1
|
Guo Q, Dan M, Zheng Y, Zhao G, Wang D. Construction and characterization of a novel fusion alginate lyase with endolytic and exolytic cleavage activity for industrial preparation of alginate oligosaccharides. Food Chem 2024; 453:139695. [PMID: 38788651 DOI: 10.1016/j.foodchem.2024.139695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/28/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024]
Abstract
Alginate lyases with high activity and good thermostability are lacking for the preparation of alginate oligosaccharides (AOS) with various biological activities. We constructed a fusion alginate lyase with both endo-and exo-activities. AlyRm6A-Zu7 was successfully constructed by connecting the highly thermostable AlyRm6A to a new exotype lyase, AlyZu7. The fusion enzyme exhibited high catalytic activity and thermostability. It transformed sodium alginate into oligosaccharides with degrees of polymerization (DP) of 2-4 while producing 4-deoxy-L-erythro-5-hexoseulose uronic acid (DEH). The maximum reducing sugar, AOS, and DP1 + DEH yields were 75 %, 45 %, and 40 %, respectively. Molecular docking confirmed the formation of a stable complex between the substrate and AlyRm6A-Zu7. Protein interactions increased the thermostability of AlyZu7. This work provides new insights into the industrial formation of AOS and monosaccharide DEH using thermally stable fusion enzymes, which has a positive effect in the fields of functional oligosaccharide production and biofuel formation.
Collapse
Affiliation(s)
- Qing Guo
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Meiling Dan
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Yuting Zheng
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Guohua Zhao
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Damao Wang
- College of Food Science, Southwest University, Chongqing 400715, China; Yibin Academy of Southwest University, Yibin, Sichuan 644000, China.
| |
Collapse
|
2
|
Chen Y, Ci F, Jiang H, Meng D, Hamouda HI, Liu C, Quan Y, Chen S, Bai X, Zhang Z, Gao X, Balah MA, Mao X. Catalytic properties characterization and degradation mode elucidation of a polyG-specific alginate lyase OUC-FaAly7. Carbohydr Polym 2024; 333:121929. [PMID: 38494211 DOI: 10.1016/j.carbpol.2024.121929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 01/14/2024] [Accepted: 02/06/2024] [Indexed: 03/19/2024]
Abstract
Polymerized guluronates (polyG)-specific alginate lyase with lower polymerized mannuronates (polyM)-degrading activity, superior stability, and clear action mode is a powerful biotechnology tool for the preparation of AOSs rich in M blocks. In this study, we expressed and characterized a polyG-specific alginate lyase OUC-FaAly7 from Formosa agariphila KMM3901. OUC-FaAly7 belonging to polysaccharide lyase (PL) family 7 had highest activity (2743.7 ± 20.3 U/μmol) at 45 °C and pH 6.0. Surprisingly, its specific activity against polyG reached 8560.2 ± 76.7 U/μmol, whereas its polyM-degrading activity was nearly 0 within 10 min reaction. Suggesting that OUC-FaAly7 was a strict polyG-specific alginate lyase. Importantly, OUC-FaAly7 showed a wide range of temperature adaptations and remarkable temperature and pH stability. Its relative activity between 20 °C and 45 °C reached >90 % of the maximum activity. The minimum identifiable substrate of OUC-FaAly7 was guluronate tetrasaccharide (G4). Action process and mode showed that it was a novel alginate lyase digesting guluronate hexaose (G6), guluronate heptaose (G7), and polymerized guluronates, with the preferential generation of unsaturated guluronate pentasaccharide (UG5), although which could be further degraded into unsaturated guluronate disaccharide (UG3) and trisaccharide (UG2). This study contributes to illustrating the catalytic properties, substrate recognition, and action mode of novel polyG-specific alginate lyases.
Collapse
Affiliation(s)
- Yimiao Chen
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, China
| | - Fangfang Ci
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, China; Weihai Institute for Food and Drug Control, Chuangxin Road 166-6, Torch Hi-tech Science Park, Weihai 264200, China
| | - Hong Jiang
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, China; Sanya Ocean Institute, Ocean University of China, Sanya 572024, China.
| | - Di Meng
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, China
| | - Hamed I Hamouda
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, China; Processes Design and Development Department, Egyptian Petroleum Research Institute, Nasr City, 11727, Cairo, Egypt
| | - Chunhui Liu
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, China; Sanya Ocean Institute, Ocean University of China, Sanya 572024, China
| | - Yongyi Quan
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, China
| | - Suxue Chen
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, China
| | - Xinxue Bai
- Sanya Ocean Institute, Ocean University of China, Sanya 572024, China
| | - Zhaohui Zhang
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, China; Sanya Ocean Institute, Ocean University of China, Sanya 572024, China
| | - Xin Gao
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, China; Sanya Ocean Institute, Ocean University of China, Sanya 572024, China
| | - Mohamed A Balah
- Plant Protection Department, Desert Research Center, Cairo 11753, Egypt
| | - Xiangzhao Mao
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, China; Sanya Ocean Institute, Ocean University of China, Sanya 572024, China
| |
Collapse
|
3
|
Zhu B, Li L, Yuan X. Efficient preparation of alginate oligosaccharides by using alginate lyases and evaluation of the development promoting effects on Brassica napus L. in saline-alkali environment. Int J Biol Macromol 2024; 270:131917. [PMID: 38679252 DOI: 10.1016/j.ijbiomac.2024.131917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/21/2024] [Accepted: 04/25/2024] [Indexed: 05/01/2024]
Abstract
Enzymatic degradation of alginate for the preparation of alginate oligosaccharides (AOS) is currently receiving significant attention in the field. AOS has been shown to promote crop growth and improve plant resistance to abiotic stresses. In this study, two PL6 family alginate lyases, AlyRmA and AlyRmB, were expressed and characterized. These enzymes demonstrate exceptional activity and stable thermophilicity compared to other known alginate lyases. AlyRmA (8855.34 U/mg) and AlyRmB (7879.44 U/mg) exhibited excellent degradation activity towards sodium alginate even at high temperatures (70 °C). The AlyRmA and AlyRmB were characterized and utilized to efficiently produce AOS. The study investigated the promotional effect of AOS on the growth of Brassica napus L. seedlings in a saline-alkaline environment. The results of this study demonstrate the high activity and thermal stability of AlyRmA and AlyRmB, highlighting their potential in the preparation of AOS. Moreover, the application of AOS prepared by AlyRmB could enhance the resistance of Brassica napus L. to saline-alkali environments, thereby broadening the potential applications of AOS.
Collapse
Affiliation(s)
- Benwei Zhu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, China.
| | - Li Li
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, China
| | - Xinyu Yuan
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, China
| |
Collapse
|
4
|
Rønne ME, Tandrup T, Madsen M, Hunt CJ, Myers PN, Moll JM, Holck J, Brix S, Strube ML, Aachmann FL, Wilkens C, Svensson B. Three alginate lyases provide a new gut Bacteroides ovatus isolate with the ability to grow on alginate. Appl Environ Microbiol 2023; 89:e0118523. [PMID: 37791757 PMCID: PMC10617595 DOI: 10.1128/aem.01185-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 08/03/2023] [Indexed: 10/05/2023] Open
Abstract
Humans consume alginate in the form of seaweed, food hydrocolloids, and encapsulations, making the digestion of this mannuronic acid (M) and guluronic acid (G) polymer of key interest for human health. To increase knowledge on alginate degradation in the gut, a gene catalog from human feces was mined for potential alginate lyases (ALs). The predicted ALs were present in nine species of the Bacteroidetes phylum, of which two required supplementation of an endo-acting AL, expected to mimic cross-feeding in the gut. However, only a new isolate grew on alginate. Whole-genome sequencing of this alginate-utilizing isolate suggested that it is a new Bacteroides ovatus strain harboring a polysaccharide utilization locus (PUL) containing three ALs of families: PL6, PL17, and PL38. The BoPL6 degraded polyG to oligosaccharides of DP 1-3, and BoPL17 released 4,5-unsaturated monouronate from polyM. BoPL38 degraded both alginates, polyM, polyG, and polyMG, in endo-mode; hence, it was assumed to deliver oligosaccharide substrates for BoPL6 and BoPL17, corresponding well with synergistic action on alginate. BoPL17 and BoPL38 crystal structures, determined at 1.61 and 2.11 Å, respectively, showed (α/α)6-barrel + anti-parallel β-sheet and (α/α)7-barrel folds, distinctive for these PL families. BoPL17 had a more open active site than the two homologous structures. BoPL38 was very similar to the structure of an uncharacterized PL38, albeit with a different triad of residues possibly interacting with substrate in the presumed active site tunnel. Altogether, the study provides unique functional and structural insights into alginate-degrading lyases of a PUL in a human gut bacterium.IMPORTANCEHuman ingestion of sustainable biopolymers calls for insight into their utilization in our gut. Seaweed is one such resource with alginate, a major cell wall component, used as a food hydrocolloid and for encapsulation of pharmaceuticals and probiotics. Knowledge is sparse on the molecular basis for alginate utilization in the gut. We identified a new Bacteroides ovatus strain from human feces that grew on alginate and encoded three alginate lyases in a gene cluster. BoPL6 and BoPL17 show complementary specificity toward guluronate (G) and mannuronate (M) residues, releasing unsaturated oligosaccharides and monouronic acids. BoPL38 produces oligosaccharides degraded by BoPL6 and BoPL17 from both alginates, G-, M-, and MG-substrates. Enzymatic and structural characterization discloses the mode of action and synergistic degradation of alginate by these alginate lyases. Other bacteria were cross-feeding on alginate oligosaccharides produced by an endo-acting alginate lyase. Hence, there is an interdependent community in our guts that can utilize alginate.
Collapse
Affiliation(s)
- Mette E. Rønne
- Department of Biotechnology and Biomedicine, Enzyme and Protein Chemistry, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Tobias Tandrup
- Department of Biotechnology and Biomedicine, Enzyme and Protein Chemistry, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Mikkel Madsen
- Department of Biotechnology and Biomedicine, Enzyme and Protein Chemistry, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Cameron J. Hunt
- Department of Biotechnology and Biomedicine, Enzyme Technology, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Pernille N. Myers
- Department of Biotechnology and Biomedicine, Disease Systems Immunology, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Janne M. Moll
- Department of Biotechnology and Biomedicine, Disease Systems Immunology, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Jesper Holck
- Department of Biotechnology and Biomedicine, Enzyme Technology, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Susanne Brix
- Department of Biotechnology and Biomedicine, Disease Systems Immunology, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Mikael L. Strube
- Department of Biotechnology and Biomedicine, Bacterial Ecophysiology and Biotechnology, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Finn L. Aachmann
- Department of Biotechnology and Food Science, Norwegian Biopolymer Laboratory (NOBIPOL), NTNU Norwegian University of Science and Technology, Trondheim, Norway
| | - Casper Wilkens
- Department of Biotechnology and Biomedicine, Enzyme Technology, Technical University of Denmark, Kgs. Lyngby, Denmark
- Department of Biotechnology and Biomedicine, Structural Enzymology, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Birte Svensson
- Department of Biotechnology and Biomedicine, Enzyme and Protein Chemistry, Technical University of Denmark, Kgs. Lyngby, Denmark
| |
Collapse
|
5
|
Li L, Cao S, Zhu B, Yao Z, Zhu B, Qin Y, Jiang J. Efficient Degradation of Alginate and Preparation of Alginate Oligosaccharides by a Novel Biofunctional Alginate Lyase with High Activity and Excellent Thermophilic Features. Mar Drugs 2023; 21:md21030180. [PMID: 36976229 PMCID: PMC10056287 DOI: 10.3390/md21030180] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/11/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
The enzymatic degradation of seaweed polysaccharides is gaining interest for its potential in the production of functional oligosaccharides and fermentable sugars. Herein, a novel alginate lyase, AlyRm3, was cloned from a marine strain, Rhodothermus marinus DSM 4252. The AlyRm3 showed optimal activity (37,315.08 U/mg) at 70 °C and pH 8.0, with the sodium alginate used as a substrate. Noticeably, AlyRm3 was stable at 65 °C and also exhibited 30% of maximal activity at 90 °C. These results indicated that AlyRm3 is a thermophilic alginate lyase that efficiently degrades alginate at high industrial temperatures (>60 °C). The FPLC and ESI−MS analyses suggested that AlyRm3 primarily released disaccharides and trisaccharides from the alginate, polyM, and polyG in an endolytic manner. In the saccharification process of sodium alginate (0.5%, w/v), the AlyRm3 yielded numerous reducing sugars (1.73 g/L) after 2 h of reaction. These results indicated that AlyRm3 has a high enzymatic capacity for saccharifying the alginate, and could be used to saccharify the alginate biomass before the main fermentation process for biofuels. These properties make AlyRm3 a valuable candidate for both fundamental research and industrial applications.
Collapse
Affiliation(s)
- Li Li
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Shengsheng Cao
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Benwei Zhu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
- Correspondence:
| | - Zhong Yao
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Bo Zhu
- Key Laboratory of Seaweed Fertilizers, Ministry of Agriculture and Rural Affairs, Qingdao Brightmoon Seaweed Group Co., Ltd., Qingdao 266400, China
| | - Yimin Qin
- Key Laboratory of Seaweed Fertilizers, Ministry of Agriculture and Rural Affairs, Qingdao Brightmoon Seaweed Group Co., Ltd., Qingdao 266400, China
| | - Jinju Jiang
- Key Laboratory of Seaweed Fertilizers, Ministry of Agriculture and Rural Affairs, Qingdao Brightmoon Seaweed Group Co., Ltd., Qingdao 266400, China
| |
Collapse
|
6
|
Synergy of the Two Alginate Lyase Domains of a Novel Alginate Lyase from Vibrio sp. NC2 in Alginate Degradation. Appl Environ Microbiol 2022; 88:e0155922. [PMID: 36394323 PMCID: PMC9746311 DOI: 10.1128/aem.01559-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Alginate lyases play a vital role in the degradation of alginate, an important marine carbon source. Alginate is a complex macromolecular substrate, and the synergy of alginate lyases is important for the alginate utilization by microbes and the application of alginate lyases in biotechnology. Although many studies have focused on the synergy between different alginate lyases, the synergy between two alginate lyase domains of one alginate lyase has not been reported. Here, we report the synergism between the two catalytic domains of a novel alginate lyase, AlyC6', from the marine alginate-degrading bacterium Vibrio sp. NC2. AlyC6' contains two PL7 catalytic domains (CD1 and CD2) that have no sequence similarity. While both CD1 and CD2 are endo-lyases with the highest activity at 30°C, pH 8.0, and 1.0 M NaCl, they also displayed some different properties. CD1 was PM-specific, but CD2 was PG-specific. Compared with CD2, CD1 had higher catalytic efficiency, but lower substrate affinity. In addition, CD1 had a smaller minimal substrate than CD2, and the products from CD2 could be further degraded by CD1. These distinctions between the two domains enable them to synergize intramolecularly in alginate degradation, resulting in efficient and complete degradation of various alginate substrates. The bioinformatics analysis revealed that diverse alginate lyases have multiple catalytic domains, which are widespread, especially abundant in Flavobacteriaceae and Alteromonadales, which may secret multimodular alginate lyases for alginate degradation. This study provides new insight into bacterial alginate lyases and alginate degradation and is helpful for designing multimodular enzymes for efficient alginate depolymerization. IMPORTANCE Alginate is a major component in the cell walls of brown algae. Alginate degradation is carried out by alginate lyases. Until now, while most characterized alginate lyases contain one single catalytic domain, only a few have been shown to contain two catalytic domains. Furthermore, the synergy of alginate lyases has attracted increasing attention since it plays important roles in microbial alginate utilization and biotechnological applications. Although many studies have focused on the synergy between different alginate lyases, the synergy between two catalytic domains of one alginate lyase has not been reported. Here, a novel alginate lyase, AlyC6', with two functional alginate lyase domains was biochemically characterized. Moreover, the synergism between the two domains of AlyC6' was revealed. Additionally, the distribution of the alginate lyases with multiple alginate lyase domains was investigated based on the bioinformatics analysis. This study provides new insight into bacterial alginate lyases and alginate degradation.
Collapse
|
7
|
Dobruchowska JM, Bjornsdottir B, Fridjonsson OH, Altenbuchner J, Watzlawick H, Gerwig GJ, Dijkhuizen L, Kamerling JP, Hreggvidsson GO. Enzymatic depolymerization of alginate by two novel thermostable alginate lyases from Rhodothermus marinus. FRONTIERS IN PLANT SCIENCE 2022; 13:981602. [PMID: 36204061 PMCID: PMC9530828 DOI: 10.3389/fpls.2022.981602] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/17/2022] [Indexed: 06/16/2023]
Abstract
Alginate (alginic acid) is a linear polysaccharide, wherein (1→4)-linked β-D-mannuronic acid and its C5 epimer, α-L-guluronic acid, are arranged in varying sequences. Alginate lyases catalyze the depolymerization of alginate, thereby cleaving the (1→4) glycosidic linkages between the monomers by a β-elimination mechanism, to yield unsaturated 4-deoxy-L-erythro-hex-4-enopyranosyluronic acid (Δ) at the non-reducing end of resulting oligosaccharides (α-L-erythro configuration) or, depending on the enzyme, the unsaturated monosaccharide itself. In solution, the released free unsaturated monomer product is further hydrated in a spontaneous (keto-enol tautomerization) process to form two cyclic stereoisomers. In this study, two alginate lyase genes, designated alyRm3 and alyRm4, from the marine thermophilic bacterium Rhodothermus marinus (strain MAT378), were cloned and expressed in Escherichia coli. The recombinant enzymes were characterized, and their substrate specificity and product structures determined. AlyRm3 (PL39) and AlyRm4 (PL17) are among the most thermophilic and thermostable alginate lyases described to date with temperature optimum of activity at ∼75 and 81°C, respectively. The pH optimum of activity of AlyRm3 is ∼5.5 and AlyRm4 at pH 6.5. Detailed NMR analysis of the incubation products demonstrated that AlyRm3 is an endolytic lyase, while AlyRm4 is an exolytic lyase, cleaving monomers from the non-reducing end of oligo/poly-alginates.
Collapse
Affiliation(s)
- Justyna M. Dobruchowska
- Microbial Physiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Groningen, Netherlands
| | | | | | - Josef Altenbuchner
- Institute for Industrial Genetics, University of Stuttgart, Stuttgart, Germany
| | | | - Gerrit J. Gerwig
- Microbial Physiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Groningen, Netherlands
| | - Lubbert Dijkhuizen
- Microbial Physiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Groningen, Netherlands
| | - Johannis P. Kamerling
- Microbial Physiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Groningen, Netherlands
| | - Gudmundur O. Hreggvidsson
- Matís Ltd., Reykjavík, Iceland
- Faculty of Life and Environmental Sciences, University of Iceland, Reykjavík, Iceland
| |
Collapse
|
8
|
Long L, Hu Q, Wang X, Li H, Li Z, Jiang Z, Ni H, Li Q, Zhu Y. A bifunctional exolytic alginate lyase from Microbulbifer sp. ALW1 with salt activation and calcium-dependent catalysis. Enzyme Microb Technol 2022; 161:110109. [PMID: 35939899 DOI: 10.1016/j.enzmictec.2022.110109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 07/16/2022] [Accepted: 07/31/2022] [Indexed: 11/18/2022]
Abstract
Alginate lyases can depolymerize alginate to oligomers with potential applications in many fields. Here a new alginate lyase, namely AlgL6, was characterized from Microbulbifer sp. ALW1, phylogenetically classified into the polysaccharide lyase family 6 (PL6). The recombinant alginate lyase AlgL6 exerted enzymatic activities towards polymannuronate, polyguluronate, and sodium alginate in an exolytic manner. AlgL6 had an optimum temperature of 35 °C and good stability at 30 °C or below. Its optimum pH was 8.0, and it had good stability over the pH range of 5.0-9.0. AlgL6 exhibited excellent halo-stability against Na+, and its activity can be increased up to about 1.8 times by 0.5 M NaCl. AlgL6 also showed strong stability in the presence of some nonionic detergents such as Tween 20 and Tween 80. The degradation products of sodium alginate by AlgL6 exhibited more effective antioxidant activities than the undigested polysaccharides. Structure analysis illustrated the catalytic mechanism defined by the coordination of the acid/base residues Arg269 and Lys248 of AlgL6. The replacement of Ca2+-interacting amino acid residues in AlgL6 and depletion of Ca2+ suggested the involvement of Ca2+ in the enzyme's catalytic activity. These properties of AlgL6 supply support to its industrial application for development of alginate bioresource.
Collapse
Affiliation(s)
- Liufei Long
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Qingsong Hu
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Xinxia Wang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Hebin Li
- Xiamen Medical College, Xiamen 361023, China
| | - Zhipeng Li
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen 361021, China; Research Center of Food Biotechnology of Xiamen City, Xiamen 361021, China
| | - Zedong Jiang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen 361021, China; Research Center of Food Biotechnology of Xiamen City, Xiamen 361021, China
| | - Hui Ni
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen 361021, China; Research Center of Food Biotechnology of Xiamen City, Xiamen 361021, China
| | - Qingbiao Li
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen 361021, China; Research Center of Food Biotechnology of Xiamen City, Xiamen 361021, China
| | - Yanbing Zhu
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen 361021, China; Research Center of Food Biotechnology of Xiamen City, Xiamen 361021, China.
| |
Collapse
|
9
|
Li J, He Z, Liang Y, Peng T, Hu Z. Insights into Algal Polysaccharides: A Review of Their Structure, Depolymerases, and Metabolic Pathways. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:1749-1765. [PMID: 35124966 DOI: 10.1021/acs.jafc.1c05365] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In recent years, marine macroalgae with extensive biomass have attracted the attention of researchers worldwide. Furthermore, algal polysaccharides have been widely studied in the food, pharmaceutical, and cosmetic fields because of their various kinds of bioactivities. However, there are immense barriers to their application as a result of their high molecular size, poor solubility, hydrocolloid nature, and low physiological activities. Unique polysaccharides, such as laminarin, alginate, fucoidan, agar, carrageenan, porphyran, ulvan, and other complex structural polysaccharides, can be digested by marine bacteria with many carbohydrate-active enzymes (CAZymes) by breaking down the limitation of glycosidic bonds. However, structural elucidation of algal polysaccharides, metabolic pathways, and identification of potential polysaccharide hydrolases that participate in different metabolic pathways remain major obstacles restricting the efficient utilization of algal oligosaccharides. This review focuses on the structure, hydrolase families, metabolic pathways, and potential applications of seven macroalgae polysaccharides. These results will contribute to progressing our understanding of the structure of algal polysaccharides and their metabolic pathways and will be valuable for clearing the way for the compelling utilization of bioactive oligosaccharides.
Collapse
Affiliation(s)
- Jin Li
- Department of Biology, College of Science, Shantou University, Shantou, Guangdong 515063, People's Republic of China
| | - Zhixiao He
- Department of Biology, College of Science, Shantou University, Shantou, Guangdong 515063, People's Republic of China
| | - Yumei Liang
- Department of Biology, College of Science, Shantou University, Shantou, Guangdong 515063, People's Republic of China
| | - Tao Peng
- Department of Biology, College of Science, Shantou University, Shantou, Guangdong 515063, People's Republic of China
| | - Zhong Hu
- Department of Biology, College of Science, Shantou University, Shantou, Guangdong 515063, People's Republic of China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, Guangdong 511458, People's Republic of China
| |
Collapse
|
10
|
Biochemical Characterization and Cold-Adaption Mechanism of A PL-17 Family Alginate Lyase Aly23 from Marine Bacterium Pseudoalteromonas sp. ASY5 and Its Application for Oligosaccharides Production. Mar Drugs 2022; 20:md20020126. [PMID: 35200655 PMCID: PMC8876620 DOI: 10.3390/md20020126] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/02/2022] [Accepted: 02/04/2022] [Indexed: 02/01/2023] Open
Abstract
As an important enzyme involved in the marine carbon cycle, alginate lyase has received extensive attention because of its excellent degradation ability on brown algae, which is widely utilized for alginate oligosaccharide preparation or bioethanol production. In comparison with endo-type alginate lyases (PL-5, PL-7, and PL-18 families), limited studies have focused on PL-17 family alginate lyases, especially for those with special characteristics. In this study, a novel PL-17 family alginate lyase, Aly23, was identified and cloned from the marine bacterium Pseudoalteromonas carrageenovora ASY5. Aly23 exhibited maximum activity at 35 °C and retained 48.93% of its highest activity at 4 °C, representing an excellent cold-adaptation property. Comparative molecular dynamics analysis was implemented to explore the structural basis for the cold-adaptation property of Aly23. Aly23 had a high substrate preference for poly β-D-mannuronate and exhibited both endolytic and exolytic activities; its hydrolysis reaction mainly produced monosaccharides, disaccharides, and trisaccharides. Furthermore, the enzymatic hydrolyzed oligosaccharides displayed good antioxidant activities to reduce ferric and scavenge radicals, such as hydroxyl, ABTS+, and DPPH. Our work demonstrated that Aly23 is a promising cold-adapted biocatalyst for the preparation of natural antioxidants from brown algae.
Collapse
|
11
|
Purification and Characterization of a Novel Alginate Lyase from a Marine Streptomyces Species Isolated from Seaweed. Mar Drugs 2021; 19:md19110590. [PMID: 34822461 PMCID: PMC8621082 DOI: 10.3390/md19110590] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/17/2021] [Accepted: 10/18/2021] [Indexed: 11/30/2022] Open
Abstract
Alginate, a natural polysaccharide derived from brown seaweed, is finding multiple applications in biomedicine via its transformation through chemical, physical, and, increasingly, enzymatic processes. In this study a novel alginate lyase, AlyDS44, was purified and characterized from a marine actinobacterium, Streptomyces luridiscabiei, which was isolated from decomposing seaweed. The purified enzyme had a specific activity of 108.6 U/mg, with a molecular weight of 28.6 kDa, and was composed of 260 amino acid residues. AlyDS44 is a bifunctional alginate lyase, active on both polyguluronate and polymannuronate, though it preferentially degrades polyguluronate. The optimal pH of this enzyme is 8.5 and the optimal temperature is 45 °C. It is a salt-tolerant alginate lyase with an optimal activity at 0.6 M NaCl. Metal ions Mn2+, Co2+, and Fe2+ increased the alginate degrading activity, but it was inhibited in the presence of Zn2+ and Cu2+. The highly conserved regions of its amino acid sequences indicated that AlyDS44 belongs to the polysaccharide lyase family 7. The main breakdown products of the enzyme on alginate were disaccharides, trisaccharides, and tetrasaccharides, which demonstrated that this enzyme acted as an endo-type alginate lyase. AlyDS44 is a novel enzyme, with the potential for efficient production of alginate oligosaccharides with low degrees of polymerization.
Collapse
|
12
|
Thomas F, Le Duff N, Wu TD, Cébron A, Uroz S, Riera P, Leroux C, Tanguy G, Legeay E, Guerquin-Kern JL. Isotopic tracing reveals single-cell assimilation of a macroalgal polysaccharide by a few marine Flavobacteria and Gammaproteobacteria. THE ISME JOURNAL 2021; 15:3062-3075. [PMID: 33953365 PMCID: PMC8443679 DOI: 10.1038/s41396-021-00987-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/25/2021] [Accepted: 04/09/2021] [Indexed: 02/03/2023]
Abstract
Algal polysaccharides constitute a diverse and abundant reservoir of organic matter for marine heterotrophic bacteria, central to the oceanic carbon cycle. We investigated the uptake of alginate, a major brown macroalgal polysaccharide, by microbial communities from kelp-dominated coastal habitats. Congruent with cell growth and rapid substrate utilization, alginate amendments induced a decrease in bacterial diversity and a marked compositional shift towards copiotrophic bacteria. We traced 13C derived from alginate into specific bacterial incorporators and quantified the uptake activity at the single-cell level, using halogen in situ hybridization coupled to nanoscale secondary ion mass spectrometry (HISH-SIMS) and DNA stable isotope probing (DNA-SIP). Cell-specific alginate uptake was observed for Gammaproteobacteria and Flavobacteriales, with carbon assimilation rates ranging from 0.14 to 27.50 fg C µm-3 h-1. DNA-SIP revealed that only a few initially rare Flavobacteriaceae and Alteromonadales taxa incorporated 13C from alginate into their biomass, accounting for most of the carbon assimilation based on bulk isotopic measurements. Functional screening of metagenomic libraries gave insights into the genes of alginolytic Alteromonadales active in situ. These results highlight the high degree of niche specialization in heterotrophic communities and help constraining the quantitative role of polysaccharide-degrading bacteria in coastal ecosystems.
Collapse
Affiliation(s)
- François Thomas
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), Roscoff, France.
| | - Nolwen Le Duff
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), Roscoff, France
| | - Ting-Di Wu
- Institut Curie, Université Paris-Saclay, Paris, France
- Université Paris-Saclay, INSERM US43, CNRS UMS2016, Multimodal Imaging Center, Orsay, France
| | | | - Stéphane Uroz
- Université de Lorraine, INRAE, UMR1136 « Interactions Arbres-Microorganismes », Champenoux, France
| | - Pascal Riera
- Sorbonne Université, CNRS, UMR7144, Station Biologique de Roscoff (SBR), Roscoff, France
| | - Cédric Leroux
- CNRS, Sorbonne Université, FR2424, Metabomer, Station Biologique de Roscoff, Roscoff, France
| | - Gwenn Tanguy
- CNRS, Sorbonne Université, FR2424, Genomer, Station Biologique de Roscoff, Roscoff, France
| | - Erwan Legeay
- CNRS, Sorbonne Université, FR2424, Genomer, Station Biologique de Roscoff, Roscoff, France
| | - Jean-Luc Guerquin-Kern
- Institut Curie, Université Paris-Saclay, Paris, France
- Université Paris-Saclay, INSERM US43, CNRS UMS2016, Multimodal Imaging Center, Orsay, France
| |
Collapse
|
13
|
Xu F, Cha QQ, Zhang YZ, Chen XL. Degradation and Utilization of Alginate by Marine Pseudoalteromonas: a Review. Appl Environ Microbiol 2021; 87:e0036821. [PMID: 34160244 PMCID: PMC8357284 DOI: 10.1128/aem.00368-21] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Alginate, which is mainly produced by brown algae and decomposed by heterotrophic bacteria, is an important marine organic carbon source. The genus Pseudoalteromonas contains diverse forms of heterotrophic bacteria that are widely distributed in marine environments and are an important group in alginate degradation. In this review, the diversity of alginate-degrading Pseudoalteromonas is introduced, and the characteristics of Pseudoalteromonas alginate lyases, including their sequences, enzymatic properties, structures, and catalytic mechanisms, and the synergistic effect of Pseudoalteromonas alginate lyases on alginate degradation are introduced. The acquisition of the alginate degradation capacity and the alginate utilization pathways of Pseudoalteromonas are also introduced. This paper provides a comprehensive overview of alginate degradation by Pseudoalteromonas, which will contribute to the understanding of the degradation and recycling of marine algal polysaccharides driven by marine bacteria.
Collapse
Affiliation(s)
- Fei Xu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
- College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Qian-Qian Cha
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Yu-Zhong Zhang
- College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
- Marine Biotechnology Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Xiu-Lan Chen
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
14
|
Wei W, Zhang X, Hou Z, Hu X, Wang Y, Wang C, Yang S, Cui H, Zhu L. Microbial Regulation of Deterioration and Preservation of Salted Kelp under Different Temperature and Salinity Conditions. Foods 2021; 10:foods10081723. [PMID: 34441501 PMCID: PMC8394645 DOI: 10.3390/foods10081723] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 11/25/2022] Open
Abstract
High salinity is an effective measure to preserve kelp, but salted kelp can still deteriorate after long-term preservation. In order to clarify the key conditions and microbial behavior of salted kelp preservation, 10% (S10), 20% (S20), and 30% (S30) salt concentrations were evaluated at 25 °C (T25) and 4 °C (T4). After 30 days storage, these salted kelps showed different states including rot (T25S10), softening (T25S20), and undamaged (other samples). By detecting polysaccharide lyase activity and performing high-throughput sequencing of the prokaryotic 16S rRNA sequence and metagenome, we found that deteriorated kelps (T25S10 and T25S20) had significantly higher alginate lyase activity and bacterial relative abundance than other undamaged samples. Dyella, Saccharophagus, Halomonas, Aromatoleum, Ulvibacter, Rhodopirellula, and Microbulbifer were annotated with genes encoding endonuclease-type alginate lyases, while Bacillus and Thiobacillus were annotated as the exonuclease type. Additionally, no alginate lyase activity was detected in undamaged kelps, whose dominant microorganisms were halophilic archaea without alginate lyase-encoding genes. These results indicated that room-temperature storage may promote salted kelp deterioration due to the secretion of bacterial alginate lyase, while ultra-high-salinity and low-temperature storage can inhibit bacterial alginate lyase and promote the growth of halophilic archaea without alginate lyase, thus achieving the preservation of salted kelp.
Collapse
Affiliation(s)
- Wei Wei
- School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China; (W.W.); (X.Z.); (S.Y.)
| | - Xin Zhang
- School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China; (W.W.); (X.Z.); (S.Y.)
| | - Zhaozhi Hou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (Z.H.); (X.H.); (Y.W.); (C.W.); (H.C.)
| | - Xinyu Hu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (Z.H.); (X.H.); (Y.W.); (C.W.); (H.C.)
| | - Yuan Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (Z.H.); (X.H.); (Y.W.); (C.W.); (H.C.)
| | - Caizheng Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (Z.H.); (X.H.); (Y.W.); (C.W.); (H.C.)
| | - Shujing Yang
- School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China; (W.W.); (X.Z.); (S.Y.)
| | - Henglin Cui
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (Z.H.); (X.H.); (Y.W.); (C.W.); (H.C.)
| | - Lin Zhu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (Z.H.); (X.H.); (Y.W.); (C.W.); (H.C.)
- Correspondence: ; Tel.: +86-511-8878-0201
| |
Collapse
|
15
|
Zhang L, Li X, Zhang X, Li Y, Wang L. Bacterial alginate metabolism: an important pathway for bioconversion of brown algae. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:158. [PMID: 34275475 PMCID: PMC8286568 DOI: 10.1186/s13068-021-02007-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 07/04/2021] [Indexed: 06/13/2023]
Abstract
Brown macroalgae have attracted great attention as an alternative feedstock for biorefining. Although direct conversion of ethanol from alginates (major components of brown macroalgae cell walls) is not amenable for industrial production, significant progress has been made not only on enzymes involved in alginate degradation, but also on metabolic pathways for biorefining at the laboratory level. In this article, we summarise recent advances on four aspects: alginate, alginate lyases, different alginate-degrading systems, and application of alginate lyases and associated pathways. This knowledge will likely inspire sustainable solutions for further application of both alginate lyases and their associated pathways.
Collapse
Affiliation(s)
- Lanzeng Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Xue Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Xiyue Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Yingjie Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China.
| | - Lushan Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| |
Collapse
|
16
|
Mrudulakumari Vasudevan U, Lee OK, Lee EY. Alginate derived functional oligosaccharides: Recent developments, barriers, and future outlooks. Carbohydr Polym 2021; 267:118158. [PMID: 34119132 DOI: 10.1016/j.carbpol.2021.118158] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 04/14/2021] [Accepted: 04/14/2021] [Indexed: 02/07/2023]
Abstract
Alginate is a biopolymer used extensively in the food, pharmaceutical, and chemical industries. Alginate oligosaccharides (AOS) derived from alginate exhibit superior biological activities and therapeutic potential. Alginate lyases with characteristic substrate specificity can facilitate the production of a broad array of AOS with precise structure and functionality. By adopting innovative analytical tools in conjunction with focused clinical studies, the structure-bioactivity relationship of a number of AOS has been brought to light. This review covers fundamental aspects and recent developments in AOS research. Enzymatic and microbial processes involved in AOS production from brown algae and sequential steps involved in AOS structure elucidation are outlined. Biological mechanisms underlying the health benefits of AOS and their potential industrial and therapeutic applications are elaborated. Withal, various challenges in AOS research are traced out, and future directions, specifically on recombinant systems for AOS preparation, are delineated to further widen the horizon of these exceptional oligosaccharides.
Collapse
Affiliation(s)
- Ushasree Mrudulakumari Vasudevan
- Department of Chemical Engineering (Integrated Engineering), Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| | - Ok Kyung Lee
- Department of Chemical Engineering (Integrated Engineering), Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| | - Eun Yeol Lee
- Department of Chemical Engineering (Integrated Engineering), Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea.
| |
Collapse
|
17
|
Expression and Characterization of a Cold-Adapted Alginate Lyase with Exo/Endo-Type Activity from a Novel Marine Bacterium Alteromonas portus HB161718 T. Mar Drugs 2021; 19:md19030155. [PMID: 33802659 PMCID: PMC8002439 DOI: 10.3390/md19030155] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/09/2021] [Accepted: 03/12/2021] [Indexed: 12/11/2022] Open
Abstract
The alginate lyases have unique advantages in the preparation of alginate oligosaccharides and processing of brown algae. Herein, a gene alg2951 encoding a PL7 family alginate lyase with exo/endo-type activity was cloned from a novel marine bacterium Alteromonas portus HB161718T and then expressed in Escherichia coli. The recombinant Alg2951 in the culture supernatant reached the activity of 63.6 U/mL, with a molecular weight of approximate 60 kDa. Alg2951 exhibited the maximum activity at 25 °C and pH 8.0, was relatively stable at temperatures lower than 30 °C, and showed a special preference to poly-guluronic acid (polyG) as well. Both NaCl and KCl had the most promotion effect on the enzyme activity of Alg2951 at 0.2 M, increasing by 21.6 and 19.1 times, respectively. The TCL (Thin Layer Chromatography) and ESI-MS (Electrospray Ionization Mass Spectrometry) analyses suggested that Alg2951 could catalyze the hydrolysis of sodium alginate to produce monosaccharides and trisaccharides. Furthermore, the enzymatic hydrolysates displayed good antioxidant activity by assays of the scavenging abilities towards radicals (hydroxyl and ABTS+) and the reducing power. Due to its cold-adapted and dual exo/endo-type properties, Alg2951 can be a potential enzymatic tool for industrial production.
Collapse
|
18
|
Alginate Degradation: Insights Obtained through Characterization of a Thermophilic Exolytic Alginate Lyase. Appl Environ Microbiol 2021; 87:AEM.02399-20. [PMID: 33397696 DOI: 10.1128/aem.02399-20] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/19/2020] [Indexed: 01/07/2023] Open
Abstract
Enzymatic depolymerization of seaweed polysaccharides is gaining interest for the production of functional oligosaccharides and fermentable sugars. Herein, we describe a thermostable alginate lyase that belongs to polysaccharide lyase family 17 (PL17) and was derived from an Arctic Mid-Ocean Ridge (AMOR) metagenomics data set. This enzyme, AMOR_PL17A, is a thermostable exolytic oligoalginate lyase (EC 4.2.2.26), which can degrade alginate, poly-β-d-mannuronate, and poly-α-l-guluronate within a broad range of pHs, temperatures, and salinity conditions. Site-directed mutagenesis showed that tyrosine Y251, previously suggested to act as a catalytic acid, indeed is essential for catalysis, whereas mutation of tyrosine Y446, previously proposed to act as a catalytic base, did not affect enzyme activity. The observed reaction products are protonated and deprotonated forms of the 4,5-unsaturated uronic acid monomer, Δ, two hydrates of DEH (4-deoxy-l-erythro-5-hexulosuronate), which are formed after ring opening, and, finally, two epimers of a 5-member hemiketal called 4-deoxy-d-manno-hexulofuranosidonate (DHF), formed through intramolecular cyclization of hydrated DEH. The detection and nuclear magnetic resonance (NMR) assignment of these hemiketals refine our current understanding of alginate degradation.IMPORTANCE The potential markets for seaweed-derived products and seaweed processing technologies are growing, yet commercial enzyme cocktails for complete conversion of seaweed to fermentable sugars are not available. Such an enzyme cocktail would require the catalytic properties of a variety of different enzymes, where fucoidanases, laminarinases, and cellulases together with endo- and exo-acting alginate lyases would be the key enzymes. Here, we present an exo-acting alginate lyase that efficiently produces monomeric sugars from alginate. Since it is only the second characterized exo-acting alginate lyase capable of degrading alginate at a high industrially relevant temperature (≥60°C), this enzyme may be of great biotechnological and industrial interest. In addition, in-depth NMR-based structural elucidation revealed previously undescribed rearrangement products of the unsaturated monomeric sugars generated from exo-acting lyases. The insight provided by the NMR assignment of these products facilitates future assessment of product formation by alginate lyases.
Collapse
|
19
|
Yang J, Cui D, Ma S, Chen W, Chen D, Shen H. Characterization of a novel PL 17 family alginate lyase with exolytic and endolytic cleavage activity from marine bacterium Microbulbifer sp. SH-1. Int J Biol Macromol 2020; 169:551-563. [PMID: 33385459 DOI: 10.1016/j.ijbiomac.2020.12.196] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/25/2020] [Accepted: 12/26/2020] [Indexed: 12/28/2022]
Abstract
Alginate lyases are essential tools for depolymerizing alginate into bioactive oligosaccharides and fermentable monosaccharides. Herein, we characterized a novel polysaccharide lyase AlgSH17 from marine bacterium Microbulbifer sp. SH-1. The recombinant enzyme exhibited the maximum activity at 30 °C, pH 7.0 and retained 86.20% and 65.43% of its maximum activity at 20 °C and 15 °C, respectively, indicating that AlgSH17 has an excellent cold-adapted property. The final products of AlgSH17 mainly consisted of monosaccharides with small amounts of oligosaccharides with degrees of polymerization (DP) 2-6, suggesting that AlgSH17 possesses both exolytic and endolytic activity. Degradation pattern analysis indicated that AlgSH17 could degrade DP ≥ 4 oligosaccharides into disaccharides and trisaccharides by cleaving the endo-glycosidic bonds and further digest disaccharides and trisaccharides into monosaccharides in an exolytic manner. Products distribution and molecular docking analysis revealed that AlgSH17 could cleave the glycosidic bonds between -1 and +2 within the substrate. Furthermore, The ABTS+, hydroxyl and DPPH radicals scavenging activity of the enzymatic hydrolysates prepared by AlgSH17 reached up to 91.53%, 81.23% and 61.06%, respectively, and the enzymatic hydrolysates displayed an excellent preservation effect on fresh-cut apples. The above results suggested that AlgSH17 could be utilized for the production of monosaccharides, antioxidants and food additives.
Collapse
Affiliation(s)
- Jin Yang
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, PR China
| | - Dandan Cui
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, PR China
| | - Shuo Ma
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, PR China
| | - Wenkang Chen
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, PR China
| | - Diwen Chen
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, PR China
| | - Hong Shen
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, PR China; Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, Guangzhou 510642, PR China.
| |
Collapse
|
20
|
Cheng D, Jiang C, Xu J, Liu Z, Mao X. Characteristics and applications of alginate lyases: A review. Int J Biol Macromol 2020; 164:1304-1320. [PMID: 32745554 DOI: 10.1016/j.ijbiomac.2020.07.199] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/09/2020] [Accepted: 07/22/2020] [Indexed: 12/26/2022]
Abstract
Brown algae, as the main source of alginate, are a type of marine biomass with a very high output. Alginate, a polysaccharide composed of β-D-mannuronic acid (M) and α-L-guluronic acid (G), has great potential for applications in the food, cosmetic and pharmaceutical industries. Alginate lyases (Alys) can degrade alginate polymers into oligosaccharides or monosaccharides, resulting in a broad application field. Alys can be used for both the production of alginate oligosaccharides and the biorefinery of brown algae. In view of their important functions, an increasing number of Alys have been isolated and characterized. For better application, a comprehensive understanding of Alys is essential. Therefore, in this paper, we summarized recently discovered Alys, discussed their characteristics, and introduced their structural properties, degradation patterns and biological roles in alginate-degrading organisms. In addition, applications of Alys have been illustrated with examples. This paper provides a relatively comprehensive description of Alys, which is significant for Alys exploration and application.
Collapse
Affiliation(s)
- Danyang Cheng
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Chengcheng Jiang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Jiachao Xu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Zhen Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China.
| | - Xiangzhao Mao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
21
|
Zhou HX, Xu SS, Yin XJ, Wang FL, Li Y. Characterization of a New Bifunctional and Cold-Adapted Polysaccharide Lyase (PL) Family 7 Alginate Lyase from Flavobacterium sp. Mar Drugs 2020; 18:E388. [PMID: 32722647 PMCID: PMC7460543 DOI: 10.3390/md18080388] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 12/14/2022] Open
Abstract
Alginate oligosaccharides produced by enzymatic degradation show versatile physiological functions and biological activities. In this study, a new alginate lyase encoding gene alyS02 from Flavobacterium sp. S02 was recombinantly expressed at a high level in Yarrowia lipolytica, with the highest extracellular activity in the supernatant reaching 36.8 ± 2.1 U/mL. AlyS02 was classified in the polysaccharide lyase (PL) family 7. The optimal reaction temperature and pH of this enzyme were 30 °C and 7.6, respectively, indicating that AlyS02 is a cold-adapted enzyme. Interestingly, AlyS02 contained more than 90% enzyme activity at 25 °C, higher than other cold-adapted enzymes. Moreover, AlyS02 is a bifunctional alginate lyase that degrades both polyG and polyM, producing di- and trisaccharides from alginate. These findings suggest that AlyS02 would be a potent tool for the industrial applications.
Collapse
Affiliation(s)
- Hai-Xiang Zhou
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China;
| | - Shan-Shan Xu
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China;
| | - Xue-Jing Yin
- Qingdao Mental Health Center, Qingdao University, Qingdao 266034, China;
| | - Feng-Long Wang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China;
| | - Yang Li
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
22
|
Tang L, Wang Y, Gao S, Wu H, Wang D, Yu W, Han F. Biochemical characteristics and molecular mechanism of an exo-type alginate lyase VxAly7D and its use for the preparation of unsaturated monosaccharides. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:99. [PMID: 32514311 PMCID: PMC7268478 DOI: 10.1186/s13068-020-01738-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 05/22/2020] [Indexed: 05/06/2023]
Abstract
BACKGROUND As the most abundant polysaccharide in brown algae, alginate has become a promising economical material for bioethanol production. Recently, exo-type alginate lyases have received extensive attention because the unsaturated monosaccharides produced by their degradation of alginate can be easily converted into 4-deoxy-l-erythro-5-hexoseulose uronate (DEH), a promising material for bioethanol production and biorefinery systems. RESULTS In this study, we cloned and characterized an exo-type polysaccharide lyase family 7 (PL7) alginate lyase VxAly7D from the marine bacterium Vibrio xiamenensis QY104. Recombinant VxAly7D was most active at 30 °C and exhibited 21%, 46% and 90% of its highest activity at 0, 10 and 20 °C, respectively. Compared with other exo-type alginate lyases, recombinant VxAly7D was shown to be a bifunctional alginate lyase with higher specific activity towards sodium alginate, polyG and polyM (462.4 ± 0.64, 357.37 ± 0.53 and 441.94 ± 2.46 U/mg, respectively). A total of 13 μg recombinant VxAly7D could convert 3 mg sodium alginate to unsaturated monosaccharides in 1 min with a yield of 37.6%, and the yield reached 95% in 1 h. In addition, the three-dimensional structure of VxAly7D was modelled using the crystal structure of AlyA5 from Zobellia galactanivorans DsijT as the template. The action mode and the end products of the W295A mutant revealed that Trp295 is a key amino acid residue responsible for the exolytic action mode of VxAly7D. CONCLUSION Overall, our results show that VxAly7D is a PL7 exo-type alginate lyase with high activity and a high conversion rate at low/moderate temperatures, which provides a useful enzymatic tool for the development of biofuel production from brown algae and enriches the understanding of the structure and functional relationships of polysaccharide lyases.
Collapse
Affiliation(s)
- Luyao Tang
- Key Laboratory of Marine Drugs, Ministry of Education; Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao, 266003 China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237 China
| | - Ying Wang
- Key Laboratory of Marine Drugs, Ministry of Education; Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao, 266003 China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237 China
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103 Shandong China
| | - Shan Gao
- Key Laboratory of Marine Drugs, Ministry of Education; Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao, 266003 China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237 China
| | - Hao Wu
- Key Laboratory of Marine Drugs, Ministry of Education; Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao, 266003 China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237 China
| | - Danni Wang
- Key Laboratory of Marine Drugs, Ministry of Education; Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao, 266003 China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237 China
| | - Wengong Yu
- Key Laboratory of Marine Drugs, Ministry of Education; Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao, 266003 China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237 China
| | - Feng Han
- Key Laboratory of Marine Drugs, Ministry of Education; Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao, 266003 China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237 China
| |
Collapse
|
23
|
Complete genome sequence of the novel alginolytic Psychroserpens sp. NJDZ02 isolated from macroalgae collected from King George Island, Antarctica. Mar Genomics 2020. [DOI: 10.1016/j.margen.2019.100705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
24
|
Narsico J, Inoue A, Oka S, Ojima T. Production of a novel dimeric 4-deoxy-L-erythro-5-hexoseulose uronic acid by a PL-17 exolytic alginate lyase from Hydrogenophaga sp. UMI-18. Biochem Biophys Res Commun 2020; 525:982-988. [PMID: 32171524 DOI: 10.1016/j.bbrc.2020.03.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 03/06/2020] [Indexed: 01/22/2023]
Abstract
Hydrogenopahaga sp. strain UMI-18 is an alginolytic bacterium that can produce poly(3-hydroxybutylate) (PHB) using alginate as its sole carbon source. Genome analysis indicated that this strain harbors both PHB-synthesizing and alginate-assimilating gene clusters. In the present study, we cloned HyAly-I gene that encodes a PL-17 exolytic alginate lyase and investigated its enzymatic properties using recombinant HyAly-I (recHyAly-I) that was produced by Escherichia coli. The recHyAly-I preferably depolymerized poly(β-D-mannuronate) block of alginate in an exolytic manner at an optimal temperature and a pH at 40 °C and pH 6.0, respectively. It released 4-deoxy-L-erythro-5-hexoseulose uronic acid (DEH) from the non-reducing terminus of polymer and oligomer substrates. Interestingly, recHyAly-I was found to produce a novel unsaturated disaccharide, i.e., dimeric DEH (diDEH), along with monomeric DEH. Production of diDEH was prominent in the degradation of trisaccharides.
Collapse
Affiliation(s)
- Joemark Narsico
- Laboratory of Marine Biotechnology and Microbiology, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido 041-0821, Japan.
| | - Akira Inoue
- Laboratory of Marine Biotechnology and Microbiology, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido 041-0821, Japan.
| | - Seiko Oka
- Instrumental Analysis Div, Global Facility Center, Creative Research Institution, Hokkaido University, Sapporo, Hokkaido 001-0021, Japan.
| | - Takao Ojima
- Laboratory of Marine Biotechnology and Microbiology, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido 041-0821, Japan.
| |
Collapse
|
25
|
Cheng D, Liu Z, Jiang C, Li L, Xue C, Mao X. Biochemical characterization and degradation pattern analysis of a novel PL-6 alginate lyase from Streptomyces coelicolor A3(2). Food Chem 2020; 323:126852. [PMID: 32334319 DOI: 10.1016/j.foodchem.2020.126852] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 02/26/2020] [Accepted: 04/17/2020] [Indexed: 11/30/2022]
Abstract
Alginate is the main component of brown algae which contributes to a huge biomass. The alginate oligosaccharides (AOs) have been widely used in food, cosmetic and pharmaceutical industries due to their various physiological activities. In this study, we expressed and characterized a novel PL-6 alginate lyase, named OUC-ScCD6. The results indicated that OUC-ScCD6 showed highest activity at 50 °C and pH 9.0. OUC-ScCD6 prefers to degrade poly M blocks and could digest poly G blocks as well. Endolytic action mode towards polysaccharides contributes to the creation of AOs with the degrees of polymerization 2-6. Degradation towards saturated oligosaccharides showed that saturated trisaccharides (M3 and G3) were minimum identifiable substrates. Furthermore, OUC-ScCD6 shows an even-numbered glycosidic bonds preference from non-reducing end which provided clearer insights into the substrate recognition and action mode of PL-6 family alginate lyases.
Collapse
Affiliation(s)
- Danyang Cheng
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Zhen Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Chengcheng Jiang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Laihao Li
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510300, China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Xiangzhao Mao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
26
|
Li S, Wang L, Jung S, Lee BS, He N, Lee MS. Biochemical Characterization of a New Oligoalginate Lyase and Its Biotechnological Application in Laminaria japonica Degradation. Front Microbiol 2020; 11:316. [PMID: 32210931 PMCID: PMC7076127 DOI: 10.3389/fmicb.2020.00316] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 02/13/2020] [Indexed: 12/21/2022] Open
Abstract
Oligoalginate lyases catalyze the degradation of alginate polymers and oligomers into monomers, a prerequisite for biotechnological utilizing alginate. In this study, we report the cloning, expression and biochemical characterization of a new polysaccharide lyase (PL) family 17 oligoalginate lyase, OalV17, from the marine bacterium Vibrio sp. SY01. The recombinant OalV17 showed metal ion independent and detergent resistant properties. Furthermore, OalV17 is an exo-type enzyme that yields alginate monomers as the main product and recognizes alginate disaccharides as the minimal substrate. Site-directed mutagenesis followed by kinetic analysis indicates that the residue Arg231 plays a key role in substrate specificity. Furthermore, a rapid and efficient alginate monomer-producing method was developed directly from Laminaria japonica. These results suggest that OalV17 is a potential candidate for saccharification of alginate.
Collapse
Affiliation(s)
- Shangyong Li
- School of Basic Medicine, Qingdao University, Qingdao, China.,Molecular Cancer Biology Laboratory, Cellular Heterogeneity Research Center, Department of Biosystem, Sookmyung Women's University, Seoul, South Korea
| | - Linna Wang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Samil Jung
- Molecular Cancer Biology Laboratory, Cellular Heterogeneity Research Center, Department of Biosystem, Sookmyung Women's University, Seoul, South Korea
| | - Beom Suk Lee
- Molecular Cancer Biology Laboratory, Cellular Heterogeneity Research Center, Department of Biosystem, Sookmyung Women's University, Seoul, South Korea
| | - Ningning He
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Myeong-Sok Lee
- Molecular Cancer Biology Laboratory, Cellular Heterogeneity Research Center, Department of Biosystem, Sookmyung Women's University, Seoul, South Korea
| |
Collapse
|
27
|
Zhu B, Li K, Wang W, Ning L, Tan H, Zhao X, Yin H. Preparation of trisaccharides from alginate by a novel alginate lyase Alg7A from marine bacterium Vibrio sp. W13. Int J Biol Macromol 2019; 139:879-885. [DOI: 10.1016/j.ijbiomac.2019.08.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 06/24/2019] [Accepted: 08/01/2019] [Indexed: 01/18/2023]
|
28
|
Huang G, Wen S, Liao S, Wang Q, Pan S, Zhang R, Lei F, Liao W, Feng J, Huang S. Characterization of a bifunctional alginate lyase as a new member of the polysaccharide lyase family 17 from a marine strain BP-2. Biotechnol Lett 2019; 41:1187-1200. [PMID: 31418101 PMCID: PMC6742608 DOI: 10.1007/s10529-019-02722-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 08/08/2019] [Indexed: 11/30/2022]
Abstract
OBJECTIVES Bifunctional alginate lyase can efficiently saccharify alginate biomass and prepare functional oligosaccharides of alginate. RESULTS A new BP-2 strain that produces alginate lyase was screened and identified from rotted Sargassum. A new alginate lyase, Alg17B, belonging to the polysaccharide lyase family 17, was isolated and purified from BP-2 fermentation broth by freeze-drying, dialysis, and ion exchange chromatography. The enzymatic properties of the purified lyase were investigated. The molecular weight of Alg17B was approximately 77 kDa, its optimum reaction temperature was 40-45 °C, and its optimum reaction pH was 7.5-8.0. The enzyme was relatively stable at pH 7.0-8.0, with a temperature range of 25-35 °C, and the specific activity of the purified enzyme reached 4036 U/mg. A low Na+ concentration stimulated Alg17B enzyme activity, but Ca2+, Zn2+, and other metal ions inhibited it. Substrate specificity analysis, thin-layer chromatography, and mass spectrometry showed that Alg17B is an alginate lyase that catalyses the hydrolysis of sodium alginate, polymannuronic acid (polyM) and polyguluronic acid to produce monosaccharides and low molecular weight oligosaccharides. Alg17B is also bifunctional, exhibiting both endolytic and exolytic activities toward alginate, and has a wide substrate utilization range with a preference for polyM. CONCLUSIONS Alg17B can be used to saccharify the main carbohydrate, alginate, in the ethanolic production of brown algae fuel as well as in preparing and researching oligosaccharides.
Collapse
Affiliation(s)
- Guiyuan Huang
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Academy of Sciences, Nanning, China
| | - Shunhua Wen
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Academy of Sciences, Nanning, China
- Research and Development Department, Xiamen Innodx Biotech Co. Ltd, Xiamen, China
| | - Siming Liao
- National Engineering Research Center for Non-Food Biorefinery, State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Key Laboratory of Bio-refinery, Guangxi Academy of Sciences, Nanning, China
| | - Qiaozhen Wang
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Academy of Sciences, Nanning, China
| | - Shihan Pan
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Academy of Sciences, Nanning, China
- College of Life Science and Technology, Guangxi University, Nanning, 530004, Guangxi, China
| | - Rongcan Zhang
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Academy of Sciences, Nanning, China
| | - Fu Lei
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Academy of Sciences, Nanning, China
| | - Wei Liao
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Academy of Sciences, Nanning, China
- The Food and Biotechnology, Guangxi Vocational and Technical College, Nanning, China
| | - Jie Feng
- School of Pharmaceutical Science, Guangxi Medical University, Nanning, 530021, China
| | - Shushi Huang
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Academy of Sciences, Nanning, China.
| |
Collapse
|
29
|
The Characterization and Modification of a Novel Bifunctional and Robust Alginate Lyase Derived from Marinimicrobium sp. H1. Mar Drugs 2019; 17:md17100545. [PMID: 31547564 PMCID: PMC6835848 DOI: 10.3390/md17100545] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 09/18/2019] [Accepted: 09/19/2019] [Indexed: 12/16/2022] Open
Abstract
Alginase lyase is an important enzyme for the preparation of alginate oligosaccharides (AOS), that possess special biological activities and is widely used in various fields, such as medicine, food, and chemical industry. In this study, a novel bifunctional alginate lyase (AlgH) belonging to the PL7 family was screened and characterized. The AlgH exhibited the highest activity at 45 °C and pH 10.0, and was an alkaline enzyme that was stable at pH 6.0–10.0. The enzyme showed no significant dependence on metal ions, and exhibited unchanged activity at high concentration of NaCl. To determine the function of non-catalytic domains in the multi-domain enzyme, the recombinant AlgH-I containing only the catalysis domain and AlgH-II containing the catalysis domain and the carbohydrate binding module (CBM) domain were constructed and characterized. The results showed that the activity and thermostability of the reconstructed enzymes were significantly improved by deletion of the F5/8 type C domain. On the other hand, the substrate specificity and the mode of action of the reconstructed enzymes showed no change. Alginate could be completely degraded by the full-length and modified enzymes, and the main end-products were alginate disaccharide, trisaccharide, and tetrasaccharide. Due to the thermo and pH-stability, salt-tolerance, and bifunctionality, the modified alginate lyase was a robust enzyme which could be applied in industrial production of AOS.
Collapse
|
30
|
Liu J, Yang S, Li X, Yan Q, Reaney MJT, Jiang Z. Alginate Oligosaccharides: Production, Biological Activities, and Potential Applications. Compr Rev Food Sci Food Saf 2019; 18:1859-1881. [DOI: 10.1111/1541-4337.12494] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 07/09/2019] [Accepted: 07/29/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Jun Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human HealthCollege of Food Science and Nutritional EngineeringChina Agricultural Univ. Beijing 100083 China
- Beijing Advanced Innovation Center for Food Nutrition and Human HealthBeijing Technology and Business Univ. Beijing 100048 China
| | - Shaoqing Yang
- Beijing Advanced Innovation Center for Food Nutrition and Human HealthCollege of Food Science and Nutritional EngineeringChina Agricultural Univ. Beijing 100083 China
| | - Xiuting Li
- Beijing Advanced Innovation Center for Food Nutrition and Human HealthBeijing Technology and Business Univ. Beijing 100048 China
| | - Qiaojuan Yan
- Bioresource Utilization LaboratoryCollege of EngineeringChina Agricultural Univ. Beijing 100083 China
| | - Martin J. T. Reaney
- Dept. of Plant SciencesUniv. of Saskatchewan Saskatoon SK S7N 5A8 Canada
- Guangdong Saskatchewan Oilseed Joint Laboratory (GUSTO)Dept. of Food Science and EngineeringJinan Univ. Guangzhou 510632 China
| | - Zhengqiang Jiang
- Beijing Advanced Innovation Center for Food Nutrition and Human HealthCollege of Food Science and Nutritional EngineeringChina Agricultural Univ. Beijing 100083 China
| |
Collapse
|
31
|
Stender EGP, Dybdahl Andersen C, Fredslund F, Holck J, Solberg A, Teze D, Peters GHJ, Christensen BE, Aachmann FL, Welner DH, Svensson B. Structural and functional aspects of mannuronic acid-specific PL6 alginate lyase from the human gut microbe Bacteroides cellulosilyticus. J Biol Chem 2019; 294:17915-17930. [PMID: 31530640 PMCID: PMC6879350 DOI: 10.1074/jbc.ra119.010206] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/16/2019] [Indexed: 01/28/2023] Open
Abstract
Alginate is a linear polysaccharide from brown algae consisting of 1,4-linked β-d-mannuronic acid (M) and α-l-guluronic acid (G) arranged in M, G, and mixed MG blocks. Alginate was assumed to be indigestible in humans, but bacteria isolated from fecal samples can utilize alginate. Moreover, genomes of some human gut microbiome-associated bacteria encode putative alginate-degrading enzymes. Here, we genome-mined a polysaccharide lyase family 6 alginate lyase from the gut bacterium Bacteroides cellulosilyticus (BcelPL6). The structure of recombinant BcelPL6 was solved by X-ray crystallography to 1.3 Å resolution, revealing a single-domain, monomeric parallel β-helix containing a 10-step asparagine ladder characteristic of alginate-converting parallel β-helix enzymes. Substitutions of the conserved catalytic site residues Lys-249, Arg-270, and His-271 resulted in activity loss. However, imidazole restored the activity of BcelPL6-H271N to 2.5% that of the native enzyme. Molecular docking oriented tetra-mannuronic acid for syn attack correlated with M specificity. Using biochemical analyses, we found that BcelPL6 initially releases unsaturated oligosaccharides of a degree of polymerization of 2-7 from alginate and polyM, which were further degraded to di- and trisaccharides. Unlike other PL6 members, BcelPL6 had low activity on polyMG and none on polyG. Surprisingly, polyG increased BcelPL6 activity on alginate 7-fold. LC-electrospray ionization-MS quantification of products and lack of activity on NaBH4-reduced octa-mannuronic acid indicated that BcelPL6 is an endolyase that further degrades the oligosaccharide products with an intact reducing end. We anticipate that our results advance predictions of the specificity and mode of action of PL6 enzymes.
Collapse
Affiliation(s)
- Emil G P Stender
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Christian Dybdahl Andersen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Folmer Fredslund
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Jesper Holck
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Amalie Solberg
- Department of Biotechnology and Food Science, NTNU, Norwegian University of Science and Technology, N-7491 Trondheim, Norway
| | - David Teze
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Günther H J Peters
- Department of Chemistry, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Bjørn E Christensen
- Department of Biotechnology and Food Science, NTNU, Norwegian University of Science and Technology, N-7491 Trondheim, Norway
| | - Finn L Aachmann
- Department of Biotechnology and Food Science, NTNU, Norwegian University of Science and Technology, N-7491 Trondheim, Norway
| | - Ditte H Welner
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Birte Svensson
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| |
Collapse
|
32
|
Jiang Z, Guo Y, Wang X, Li H, Ni H, Li L, Xiao A, Zhu Y. Molecular cloning and characterization of AlgL17, a new exo-oligoalginate lyase from Microbulbifer sp. ALW1. Protein Expr Purif 2019; 161:17-27. [DOI: 10.1016/j.pep.2019.03.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 03/22/2019] [Accepted: 03/25/2019] [Indexed: 02/06/2023]
|
33
|
Ito M, Watanabe K, Maruyama T, Mori T, Niwa K, Chow S, Takeyama H. Enrichment of bacteria and alginate lyase genes potentially involved in brown alga degradation in the gut of marine gastropods. Sci Rep 2019; 9:2129. [PMID: 30765748 PMCID: PMC6375959 DOI: 10.1038/s41598-018-38356-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 12/17/2018] [Indexed: 02/02/2023] Open
Abstract
Gut bacteria of phytophagous and omnivorous marine invertebrates often possess alginate lyases (ALGs), which are key enzymes for utilizing macroalgae as carbon neutral biomass. We hypothesized that the exclusive feeding of a target alga to marine invertebrates would shift the gut bacterial diversity suitable for degrading the algal components. To test this hypothesis, we reared sea hare (Dolabella auricularia) and sea snail (Batillus cornutus) for two to four weeks with exclusive feeding of a brown alga (Ecklonia cava). Pyrosequencing analysis of the gut bacterial 16S rRNA genes revealed shifts in the gut microbiota after rearing, mainly due to a decrease in the variety of bacterial members. Significant increases in six and four 16S rRNA gene phylotypes were observed in the reared sea hares and sea snails, respectively, and some of them were phylogenetically close to known alginate-degrading bacteria. Clone library analysis of PL7 family ALG genes using newly designed degenerate primer sets detected a total of 50 ALG gene phylotypes based on 90% amino acid identity. The number of ALG gene phylotypes increased in the reared sea hare but decreased in reared sea snail samples, and no phylotype was shared between them. Out of the 50 phylotypes, 15 were detected only after the feeding procedure. Thus, controlled feeding strategy may be valid and useful for the efficient screening of genes suitable for target alga fermentation.
Collapse
Affiliation(s)
- Michihiro Ito
- Research Organization for Nano & Life Innovation, Waseda University, 513 Wasedatsurumaki-cho, Shinjuku, Tokyo, 162-0041, Japan
- Tropical Biosphere Research Center, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa, 903-0213, Japan
| | - Kotaro Watanabe
- Department of Life Science and Medical Bioscience, Waseda University, 2-2 Wakamatsu-cho, Shinjuku, Tokyo, 162-8480, Japan
| | - Toru Maruyama
- Department of Life Science and Medical Bioscience, Waseda University, 2-2 Wakamatsu-cho, Shinjuku, Tokyo, 162-8480, Japan
| | - Tetsushi Mori
- International Center for Science and Engineering Programs, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Kentaro Niwa
- National Research Institute of Fisheries Science, 2-12-4 Fukuura, Kanazawa, Yokohama, Kanagawa, 236-8648, Japan
| | - Seinen Chow
- National Research Institute of Fisheries Science, 2-12-4 Fukuura, Kanazawa, Yokohama, Kanagawa, 236-8648, Japan
| | - Haruko Takeyama
- Research Organization for Nano & Life Innovation, Waseda University, 513 Wasedatsurumaki-cho, Shinjuku, Tokyo, 162-0041, Japan.
- Department of Life Science and Medical Bioscience, Waseda University, 2-2 Wakamatsu-cho, Shinjuku, Tokyo, 162-8480, Japan.
- Institute for Advanced Research of Biosystem Dynamics, Waseda University, 2-2 Wakamatsu-cho, Shinjuku, Tokyo, 162-8480, Japan.
- Computational Bio Big-Data Open Innovation Laboratory, AIST-Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo, 169-0072, Japan.
| |
Collapse
|
34
|
Li J, Cai C, Yang C, Li J, Sun T, Yu G. Recent Advances in Pharmaceutical Potential of Brown Algal Polysaccharides and their Derivatives. Curr Pharm Des 2019; 25:1290-1311. [PMID: 31237200 DOI: 10.2174/1381612825666190618143952] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 05/31/2019] [Indexed: 02/07/2023]
Abstract
Marine plants, animals and microorganisms display steady growth in the ocean and are abundant carbohydrate resources. Specifically, natural polysaccharides obtained from brown algae have been drawing increasing attention owing to their great potential in pharmaceutical applications. This review describes the structural and biological features of brown algal polysaccharides, including alginates, fucoidans, and laminarins, and it highlights recently developed approaches used to obtain the oligo- and polysaccharides with defined structures. Functional modification of these polysaccharides promotes their advanced applications in biomedical materials for controlled release and targeted drug delivery, etc. Moreover, brown algal polysaccharides and their derivatives possess numerous biological activities with anticancer, anticoagulant, wound healing, and antiviral properties. In addition, we also discuss carbohydrate- based substrates from brown algae, which are currently in clinical and preclinical studies, as well as the marine drugs that are already on the market. The present review summarizes the recent development in carbohydratebased products from brown algae, with promising findings that could rapidly facilitate the future discovery of novel marine drugs.
Collapse
Affiliation(s)
- Jun Li
- Key Laboratory of Marine Drugs, Ministry of Education & Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Chao Cai
- Key Laboratory of Marine Drugs, Ministry of Education & Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China
| | - Chendong Yang
- Key Laboratory of Marine Drugs, Ministry of Education & Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Jianghua Li
- Key Laboratory of Marine Drugs, Ministry of Education & Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Tiantian Sun
- Key Laboratory of Marine Drugs, Ministry of Education & Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Guangli Yu
- Key Laboratory of Marine Drugs, Ministry of Education & Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China
| |
Collapse
|
35
|
Study on expression and action mode of recombinant alginate lyases based on conserved domains reconstruction. Appl Microbiol Biotechnol 2018; 103:807-817. [DOI: 10.1007/s00253-018-9502-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 10/31/2018] [Accepted: 11/05/2018] [Indexed: 10/27/2022]
|
36
|
Tavafi H, Ali AA, Ghadam P, Gharavi S. Screening, cloning and expression of a novel alginate lyase gene from P. aeruginosa TAG 48 and its antibiofilm effects on P. aeruginosa biofilm. Microb Pathog 2018; 124:356-364. [DOI: 10.1016/j.micpath.2018.08.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Revised: 08/07/2018] [Accepted: 08/13/2018] [Indexed: 12/27/2022]
|
37
|
Yu Z, Zhu B, Wang W, Tan H, Yin H. Characterization of a new oligoalginate lyase from marine bacterium Vibrio sp. Int J Biol Macromol 2018; 112:937-942. [DOI: 10.1016/j.ijbiomac.2018.02.046] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Revised: 02/06/2018] [Accepted: 02/08/2018] [Indexed: 10/18/2022]
|
38
|
Lee EJ, Lee OK, Lee EY. Identification of 4-Deoxy-L-Etychro-Hexoseulose Uronic Acid Reductases in an Alginolytic Bacterium Vibrio splendidus and their Uses for L-Lactate Production in an Escherichia coli Cell-Free System. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2018; 20:410-423. [PMID: 29532336 DOI: 10.1007/s10126-018-9805-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 02/27/2018] [Indexed: 12/17/2023]
Abstract
4-Deoxy-L-erythro-hexoseulose uronic acid (DEH) reductase is a key enzyme in alginate utilizing metabolism, but the number of characterized DEH reductase is quite limited. In this study, novel two DEH reductases, VsRed-1 and VsRed-2, were identified in marine bacterium Vibrio splendidus, and the recombinant enzymes were expressed in an Escherichia coli system and purified by Ni-NTA chromatography. The optimal pH and temperature of the recombinant VsRed-1 and VsRed-2 were pH 7.5, 30 °C, and pH 7.0, 35 °C, respectively. The specific activities of VsRed-1 (776 U/mg for NADH) and VsRed-2 (176 U/mg for NADPH) were the highest among the DEH reductases reported so far. We also demonstrated that DEH could be converted to L-lactate with a yield of 76.7 and 81.9% in E. coli cell-free system containing VsRed-1 and VsRed-2 enzymes, respectively, indicating that two DEH reductases can be employed for production of biofuels and bio-chemicals from brown macroalgae biomass.
Collapse
Affiliation(s)
- Eun Jeong Lee
- Department of Chemical Engineering, Kyung Hee University, Yongin-si, Gyeonggi-do, 446-701, South Korea
| | - Ok Kyung Lee
- Department of Chemical Engineering, Kyung Hee University, Yongin-si, Gyeonggi-do, 446-701, South Korea
| | - Eun Yeol Lee
- Department of Chemical Engineering, Kyung Hee University, Yongin-si, Gyeonggi-do, 446-701, South Korea.
| |
Collapse
|
39
|
Yagi H, Fujise A, Itabashi N, Ohshiro T. Characterization of a novel endo-type alginate lyase derived from Shewanella sp. YH1. J Biochem 2018; 163:341-350. [PMID: 29319800 DOI: 10.1093/jb/mvy001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 10/24/2017] [Indexed: 12/18/2022] Open
Abstract
Alginate, which is an anionic polysaccharide, is widely distributed in the cell wall of brown algae. Alginate and the products of its degradation (oligosaccharides) are used in stabilizers, thickeners and gelling agents, especially in the food industry. The degradation of alginate generally involves a combination of several alginate lyases (exo-type, endo-type and oligoalginate lyase). Enhancing the efficiency of the production of alginate degradation products may require the identification of novel alginate lyases with unique characteristics. In this study, we isolated an alginate-utilizing bacterium, Shewanella sp. YH1, from seawater collected off the coast of Tottori prefecture, Japan. The detected novel alginate lyase was named AlgSI-PL7, and was classified in polysaccharide lyase family 7. The enzyme was purified from Shewanella sp. YH1 and a recombinant AlgSI-PL7 was produced in Escherichia coli. The optimal temperature and pH for enzyme activity were around 45°C and 8, respectively. Interestingly, we observed that AlgSI-PL7 was not thermotolerant, but could refold to its active form following an almost complete denaturation at approximately 60°C. Moreover, the degradation of alginate by AlgSI-PL7 produced two to five oligosaccharides, implying this enzyme was an endo-type lyase. Our findings suggest that AlgSI-PL7 may be useful as an industrial enzyme.
Collapse
Affiliation(s)
- Hisashi Yagi
- Center for Research on Green Sustainable Chemistry
| | - Asako Fujise
- Department of Chemistry and Biotechnology, Graduate School of Engineering
| | - Narumi Itabashi
- Department of Biotechnology, Faculty of Engineering, Tottori University, Tottori, Japan
| | - Takashi Ohshiro
- Department of Chemistry and Biotechnology, Graduate School of Engineering
| |
Collapse
|
40
|
Mathieu S, Touvrey-Loiodice M, Poulet L, Drouillard S, Vincentelli R, Henrissat B, Skjåk-Bræk G, Helbert W. Ancient acquisition of "alginate utilization loci" by human gut microbiota. Sci Rep 2018; 8:8075. [PMID: 29795267 PMCID: PMC5966431 DOI: 10.1038/s41598-018-26104-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 05/04/2018] [Indexed: 01/29/2023] Open
Abstract
In bacteria from the phylum Bacteroidetes, the genes coding for enzymes involved in polysaccharide degradation are often colocalized and coregulated in so-called “polysaccharide utilization loci” (PULs). PULs dedicated to the degradation of marine polysaccharides (e.g. laminaran, ulvan, alginate and porphyran) have been characterized in marine bacteria. Interestingly, the gut microbiome of Japanese individuals acquired, by lateral transfer from marine bacteria, the genes involved in the breakdown of porphyran, the cell wall polysaccharide of the red seaweed used in maki. Sequence similarity analyses predict that the human gut microbiome also encodes enzymes for the degradation of alginate, the main cell wall polysaccharide of brown algae. We undertook the functional characterization of diverse polysaccharide lyases from family PL17, frequently found in marine bacteria as well as those of human gut bacteria. We demonstrate here that this family is polyspecific. Our phylogenetic analysis of family PL17 reveals that all alginate lyases, which have all the same specificity and mode of action, cluster together in a very distinct subfamily. The alginate lyases found in human gut bacteria group together in a single clade which is rooted deeply in the PL17 tree. These enzymes were found in PULs containing PL6 enzymes, which also clustered together in the phylogenetic tree of PL6. Together, biochemical and bioinformatics analyses suggest that acquisition of this system appears ancient and, because only traces of two successful transfers were detected upon inspection of PL6 and PL17 families, the pace of acquisition of marine polysaccharide degradation system is probably very slow.
Collapse
Affiliation(s)
- Sophie Mathieu
- CERMAV, CNRS and Grenoble Alpes Université, BP53, 38000, Grenoble Cedex 9, France
| | | | - Laurent Poulet
- CERMAV, CNRS and Grenoble Alpes Université, BP53, 38000, Grenoble Cedex 9, France
| | - Sophie Drouillard
- CERMAV, CNRS and Grenoble Alpes Université, BP53, 38000, Grenoble Cedex 9, France
| | - Renaud Vincentelli
- Centre National de la Recherche Scientifique (CNRS), UMR7257, Université Aix-Marseille, Marseille, 13288, France.,INRA, USC 1408 AFMB, 13288, Marseille, France
| | - Bernard Henrissat
- Centre National de la Recherche Scientifique (CNRS), UMR7257, Université Aix-Marseille, Marseille, 13288, France.,INRA, USC 1408 AFMB, 13288, Marseille, France.,Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Gudmund Skjåk-Bræk
- Department of Biotechnology, Norwegian University of Science and Technology, NTNU Sem Sælands vei 6-8, 7491, Trondheim, Norway
| | - William Helbert
- CERMAV, CNRS and Grenoble Alpes Université, BP53, 38000, Grenoble Cedex 9, France.
| |
Collapse
|
41
|
AlgM4: A New Salt-Activated Alginate Lyase of the PL7 Family with Endolytic Activity. Mar Drugs 2018; 16:md16040120. [PMID: 29642383 PMCID: PMC5923407 DOI: 10.3390/md16040120] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 04/03/2018] [Accepted: 04/03/2018] [Indexed: 11/17/2022] Open
Abstract
Alginate lyases are a group of enzymes that catalyze the depolymerization of alginates into oligosaccharides or monosaccharides. These enzymes have been widely used for a variety of purposes, such as producing bioactive oligosaccharides, controlling the rheological properties of polysaccharides, and performing structural analyses of polysaccharides. The algM4 gene of the marine bacterium Vibrio weizhoudaoensis M0101 encodes an alginate lyase that belongs to the polysaccharide lyase family 7 (PL7). In this study, the kinetic constants Vmax (maximum reaction rate) and Km (Michaelis constant) of AlgM4 activity were determined as 2.75 nmol/s and 2.72 mg/mL, respectively. The optimum temperature for AlgM4 activity was 30 °C, and at 70 °C, AlgM4 activity dropped to 11% of the maximum observed activity. The optimum pH for AlgM4 activity was 8.5, and AlgM4 was completely inactive at pH 11. The addition of 1 mol/L NaCl resulted in a more than sevenfold increase in the relative activity of AlgM4. The secondary structure of AlgM4 was altered in the presence of NaCl, which caused the α-helical content to decrease from 12.4 to 10.8% and the β-sheet content to decrease by 1.7%. In addition, NaCl enhanced the thermal stability of AlgM4 and increased the midpoint of thermal denaturation (Tm) by 4.9 °C. AlgM4 exhibited an ability to degrade sodium alginate, poly-mannuronic acid (polyM), and poly-guluronic acid (polyG), resulting in the production of oligosaccharides with a degree of polymerization (DP) of 2–9. AlgM4 possessed broader substrate, indicating that it is a bifunctional alginate lyase. Thus, AlgM4 is a novel salt-activated and bifunctional alginate lyase of the PL7 family with endolytic activity.
Collapse
|
42
|
Wang D, Aarstad OA, Li J, McKee LS, Sætrom GI, Vyas A, Srivastava V, Aachmann FL, Bulone V, Hsieh YS. Preparation of 4-Deoxy-L-erythro-5-hexoseulose Uronic Acid (DEH) and Guluronic Acid Rich Alginate Using a Unique exo-Alginate Lyase from Thalassotalea crassostreae. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:1435-1443. [PMID: 29363310 DOI: 10.1021/acs.jafc.7b05751] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Marine multicellular algae are considered promising crops for the production of sustainable biofuels and commodity chemicals. However, their commercial exploitation is currently limited by a lack of appropriate and efficient enzymes for converting alginate into metabolizable building blocks, such as 4-deoxy-L-erythro-5-hexoseulose uronic acid (DEH). Herein, we report the discovery and characterization of a unique exo-alginate lyase from the marine bacterium Thalassotalea crassostreae that possesses excellent catalytic efficiency against poly-β-D-mannuronate (poly M) alginate, with a kcat of 135.8 s-1, and a 5-fold lower kcat of 25 s-1 against poly-α-L-guluronate (poly G alginate). We propose that this preference for poly M is due to a structural feature of the protein's active site. The mode of action and specificity of this enzyme has made it possible to design an effective and environmentally friendly process for the production of DEH and low molecular weight guluronate-enriched alginate.
Collapse
Affiliation(s)
- Damao Wang
- Division of Glycoscience, School of Biotechnology, Royal Institute of Technology (KTH), AlbaNova University Center , Stockholm, SE-106 91, Sweden
- Wallenberg Wood Science Centre, Royal Institute of Technology (KTH) , SE-100 44, Stockholm, Sweden
| | - Olav A Aarstad
- Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology , N-7491 Trondheim, Norway
| | - Jing Li
- Division of Glycoscience, School of Biotechnology, Royal Institute of Technology (KTH), AlbaNova University Center , Stockholm, SE-106 91, Sweden
| | - Lauren S McKee
- Division of Glycoscience, School of Biotechnology, Royal Institute of Technology (KTH), AlbaNova University Center , Stockholm, SE-106 91, Sweden
- Wallenberg Wood Science Centre, Royal Institute of Technology (KTH) , SE-100 44, Stockholm, Sweden
| | - Gerd Inger Sætrom
- Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology , N-7491 Trondheim, Norway
| | - Anisha Vyas
- Division of Glycoscience, School of Biotechnology, Royal Institute of Technology (KTH), AlbaNova University Center , Stockholm, SE-106 91, Sweden
| | - Vaibhav Srivastava
- Division of Glycoscience, School of Biotechnology, Royal Institute of Technology (KTH), AlbaNova University Center , Stockholm, SE-106 91, Sweden
| | - Finn L Aachmann
- Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology , N-7491 Trondheim, Norway
| | - Vincent Bulone
- Division of Glycoscience, School of Biotechnology, Royal Institute of Technology (KTH), AlbaNova University Center , Stockholm, SE-106 91, Sweden
- Wallenberg Wood Science Centre, Royal Institute of Technology (KTH) , SE-100 44, Stockholm, Sweden
| | - Yves Sy Hsieh
- Division of Glycoscience, School of Biotechnology, Royal Institute of Technology (KTH), AlbaNova University Center , Stockholm, SE-106 91, Sweden
- Wallenberg Wood Science Centre, Royal Institute of Technology (KTH) , SE-100 44, Stockholm, Sweden
| |
Collapse
|
43
|
Peng C, Wang Q, Lu D, Han W, Li F. A Novel Bifunctional Endolytic Alginate Lyase with Variable Alginate-Degrading Modes and Versatile Monosaccharide-Producing Properties. Front Microbiol 2018; 9:167. [PMID: 29472911 PMCID: PMC5809466 DOI: 10.3389/fmicb.2018.00167] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 01/24/2018] [Indexed: 12/21/2022] Open
Abstract
Endo-type alginate lyases usually degrade alginate completely into various size-defined unsaturated oligosaccharide products (≥disaccharides), while exoenzymes primarily produce monosaccharide products including saturated mannuronate (M) and guluronate (G) units and particularly unsaturated Δ units. Recently, two bifunctional alginate lyases have been identified as endolytic but M- and G-producing with variable action modes. However, endolytic Δ-producing alginate lyases remain undiscovered. Herein, a new Flammeovirga protein, Aly2, was classified into the polysaccharide lyase 7 superfamily. The recombinant enzyme and its truncated protein showed similar stable biochemical characteristics. Using different sugar chains as testing substrates, we demonstrated that the two enzymes are bifunctional while G-preferring, endolytic whereas monosaccharide-producing. Furthermore, the catalytic module of Aly2 can vary the action modes depending on the terminus type, molecular size, and M/G content of the substrate, thereby yielding different levels of M, G, and Δ units. Notably, the enzymes preferentially produce Δ units when digesting small size-defined oligosaccharide substrates, particularly the smallest substrate (unsaturated tetrasaccharide fractions). Deletion of the non-catalytic region of Aly2 caused weak changes in the action modes and biochemical characteristics. This study provided extended insights into alginate lyase groups with variable action modes for accurate enzyme use.
Collapse
Affiliation(s)
- Chune Peng
- National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, State Key Laboratory of Microbial Technology, Shandong University, Jinan, China
| | - Qingbin Wang
- National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, State Key Laboratory of Microbial Technology, Shandong University, Jinan, China
| | - Danrong Lu
- National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, State Key Laboratory of Microbial Technology, Shandong University, Jinan, China
| | - Wenjun Han
- National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, State Key Laboratory of Microbial Technology, Shandong University, Jinan, China
| | - Fuchuan Li
- National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, State Key Laboratory of Microbial Technology, Shandong University, Jinan, China
| |
Collapse
|
44
|
Xu F, Wang P, Zhang YZ, Chen XL. Diversity of Three-Dimensional Structures and Catalytic Mechanisms of Alginate Lyases. Appl Environ Microbiol 2018; 84:e02040-17. [PMID: 29150496 PMCID: PMC5772247 DOI: 10.1128/aem.02040-17] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Alginate is a linear polysaccharide produced mainly by brown algae in marine environments. Alginate consists of a linear block copolymer made up of two monomeric units, β-d-mannuronate (M) and its C-5 epimer α-l-guluronate (G). Alginate lyases are polysaccharide lyases (PL) that degrade alginate via a β-elimination reaction. These enzymes play an important role in marine carbon recycling and also have widespread industrial applications. So far, more than 1,774 alginate lyase sequences have been identified and are distributed into 7 PL families. In this review, the folds, conformational changes during catalysis, and catalytic mechanisms of alginate lyases are described. Thus far, structures for 15 alginate lyases have been solved and are divided into 3 fold classes: the β-jelly roll class (PL7, -14, and -18), the (α/α)n toroid class (PL5, -15, and -17), and the β-helix fold (PL6). These enzymes adopt two different mechanisms for catalysis, and three kinds of conformational changes occur during this process. Moreover, common features in the structures, conformational changes, and catalytic mechanisms are summarized, providing a comprehensive understanding on alginate lyases.
Collapse
Affiliation(s)
- Fei Xu
- Marine Biotechnology Research Center, State Key Laboratory of Microbial Technology, Shandong University, Jinan, China
| | - Peng Wang
- Marine Biotechnology Research Center, State Key Laboratory of Microbial Technology, Shandong University, Jinan, China
| | - Yu-Zhong Zhang
- Marine Biotechnology Research Center, State Key Laboratory of Microbial Technology, Shandong University, Jinan, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xiu-Lan Chen
- Marine Biotechnology Research Center, State Key Laboratory of Microbial Technology, Shandong University, Jinan, China
| |
Collapse
|
45
|
Li S, Wang L, Chen X, Zhao W, Sun M, Han Y. Cloning, Expression, and Biochemical Characterization of Two New Oligoalginate Lyases with Synergistic Degradation Capability. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2018; 20:75-86. [PMID: 29362921 DOI: 10.1007/s10126-017-9788-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 12/06/2017] [Indexed: 06/07/2023]
Abstract
Alginate, the most abundant carbohydrate presents in brown macroalgae, has recently gained increasing attention as an alternative biomass for the production of biofuel. Oligoalginate lyases catalyze the degradation of alginate oligomers into monomers, a prerequisite for bioethanol production. In this study, two new oligoalginate lyase genes, oalC6 and oalC17, were cloned from Cellulophaga sp. SY116, and expressed them in Escherichia coli. The deduced oligoalginate lyases, OalC6 and OalC17, belonged to the polysaccharide lyase (PL) family 6 and 17, respectively. Both showed less than 50% amino acid identity with all of the characterized oligoalginate lyases. Moreover, OalC6 and OalC17 could degrade both alginate polymers and oligomers into monomers in an exolytic mode. Substrate specificity studies demonstrated that OalC6 preferred α-L-guluronate (polyG) blocks, while OalC17 preferred poly β-D-mannuronate (polyM) blocks. The combination of OalC6 and OalC17 showed synergistic degradation ability toward both alginate polymers and oligomers. Finally, an efficient process for the production of alginate monomers was established by combining the new-isolated exotype alginate lyases (i.e., OalC6 and OalC17) and the endotype alginate lyase AlySY08. Overall, our work provides new insights for the development of novel biotechnologies for biofuel production from seaweed.
Collapse
Affiliation(s)
- Shangyong Li
- Department of Pharmacology, College of basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Linna Wang
- Yellow Sea Fisheries Research Institute, Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Xuehong Chen
- Department of Pharmacology, College of basic Medicine, Qingdao University, Qingdao, 266071, China.
| | - Wenwen Zhao
- Department of Pharmacology, College of basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Mi Sun
- Yellow Sea Fisheries Research Institute, Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Yantao Han
- Department of Pharmacology, College of basic Medicine, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
46
|
Stender EG, Khan S, Ipsen R, Madsen F, Hägglund P, Hachem MA, Almdal K, Westh P, Svensson B. Effect of alginate size, mannuronic/guluronic acid content and pH on particle size, thermodynamics and composition of complexes with β-lactoglobulin. Food Hydrocoll 2018. [DOI: 10.1016/j.foodhyd.2017.09.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
47
|
Yagi H, Isobe N, Itabashi N, Fujise A, Ohshiro T. Characterization of a Long-Lived Alginate Lyase Derived from Shewanella Species YH1. Mar Drugs 2017; 16:md16010004. [PMID: 29280943 PMCID: PMC5793052 DOI: 10.3390/md16010004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 12/11/2017] [Accepted: 12/13/2017] [Indexed: 01/07/2023] Open
Abstract
Polysaccharides from seaweeds are widely used in various fields, including the food, biomedical material, cosmetic, and biofuel industries. Alginate, which is a major polysaccharide in brown algae, and the products of its degradation (oligosaccharides) have been used in stabilizers, thickeners, and gelling agents, especially in the food industry. Discovering novel alginate lyases with unique characteristics for the efficient production of oligosaccharides may be relevant for the food and pharmaceutical fields. In this study, we identified a unique alginate lyase derived from an alginate-utilizing bacterium, Shewanella species YH1. The recombinant enzyme (rAlgSV1-PL7) was produced in an Escherichia coli system and it was classified in the Polysaccharide Lyase family 7. The optimal temperature and pH for rAlgSV1-PL7 activity were around 45 °C and 8, respectively. Interestingly, we observed that rAlgSV1-PL7 retained over 80% of its enzyme activity after incubation at 30 °C for at least 20 days, indicating that rAlgSV1-PL7 is a long-lived enzyme. Moreover, the degradation of alginate by rAlgSV1-PL7 produced one to four sugars because of the broad substrate specificity of this enzyme. Our findings suggest that rAlgSV1-PL7 may represent a new commercially useful enzyme.
Collapse
Affiliation(s)
- Hisashi Yagi
- Center for Research on Green Sustainable Chemistry, Tottori University, 4-101 Koyamacho-minami, Tottori-city 680-8552, Tottori Prefecture, Japan.
| | - Natsuki Isobe
- Department of Biotechnology, Faculty of Engineering, Tottori University, 4-101 Koyamacho-minami, Tottori-city 680-8552, Tottori Prefecture, Japan.
| | - Narumi Itabashi
- Department of Biotechnology, Faculty of Engineering, Tottori University, 4-101 Koyamacho-minami, Tottori-city 680-8552, Tottori Prefecture, Japan.
| | - Asako Fujise
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, 4-101 Koyamacho-minami, Tottori-city 680-8552, Tottori Prefecture, Japan.
| | - Takashi Ohshiro
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, 4-101 Koyamacho-minami, Tottori-city 680-8552, Tottori Prefecture, Japan.
| |
Collapse
|
48
|
Morrison JM, Murphy CL, Baker K, Zamor RM, Nikolai SJ, Wilder S, Elshahed MS, Youssef NH. Microbial communities mediating algal detritus turnover under anaerobic conditions. PeerJ 2017; 5:e2803. [PMID: 28097050 PMCID: PMC5228501 DOI: 10.7717/peerj.2803] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 11/18/2016] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Algae encompass a wide array of photosynthetic organisms that are ubiquitously distributed in aquatic and terrestrial habitats. Algal species often bloom in aquatic ecosystems, providing a significant autochthonous carbon input to the deeper anoxic layers in stratified water bodies. In addition, various algal species have been touted as promising candidates for anaerobic biogas production from biomass. Surprisingly, in spite of its ecological and economic relevance, the microbial community involved in algal detritus turnover under anaerobic conditions remains largely unexplored. RESULTS Here, we characterized the microbial communities mediating the degradation of Chlorella vulgaris (Chlorophyta), Chara sp. strain IWP1 (Charophyceae), and kelp Ascophyllum nodosum (phylum Phaeophyceae), using sediments from an anaerobic spring (Zodlteone spring, OK; ZDT), sludge from a secondary digester in a local wastewater treatment plant (Stillwater, OK; WWT), and deeper anoxic layers from a seasonally stratified lake (Grand Lake O' the Cherokees, OK; GL) as inoculum sources. Within all enrichments, the majority of algal biomass was metabolized within 13-16 weeks, and the process was accompanied by an increase in cell numbers and a decrease in community diversity. Community surveys based on the V4 region of the 16S rRNA gene identified different lineages belonging to the phyla Bacteroidetes, Proteobacteria (alpha, delta, gamma, and epsilon classes), Spirochaetes, and Firmicutes that were selectively abundant under various substrate and inoculum conditions. Within all kelp enrichments, the microbial communities structures at the conclusion of the experiment were highly similar regardless of the enrichment source, and were dominated by the genus Clostridium, or family Veillonellaceae within the Firmicutes. In all other enrichments the final microbial community was dependent on the inoculum source, rather than the type of algae utilized as substrate. Lineages enriched included the uncultured groups VadinBC27 and WCHB1-69 within the Bacteroidetes, genus Spirochaeta and the uncultured group SHA-4 within Spirochaetes, Ruminococcaceae, Lachnospiraceae, Yongiibacter, Geosporobacter, and Acidaminobacter within the Firmicutes, and genera Kluyvera, Pantoea, Edwardsiella and Aeromonas, and Buttiauxella within the Gamma-Proteobaceteria order Enterobacteriales. CONCLUSIONS Our results represent the first systematic survey of microbial communities mediating turnover of algal biomass under anaerobic conditions, and highlights the diversity of lineages putatively involved in the degradation process.
Collapse
Affiliation(s)
- Jessica M. Morrison
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, USA
| | - Chelsea L. Murphy
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, USA
| | - Kristina Baker
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, USA
| | | | | | - Shawn Wilder
- Department of Integrative Biology, Oklahoma State University, Stillwater, OK, USA
| | - Mostafa S. Elshahed
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, USA
| | - Noha H. Youssef
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, USA
| |
Collapse
|
49
|
Yagi H, Fujise A, Itabashi N, Ohshiro T. Purification and characterization of a novel alginate lyase from the marine bacterium Cobetia sp. NAP1 isolated from brown algae. Biosci Biotechnol Biochem 2016; 80:2338-2346. [PMID: 27648685 DOI: 10.1080/09168451.2016.1232154] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 08/23/2016] [Indexed: 01/28/2023]
Abstract
The application of marine resources, instead of fossil fuels, for biomass production is important for building a sustainable society. Seaweed is valuable as a source of marine biomass for producing biofuels such as ethanol, and can be used in various fields. Alginate is an anionic polysaccharide that forms the main component of brown algae. Various alginate lyases (e.g. exo- and endo-types and oligoalginate lyase) are generally used to degrade alginate. We herein describe a novel alginate lyase, AlgC-PL7, which belongs to the polysaccharide lyase 7 family. AlgC-PL7 was isolated from the halophilic Gram-negative bacterium Cobetia sp. NAP1 collected from the brown algae Padina arborescens Holmes. The optimal temperature and pH for AlgC-PL7 activity were 45 °C and 8, respectively. Additionally, AlgC-PL7 was thermostable and salt-tolerant, exhibited broad substrate specificity, and degraded alginate into monosaccharides. Therefore, AlgC-PL7 is a promising enzyme for the production of biofuels.
Collapse
Affiliation(s)
- Hisashi Yagi
- a Center for Research on Green Sustainable Chemistry , Tottori University , Tottori , Japan
| | - Asako Fujise
- b Department of Chemistry and Biotechnology , Graduate School of Engineering, Tottori University , Tottori , Japan
| | - Narumi Itabashi
- c Faculty of Engineering, Department of Biotechnology , Tottori University , Tottori , Japan
| | - Takashi Ohshiro
- b Department of Chemistry and Biotechnology , Graduate School of Engineering, Tottori University , Tottori , Japan
| |
Collapse
|
50
|
The alginate lyases FlAlyA, FlAlyB, FlAlyC, and FlAlex from Flavobacterium sp. UMI-01 have distinct roles in the complete degradation of alginate. ALGAL RES 2016. [DOI: 10.1016/j.algal.2016.03.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|