mamun
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, China, State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, China
| | - Yu Zhang
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, China, State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, China
| | - Jin-Yuan Zhao
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, China, State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, China
| | - Dan-Dan Shen
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Key Laboratory of Endometrial Disease Prevention and Treatment Zhengzhou China, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Ting Guo
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, China, State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, China
| | - Yi-Chao Zheng
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, China, State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, China
| | - Li-Juan Zhao
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, China, State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, China.
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, China.
| | - Hong-Min Liu
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, China, State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, China.
| |
Collapse
|
6
|
Arianfar E, Khandoozi SR, Mohammadi S, Memarian A. Suppression of CD56 bright NK cells in breast cancer patients is associated with the PD-1 and TGF-βRII expression. Clin Transl Oncol 2023; 25:841-851. [PMID: 36414921 DOI: 10.1007/s12094-022-02997-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 10/26/2022] [Indexed: 11/24/2022]
Abstract
BACKGROUND Natural killer (NK) cells, as professional cytotoxic cells, play a key role against cancer in the early and metastatic stages. Their functional defects are highly associated with the initiation or progression of breast cancer (BC). Here, we investigated the phenotypic characterization of NK cells in 26 newly diagnosed BC patients in comparison to 12 healthy counterparts. METHODS Expression of CXCR3 and PD-1, and also NKG2D, and TGF-βRII were studied on CD56dim and CD56bright NK cells from fresh peripheral blood (PB) samples using flow cytometry. The plasma levels of IFN-γ and soluble MIC-A levels were also assessed by ELISA. RESULTS Both CD56dim and CD56bright NK subtypes showed lower CXCR3 and NKG2D expression in BC patients than healthy subjects. Furthermore, patients' CD56bright NK cells significantly showed higher expression levels of TGF-βRII and PD-1. Interestingly, increased concentration of MIC-A level in plasma of BC patients was associated with the higher TGF-βRII and PD-1 expression in all NK cells, while the plasma level of IFN-γ was associated with the lower TGF-βRII expression on CD56bright NK cells in these patients. CONCLUSION Our results demonstrated phenotypically suppressed-NK cells, especially in the CD56bright subset of BC patients. It specifies their potential incompetence and outlines decrement of their anti-tumor activity, which could be interrelated with the tumor pathogenesis, TME immunosuppression, and so disease progression. The induction of compensatory mechanisms revives NK cells function and could be used in combination with the conventional treatments as a putative therapeutic approach for targeted immunotherapy.
Collapse
Affiliation(s)
- Elaheh Arianfar
- Student Research Committee, Golestan University of Medical Sciences, Gorgan, Iran.,Department of Immunology, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | | | - Saeed Mohammadi
- Stem Cell Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Ali Memarian
- Department of Immunology, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran. .,Golestan Research Center of Gastroenterology and Hepatology, Golestan University of Medical Sciences, Gorgan, Iran.
| |
Collapse
|
7
|
Chaicharoenaudomrung N, Kunhorm P, Noisa P. Cordycepin Enhances the Cytotoxicity of Human Natural Killer Cells against Cancerous Cells. Biol Pharm Bull 2023; 46:1260-1268. [PMID: 37661405 DOI: 10.1248/bpb.b23-00221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Cancer treatment with natural killer (NK) cell immunotherapy is promising. NK cells can recognize and kill cancer cells without sensitization, making them a potential cancer treatment alternative. To improve clinical efficacy and safety, more research is needed. Enhancing NK cell function improves therapeutic efficacy. Due to its potent apoptosis induction, Cordycepin, a bioactive compound from Cordyceps spp., inhibits cancer cell growth. Cordycepin has immunoregulatory properties, making it a promising candidate for combination therapy with NK cell-based immunotherapy. Cordycepin may enhance NK cell function and have clinical applications, but more research is needed. In this study, cordycepin treatment of NK-92 MI cells increased THP-1 and U-251 cell cytotoxicity. Cordycepin also significantly increased the mRNA expression of cytokine-encoding genes, including tumour necrosis factor (TNF), interferon gamma (IFNG), and interleukin 2 (IL2). NK-92 MI cells notably secreted more IFNG and granzyme B. Cordycepin also decreased CD27 and increased CD11b, CD16, and NKG2D in NK-92 MI cells, which improved its anti-cancer ability. In conclusion, cordycepin could enhance NK cell cytotoxicity against cancerous cells for the first time, supporting its use as an alternative immunoactivity agent against cancer cells. Further studies are needed to investigate its efficacy and safety in clinical settings.
Collapse
Affiliation(s)
- Nipha Chaicharoenaudomrung
- Laboratory of Cell-Based Assays and Innovations, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology
| | - Phongsakorn Kunhorm
- Laboratory of Cell-Based Assays and Innovations, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology
| | - Parinya Noisa
- Laboratory of Cell-Based Assays and Innovations, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology
| |
Collapse
|
8
|
Raven N, Klaassen M, Madsen T, Thomas F, Hamede R, Ujvari B. Transmissible cancer influences immune gene expression in an endangered marsupial, the Tasmanian devil (Sarcophilus harrisii). Mol Ecol 2022; 31:2293-2311. [PMID: 35202488 PMCID: PMC9310804 DOI: 10.1111/mec.16408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 02/14/2022] [Indexed: 11/28/2022]
Abstract
Understanding the effects of wildlife diseases on populations requires insight into local environmental conditions, host defence mechanisms, host life‐history trade‐offs, pathogen population dynamics, and their interactions. The survival of Tasmanian devils (Sarcophilus harrisii) is challenged by a novel, fitness limiting pathogen, Tasmanian devil facial tumour disease (DFTD), a clonally transmissible, contagious cancer. In order to understand the devils’ capacity to respond to DFTD, it is crucial to gain information on factors influencing the devils’ immune system. By using RT‐qPCR, we investigated how DFTD infection in association with intrinsic (sex and age) and environmental (season) factors influences the expression of 10 immune genes in Tasmanian devil blood. Our study showed that the expression of immune genes (both innate and adaptive) differed across seasons, a pattern that was altered when infected with DFTD. The expression of immunogbulins IgE and IgM:IgG showed downregulation in colder months in DFTD infected animals. We also observed strong positive association between the expression of an innate immune gene, CD16, and DFTD infection. Our results demonstrate that sampling across seasons, age groups and environmental conditions are beneficial when deciphering the complex ecoevolutionary interactions of not only conventional host‐parasite systems, but also of host and diseases with high mortality rates, such as transmissible cancers.
Collapse
Affiliation(s)
- N Raven
- Deakin University, Geelong, School of Life and Environmental Sciences, Centre for Integrative Ecology, Waurn Ponds, Vic, 3216, Australia
| | - M Klaassen
- Deakin University, Geelong, School of Life and Environmental Sciences, Centre for Integrative Ecology, Waurn Ponds, Vic, 3216, Australia
| | - T Madsen
- Deakin University, Geelong, School of Life and Environmental Sciences, Centre for Integrative Ecology, Waurn Ponds, Vic, 3216, Australia
| | - F Thomas
- CREEC/CANECEV (CREES), Montpellier, France.,MIVEGEC, Université de Montpellier, CNRS, IRD, Montpellier, France
| | - R Hamede
- Deakin University, Geelong, School of Life and Environmental Sciences, Centre for Integrative Ecology, Waurn Ponds, Vic, 3216, Australia.,School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, Tasmania, 7001, Australia
| | - B Ujvari
- Deakin University, Geelong, School of Life and Environmental Sciences, Centre for Integrative Ecology, Waurn Ponds, Vic, 3216, Australia
| |
Collapse
|
9
|
Ma ES, Wang ZX, Zhu MQ, Zhao J. Immune evasion mechanisms and therapeutic strategies in gastric cancer. World J Gastrointest Oncol 2022; 14:216-229. [PMID: 35116112 PMCID: PMC8790417 DOI: 10.4251/wjgo.v14.i1.216] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/22/2021] [Accepted: 12/10/2021] [Indexed: 02/06/2023] Open
Abstract
Gastric cancer (GC) is a malignancy with a high incidence and mortality. The tumor immune microenvironment plays an important role in promoting cancer development and supports GC progression. Accumulating evidence shows that GC cells can exert versatile mechanisms to remodel the tumor immune microenvironment and induce immune evasion. In this review, we systematically summarize the intricate crosstalk between GC cells and immune cells, including tumor-associated macrophages, neutrophils, myeloid-derived suppressor cells, natural killer cells, effector T cells, regulatory T cells, and B cells. We focus on how GC cells alter these immune cells to create an immunosuppressive microenvironment that protects GC cells from immune attack. We conclude by compiling the latest progression of immune checkpoint inhibitor-based immunotherapies, both alone and in combination with conventional therapies. Anti-cytotoxic T-lymphocyte-associated protein 4 and anti-programmed cell death protein 1/programmed death-ligand 1 therapy alone does not provide substantial clinical benefit for GC treatment. However, the combination of immune checkpoint inhibitors with chemotherapy or targeted therapy has promising survival advantages in refractory and advanced GC patients. This review provides a comprehensive understanding of the immune evasion mechanisms of GC, and highlights promising immunotherapeutic strategies.
Collapse
Affiliation(s)
- En-Si Ma
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, China
- Institute of Organ Transplantation, Fudan University, Shanghai 200040, China
| | - Zheng-Xin Wang
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, China
- Institute of Organ Transplantation, Fudan University, Shanghai 200040, China
| | - Meng-Qi Zhu
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Jing Zhao
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, China
- Cancer Metastasis Institute, Fudan University, Shanghai 200040, China
| |
Collapse
|
10
|
Hosseini R, Sarvnaz H, Arabpour M, Ramshe SM, Asef-Kabiri L, Yousefi H, Akbari ME, Eskandari N. Cancer exosomes and natural killer cells dysfunction: biological roles, clinical significance and implications for immunotherapy. Mol Cancer 2022; 21:15. [PMID: 35031075 PMCID: PMC8759167 DOI: 10.1186/s12943-021-01492-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 12/26/2021] [Indexed: 12/16/2022] Open
Abstract
Tumor-derived exosomes (TDEs) play pivotal roles in several aspects of cancer biology. It is now evident that TDEs also favor tumor growth by negatively affecting anti-tumor immunity. As important sentinels of immune surveillance system, natural killer (NK) cells can recognize malignant cells very early and counteract the tumor development and metastasis without a need for additional activation. Based on this rationale, adoptive transfer of ex vivo expanded NK cells/NK cell lines, such as NK-92 cells, has attracted great attention and is widely studied as a promising immunotherapy for cancer treatment. However, by exploiting various strategies, including secretion of exosomes, cancer cells are able to subvert NK cell responses. This paper reviews the roles of TDEs in cancer-induced NK cells impairments with mechanistic insights. The clinical significance and potential approaches to nullify the effects of TDEs on NK cells in cancer immunotherapy are also discussed.
Collapse
Affiliation(s)
- Reza Hosseini
- Department of Immunology School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Hamzeh Sarvnaz
- Department of Immunology School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Maedeh Arabpour
- Department of Medical Genetics School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Samira Molaei Ramshe
- Student Research Committee, Department of Medical Genetics, School of Medicine Shahid, Beheshti University of Medical Sciences, Tehran, Iran
| | - Leila Asef-Kabiri
- Surgical Oncologist Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Hassan Yousefi
- Department of Biochemistry and Molecular Biology, LSUHSC School of Medicine, New Orleans, USA
| | - Mohammad Esmaeil Akbari
- Surgical Oncologist Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nahid Eskandari
- Department of Immunology School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
11
|
Lisiecka U, Brodzki P, Śmiech A, Kocki J, Czop M, Adaszek Ł, Winiarczyk S. Comparative Expression Analysis of Innate Immune Markers and Phagocytic Activity in Peripheral Blood of Dogs with Mammary Tumors. Animals (Basel) 2021; 11:2398. [PMID: 34438855 PMCID: PMC8388714 DOI: 10.3390/ani11082398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/01/2021] [Accepted: 08/10/2021] [Indexed: 12/12/2022] Open
Abstract
Canine innate immune system role in cancer prevention and progression remains poorly understood. It has been revealed that innate immune cells could play a dual role in cancer immunology promoting or inhibiting tumor development and growth. Current immunotherapies target mainly the adaptive anti-tumor response and that may be a reason why they remain ineffective in a majority of patients. It is important to acquire detailed knowledge about innate immune mechanisms to broaden the diagnostic and therapeutic options and employ innate immune cells in anti-cancer therapies. In the present study, 21 female dogs of different breeds and types of spontaneous mammary tumors were investigated. The study aimed to find simple and cheap markers that can be used for preliminary diagnosis, prior to the surgical resection of the tumor. The differences in innate immune cell quantity and function were investigated between female dogs with malignant mammary tumors of epithelial and mesenchymal origin. Flow cytometry was used to evaluate the percentages of CD5+ lymphocytes including CD5low lymphocytes, CD11b integrin expression on leukocytes, phagocytosis, and oxidative burst. The number of CD11b lymphocytes was increased in tumors with epithelial origin compared to the control group. No significant differences were found between the percentages of phagocytic cells neither for granulocytes nor for monocytes. However, the phagocytes of canine patients with tumors of epithelial origin showed increased phagocytosis compared to the control group. The percentages of granulocytes that produced reactive oxygen species (ROS) in response to E.coli and PMA were not altered in patients with malignant tumors compared to control. A statistically significant difference between the number of ROS produced by the single granulocyte was demonstrated only between the group of bitches with epithelial tumors and the control group in case of E. coli stimulation. The obtained results suggest that some innate immune cells may be involved in anti-tumor immune mechanisms and have the potential to be supportive diagnostic markers in canine mammary tumors.
Collapse
Affiliation(s)
- Urszula Lisiecka
- Department of Epizootiology and Clinic of Infectious Diseases, Faculty of Veterinary Medicine, University of Life Sciences, Głęboka 30, 20-612 Lublin, Poland; (Ł.A.); (S.W.)
| | - Piotr Brodzki
- Department and Clinic of Animal Reproduction, Faculty of Veterinary Medicine, University of Life Sciences, Głęboka 30, 20-612 Lublin, Poland;
| | - Anna Śmiech
- Department of Pathological Anatomy, Faculty of Veterinary Medicine, University of Life Sciences, Głęboka 30, 20-612 Lublin, Poland;
| | - Janusz Kocki
- Department of Clinical Genetics, Chair of Medical Genetics, Medical University of Lublin, Radziwiłłowska 11, 20-080 Lublin, Poland; (J.K.); (M.C.)
| | - Marcin Czop
- Department of Clinical Genetics, Chair of Medical Genetics, Medical University of Lublin, Radziwiłłowska 11, 20-080 Lublin, Poland; (J.K.); (M.C.)
| | - Łukasz Adaszek
- Department of Epizootiology and Clinic of Infectious Diseases, Faculty of Veterinary Medicine, University of Life Sciences, Głęboka 30, 20-612 Lublin, Poland; (Ł.A.); (S.W.)
| | - Stanisław Winiarczyk
- Department of Epizootiology and Clinic of Infectious Diseases, Faculty of Veterinary Medicine, University of Life Sciences, Głęboka 30, 20-612 Lublin, Poland; (Ł.A.); (S.W.)
| |
Collapse
|
12
|
Zhang C, Li D, Yu R, Li C, Song Y, Chen X, Fan Y, Liu Y, Qu X. Immune Landscape of Gastric Carcinoma Tumor Microenvironment Identifies a Peritoneal Relapse Relevant Immune Signature. Front Immunol 2021; 12:651033. [PMID: 34054812 PMCID: PMC8155484 DOI: 10.3389/fimmu.2021.651033] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 04/20/2021] [Indexed: 12/24/2022] Open
Abstract
Background Gastric cancer (GC) still represents the third leading cause of cancer-related death worldwide. Peritoneal relapse (PR) is the most frequent metastasis occurring among patients with advanced gastric cancer. Increasingly more evidence have clarified the tumor immune microenvironment (TIME) may predict survival and have clinical significance in GC. However, tumor-transcriptomics based immune signatures derived from immune profiling have not been established for predicting the peritoneal recurrence of the advanced GC. Methods In this study, we depict the immune landscape of GC by using transcriptome profiling and clinical characteristics retrieved from GSE62254 of Gene Expression Omnibus (GEO). Immune cell infiltration score was evaluated via single-sample gene set enrichment (ssGSEA) analysis algorithm. The least absolute shrinkage and selection operator (LASSO) Cox regression algorithm was used to select the valuable immune cells and construct the final model for the prediction of PR. The receiver operating characteristic (ROC) curve and the Kaplan-Meier curve were used to check the accuracy of PRIs. Gene Set Enrichment Analysis (GSEA) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were performed to explore the molecular pathways associated with PRIs. Results A peritoneal recurrence related immune score (PRIs) with 10 immune cells was constructed. Compared to the low-PRIs group, the high-PRIs group had a greater risk. The upregulation of the focal adhesion signaling was observed in the high-PRIs subtype by GSEA and KEGG. Multivariate analysis found that both in the internal training cohort and the internal validation cohort, PRIs was a stable and independent predictor for PR. A nomogram that integrated clinicopathological features and PRIs to predict peritoneal relapse was constructed. Subgroup analysis indicated that the PRIs could obviously distinguish peritoneal recurrence in different molecular subtypes, pathological stages and Lauren subtypes, in which PRIs of Epithelial-Mesenchymal Transitions (EMT) subtype, III-IV stage and diffuse subtype are higher respectively. Conclusion Overall, we performed a comprehensive evaluation of the immune landscape of GC and constructed a predictive PR model based on the immune cell infiltration. The PRIs represents novel promising feature of predicting peritoneal recurrence of GC and sheds light on the improvement of the personalized management of GC patients after surgery.
Collapse
Affiliation(s)
- Chuang Zhang
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China.,Liaoning Province Clinical Research Center for Cancer, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Hospital of China Medical University, Shenyang, China
| | - Danni Li
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China.,Liaoning Province Clinical Research Center for Cancer, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Hospital of China Medical University, Shenyang, China
| | - Ruoxi Yu
- Department of Radiation Oncology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institution, Shenyang, China
| | - Ce Li
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China.,Liaoning Province Clinical Research Center for Cancer, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Hospital of China Medical University, Shenyang, China
| | - Yujia Song
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China.,Liaoning Province Clinical Research Center for Cancer, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Hospital of China Medical University, Shenyang, China
| | - Xi Chen
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China.,Liaoning Province Clinical Research Center for Cancer, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Hospital of China Medical University, Shenyang, China
| | - Yibo Fan
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China.,Liaoning Province Clinical Research Center for Cancer, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Hospital of China Medical University, Shenyang, China
| | - Yunpeng Liu
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China.,Liaoning Province Clinical Research Center for Cancer, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Hospital of China Medical University, Shenyang, China
| | - Xiujuan Qu
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China.,Liaoning Province Clinical Research Center for Cancer, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
13
|
Ferretti E, Carlomagno S, Pesce S, Muccio L, Obino V, Greppi M, Solari A, Setti C, Marcenaro E, Della Chiesa M, Sivori S. Role of the Main Non HLA-Specific Activating NK Receptors in Pancreatic, Colorectal and Gastric Tumors Surveillance. Cancers (Basel) 2020; 12:E3705. [PMID: 33321719 PMCID: PMC7763095 DOI: 10.3390/cancers12123705] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/01/2020] [Accepted: 12/07/2020] [Indexed: 12/19/2022] Open
Abstract
Human NK cells can control tumor growth and metastatic spread thanks to their powerful cytolytic activity which relies on the expression of an array of activating receptors. Natural cytotoxicity receptors (NCRs) NKG2D and DNAM-1 are those non-HLA-specific activating NK receptors that are mainly involved in sensing tumor transformation by the recognition of different ligands, often stress-induced molecules, on the surface of cancer cells. Tumors display several mechanisms aimed at dampening/evading NK-mediated responses, a relevant fraction of which is based on the downregulation of the expression of activating receptors and/or their ligands. In this review, we summarize the role of the main non-HLA-specific activating NK receptors, NCRs, NKG2D and DNAM-1, in controlling tumor growth and metastatic spread in solid malignancies affecting the gastrointestinal tract with high incidence in the world population, i.e., pancreatic ductal adenocarcinoma (PDAC), colorectal cancer (CRC), and gastric cancer (GC), also describing the phenotypic and functional alterations induced on NK cells by their tumor microenvironment.
Collapse
Affiliation(s)
- Elisa Ferretti
- Centro di Eccellenza per la Ricerca Biomedica, University of Genoa, 16132 Genoa, Italy;
| | - Simona Carlomagno
- Dipartimento di Medicina Sperimentale (DIMES), University of Genoa, 16132 Genoa, Italy; (S.C.); (S.P.); (L.M.); (V.O.); (M.G.); (A.S.); (C.S.)
| | - Silvia Pesce
- Dipartimento di Medicina Sperimentale (DIMES), University of Genoa, 16132 Genoa, Italy; (S.C.); (S.P.); (L.M.); (V.O.); (M.G.); (A.S.); (C.S.)
| | - Letizia Muccio
- Dipartimento di Medicina Sperimentale (DIMES), University of Genoa, 16132 Genoa, Italy; (S.C.); (S.P.); (L.M.); (V.O.); (M.G.); (A.S.); (C.S.)
| | - Valentina Obino
- Dipartimento di Medicina Sperimentale (DIMES), University of Genoa, 16132 Genoa, Italy; (S.C.); (S.P.); (L.M.); (V.O.); (M.G.); (A.S.); (C.S.)
| | - Marco Greppi
- Dipartimento di Medicina Sperimentale (DIMES), University of Genoa, 16132 Genoa, Italy; (S.C.); (S.P.); (L.M.); (V.O.); (M.G.); (A.S.); (C.S.)
| | - Agnese Solari
- Dipartimento di Medicina Sperimentale (DIMES), University of Genoa, 16132 Genoa, Italy; (S.C.); (S.P.); (L.M.); (V.O.); (M.G.); (A.S.); (C.S.)
| | - Chiara Setti
- Dipartimento di Medicina Sperimentale (DIMES), University of Genoa, 16132 Genoa, Italy; (S.C.); (S.P.); (L.M.); (V.O.); (M.G.); (A.S.); (C.S.)
| | - Emanuela Marcenaro
- Dipartimento di Medicina Sperimentale (DIMES) and Centro di Eccellenza per la Ricerca Biomedica, University of Genoa, 16132 Genoa, Italy;
| | - Mariella Della Chiesa
- Dipartimento di Medicina Sperimentale (DIMES) and Centro di Eccellenza per la Ricerca Biomedica, University of Genoa, 16132 Genoa, Italy;
| | - Simona Sivori
- Dipartimento di Medicina Sperimentale (DIMES) and Centro di Eccellenza per la Ricerca Biomedica, University of Genoa, 16132 Genoa, Italy;
| |
Collapse
|
14
|
The impaired anti-tumoral effect of immune surveillance cells in the immune microenvironment of gastric cancer. Clin Immunol 2020; 219:108551. [DOI: 10.1016/j.clim.2020.108551] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 07/07/2020] [Accepted: 07/28/2020] [Indexed: 12/11/2022]
|
15
|
Market M, Tennakoon G, Ng J, Scaffidi M, de Souza CT, Kennedy MA, Auer RC. A Method of Assessment of Human Natural Killer Cell Phenotype and Function in Whole Blood. Front Immunol 2020; 11:963. [PMID: 32508837 PMCID: PMC7251181 DOI: 10.3389/fimmu.2020.00963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 04/23/2020] [Indexed: 11/13/2022] Open
Abstract
The majority of data on human Natural Killer (NK) cell phenotype and function has been generated using cryopreserved peripheral blood mononuclear cells (PBMCs). However, cryopreservation can have adverse effects on PBMCs. In contrast, investigating immune cells in whole blood can reduce the time, volume of blood required, and potential artefacts associated with manipulation of the cells. Whole blood collected from healthy donors and cancer patients was processed by three separate protocols that can be used independently or in parallel to assess extracellular receptors, intracellular signaling protein phosphorylation, and intracellular and extracellular cytokine production in human NK cells. To assess extracellular receptor expression, 200 μL of whole blood was incubated with an extracellular staining (ECS) mix and cells were subsequently fixed and RBCs lysed prior to analysis. The phosphorylation status of signaling proteins was assessed in 500 μL of whole blood following co-incubation with interleukin (IL)-2/12 and an ECS mix for 20 min prior to cell fixation, RBC lysis, and subsequent permeabilization for staining with an intracellular staining (ICS) mix. Cytokine production (IFNγ) was similarly assessed by incubating 1 mL of whole blood with PMA-ionomycin or IL-2/12 prior to incubation with ECS and subsequent ICS antibodies. In addition, plasma was collected from stimulated samples prior to ECS for quantification of secreted IFNγ by ELISA. Results were consistent, despite inherent inter-patient variability. Although we did not investigate an exhaustive list of targets, this approach enabled quantification of representative ECS surface markers including activating (NKG2D and DNAM-1) and inhibitory (NKG2A, PD-1, TIGIT, and TIM-3) receptors, cytokine receptors (CD25, CD122, CD132, and CD212) and ICS markers associated with NK cell activation following stimulation, including signaling protein phosphorylation (p-STAT4, p-STAT5, p-p38 MAPK, p-S6) and IFNγ in both healthy donors and cancer patients. In addition, we compared extracellular receptor expression using whole blood vs. cryopreserved PBMCs and observed a significant difference in the expression of almost all receptors. The methods presented permit a relatively rapid parallel assessment of immune cell receptor expression, signaling protein activity, and cytokine production in a minimal volume of whole blood from both healthy donors and cancer patients.
Collapse
Affiliation(s)
| | - Gayashan Tennakoon
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Juliana Ng
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | | | | | - Michael A Kennedy
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Rebecca C Auer
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada.,Department of Surgery, University of Ottawa, The Ottawa Hospital, Ottawa, ON, Canada
| |
Collapse
|
16
|
Wang J, Matosevic S. Functional and metabolic targeting of natural killer cells to solid tumors. Cell Oncol (Dordr) 2020; 43:577-600. [DOI: 10.1007/s13402-020-00523-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2020] [Indexed: 12/15/2022] Open
|
17
|
Ascui G, Gálvez-Jirón F, Kramm K, Schäfer C, Siña J, Pola V, Cristi F, Hernández C, Garrido-Tapia M, Pesce B, Bustamante M, Fluxá P, Molina MC, Ribeiro CH. Decreased invariant natural killer T-cell-mediated antitumor immune response in patients with gastric cancer. Immunol Cell Biol 2020; 98:500-513. [PMID: 32189398 DOI: 10.1111/imcb.12331] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 03/16/2020] [Accepted: 03/16/2020] [Indexed: 12/24/2022]
Abstract
Gastric cancer (GC) is the third most common cause of cancer-related death worldwide. Invariant natural killer T (iNKT) cells are innate-like cytotoxic T lymphocytes involved in tumor immune surveillance. They can be activated either through CD1d-presented glycolipid antigens recognized by their invariant T-cell receptor, cytokines or by sensing tumor-associated stress-induced ligands through the natural killer group 2, member D (NKG2D) receptor. Although the number and functionality of iNKT cells may be decreased in several types of cancer, here we show that GC patients presented a mild increase in iNKT cell frequencies and numbers in the blood compared with healthy donors. In GC patients, iNKT cells, expanded in vitro with α-galactosyl ceramide and stimulated with phorbol 12-myristate 13-acetate and ionomycin, produced higher levels of interleukin-2 and transforming growth factor-beta, while their capacity to degranulate remained preserved. Because tumor-derived epithelial cell adhesion molecule-positive epithelial cells did not display surface CD1d, and NKG2D ligands (NKG2DLs) were detected in the gastric tumor milieu, we envisioned a role for NKG2D in iNKT cell functions. Peripheral iNKT cells from GC patients and controls presented similar levels of NKG2D; nevertheless, the percentages of interferon-γ-producing and CD107a-positive iNKT cells from patients were reduced upon challenge with CD1d-negative, NKG2DL-positive K562 cells, suggesting a compromised response by iNKT cells in GC patients, which may not result from impaired NKG2D/NKG2DL signaling. The decreased response of iNKT cells may explain the fact that higher frequencies of circulating iNKT cells did not confer a survival benefit for GC patients. Therefore, functional impairment of iNKT cells in GC may contribute to tumor immune escape and favor disease progression.
Collapse
Affiliation(s)
- Gabriel Ascui
- Laboratory of Cancer Immunoediting, Immunology Program, Biomedical Sciences Institute (ICBM), School of Medicine of University of Chile, Santiago de Chile, Chile
| | - Felipe Gálvez-Jirón
- Laboratory of Cancer Immunoediting, Immunology Program, Biomedical Sciences Institute (ICBM), School of Medicine of University of Chile, Santiago de Chile, Chile
| | - Karina Kramm
- Laboratory of Cancer Immunoediting, Immunology Program, Biomedical Sciences Institute (ICBM), School of Medicine of University of Chile, Santiago de Chile, Chile
| | - Carolina Schäfer
- Laboratory of Cancer Immunoediting, Immunology Program, Biomedical Sciences Institute (ICBM), School of Medicine of University of Chile, Santiago de Chile, Chile
| | - Josefina Siña
- Laboratory of Cancer Immunoediting, Immunology Program, Biomedical Sciences Institute (ICBM), School of Medicine of University of Chile, Santiago de Chile, Chile
| | - Víctor Pola
- Laboratory of Cancer Immunoediting, Immunology Program, Biomedical Sciences Institute (ICBM), School of Medicine of University of Chile, Santiago de Chile, Chile
| | - Francisca Cristi
- Laboratory of Cancer Immunoediting, Immunology Program, Biomedical Sciences Institute (ICBM), School of Medicine of University of Chile, Santiago de Chile, Chile
| | - Carolina Hernández
- Laboratory of Immune Surveillance and Immune Evasion, Immunology Program, Biomedical Sciences Institute (ICBM), School of Medicine of University of Chile, Santiago de Chile, Chile
| | - Macarena Garrido-Tapia
- Laboratory of Immune Surveillance and Immune Evasion, Immunology Program, Biomedical Sciences Institute (ICBM), School of Medicine of University of Chile, Santiago de Chile, Chile
| | - Bárbara Pesce
- MED.UCHILE-FACS Laboratory, Biomedical Sciences Institute (ICBM), School of Medicine of University of Chile, Santiago de Chile, Chile
| | - Marco Bustamante
- Department of Surgery (Oriente), Hospital del Salvador, University of Chile, Santiago de Chile, Chile
| | - Paula Fluxá
- Department of Surgery (Oriente), Hospital del Salvador, University of Chile, Santiago de Chile, Chile
| | - María C Molina
- Laboratory of Immune Surveillance and Immune Evasion, Immunology Program, Biomedical Sciences Institute (ICBM), School of Medicine of University of Chile, Santiago de Chile, Chile.,Centro de InmunoBiotecnología, Immunology Program, Biomedical Sciences Institute (ICBM), School of Medicine of University of Chile, Santiago de Chile, Chile
| | - Carolina H Ribeiro
- Laboratory of Cancer Immunoediting, Immunology Program, Biomedical Sciences Institute (ICBM), School of Medicine of University of Chile, Santiago de Chile, Chile
| |
Collapse
|
18
|
Cancer immunotherapy: Pros, cons and beyond. Biomed Pharmacother 2020; 124:109821. [PMID: 31962285 DOI: 10.1016/j.biopha.2020.109821] [Citation(s) in RCA: 334] [Impact Index Per Article: 83.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/12/2019] [Accepted: 12/18/2019] [Indexed: 12/22/2022] Open
Abstract
Cancer immunotherapy is an innovative treatment for tumors today. In various experiments and clinical studies, it has been found that immunotherapy does have incomparable advantages over traditional anti-tumor therapy, which can prolong progression-free survival (PFS) and overall survival (OS). However, immunotherapy has obvious complexity and uncertainty. Immunotherapy may also cause severe adverse reactions due to an overactive immune system. More effective and fewer adverse reactions immunological checkpoints are still under further exploration. This review gives an overview of recent developments in immunotherapy and indicates a new direction of tumor treatment through analyzing the pros and cons of immunotherapy coupled with keeping a close watch on the development trend of the immunotherapy future.
Collapse
|
19
|
Slattery K, Gardiner CM. NK Cell Metabolism and TGFβ - Implications for Immunotherapy. Front Immunol 2019; 10:2915. [PMID: 31921174 PMCID: PMC6927492 DOI: 10.3389/fimmu.2019.02915] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 11/27/2019] [Indexed: 12/18/2022] Open
Abstract
NK cells are innate lymphocytes which play an essential role in protection against cancer and viral infection. Their functions are dictated by many factors including the receptors they express, cytokines they respond to and changes in the external environment. These cell processes are regulated within NK cells at many levels including genetic, epigenetic and expression (RNA and protein) levels. The last decade has revealed cellular metabolism as another level of immune regulation. Specific immune cells adopt metabolic configurations that support their functions, and this is a dynamic process with cells undergoing metabolic reprogramming during the course of an immune response. Upon activation with pro-inflammatory cytokines, NK cells upregulate both glycolysis and oxphos metabolic pathways and this supports their anti-cancer functions. Perturbation of these pathways inhibits NK cell effector functions. Anti-inflammatory cytokines such as TGFβ can inhibit metabolic changes and reduce functional outputs. Although a lot remains to be learned, our knowledge of potential molecular mechanisms involved is growing quickly. This review will discuss our current knowledge on the role of TGFβ in regulating NK cell metabolism and will draw on a wider knowledge base regarding TGFβ regulation of cellular metabolic pathways, in order to highlight potential ways in which TGFβ might be targeted to contribute to the exciting progress that is being made in terms of adoptive NK cell therapies for cancer.
Collapse
Affiliation(s)
- Karen Slattery
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College, Dublin, Ireland
| | - Clair M Gardiner
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College, Dublin, Ireland
| |
Collapse
|
20
|
Wu X, Huang S. HER2-specific chimeric antigen receptor-engineered natural killer cells combined with apatinib for the treatment of gastric cancer. Bull Cancer 2019; 106:946-958. [DOI: 10.1016/j.bulcan.2019.03.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 02/03/2019] [Accepted: 03/14/2019] [Indexed: 01/04/2023]
|
21
|
In Vitro Killing of Colorectal Carcinoma Cells by Autologous Activated NK Cells is Boosted by Anti-Epidermal Growth Factor Receptor-induced ADCC Regardless of RAS Mutation Status. J Immunother 2019; 41:190-200. [PMID: 29293164 DOI: 10.1097/cji.0000000000000205] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Treatment of advanced metastatic colorectal cancer (mCRC) patients is associated with a poor prognosis and significant morbidity. Moreover, targeted therapies such as anti-epidermal growth factor receptor (EGFR) have no effect in metastatic patients with tumors harboring a mutation in the RAS gene. The failure of conventional treatment to improve outcomes in mCRC patients has prompted the development of adoptive immunotherapy approaches including natural killer (NK)-based therapies. In this study, after confirmation that patients' NK cells were not impaired in their cytotoxic activity, evaluated against long-term tumor cell lines, we evaluated their interactions with autologous mCRC cells. Molecular and phenotypical evaluation of mCRC cells, expanded in vitro from liver metastasis, showed that they expressed high levels of polio virus receptor and Nectin-2, whereas UL16-binding proteins were less expressed in all tumor samples evaluated. Two different patterns of MICA/B and HLA class I expression on the membrane of mCRC were documented; approximately half of mCRC patients expressed high levels of these molecules on the membrane surface, whereas, in the remaining, very low levels were documented. Resting NK cells were unable to display sizeable levels of cytotoxic activity against mCRC cells, whereas their cytotoxic activity was enhanced after overnight or 5-day incubation with IL-2 or IL-15. The susceptibility of NK-mediated mCRC lysis was further significantly enhanced after coating with cetuximab, irrespective of their RAS mutation and HLA class I expression. These data open perspectives for combined NK-based immunotherapy with anti-epidermal growth factor receptor antibodies in a cohort of mCRC patients with a poor prognosis refractory to conventional therapies.
Collapse
|
22
|
Multifunctional Natural Killer Cell Engagers Targeting NKp46 Trigger Protective Tumor Immunity. Cell 2019; 177:1701-1713.e16. [PMID: 31155232 DOI: 10.1016/j.cell.2019.04.041] [Citation(s) in RCA: 279] [Impact Index Per Article: 55.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 03/19/2019] [Accepted: 04/23/2019] [Indexed: 02/07/2023]
Abstract
Over the last decade, various new therapies have been developed to promote anti-tumor immunity. Despite interesting clinical results in hematological malignancies, the development of bispecific killer-cell-engager antibody formats directed against tumor cells and stimulating anti-tumor T cell immunity has proved challenging, mostly due to toxicity problems. We report here the generation of trifunctional natural killer (NK) cell engagers (NKCEs), targeting two activating receptors, NKp46 and CD16, on NK cells and a tumor antigen on cancer cells. Trifunctional NKCEs were more potent in vitro than clinical therapeutic antibodies targeting the same tumor antigen. They had similar in vivo pharmacokinetics to full IgG antibodies and no off-target effects and efficiently controlled tumor growth in mouse models of solid and invasive tumors. Trifunctional NKCEs thus constitute a new generation of molecules for fighting cancer. VIDEO ABSTRACT.
Collapse
|
23
|
NK Cell-Based Immunotherapy in Cancer Metastasis. Cancers (Basel) 2018; 11:cancers11010029. [PMID: 30597841 PMCID: PMC6357056 DOI: 10.3390/cancers11010029] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 12/11/2018] [Accepted: 12/20/2018] [Indexed: 01/01/2023] Open
Abstract
Metastasis represents the leading cause of cancer-related death mainly owing to the limited efficacy of current anticancer therapies on advanced malignancies. Although immunotherapy is rendering promising results in the treatment of cancer, many adverse events and factors hampering therapeutic efficacy, especially in solid tumors and metastases, still need to be solved. Moreover, immunotherapeutic strategies have mainly focused on modulating the activity of T cells, while Natural Killer (NK) cells have only recently been taken into consideration. NK cells represent an attractive target for cancer immunotherapy owing to their innate capacity to eliminate malignant tumors in a non-Major Histocompatibility Complex (MHC) and non-tumor antigen-restricted manner. In this review, we analyze the mechanisms and efficacy of NK cells in the control of metastasis and we detail the immunosubversive strategies developed by metastatic cells to evade NK cell-mediated immunosurveillance. We also share current and cutting-edge clinical approaches aimed at unleashing the full anti-metastatic potential of NK cells, including the adoptive transfer of NK cells, boosting of NK cell activity, redirecting NK cell activity against metastatic cells and the release of evasion mechanisms dampening NK cell immunosurveillance.
Collapse
|
24
|
Concha-Benavente F, Kansy B, Moskovitz J, Moy J, Chandran U, Ferris RL. PD-L1 Mediates Dysfunction in Activated PD-1 + NK Cells in Head and Neck Cancer Patients. Cancer Immunol Res 2018; 6:1548-1560. [PMID: 30282672 DOI: 10.1158/2326-6066.cir-18-0062] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 07/25/2018] [Accepted: 09/27/2018] [Indexed: 01/02/2023]
Abstract
Inhibitory immune-checkpoint receptors (ICRs), including programmed death 1 (PD-1), have been characterized as exhaustion markers on T cells that infiltrate the tumor microenvironment (TME) of many cancer types, including head and neck cancer (HNC). However, expression and function of ICRs, including PD-1, on natural killer (NK) cells remains less defined. NK cells are innate immune effector cells that lyse epidermal growth factor receptor-overexpressing HNC cells via cetuximab-mediated antibody-dependent cytotoxicity. Cetuximab is clinically effective but only in 10% to 15% of patients. Therefore, it is necessary to investigate how immunomodulation with cetuximab or PD-1 blockade might enhance NK cell responses in the TME and improve monoclonal antibody therapeutic efficacy. We observed that expression of PD-1 on NK cells marks an activated phenotype, which was suppressed only after binding programmed death ligand-1 (PD-L1). HNC patients who exhibit higher circulating PD-1+ NK cells associate with better clinical outcome, and these cells are enriched in the TME. Cetuximab-mediated NK cell activation increased PD-1 expression on NK cells in vitro, which was confirmed in vivo in a prospective neoadjuvant cetuximab trial. In contrast, PD-L1 ligation of PD-1+ NK cells diminished their activation status, whereas PD-1 blockade increased cetuximab-mediated NK cell activation and cytotoxicity, but only against HNC targets with high PD-L1 expression. Therefore, blocking the PD-1-PD-L1 axis may be a useful strategy to reverse immune evasion of HNC tumors with high PD-L1 expression during cetuximab therapy by reversing NK cell dysfunction.
Collapse
Affiliation(s)
- Fernando Concha-Benavente
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, Pennsylvania
- University of Pittsburgh Hillman Cancer Center, Pittsburgh, Pennsylvania
| | - Benjamin Kansy
- Department of Otorhinolaryngology, University Hospital Essen, Essen, Germany
| | - Jessica Moskovitz
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Jennifer Moy
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Uma Chandran
- Department of Biomedical informatics, University of Pittsburgh, Pennsylvania
| | - Robert L Ferris
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, Pennsylvania.
- University of Pittsburgh Hillman Cancer Center, Pittsburgh, Pennsylvania
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
25
|
Altered expression of CD226 and CD96 on natural killer cells in patients with pancreatic cancer. Oncotarget 2018; 7:66586-66594. [PMID: 27626490 PMCID: PMC5341822 DOI: 10.18632/oncotarget.11953] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 09/02/2016] [Indexed: 01/05/2023] Open
Abstract
The progression of pancreatic cancer (PC) is significantly associated with tumor immune escape, which may be associated with nature killer (NK) cell dysfunction. CD226, CD96, and TIGIT, which share the ligand CD155, play important roles in the regulation of NK cell function. The present study was conducted to investigate the roles of these molecules in NK cells from PC patients. Expression of these molecules on NK cells was detected from samples of 92 pancreatic cancer patients and 40 healthy controls. The expression of CD155 was also evaluated by immunohistochemistry in 88 pancreatic cancer tissues. The percentage of CD226+ and CD96+ NK cells was significantly lower in PC patients than in the healthy controls; however, the mean fluorescence intensity of CD226 and CD96 was not significantly different between the two groups. TIGIT expression on NK cells from PC patients was similar to that in the healthy controls. Additionally, the expression of CD226 was positively correlated with CD96. Further analysis demonstrated that the decrease in the percentage of CD226+ and CD96+ NK cells was associated with tumor histological grade and lymph node metastasis. Moreover, the CD155 levels in PC tissues were significantly higher than those in adjacent tissues. Our results suggest that a lower percentage of CD226+ and CD96+ NK cells may contribute to tumor immune escape in PC patients; moreover, the use of NK cells with high CD226 and CD96 expression to treat PC cells with high CD155 expression may have potential and should be explored in the future.
Collapse
|
26
|
Sim GC, Wu S, Jin L, Hwu P, Radvanyi LG. Defective STAT1 activation associated with impaired IFN-γ production in NK and T lymphocytes from metastatic melanoma patients treated with IL-2. Oncotarget 2017; 7:36074-36091. [PMID: 27153543 PMCID: PMC5094984 DOI: 10.18632/oncotarget.8683] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 03/11/2016] [Indexed: 11/25/2022] Open
Abstract
High dose (HD) IL-2 therapy has been used for almost two decades as an immunotherapy for metastatic melanoma. IL-2 promotes the proliferation and effector function of T and NK cells through the tyrosine phosphorylation and activation of signal transducer and activator of transcription factors (STAT), especially STAT5. However, whether any defects in STAT activation exist in T and NK lymphocytes from melanoma patients are under debate. Here, we measured the extent of HD IL-2-induced phosphorylation of STAT5 and STAT1 in lymphocyte subsets from metastatic melanoma patients and healthy controls at a single cell level using flow cytometry. We found no defects in IL-2-induced STAT5 phosphorylation and induction of proliferation in T and NK cell subsets in vitro. This was confirmed by measuring ex vivo STAT5 activation in whole blood collected from patients during their first bolus HD IL-2 infusion. IL-2 also induced STAT1 phosphorylation via IFN-γ receptors in T and NK cell subsets through the release of IFN-γ by CD56hi and CD56lo NK cells. Further analysis revealed that melanoma patients had a sub-optimal STAT1 activation response linked to lower IL-2-induced IFN-γ secretion in both CD56hi and CD56low NK cell subsets. STAT1 activation in response to IL-2 also showed an age-related decline in melanoma patients not linked to tumor burden indicating a premature loss of NK cell function. Taken together, these findings indicate that, although STAT5 activation is normal in metastatic melanoma patients in response to IL-2, indirect STAT1 activation is defective owing to deficiencies in the NK cell response to IL-2.
Collapse
Affiliation(s)
- Geok Choo Sim
- Department of Melanoma Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.,Department of Immunology, Moffitt Cancer Center, Tampa, FL 22612, USA
| | - Sheng Wu
- Department of Melanoma Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Lei Jin
- Department of Melanoma Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Patrick Hwu
- Department of Melanoma Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Laszlo G Radvanyi
- Department of Melanoma Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.,Department of Immunology, Moffitt Cancer Center, Tampa, FL 22612, USA
| |
Collapse
|
27
|
Maeng HG, Lee SJ, Lee YA, Lee HJ, Kim YJ, Lee JK, Kim JC, Choi J. Hemacytotoxicity and natural killer lytic index: New parameters to evaluate natural killer cell immunity for clinical use in cancer. Oncol Lett 2017; 15:1325-1333. [PMID: 29391904 DOI: 10.3892/ol.2017.7365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 06/09/2017] [Indexed: 12/20/2022] Open
Abstract
Cytotoxicity assays with patient peripheral blood mononuclear cell (PBMC)-derived natural killer (NK) cells are useful in evaluating the innate immunity of patients with cancer. However, the size of the NK cell population in PBMC preparations may have significant effects on the assay outcome. Therefore, the present study examined the effect of NK cell frequency in a cytotoxicity system to investigate NK cell immunity in post-surgical colorectal cancer patients. For this, hemacytotoxicity was assessed using PBMC preparations, and lymphocyte subset populations were analyzed in samples obtained from 47 patients and 45 healthy volunteers. In addition, a new theoretical parameter, the 'NK lytic index', was termed to represent the per-cell cytotoxicity and compensate for the NK cell frequency effect during PBMC preparations. Notably, the patterns of hemacytotoxicity and NK lytic index did not coincide in follow-up studies with consecutive patients following surgical intervention. In addition, it was determined that NK cell NKG2D expression influences NK lytic index, but not hemacytotoxicity. Transforming growth factor (TGF)-β-bound lymphocytes influenced hemacytotoxicity and NK lytic index. These findings indicate that total cell activity (hemacytotoxicity) is not a sum of per-cell activities (NK lytic indexes), suggesting that clinicians should employ NK lytic index in addition to hemacytotoxicity in order to precisely determine how to enhance NK cell immunity in patients with cancer, either focusing on recovering the number of NK cells or boosting NK cell activity in single cell levels, or both.
Collapse
Affiliation(s)
- Hyung Gun Maeng
- Immunology Laboratory, Holon Center, Seoul Song Do Colorectal Hospital, Seoul 04597, Republic of Korea
| | - Su Jin Lee
- Immunology Laboratory, Holon Center, Seoul Song Do Colorectal Hospital, Seoul 04597, Republic of Korea
| | - Yun A Lee
- Immunology Laboratory, Holon Center, Seoul Song Do Colorectal Hospital, Seoul 04597, Republic of Korea
| | - Hye Jeong Lee
- Immunology Laboratory, Holon Center, Seoul Song Do Colorectal Hospital, Seoul 04597, Republic of Korea
| | - Young Joo Kim
- Immunology Laboratory, Holon Center, Seoul Song Do Colorectal Hospital, Seoul 04597, Republic of Korea
| | - Jong Kyun Lee
- Immunology Laboratory, Holon Center, Seoul Song Do Colorectal Hospital, Seoul 04597, Republic of Korea.,Department of Surgery, Seoul Song Do Colorectal Hospital, Seoul 04597, Republic of Korea
| | - Jae Cheol Kim
- Immunology Laboratory, Holon Center, Seoul Song Do Colorectal Hospital, Seoul 04597, Republic of Korea.,Department of Surgery, Seoul Song Do Colorectal Hospital, Seoul 04597, Republic of Korea
| | - Joungbum Choi
- Immunology Laboratory, Holon Center, Seoul Song Do Colorectal Hospital, Seoul 04597, Republic of Korea
| |
Collapse
|
28
|
Kamei R, Yoshimura K, Yoshino S, Inoue M, Asao T, Fuse M, Wada S, Kuramasu A, Furuya-Kondo T, Oga A, Iizuka N, Suzuki N, Maeda N, Watanabe Y, Matsukuma S, Iida M, Takeda S, Ueno T, Yamamoto N, Fukagawa T, Katai H, Sasaki H, Hazama S, Oka M, Nagano H. Expression levels of UL16 binding protein 1 and natural killer group 2 member D affect overall survival in patients with gastric cancer following gastrectomy. Oncol Lett 2017; 15:747-754. [PMID: 29391893 PMCID: PMC5769384 DOI: 10.3892/ol.2017.7354] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 06/09/2017] [Indexed: 12/14/2022] Open
Abstract
UL16 binding protein 1 (ULBP1) expressed on the tumor cell surface binds to the natural killer group 2 member D (NKG2D) receptor presenting on natural killer (NK), cluster of differentiation (CD)8+ T, and γ δ T cells. However, the roles of ULBP1 and NKG2D expression and associated immune responses in gastric cancer are unclear. The present study investigated the associations between ULBP1 and NKG2D expression and clinical outcomes in patients with gastric cancer. The levels of ULBP1 and NKG2D expression were examined in human gastric cancer cell lines and gastric cancer tissues from 98 patients who underwent surgery from 2004 to 2008. MKN-74 cells expressed ULBP1 with ULBP2, -5, or -6. NKG2D was expressed at a higher level following activation of T cells and NK cells. Among the tissue sections positive for NKG2D expression, 6 patients were positive for CD8 and CD56. In all tissues, NKG2D-expressing cells were typically aCD8+ T cells. Patients with NKG2D expression in tumors exhibited significantly longer overall survival (OS) compared with patients without NKG2D expression in tumors (P=0.0217). The longest OS was observed in patients positive for ULBP1 and NKG2D, whereas the shortest OS was observed in patients negative for ULBP1 and NKG2D. The interaction between ULBP1 and NKG2D may improve OS in patients with gastric cancer, and may have applications in immunotherapy for the induction of adaptive immunity in patients with cancer. Additionally, ULBP1 and NKG2D may be useful as prognostic biomarkers in gastric cancer.
Collapse
Affiliation(s)
- Ryoji Kamei
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University School of Medicine, Ube, Yamaguchi 755-8505, Japan
| | - Kiyoshi Yoshimura
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University School of Medicine, Ube, Yamaguchi 755-8505, Japan.,Experimental Therapeutics, National Cancer Center Hospital, Tsukiji, Chuo-ku, Tokyo 104-0045, Japan.,Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Shigefumi Yoshino
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University School of Medicine, Ube, Yamaguchi 755-8505, Japan
| | - Moeko Inoue
- Experimental Therapeutics, National Cancer Center Hospital, Tsukiji, Chuo-ku, Tokyo 104-0045, Japan.,Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Tetsuhiko Asao
- Experimental Therapeutics, National Cancer Center Hospital, Tsukiji, Chuo-ku, Tokyo 104-0045, Japan.,Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Masanori Fuse
- Experimental Therapeutics, National Cancer Center Hospital, Tsukiji, Chuo-ku, Tokyo 104-0045, Japan.,Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Satoshi Wada
- Division of Cancer Immunotherapy, Kanagawa Cancer Center, Yokohama, Kanagawa 241-8515, Japan
| | - Atsuo Kuramasu
- Department of Molecular Pharmacology, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi 755-8505, Japan
| | - Tomoko Furuya-Kondo
- Department of Molecular Pathology, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi 755-8505, Japan
| | - Atsunori Oga
- Department of Molecular Pathology, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi 755-8505, Japan
| | - Norio Iizuka
- Department of KAMPO Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Hiroshima 734-0037, Japan
| | - Nobuaki Suzuki
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University School of Medicine, Ube, Yamaguchi 755-8505, Japan
| | - Noriko Maeda
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University School of Medicine, Ube, Yamaguchi 755-8505, Japan
| | - Yusaku Watanabe
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University School of Medicine, Ube, Yamaguchi 755-8505, Japan
| | - Satoshi Matsukuma
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University School of Medicine, Ube, Yamaguchi 755-8505, Japan
| | - Michihisa Iida
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University School of Medicine, Ube, Yamaguchi 755-8505, Japan
| | - Shigeru Takeda
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University School of Medicine, Ube, Yamaguchi 755-8505, Japan
| | - Tomio Ueno
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University School of Medicine, Ube, Yamaguchi 755-8505, Japan
| | - Noboru Yamamoto
- Experimental Therapeutics, National Cancer Center Hospital, Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Takeo Fukagawa
- Gastric Surgery Division, National Cancer Center Hospital, Chuo-ku, Tokyo 104-0045, Japan
| | - Hitoshi Katai
- Gastric Surgery Division, National Cancer Center Hospital, Chuo-ku, Tokyo 104-0045, Japan
| | - Hiroki Sasaki
- Fundamental Innovative Oncology Core, Biomarker and Therapeutic Target Research Core, National Cancer Center Institute, Chuo-ku, Tokyo 104-0045, Japan
| | - Shoichi Hazama
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University School of Medicine, Ube, Yamaguchi 755-8505, Japan
| | - Masaaki Oka
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University School of Medicine, Ube, Yamaguchi 755-8505, Japan
| | - Hiroaki Nagano
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University School of Medicine, Ube, Yamaguchi 755-8505, Japan
| |
Collapse
|
29
|
Li L, Li W, Wang C, Yan X, Wang Y, Niu C, Zhang X, Li M, Tian H, Yao C, Jin H, Han F, Xu D, Han W, Li D, Cui J. Adoptive transfer of natural killer cells in combination with chemotherapy improves outcomes of patients with locally advanced colon carcinoma. Cytotherapy 2017; 20:134-148. [PMID: 29056549 DOI: 10.1016/j.jcyt.2017.09.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 09/14/2017] [Accepted: 09/14/2017] [Indexed: 01/30/2023]
Abstract
BACKGROUND Despite the availability of multiple treatment strategies, patients with advanced colon carcinoma (CC) have poor prognoses. The aim of this study was to evaluate the efficacy and safety of natural killer (NK) cell therapy in combination with chemotherapy in patients with locally advanced CC. METHODS We assessed the cytotoxicity of NK cells to CC cells (CCs) and CC stem cells (CSCs) pre-treated with 5-fluorouracil or oxaliplatin in vitro. Then, an open-label cohort study was conducted with locally advanced CC patients who had received radical resection. Patients received either NK cell therapy combined with chemotherapy (NK cell group, 27 patients) or pure chemotherapy (control group, 33 patients). Progression-free survival (PFS), overall survival (OS) and adverse effects were investigated. RESULTS Chemotherapy sensitized CCs and CSCs to NK cell cytotoxicity through regulation of NK cell-activating/inhibitory receptor ligands. Poorly differentiated CCs were more susceptible to NK cells than well-differentiated ones. In the cohort study, the 5-year PFS and OS rates in the NK cell group were significantly higher than those in the control group (51.1% versus 35%, P= 0.044; 72.5% versus 51.6%, P= 0.037, respectively). Among patients with poorly differentiated carcinomas and low expression of human leukocyte antigen (HLA)-1, the median PFS in the NK cell group versus the control group was 23.5 versus 12.1 months (P= 0.0475) and 33.1 versus 18.5 months (P= 0.045), respectively. No significant adverse reactions were reported. CONCLUSION NK cell therapy in combination with chemotherapy in locally advanced CC prevented recurrence and prolonged survival with acceptable adverse effects, especially for poorly differentiated carcinomas.
Collapse
Affiliation(s)
- Lingyu Li
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Wei Li
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Chang Wang
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Xu Yan
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Yizhuo Wang
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Chao Niu
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Xiaoying Zhang
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Min Li
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Huimin Tian
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Cheng Yao
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Haofan Jin
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Fujun Han
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Dongsheng Xu
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Wei Han
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Dan Li
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Jiuwei Cui
- Cancer Center, The First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
30
|
Corrêa LH, Corrêa R, Farinasso CM, de Sant'Ana Dourado LP, Magalhães KG. Adipocytes and Macrophages Interplay in the Orchestration of Tumor Microenvironment: New Implications in Cancer Progression. Front Immunol 2017; 8:1129. [PMID: 28970834 PMCID: PMC5609576 DOI: 10.3389/fimmu.2017.01129] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 08/28/2017] [Indexed: 12/22/2022] Open
Abstract
Inflammation has been known as one of the main keys to the establishment and progression of cancers. Chronic low-grade inflammation is also a strategic condition that underlies the causes and development of metabolic syndrome and obesity. Moreover, obesity has been largely related to poor prognosis of tumors by modulating tumor microenvironment with secretion of several inflammatory mediators by tumor-associated adipocytes (TAAs), which can modulate and recruit tumor-associated macrophages. Thus, the understanding of cellular and molecular mechanisms that underlay and link inflammation, obesity, and cancer is crucial to identify potential targets that interfere with this important route. Knowledge about the exact role of each component of the tumor microenvironment is not yet fully understood, but the new insights in literature highlight the essential role of adipocytes and macrophages interplay as key factor to determine the fate of cancer progression. In this review article, we focus on the functions of adipocytes and macrophages orchestrating cellular and molecular mechanisms that lead to inflammatory modulation in tumor microenvironment, which will be crucial to cancer establishment. We also emphasized the mechanisms by which the tumor promotes itself by recruiting and polarizing macrophages, discussing the role of adipocytes in this process. In addition, we discuss here the newest possible anticancer therapeutic treatments aiming to retard the development of the tumor based on what is known about cancer, adipocyte, and macrophage polarization.
Collapse
Affiliation(s)
- Luís Henrique Corrêa
- Laboratory of Immunology and Inflammation, Department of Cell Biology, University of Brasilia, Brasilia, Brazil
| | - Rafael Corrêa
- Laboratory of Immunology and Inflammation, Department of Cell Biology, University of Brasilia, Brasilia, Brazil
| | - Cecília Menezes Farinasso
- Laboratory of Immunology and Inflammation, Department of Cell Biology, University of Brasilia, Brasilia, Brazil
| | | | - Kelly Grace Magalhães
- Laboratory of Immunology and Inflammation, Department of Cell Biology, University of Brasilia, Brasilia, Brazil
| |
Collapse
|
31
|
Zhang Y, Wang H, Lou X, Qu X, Gao L, Liu X, Li M, Guo H, Jiang Y. Decreased percentage of NKG2D+NK cells in patients with incident onset of Type 1 Diabetes. Clin Exp Pharmacol Physiol 2017; 44:180-190. [PMID: 27862177 DOI: 10.1111/1440-1681.12699] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 11/08/2016] [Accepted: 11/08/2016] [Indexed: 11/28/2022]
Abstract
Type 1 diabetes mellitus (T1DM) is characterized by absolute insulin deficiency owing to autoimmune destruction of the pancreatic β cells. A significant decrease in natural killer (NK) cells in peripheral blood has been observed in patients with untreated T1DM. In the present study, we aimed to explore the role of NK cells and their subsets in young T1DM patients. A total of 30 children and adolescents with untreated T1DM and 27 healthy controls (HC) were recruited in this study. Flow cytometry analysis indicated that the percentage of peripheral blood CD3-CD56+ NK cells and NK cells subsets (CD56bright, CD56dim and CD56neg), were significantly decreased in the T1DM patients compared to healthy controls. In addition, the percentage of inducible CD107a+ and IFN-γ-secreting NK cells was significantly decreased compared to HC. Interestingly, the percentage of NKG2D+ NK cells negatively correlated with the level of serum TCHOL and TG in T1DM patients. Our data indicate that decreased number and impaired function of NK cells may have a role in the pathogenesis of T1DM.
Collapse
Affiliation(s)
- Yupan Zhang
- Department of Central Laboratory, The First Hospital, Jilin University, Changchun, China.,Department of Endocrinology, Weihai Municipal Hospital, Weihai, China
| | - Haifeng Wang
- Department of Central Laboratory, The First Hospital, Jilin University, Changchun, China
| | - Xiaoqian Lou
- Department of Central Laboratory, The First Hospital, Jilin University, Changchun, China
| | - Xiaozhang Qu
- Department of Central Laboratory, The First Hospital, Jilin University, Changchun, China
| | - Lichao Gao
- Department of Central Laboratory, The First Hospital, Jilin University, Changchun, China
| | - Xiaolei Liu
- Key Laboratory of Zoonosis Research, Ministry of Education, The First Hospital, Jilin University, Changchun, China
| | - Man Li
- Department of Central Laboratory, The First Hospital, Jilin University, Changchun, China
| | - Hui Guo
- Department of Central Laboratory, The First Hospital, Jilin University, Changchun, China.,Department of Endocrinology, Weihai Municipal Hospital, Weihai, China
| | - Yanfang Jiang
- Department of Central Laboratory, The First Hospital, Jilin University, Changchun, China.,Key Laboratory of Zoonosis Research, Ministry of Education, The First Hospital, Jilin University, Changchun, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| |
Collapse
|
32
|
Molecular checkpoints controlling natural killer cell activation and their modulation for cancer immunotherapy. Exp Mol Med 2017; 49:e311. [PMID: 28360428 PMCID: PMC5382566 DOI: 10.1038/emm.2017.42] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 12/15/2016] [Indexed: 12/20/2022] Open
Abstract
Natural killer (NK) cells have gained considerable attention as promising therapeutic tools for cancer therapy due to their innate selectivity against cancer cells over normal healthy cells. With an array of receptors evolved to sense cellular alterations, NK cells provide early protection against cancer cells by producing cytokines and chemokines and exerting direct cytolytic activity. These effector functions are governed by signals transmitted through multiple receptor–ligand interactions but are not achieved by engaging a single activating receptor on resting NK cells. Rather, they require the co-engagement of different activating receptors that use distinct signaling modules, due to a cell-intrinsic inhibition mechanism. The redundancy of synergizing receptors and the inhibition of NK cell function by a single class of inhibitory receptor suggest the presence of common checkpoints to control NK cell activation through different receptors. These molecular checkpoints would be therapeutically targeted to harness the power of NK cells against diverse cancer cells that express heterogeneous ligands for NK cell receptors. Recent advances in understanding the activation of NK cells have revealed promising candidates in this category. Targeting such molecular checkpoints will facilitate NK cell activation by lowering activation thresholds, thereby providing therapeutic strategies that optimize NK cell reactivity against cancer.
Collapse
|
33
|
Implication of combined PD-L1/PD-1 blockade with cytokine-induced killer cells as a synergistic immunotherapy for gastrointestinal cancer. Oncotarget 2016; 7:10332-44. [PMID: 26871284 PMCID: PMC4891123 DOI: 10.18632/oncotarget.7243] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 01/24/2016] [Indexed: 12/14/2022] Open
Abstract
Cytokine-induced killer (CIK) cells represent a realistic approach in cancer immunotherapy with confirmed survival benefits in the context of metastatic solid tumors. However, therapeutic effects are limited to a fraction of patients. In this study, immune-resistance elements and ideal combination therapies were explored. Initially, phenotypic analysis was performed to document CD3, CD56, NKG2D, DNAM-1, PD-L1, PD-1, CTLA-4, TIM-3, 2B4, and LAG-3 on CIK cells. Upon engagement of CIK cells with the tumor cells, expression of PD-1 on CIK cells and PD-L1 on both cells were up-regulated. Over-expression of PD-L1 levels on tumor cells via lentiviral transduction inhibited tumoricidal activity of CIK cells, and neutralizing of PD-L1/PD-1 signaling axis could enhance their tumor-killing effect. Conversely, blockade of NKG2D, a major activating receptor of CIK cells, largely caused dysfunction of CIK cells. Functional study showed an increase of NKG2D levels along with PD-L1/PD-1 blockade in the presence of other immune effector molecule secretion. Additionally, combined therapy of CIK infusion and PD-L1/PD-1 blockade caused a delay of in vivo tumor growth and exhibited a survival advantage over untreated mice. These results provide a preclinical proof-of-concept for simultaneous PD-L1/PD-1 pathways blockade along with CIK infusion as a novel immunotherapy for unresectable cancers.
Collapse
|
34
|
Xu G, Zhang M, Zhu H, Xu J. A 15-gene signature for prediction of colon cancer recurrence and prognosis based on SVM. Gene 2016; 604:33-40. [PMID: 27998790 DOI: 10.1016/j.gene.2016.12.016] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 11/07/2016] [Accepted: 12/14/2016] [Indexed: 02/08/2023]
Abstract
OBJECTIVE To screen the gene signature for distinguishing patients with high risks from those with low-risks for colon cancer recurrence and predicting their prognosis. METHODS Five microarray datasets of colon cancer samples were collected from Gene Expression Omnibus database and one was obtained from The Cancer Genome Atlas (TCGA). After preprocessing, data in GSE17537 were analyzed using the Linear Models for Microarray data (LIMMA) method to identify the differentially expressed genes (DEGs). The DEGs further underwent PPI network-based neighborhood scoring and support vector machine (SVM) analyses to screen the feature genes associated with recurrence and prognosis, which were then validated by four datasets GSE38832, GSE17538, GSE28814 and TCGA using SVM and Cox regression analyses. RESULTS A total of 1207 genes were identified as DEGs between recurrence and no-recurrence samples, including 726 downregulated and 481 upregulated genes. Using SVM analysis and five gene expression profile data confirmation, a 15-gene signature (HES5, ZNF417, GLRA2, OR8D2, HOXA7, FABP6, MUSK, HTR6, GRIP2, KLRK1, VEGFA, AKAP12, RHEB, NCRNA00152 and PMEPA1) were identified as a predictor of recurrence risk and prognosis for colon cancer patients. CONCLUSION Our identified 15-gene signature may be useful to classify colon cancer patients with different prognosis and some genes in this signature may represent new therapeutic targets.
Collapse
Affiliation(s)
- Guangru Xu
- Department of Oncology, People's Hospital of Pudong District, Shanghai University of Medicine & Health Sciences, ShangHai 201299, China
| | - Minghui Zhang
- Department of Oncology, People's Hospital of Pudong District, Shanghai University of Medicine & Health Sciences, ShangHai 201299, China
| | - Hongxing Zhu
- Department of Oncology, People's Hospital of Pudong District, Shanghai University of Medicine & Health Sciences, ShangHai 201299, China
| | - Jinhua Xu
- Department of Oncology, People's Hospital of Pudong District, Shanghai University of Medicine & Health Sciences, ShangHai 201299, China.
| |
Collapse
|
35
|
Galluzzi L, Zitvogel L, Kroemer G. Immunological Mechanisms Underneath the Efficacy of Cancer Therapy. Cancer Immunol Res 2016; 4:895-902. [DOI: 10.1158/2326-6066.cir-16-0197] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
36
|
Cryopreserved NK cells in the treatment of haematological malignancies: preclinical study. J Cancer Res Clin Oncol 2016; 142:2561-2567. [DOI: 10.1007/s00432-016-2247-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 08/31/2016] [Indexed: 10/21/2022]
|
37
|
Ma HY, Liu XZ, Liang CM. Inflammatory microenvironment contributes to epithelial-mesenchymal transition in gastric cancer. World J Gastroenterol 2016; 22:6619-6628. [PMID: 27547005 PMCID: PMC4970470 DOI: 10.3748/wjg.v22.i29.6619] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 06/12/2016] [Accepted: 07/06/2016] [Indexed: 02/07/2023] Open
Abstract
Gastric cancer (GC) is the fifth most common malignancy in the world. The major cause of GC is chronic infection with Helicobacter pylori (H. pylori). Infection with H. pylori leads to an active inflammatory microenvironment that is maintained by immune cells such as T cells, macrophages, natural killer cells, among other cells. Immune cell dysfunction allows the initiation and accumulation of mutations in GC cells, inducing aberrant proliferation and protection from apoptosis. Meanwhile, immune cells can secrete certain signals, including cytokines, and chemokines, to alter intracellular signaling pathways in GC cells. Thus, GC cells obtain the ability to metastasize to lymph nodes by undergoing the epithelial-mesenchymal transition (EMT), whereby epithelial cells lose their epithelial attributes and acquire a mesenchymal cell phenotype. Metastasis is a leading cause of death for GC patients, and the involved mechanisms are still under investigation. In this review, we summarize the current research on how the inflammatory environment affects GC initiation and metastasis via EMT.
Collapse
|
38
|
Ribeiro CH, Kramm K, Gálvez-Jirón F, Pola V, Bustamante M, Contreras HR, Sabag A, Garrido-Tapia M, Hernández CJ, Zúñiga R, Collazo N, Sotelo PH, Morales C, Mercado L, Catalán D, Aguillón JC, Molina MC. Clinical significance of tumor expression of major histocompatibility complex class I-related chains A and B (MICA/B) in gastric cancer patients. Oncol Rep 2015; 35:1309-17. [PMID: 26708143 PMCID: PMC4750752 DOI: 10.3892/or.2015.4510] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 10/31/2015] [Indexed: 12/26/2022] Open
Abstract
Gastric cancer (GC) is the third most common cause of cancer death worldwide. Natural killer cells play an important role in the immune defense against transformed cells. They express the activating receptor NKG2D, whose ligands belong to the MIC and ULBP/RAET family. Although it is well established that these ligands are generally expressed in tumors, the association between their expression in the tumor and gastric mucosa and clinical parameters and prognosis of GC remains to be addressed. In the present study, MICA and MICB expression was analyzed, by flow cytometry, in 23 and 20 pairs of gastric tumor and adjacent non-neoplasic gastric mucosa, respectively. Additionally, ligands expression in 13 tumors and 7 gastric mucosa samples from GC patients were evaluated by immunohistochemistry. The mRNA levels of MICA in 9 pairs of tumor and mucosa were determined by quantitative PCR. Data were associated with the clinicopathological characteristics and the patient outcome. MICA expression was observed in 57% of tumors (13/23) and 44% of mucosal samples (10/23), while MICB was detected in 50% of tumors (10/20) and 45% of mucosal tissues (9/20). At the protein level, ligand expression was significantly higher in the tumor than in the gastric mucosa. MICA mRNA levels were also increased in the tumor as compared to the mucosa. However, clinicopathological analysis indicated that, in patients with tumors >5 cm, the expression of MICA and MICB in the tumor did not differ from that of the mucosa, and tumors >5 cm showed significantly higher MICA and MICB expression than tumors ≤5 cm. Patients presenting tumors >5 cm that expressed MICA and MICB had substantially shorter survival than those with large tumors that did not express these ligands. Our results suggest that locally sustained expression of MICA and MICB in the tumor may contribute to the malignant progression of GC and that expression of these ligands predicts an unfavorable prognosis in GC patients presenting large tumors.
Collapse
Affiliation(s)
- Carolina Hager Ribeiro
- Programa Disciplinario de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Karina Kramm
- Programa Disciplinario de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Felipe Gálvez-Jirón
- Programa Disciplinario de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Víctor Pola
- Programa Disciplinario de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Marco Bustamante
- Departamento de Cirugía Digestiva, Hospital del Salvador, Universidad de Chile, Santiago, Chile
| | - Hector R Contreras
- Programa de Fisiología y Biofísica, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Andrea Sabag
- Programa Disciplinario de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Macarena Garrido-Tapia
- Programa Disciplinario de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Carolina J Hernández
- Programa Disciplinario de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Roberto Zúñiga
- Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Norberto Collazo
- Centro de InmunoBiotecnología, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Pablo Hernán Sotelo
- Centro de InmunoBiotecnología, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Camila Morales
- Programa Disciplinario de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Luis Mercado
- Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Diego Catalán
- Programa Disciplinario de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Juan Carlos Aguillón
- Programa Disciplinario de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - María Carmen Molina
- Programa Disciplinario de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile
| |
Collapse
|
39
|
Duong MN, Cleret A, Matera EL, Chettab K, Mathé D, Valsesia-Wittmann S, Clémenceau B, Dumontet C. Adipose cells promote resistance of breast cancer cells to trastuzumab-mediated antibody-dependent cellular cytotoxicity. Breast Cancer Res 2015; 17:57. [PMID: 25908175 PMCID: PMC4482271 DOI: 10.1186/s13058-015-0569-0] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 04/01/2015] [Indexed: 01/04/2023] Open
Abstract
Introduction Trastuzumab has been used in the treatment of human epidermal growth factor receptor 2 (HER2)-expressing breast cancer, but its efficacy is limited by de novo or acquired resistance. Although many mechanisms have been proposed to explain resistance to trastuzumab, little is known concerning the role of the tumor microenvironment. Given the importance of antibody-dependent cellular cytotoxicity (ADCC) in the antitumor effect of trastuzumab and the abundance of adipose tissue in the breast, we investigated the impact of adipocytes on ADCC. Methods We set up a coculture system to study the effect of adipocytes on ADCC in vitro. The results were validated in vivo in a mouse xenograft model. Results We found that adipocytes, as well as preadipocytes, inhibited trastuzumab-mediated ADCC in HER2-expressing breast cancer cells via the secretion of soluble factors. The inhibition of ADCC was not due to titration or degradation of the antibody. We found that adipose cells decreased the secretion of interferon-γ by natural killer cells, but did not alter natural killer cells’ cytotoxicity. Preincubation of breast cancer cells with the conditioned medium derived from adipocytes reduced the sensitivity of cancer cells to ADCC. Using a transcriptomic approach, we found that cancer cells undergo major modifications when exposed to adipocyte-conditioned medium. Importantly, breast tumors grafted next to lipomas displayed resistance to trastuzumab in mouse xenograft models. Conclusions Collectively, our findings underline the importance of adipose tissue in the resistance to trastuzumab and suggest that approaches targeting the adipocyte–cancer cell crosstalk may help sensitize cancer cells to trastuzumab-based therapy. Electronic supplementary material The online version of this article (doi:10.1186/s13058-015-0569-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Minh Ngoc Duong
- Centre de Recherche en Cancérologie de Lyon (CRCL), INSERM UMR 1052, CNRS 5286, 8 Avenue Rockefeller, 69008, Lyon, France.
| | - Aurore Cleret
- Centre de Recherche en Cancérologie de Lyon (CRCL), INSERM UMR 1052, CNRS 5286, 8 Avenue Rockefeller, 69008, Lyon, France.
| | - Eva-Laure Matera
- Centre de Recherche en Cancérologie de Lyon (CRCL), INSERM UMR 1052, CNRS 5286, 8 Avenue Rockefeller, 69008, Lyon, France.
| | - Kamel Chettab
- Centre de Recherche en Cancérologie de Lyon (CRCL), INSERM UMR 1052, CNRS 5286, 8 Avenue Rockefeller, 69008, Lyon, France.
| | - Doriane Mathé
- Centre de Recherche en Cancérologie de Lyon (CRCL), INSERM UMR 1052, CNRS 5286, 8 Avenue Rockefeller, 69008, Lyon, France.
| | - Sandrine Valsesia-Wittmann
- Centre Léon Bérard, Pôle des sciences cliniques, Plateforme d'innovations en immunomonitoring et immunothérapie, 28 Promenade Léa et Napoléon Bullukian, 69008, Lyon, France.
| | - Béatrice Clémenceau
- INSERM U892, Centre de Recherche en Cancérologie Nantes-Angers, 8 quai Moncousu, BP 70721, 44007, Nantes Cedex, France. .,Centre Hospitalier Universitaire de Nantes, 1 Place Alexis-Ricordeau, 44000, Nantes, France.
| | - Charles Dumontet
- Centre de Recherche en Cancérologie de Lyon (CRCL), INSERM UMR 1052, CNRS 5286, 8 Avenue Rockefeller, 69008, Lyon, France. .,Hospices Civils de Lyon, 165 Chemin du Grand Revoyet, 69310, Pierre-Bénite, France.
| |
Collapse
|
40
|
Combined cellular immunotherapy and chemotherapy improves clinical outcome in patients with gastric carcinoma. Cytotherapy 2015; 17:979-88. [PMID: 25890480 DOI: 10.1016/j.jcyt.2015.03.605] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 03/04/2015] [Indexed: 01/12/2023]
Abstract
BACKGROUND AIMS Despite the availability of multiple treatment strategies, patients with gastric carcinoma (GC) have a dismal prognosis. The aim of this study was to evaluate the efficacy and safety of cellular immunotherapy (CIT) with the use of autologous natural killer cells, γδT cells and cytokine-induced killer cells in combination with chemotherapy in patients with GC. METHODS In this open-label pilot cohort study, patients were treated with the combination therapy (chemo/CIT group) or chemotherapy alone (control group). Progression-free survival (PFS), overall survival (OS), quality of life (QOL) and adverse events were investigated. RESULTS Fifty-eight patients were analyzed, 30 in the chemo/CIT group and 28 in the control group. The median PFS of the chemo/CIT group was significantly longer compared with the control group (P = 0.021). In subgroup analysis, in patients with stage III GC, node-positive metastasis or poorly differentiated carcinoma, the 2-year PFS rate in chemo/CIT versus control groups was 62.5% versus 26.7% (P = 0.022), 50% versus 27.3% (P = 0.016) and 56.3% versus 28.6% (P = 0.005), respectively. The median OS in either group has not yet been reached, and there was no significant difference in OS between the groups. The QOL was improved in the patients treated with chemo/CIT compared with the control group. CIT was well tolerated and not related to any significant adverse events. CONCLUSIONS A combination of CIT and chemotherapy for patients with GC was safe, improved QOL, and might prevent recurrence, especially in GC patients with advanced stage, poorly differentiated carcinoma or lymph node metastasis.
Collapse
|
41
|
Sharma R, Das A. Organ-specific phenotypic and functional features of NK cells in humans. Immunol Res 2014; 58:125-31. [PMID: 24366663 DOI: 10.1007/s12026-013-8477-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Natural killer (NK) cells kill virus-infected and tumor target cells without prior sensitization. Each NK cell expresses a multitude of activating and inhibitory receptors, and the interplay of signals determines the outcome of NK cell activity. NK cell-mediated cytolysis of target cell involves polarized degranulation at effector-target interface. Peripheral blood NK cell constitutes about 10% of lymphocytes, and approximately 90% of peripheral blood NK cells are CD56(dim)CD16(+); however, there is a distinct subset of NK cells, CD56(bright)CD16(-), expressed by certain lymphoid organs which are able to produce large amounts of cytokines including interferon-γ, tumor necrosis factor, and granulocyte-macrophage colony-stimulating factor, but the cytotoxicity is attained only on their prolonged activation. In this review, we discuss the accumulated data on distinct phenotypes of NK cells in human uterus, liver, intestine, skin, and lung and also attempt to correlate their phenotype with corresponding activity and functions, with significant stress on the role of NK cells in pathology in the specific organs. Our detailed understanding of altered NK cell activity in different organs and their inherent cytotoxic activity against tumor target cells will help us design better immunotherapeutic strategies in NK cell-mediated cancer therapies.
Collapse
Affiliation(s)
- Richa Sharma
- Department of Biotechnology, Delhi Technological University, Bawana Road, New Delhi, 110042, Delhi, India
| | | |
Collapse
|
42
|
Peng YP, Zhang JJ, Liang WB, Tu M, Lu ZP, Wei JS, Jiang KR, Gao WT, Wu JL, Xu ZK, Miao Y, Zhu Y. Elevation of MMP-9 and IDO induced by pancreatic cancer cells mediates natural killer cell dysfunction. BMC Cancer 2014; 14:738. [PMID: 25274283 PMCID: PMC4287420 DOI: 10.1186/1471-2407-14-738] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 09/24/2014] [Indexed: 01/11/2023] Open
Abstract
Background Natural killer (NK) cells play a key role in non-specific immune response in different cancers, including pancreatic cancer. However the anti-tumor effect of NK cells decreases during pancreatic cancer progression. The regulatory pathways by which NK cells facilitate tumor immune escape are unclear, therefore our purpose was to investigate the roles of the contributory factors. Methods NK cells isolated from fresh healthy peripheral blood were co-cultured with normal human pancreatic ductal cells hTERT-HPNE and human pancreatic cancer cell lines SW1990 and BxPc-3 in vitro. Then NK cell function was determined by Flow cytometric analysis of surface receptors and cytotoxic granules in NK cells, NK cell apoptosis and cytotoxicity, and Enzyme-linked immunosorbent assay of cytokines. Expression level of MMP-9, IDO and COX-2 in hTERT-HPNE and SW1990 cells were detected by quantitative RT-PCR. Statistical differences between data groups were determined by independent t-tests using SPSS 19.0 software. Results Our results showed that NK cell function was significantly downregulated following exposure to pancreatic cancer cells compared to normal pancreatic cells, as demonstrated by lower expressions of activating surface receptors (NKG2D, DNAM-1, NKp30 and NKp46) and cytotoxic granules (Perforin and Granzyme B); decreased secretion of cytokines (TNF-α and IFN-γ); and reduced cytotoxicity against myelogenous leukemia K562 cells. Further investigations revealed that MMP-9 and IDO may be implicated in SW1990 cell-induced NK cell dysfunction by facilitating tumor immune evasion. Blockade by TIMP-1 and/or 1-MT could partially restore NK function. Conclusions Taken together, elevation of MMP-9 and IDO induced by pancreatic cancer cells mediates NK cell dysfunction. Our findings could contribute to the development of NK cell-based immunotherapy in patients with pancreatic cancer.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Yi Miao
- Department of General Surgery, The first Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, People's Republic of China.
| | | |
Collapse
|
43
|
Kim HS, Kwon HJ, Kim GE, Cho MH, Yoon SY, Davies AJ, Oh SB, Lee H, Cho YK, Joo CH, Kwon SW, Kim SC, Kim YK. Attenuation of natural killer cell functions by capsaicin through a direct and TRPV1-independent mechanism. Carcinogenesis 2014; 35:1652-60. [DOI: 10.1093/carcin/bgu091] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
|
44
|
Peng YP, Zhu Y, Zhang JJ, Xu ZK, Qian ZY, Dai CC, Jiang KR, Wu JL, Gao WT, Li Q, Du Q, Miao Y. Comprehensive analysis of the percentage of surface receptors and cytotoxic granules positive natural killer cells in patients with pancreatic cancer, gastric cancer, and colorectal cancer. J Transl Med 2013; 11:262. [PMID: 24138752 PMCID: PMC3854023 DOI: 10.1186/1479-5876-11-262] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 10/09/2013] [Indexed: 02/06/2023] Open
Abstract
Background Digestive malignancies, especially pancreatic cancer (PC), gastric cancer (GC), and colorectal cancer (CRC), still occur at persistently high rates, and disease progression in these cancers has been associated with tumor immunosurveillance escape. Natural killer (NK) cell dysfunction may be responsible for this phenomenon, however, the exact relationship between tumor immunosurveillance escape in digestive malignancies and NK cell dysfunction remains unclear. Methods Percentage of the surface receptors NKG2A, KIR3DL1, NKG2D, NKp30, NKp44, NKp46, and DNAM-1, as well as the cytotoxic granules perforin and granzyme B positive NK cells were determined in patients with pancreatic cancer (n = 31), gastric cancer (n = 31), and CRC (n = 32) prior to surgery and healthy controls (n = 31) by multicolor flow cytometry. Independent t-tests or Mann-Whitney U-tests were used to compare the differences between the patient and healthy control groups, as well as the differences between patients with different pathologic features of cancer. Results Percentage of NKG2D, NKp30, NKp46, and perforin positive NK cells was significantly down-regulated in patients with PC compared to healthy controls, as well as GC and CRC; reduced levels of these molecules was associated with indicators of disease progression in each malignancy (such as histological grade, depth of invasion, lymph node metastasis). On the contrary, percentage of KIR3DL1 positive NK cells was significantly increased in patients with PC, as well as GC and CRC, but was not associated with any indicators of disease progression. Conclusions Altered percentage of surface receptors and cytotoxic granules positive NK cells may play a vital role in tumor immunosurveillance escape by inducing NK cell dysfunction in patients with PC, GC, and CRC.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Yi Miao
- Department of General Surgery, The first Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, People's Republic of China.
| |
Collapse
|
45
|
Qu J, Hou Z, Han Q, Jiang W, Zhang C, Tian Z, Zhang J. Intracellular poly(I:C) initiated gastric adenocarcinoma cell apoptosis and subsequently ameliorated NK cell functions. J Interferon Cytokine Res 2013; 34:52-9. [PMID: 24032591 DOI: 10.1089/jir.2012.0118] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Natural killer (NK) cells are granular lymphocytic cells that exert essential functions in viral infection defense and tumor immune surveillance. However, the functions of NK cells were impaired in cancer patients. Polycytidylic acid [poly(I:C)] has been used as an immune adjuvant to improve innate and adaptive immune responses. In this study, intracellular poly(I:C) could trigger gastric adenocarcinoma cells apoptosis quickly. Meanwhile, the sensitivity of poly(I:C)-treated gastric adenocarcinoma cells to NK cell cytolysis was increased, concomitant with the elevated expression of MICA/B and Fas. Furthermore, the cytolytic activity of NK cells against tumor cells was augmented significantly by the supernatant from poly(I:C)-transfected tumor cells compared with NK cells treated by the supernatant from untreated tumor cells, as well as the proliferation and migration abilities of NK cells. In this process, the activating receptors and cytolysis-associated molecules of NK cells were up-regulated. Further investigation showed that type I interferon (IFN) produced by poly(I:C)-transfected gastric adenocarcinoma cells played an important role in this process. Our findings demonstrated that intracellular poly(I:C) not only triggered gastric adenocarcinoma cell apoptosis, but also enhanced NK responses via inducing type I IFN production by gastric adenocarcinoma cells. These functions make poly(I:C) a promising therapeutic medicine for gastric adenocarcinoma.
Collapse
Affiliation(s)
- Jing Qu
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Institute of Immunopharmacology and Immunotherapy, Shandong University , Jinan, China
| | | | | | | | | | | | | |
Collapse
|
46
|
Min D, Lv XB, Wang X, Zhang B, Meng W, Yu F, Hu H. Downregulation of miR-302c and miR-520c by 1,25(OH)2D3 treatment enhances the susceptibility of tumour cells to natural killer cell-mediated cytotoxicity. Br J Cancer 2013; 109:723-30. [PMID: 23820258 PMCID: PMC3738147 DOI: 10.1038/bjc.2013.337] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 04/17/2013] [Accepted: 06/06/2013] [Indexed: 01/29/2023] Open
Abstract
Background: NKG2D recognises several ligands, including polymorphic major histocompatibility complex class I chain-related chain-related proteins A and B (MICA/B) and unique long 16-binding proteins (ULBPs). These ligands are present on cancer cells and are recognised by NKG2D in a cell-structure-sensing manner, triggering natural killer (NK) cell cytotoxicity. However, the mechanisms that control the expression of NKG2D ligands in malignant cells are poorly understood. 1-α,25-Dihydroxyvitamin D3 (1,25(OH)2D3) was recently shown to enhance the susceptibility of melanoma cells to the cytotoxicity of NK cells. However, the function of 1,25(OH)2D3 in other cancers and its potential mechanisms of action remain unknown. Methods: The expression levels of miR-302c and miR-520c in Kasumi-1, K562, MCF7 and MDA-MB-231 cells were evaluated using quantitative real-time PCR. The targets of miR-302c and miR-520c were confirmed by luciferase reporter assay. The killing effects of NK92 cells against Kasumi-1, K562, MCF7 and MDA-MB-231 cells were examined using the CytoTox 96 Non-Radioactive Cytotoxicity Assay. The levels of cytokines IFN-γ and granzyme B, which indicate the activation of NK cells, were also measured by enzyme-linked immunosorbent assay. Results: Treatment with 1,25(OH)2D3 enhanced the susceptibility of both the haematological tumour cell line Kasumi-1 and solid tumour cell line MDA-MB-231 to NK92 cells. miR-302c and miR-520c expression was induced, and their levels inversely correlated with the levels of NKG2D ligands MICA/B and ULBP2 upon 1,25(OH)2D3 treatment. A luciferase reporter assay revealed that miR-302c and miR-520c directly targeted the 3′-UTRs of MICA/B and ULBP2 and negatively regulated the expression of MIA/B and ULBP2. Moreover, upregulation of miR-302c or miR-520c by transfection of their mimics remarkably reduced the viability of Kasumi-1 cells upon NK cell co-incubation. By contrast, the suppression of the activity of miR-302c or miR-520c by their respective antisense oligonucleotides improved the resistance of Kasumi-1 cells to NK cells. Conclusion: 1,25(OH)2D3 facilitates the immuno-attack of NK cells against malignant cells partly through downregulation of miR-302c and miR-520c and hence upregulation of the NKG2D ligands MICA/B and ULBP2.
Collapse
Affiliation(s)
- D Min
- Department of Oncology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | | | | | | | | | | | | |
Collapse
|
47
|
Foulds GA, Radons J, Kreuzer M, Multhoff G, Pockley AG. Influence of tumors on protective anti-tumor immunity and the effects of irradiation. Front Oncol 2013; 3:14. [PMID: 23378947 PMCID: PMC3561630 DOI: 10.3389/fonc.2013.00014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Accepted: 01/15/2013] [Indexed: 12/20/2022] Open
Abstract
Innate and adaptive immunity plays important roles in the development and progression of cancer and it is becoming apparent that tumors can influence the induction of potentially protective responses in a number of ways. The prevalence of immunoregulatory T cell populations in the circulation and tumors of patients with cancer is increased and the presence of these cells appears to present a major barrier to the induction of tumor immunity. One aspect of tumor-mediated immunoregulation which has received comparatively little attention is that which is directed toward natural killer (NK) cells, although evidence that the phenotype and function of NK cell populations are modified in patients with cancer is accumulating. Although the precise mechanisms underlying these localized and systemic immunoregulatory effects remain unclear, tumor-derived factors appear, in part at least, to be involved. The effects could be manifested by an altered function and/or via an influence on the migratory properties of individual cell subsets. A better insight into endogenous immunoregulatory mechanisms and the capacity of tumors to modify the phenotype and function of innate and adaptive immune cells might assist the development of new immunotherapeutic approaches and improve the management of patients with cancer. This article reviews current knowledge relating to the influence of tumors on protective anti-tumor immunity and considers the potential influence that radiation-induced effects might have on the prevalence, phenotype, and function of innate and adaptive immune cells in patients with cancer.
Collapse
Affiliation(s)
- Gemma A Foulds
- Department of Oncology, The Medical School, The University of Sheffield Sheffield, UK ; Department of Radiation Oncology, Klinikum rechts der Isar, Technische Universität München Munich, Germany
| | | | | | | | | |
Collapse
|
48
|
Zhang Z, Su T, He L, Wang H, Ji G, Liu X, Zhang Y, Dong G. Identification and Functional Analysis of Ligands for Natural Killer Cell Activating Receptors in Colon Carcinoma. TOHOKU J EXP MED 2012. [DOI: 10.1620/tjem.226.59] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Zhang Zhang
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Fourth Military Medical University
| | - Tao Su
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Fourth Military Medical University
| | - Liang He
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Fourth Military Medical University
| | - Hongtao Wang
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Fourth Military Medical University
| | - Gang Ji
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Fourth Military Medical University
| | - Xiaonan Liu
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Fourth Military Medical University
| | - Yun Zhang
- Department of Immunology, Fourth Military Medical University
| | - Guanglong Dong
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Fourth Military Medical University
| |
Collapse
|