1
|
Zhu J, Gilbert RG. Starch molecular structure and diabetes. Carbohydr Polym 2024; 344:122525. [PMID: 39218548 DOI: 10.1016/j.carbpol.2024.122525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 07/09/2024] [Accepted: 07/19/2024] [Indexed: 09/04/2024]
Abstract
Starch is a primary source of food energy for human beings. Its chain-length distribution (CLD) is a major structural feature influencing physiologically-important properties, such as digestibility and palatability, of starch-containing foods. Diabetes, which is of epidemic proportions in many countries, is related to the rate of starch digestion in foods. Isoforms of three biosynthesis enzymes, starch synthase, starch branching enzymes and debranching enzymes, control the CLDs of starch, which can be measured by methods such as size-exclusion chromatography and fluorophore-assisted carbohydrate electrophoresis. Fitting observed CLDs to biosynthesis-based models based on the ratios of the activities of those isoforms yields biosynthesis-related parameters describing CLD features. This review examines CLD measurement, fitting CLDs to models, relations between CLDs, the occurrence and management of diabetes, and how plant breeders can develop varieties to optimize digestibility and palatability together, to develop starch-based foods with both a lower risk of diabetes and acceptable taste.
Collapse
Affiliation(s)
- Jihui Zhu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education and Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University/Jiangsu Co-Innovation Centre for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, Jiangsu Province 225009, China; The University of Queensland, Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, Brisbane, QLD 4072, Australia
| | - Robert G Gilbert
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education and Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University/Jiangsu Co-Innovation Centre for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, Jiangsu Province 225009, China; The University of Queensland, Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, Brisbane, QLD 4072, Australia.
| |
Collapse
|
2
|
Zhu J, Bai Y, Gilbert RG. Effects of the Molecular Structure of Starch in Foods on Human Health. Foods 2023; 12:foods12112263. [PMID: 37297507 DOI: 10.3390/foods12112263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/25/2023] [Accepted: 06/03/2023] [Indexed: 06/12/2023] Open
Abstract
Starch provides approximately half of humans' food energy, and its structural features influence human health. The most important structural feature is the chain length distribution (CLD), which affects properties such as the digestibility of starch-containing foods. The rate of digestion of such foods has a strong correlation with the prevalence and treatment of diseases such as diabetes, cardiovascular disease and obesity. Starch CLDs can be divided into multiple regions of degrees of polymerization, wherein the CLD in a given region is predominantly, but not exclusively, formed by a particular set of starch biosynthesis enzymes: starch synthases, starch branching enzymes and debranching enzymes. Biosynthesis-based models have been developed relating the ratios of the various enzyme activities in each set to the CLD component produced by that set. Fitting the observed CLDs to these models yields a small number of biosynthesis-related parameters, which, taken together, describe the entire CLD. This review highlights how CLDs can be measured and how the model-based parameters obtained from fitting these distributions are related to the properties of starch-based foods significant for health, and it considers how this knowledge could be used to develop plant varieties to provide foods with improved properties.
Collapse
Affiliation(s)
- Jihui Zhu
- Queensland Alliance for Agriculture and Food Innovation, Centre for Nutrition and Food Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Yeming Bai
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
- Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, B-3001 Leuven, Belgium
| | - Robert G Gilbert
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
- School of Agriculture and Food Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
3
|
Yu WW, Zhai HL, Xia GB, Tao KY, Li C, Yang XQ, Li LH. Starch fine molecular structures as a significant controller of the malting, mashing, and fermentation performance during beer production. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.09.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
4
|
Zhu J, Yu W, Zhang C, Zhu Y, Xu J, Li E, Gilbert RG, Liu Q. New insights into amylose and amylopectin biosynthesis in rice endosperm. Carbohydr Polym 2019; 230:115656. [PMID: 31887861 DOI: 10.1016/j.carbpol.2019.115656] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 11/13/2019] [Accepted: 11/21/2019] [Indexed: 11/18/2022]
Abstract
How various isoforms of rice-starch biosynthesis enzymes interact during amylose and amylopectin synthesis is explored. The chain-length distributions of amylopectin and amylose from 95 varieties with different environmental and genetic backgrounds were obtained using size- exclusion chromatography, and fitted with biosynthesis-derived models based on isoforms of starch synthase (SSI-SSIV), starch branching enzyme (SBE, including SBEI and SBEII) and granule-bound starch synthase (GBSS) that are involved in amylose and amylopectin synthesis. It is usually thought that these are synthesized by separate enzymes. However, the amount of longer amylopectin chains correlated with that of shorter amylose chains, indicating that GBSS, SBE and SS affect both amylose and amylopectin synthesis. Further, the activity of GBSS in amylose correlated with that of SS in amylopectin. This new understanding of which enzymes are suggested by the statistics to be involved in both amylose and amylopectin synthesis could help rice breeders develop cereals with targeted properties.
Collapse
Affiliation(s)
- Jihui Zhu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou, Jiangsu, 225009, China; The University of Queensland, Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, Brisbane, QLD, 4072, Australia
| | - Wenwen Yu
- Department of Food Science & Engineering, Jinan University, Huangpu West Avenue 601, Guangzhou, Jiangsu Province, China
| | - Changquan Zhang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou, Jiangsu, 225009, China; Jiangsu Key Laboratory of Crop Genetics and Physiology, Joint International Research Laboratory of Agriculture and Agri-Product Safety, Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Yajun Zhu
- Agricultural Genomics Institute, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Jianlong Xu
- Agricultural Genomics Institute, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Enpeng Li
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Joint International Research Laboratory of Agriculture and Agri-Product Safety, Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Robert G Gilbert
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Joint International Research Laboratory of Agriculture and Agri-Product Safety, Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu, Yangzhou University, Yangzhou, Jiangsu, 225009, China; The University of Queensland, Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, Brisbane, QLD, 4072, Australia.
| | - Qiaoquan Liu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou, Jiangsu, 225009, China; Jiangsu Key Laboratory of Crop Genetics and Physiology, Joint International Research Laboratory of Agriculture and Agri-Product Safety, Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu, Yangzhou University, Yangzhou, Jiangsu, 225009, China.
| |
Collapse
|
5
|
Rapid Visco Analyser (RVA) as a Tool for Measuring Starch-Related Physiochemical Properties in Cereals: a Review. FOOD ANAL METHOD 2019. [DOI: 10.1007/s12161-019-01581-w] [Citation(s) in RCA: 151] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
6
|
Zavala-García LE, Sánchez-Segura L, Avila de Dios E, Pérez-López A, Simpson J. Starch accumulation is associated with active growth in A. tequilana. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 130:623-632. [PMID: 30125759 DOI: 10.1016/j.plaphy.2018.08.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 08/07/2018] [Accepted: 08/07/2018] [Indexed: 05/13/2023]
Abstract
Transcriptome analysis of different tissues and developmental stages of A. tequilana plants led to the identification of full length cDNAs and the corresponding amino acid sequences for enzymes involved in starch metabolism in this species. Comparison with sequences from other species confirmed the identities of putative A. tequilana starch metabolism genes and uncovered differences in the evolutionary patterns of these genes between gramineous and non-gramineous monocotyledons. In silico expression patterns showed high levels of expression of starch metabolism genes in shoot apical meristem tissue and histological studies showed the presence of starch in leaf primordia surrounding the shoot apical meristem and in the primary thickening meristem of the stem. Starch was also found to accumulate significantly in developing floral organs and immature embryos. Low levels of starch were observed overall in leaf tissue with the exception of stomatal guard cells where starch was abundant. In root tissue, starch was only observed in statoliths at the root tip. A. tequilana starch grains were found to be small in comparison to other species and have an almost spherical form. The data for gene expression and histological localization are consistent with a role for starch as a transient carbohydrate store for actively growing tissues in A. tequilana.
Collapse
Affiliation(s)
- Laura E Zavala-García
- Department of Genetic Engineering, Cinvestav Unidad Irapuato, Km. 9.6 Libramiento Norte Carretera Irapuato-León, Apdo. Postal 629, 36821, Irapuato, Guanajuato, Mexico.
| | - Lino Sánchez-Segura
- Department of Genetic Engineering, Cinvestav Unidad Irapuato, Km. 9.6 Libramiento Norte Carretera Irapuato-León, Apdo. Postal 629, 36821, Irapuato, Guanajuato, Mexico.
| | - Emmanuel Avila de Dios
- Department of Genetic Engineering, Cinvestav Unidad Irapuato, Km. 9.6 Libramiento Norte Carretera Irapuato-León, Apdo. Postal 629, 36821, Irapuato, Guanajuato, Mexico.
| | - Arely Pérez-López
- Department of Genetic Engineering, Cinvestav Unidad Irapuato, Km. 9.6 Libramiento Norte Carretera Irapuato-León, Apdo. Postal 629, 36821, Irapuato, Guanajuato, Mexico.
| | - June Simpson
- Department of Genetic Engineering, Cinvestav Unidad Irapuato, Km. 9.6 Libramiento Norte Carretera Irapuato-León, Apdo. Postal 629, 36821, Irapuato, Guanajuato, Mexico.
| |
Collapse
|
7
|
Alvarez JB, Guzmán C. Interspecific and intergeneric hybridization as a source of variation for wheat grain quality improvement. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2018; 131:225-251. [PMID: 29285597 DOI: 10.1007/s00122-017-3042-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 12/17/2017] [Indexed: 05/27/2023]
Abstract
The hybridization events with wild relatives and old varieties are an alternative source for enlarging the wheat quality variability. This review describes these process and their effects on the technological and nutritional quality. Wheat quality and its end-uses are mainly based on variation in three traits: grain hardness, gluten quality and starch. In recent times, the importance of nutritional quality and health-related aspects has increased the range of these traits with the inclusion of other grain components such as vitamins, fibre and micronutrients. One option to enlarge the genetic variability in wheat for all these components has been the use of wild relatives, together with underutilised or neglected wheat varieties or species. In the current review, we summarise the role of each grain component in relation to grain quality, their variation in modern wheat and the alternative sources in which wheat breeders have found novel variation.
Collapse
Affiliation(s)
- Juan B Alvarez
- Departamento de Genética, Escuela Técnica Superior de Ingeniería Agronómica y de Montes, Edificio Gregor Mendel, Campus de Rabanales, Universidad de Córdoba, CeiA3, 14071, Córdoba, Spain.
| | - Carlos Guzmán
- CIMMYT, Global Wheat Program, Km 45 Carretera México-Veracruz, El Batán, C.P. 56130, Texcoco, Estado de México, Mexico
| |
Collapse
|
8
|
Singh N, Singh B, Rai V, Sidhu S, Singh AK, Singh NK. Evolutionary Insights Based on SNP Haplotypes of Red Pericarp, Grain Size and Starch Synthase Genes in Wild and Cultivated Rice. FRONTIERS IN PLANT SCIENCE 2017; 8:972. [PMID: 28649256 PMCID: PMC5465369 DOI: 10.3389/fpls.2017.00972] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 05/23/2017] [Indexed: 05/23/2023]
Abstract
The origin and domestication of rice has been a subject of considerable debate in the post-genomic era. Rice varieties have been categorized based on isozyme and DNA markers into two broad cultivar groups, Indica and Japonica. Among other well-known cultivar groups Aus varieties are closer to Indica and Aromatic varieties including Basmati are closer to Japonica, while deep-water rice varieties share kinship to both Indica and Japonica cultivar groups. Here, we analyzed haplotype networks and phylogenetic relationships in a diverse set of genotypes including Indian Oryza nivara/Oryza rufipogon wild rice accessions and representative varieties of four rice cultivar groups based on pericarp color (Rc), grain size (GS3) and eight different starch synthase genes (GBSSI, SSSI, SSIIa, SSIIb, SSIIIa, SSIIIb, SSIVa, and SSIVb). Aus cultivars appear to have the most ancient origin as they shared the maximum number of haplotypes with the wild rice populations, while Indica, Japonica and Aromatic cultivar groups showed varying phylogenetic origins of these genes. Starch synthase genes showed higher variability in cultivated rice than wild rice populations, suggesting diversified selection during and after domestication. O. nivara/O. rufipogon wild rice accessions belonging to different sub-populations shared common haplotypes for all the 10 genes analyzed. Our results support polyphyletic origin of cultivated rice with a complex pattern of migration of domestication alleles from wild to different rice cultivar groups. The findings provide novel insights into evolutionary and domestication history of rice and will help utilization of wild rice germplasm for genetic improvement of rice cultivars.
Collapse
Affiliation(s)
- Nisha Singh
- ICAR – National Research Centre on Plant BiotechnologyNew Delhi, India
- Shaheed Udham Singh College of Engineering & Technology, I. K. Gujral Punjab Technical UniversityJalandhar, India
| | - Balwant Singh
- ICAR – National Research Centre on Plant BiotechnologyNew Delhi, India
| | - Vandna Rai
- ICAR – National Research Centre on Plant BiotechnologyNew Delhi, India
| | - Sukhjeet Sidhu
- Shaheed Udham Singh College of Engineering & Technology, I. K. Gujral Punjab Technical UniversityJalandhar, India
| | - Ashok K. Singh
- Divisions of Genetics, ICAR – Indian Agricultural Research InstituteNew Delhi, India
| | - Nagendra K. Singh
- ICAR – National Research Centre on Plant BiotechnologyNew Delhi, India
| |
Collapse
|
9
|
Li X, Cavanagh C, Verbyla K, Thistleton JL, Wang H, Pedler A, Kooij-Liu P, Li Z, Jobling SA. A modified Megazyme fructan assay for rapidly screening wheat starch synthase IIa mutation populations reveals high fructan accumulation in mature grains of triple null lines. J Cereal Sci 2017. [DOI: 10.1016/j.jcs.2016.12.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
10
|
Cornejo-Ramírez YI, Ramírez-Reyes F, Cinco-Moroyoqui FJ, Rosas-Burgos EC, Martínez-Cruz O, Carvajal-Millán E, Cárdenas-López JL, Torres-Chavez PI, Osuna-Amarillas PS, Borboa-Flores J, Wong-Corral FJ. Starch Debranching Enzyme Activity and Its Effects on Some Starch Physicochemical Characteristics in Developing Substituted and Complete Triticales (XTriticosecaleWittmack). Cereal Chem 2016. [DOI: 10.1094/cchem-02-15-0034-r] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Yaeel I. Cornejo-Ramírez
- Grupo de Investigación en Química Agrícola y Manejo Postcosecha (QAMPO)
- Departamento de Investigación y Posgrado en Alimentos, Universidad de Sonora, Blvd. Rosales y Blvd. Luis Encinas, Hermosillo, Sonora, C.P. 83000, Mexico
| | - Francisco Ramírez-Reyes
- Grupo de Investigación en Química Agrícola y Manejo Postcosecha (QAMPO)
- Departamento de Investigación y Posgrado en Alimentos, Universidad de Sonora, Blvd. Rosales y Blvd. Luis Encinas, Hermosillo, Sonora, C.P. 83000, Mexico
- Departamento de Agricultura y Ganadería, Universidad de Sonora, Hermosillo, Sonora, C.P. 83000, Mexico
| | - Francisco J. Cinco-Moroyoqui
- Grupo de Investigación en Química Agrícola y Manejo Postcosecha (QAMPO)
- Departamento de Investigación y Posgrado en Alimentos, Universidad de Sonora, Blvd. Rosales y Blvd. Luis Encinas, Hermosillo, Sonora, C.P. 83000, Mexico
| | - Ema C. Rosas-Burgos
- Grupo de Investigación en Química Agrícola y Manejo Postcosecha (QAMPO)
- Departamento de Investigación y Posgrado en Alimentos, Universidad de Sonora, Blvd. Rosales y Blvd. Luis Encinas, Hermosillo, Sonora, C.P. 83000, Mexico
| | - Oliviert Martínez-Cruz
- Grupo de Investigación en Química Agrícola y Manejo Postcosecha (QAMPO)
- Departamento de Investigación y Posgrado en Alimentos, Universidad de Sonora, Blvd. Rosales y Blvd. Luis Encinas, Hermosillo, Sonora, C.P. 83000, Mexico
| | - Elizabeth Carvajal-Millán
- Centro de Investigación en Alimentos y Desarrollo, Carretera a La Victoria km 0.6, Hermosillo, Sonora, C.P. 83304, Mexico
| | - José L. Cárdenas-López
- Departamento de Investigación y Posgrado en Alimentos, Universidad de Sonora, Blvd. Rosales y Blvd. Luis Encinas, Hermosillo, Sonora, C.P. 83000, Mexico
| | - Patricia I. Torres-Chavez
- Departamento de Investigación y Posgrado en Alimentos, Universidad de Sonora, Blvd. Rosales y Blvd. Luis Encinas, Hermosillo, Sonora, C.P. 83000, Mexico
| | - Pablo S. Osuna-Amarillas
- Grupo de Investigación en Química Agrícola y Manejo Postcosecha (QAMPO)
- Universidad Estatal de Sonora, Unidad Académica Navojoa, Carretera Navojoa-Huatabampo km 5, Navojoa, Sonora, C.P. 85874, Mexico
| | - Jesús Borboa-Flores
- Grupo de Investigación en Química Agrícola y Manejo Postcosecha (QAMPO)
- Departamento de Investigación y Posgrado en Alimentos, Universidad de Sonora, Blvd. Rosales y Blvd. Luis Encinas, Hermosillo, Sonora, C.P. 83000, Mexico
| | - Francisco J. Wong-Corral
- Grupo de Investigación en Química Agrícola y Manejo Postcosecha (QAMPO)
- Departamento de Investigación y Posgrado en Alimentos, Universidad de Sonora, Blvd. Rosales y Blvd. Luis Encinas, Hermosillo, Sonora, C.P. 83000, Mexico
| |
Collapse
|
11
|
Genes involved in the accumulation of starch and lipids in wheat and rice: characterization using molecular and cytogenetic techniques. THE NUCLEUS 2015. [DOI: 10.1007/s13237-015-0149-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
12
|
Tanackovic V, Svensson JT, Jensen SL, Buléon A, Blennow A. The deposition and characterization of starch in Brachypodium distachyon. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:5179-92. [PMID: 25056772 PMCID: PMC4157704 DOI: 10.1093/jxb/eru276] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 05/15/2014] [Accepted: 05/21/2014] [Indexed: 05/26/2023]
Abstract
Brachypodium distachyon is a non-domesticated cereal. Nonetheless, Brachypodium was recently introduced as a model plant for temperate cereals. This study compares grain starch metabolism in Brachypodium and barley (Hordeum vulgare). In Brachypodium, we identified and annotated 28 genes involved in starch metabolism and identified important motifs including transit peptides and putative carbohydrate-binding modules (CBMs) of the families CBM20, CBM45, CBM48, and CBM53. Starch content was markedly lower in Brachypodium grains (12%) compared to barley grains (47%). Brachypodium starch granules were doughnut shaped and bimodally distributed into distinct small B-type (2.5-10 µm) and very small C-type (0.5-2.5 µm) granules. Large A-type granules, typical of cereals, were absent. Starch-bound phosphate, important for starch degradation, was 2-fold lower in Brachypodium compared with barley indicating different requirements for starch mobilization. The amylopectin branch profiles were similar and the amylose content was only slightly higher compared with barley cv. Golden Promise. The crystallinity of Brachypodium starch granules was low (10%) compared to barley (20%) as determined by wide-angle X-ray scattering (WAXS) and molecular disorder was confirmed by differential scanning calorimetry (DSC). The expression profiles in grain for most genes were distinctly different for Brachypodium compared to barley, typically showing earlier decline during the course of development, which can explain the low starch content and differences in starch molecular structure and granule characteristics. High transitory starch levels were observed in leaves of Brachypodium (2.8% after 14h of light) compared to barley (1.9% after 14h of light). The data suggest important pre-domesticated features of cereals.
Collapse
Affiliation(s)
- Vanja Tanackovic
- Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, DK-1871, Denmark
| | - Jan T Svensson
- Nordic Genetic Resource Centre, P.O. Box 41, SE-230 53 Alnarp, Sweden
| | - Susanne L Jensen
- Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, DK-1871, Denmark
| | - Alain Buléon
- UR1268 Biopolymeres Interactions Assemblages, INRA, F-44300 Nantes, France
| | - Andreas Blennow
- Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, DK-1871, Denmark
| |
Collapse
|
13
|
Gámez-Arjona FM, Raynaud S, Ragel P, Mérida A. Starch synthase 4 is located in the thylakoid membrane and interacts with plastoglobule-associated proteins in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 80:305-16. [PMID: 25088399 DOI: 10.1111/tpj.12633] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 07/25/2014] [Accepted: 07/29/2014] [Indexed: 05/04/2023]
Abstract
Starch synthesis requires the formation of a primer that can be subsequently elongated and branched. How this primer is produced, however, remains unknown. The control of the number of starch granules produced per chloroplast is also a matter of debate. We previously showed starch synthase 4 (SS4) to be involved in both processes, although the mechanisms involved are yet to be fully characterised. The present work shows that SS4 displays a specific localization different from other starch synthases. Thus, this protein is located in specific areas of the thylakoid membrane and interacts with the proteins fibrillin 1a (FBN1a) and 1b (FBN1b), which are mainly located in plastoglobules. SS4 would seem to be associated with plastoglobules attached to the thylakoids (or to that portion of the thylakoids where plastoglobules have originated), forming a complex that includes the FBN1s and other as-yet unidentified proteins. The present results also indicate that the localization pattern of SS4, and its interactions with the FBN1 proteins, are mediated through its N-terminal region, which contains two long coiled-coil motifs. The localization of SS4 in specific areas of the thylakoid membrane suggests that starch granules are originated at specific regions of the chloroplast.
Collapse
Affiliation(s)
- Francisco M Gámez-Arjona
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC-US, Avda. Américo Vespucio 49, 41092, Sevilla, Spain
| | | | | | | |
Collapse
|
14
|
Pfister B, Lu KJ, Eicke S, Feil R, Lunn JE, Streb S, Zeeman SC. Genetic Evidence That Chain Length and Branch Point Distributions Are Linked Determinants of Starch Granule Formation in Arabidopsis. PLANT PHYSIOLOGY 2014; 165:1457-1474. [PMID: 24965177 PMCID: PMC4119031 DOI: 10.1104/pp.114.241455] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 06/24/2014] [Indexed: 05/22/2023]
Abstract
The major component of starch is the branched glucan amylopectin. Structural features of amylopectin, such as the branching pattern and the chain length distribution, are thought to be key factors that enable it to form semicrystalline starch granules. We varied both structural parameters by creating Arabidopsis (Arabidopsis thaliana) mutants lacking combinations of starch synthases (SSs) SS1, SS2, and SS3 (to vary chain lengths) and the debranching enzyme ISOAMYLASE1-ISOAMYLASE2 (ISA; to alter branching pattern). The isa mutant accumulates primarily phytoglycogen in leaf mesophyll cells, with only small amounts of starch in other cell types (epidermis and bundle sheath cells). This balance can be significantly shifted by mutating different SSs. Mutation of SS1 promoted starch synthesis, restoring granules in mesophyll cell plastids. Mutation of SS2 decreased starch synthesis, abolishing granules in epidermal and bundle sheath cells. Thus, the types of SSs present affect the crystallinity and thus the solubility of the glucans made, compensating for or compounding the effects of an aberrant branching pattern. Interestingly, ss2 mutant plants contained small amounts of phytoglycogen in addition to aberrant starch. Likewise, ss2ss3 plants contained phytoglycogen, but were almost devoid of glucan despite retaining other SS isoforms. Surprisingly, glucan production was restored in the ss2ss3isa triple mutants, indicating that SS activity in ss2ss3 per se is not limiting but that the isoamylase suppresses glucan accumulation. We conclude that loss of only SSs can cause phytoglycogen production. This is readily degraded by isoamylase and other enzymes so it does not accumulate and was previously unnoticed.
Collapse
Affiliation(s)
- Barbara Pfister
- Department of Biology, ETH Zurich, 8092 Zurich, Switzerland (B.P., K.-J.L., S.E., S.S., S.C.Z.); andMax Planck Institute for Molecular Plant Physiology, 14476 Potsdam, Germany (R.F., J.E.L.)
| | - Kuan-Jen Lu
- Department of Biology, ETH Zurich, 8092 Zurich, Switzerland (B.P., K.-J.L., S.E., S.S., S.C.Z.); andMax Planck Institute for Molecular Plant Physiology, 14476 Potsdam, Germany (R.F., J.E.L.)
| | - Simona Eicke
- Department of Biology, ETH Zurich, 8092 Zurich, Switzerland (B.P., K.-J.L., S.E., S.S., S.C.Z.); andMax Planck Institute for Molecular Plant Physiology, 14476 Potsdam, Germany (R.F., J.E.L.)
| | - Regina Feil
- Department of Biology, ETH Zurich, 8092 Zurich, Switzerland (B.P., K.-J.L., S.E., S.S., S.C.Z.); andMax Planck Institute for Molecular Plant Physiology, 14476 Potsdam, Germany (R.F., J.E.L.)
| | - John E Lunn
- Department of Biology, ETH Zurich, 8092 Zurich, Switzerland (B.P., K.-J.L., S.E., S.S., S.C.Z.); andMax Planck Institute for Molecular Plant Physiology, 14476 Potsdam, Germany (R.F., J.E.L.)
| | - Sebastian Streb
- Department of Biology, ETH Zurich, 8092 Zurich, Switzerland (B.P., K.-J.L., S.E., S.S., S.C.Z.); andMax Planck Institute for Molecular Plant Physiology, 14476 Potsdam, Germany (R.F., J.E.L.)
| | - Samuel C Zeeman
- Department of Biology, ETH Zurich, 8092 Zurich, Switzerland (B.P., K.-J.L., S.E., S.S., S.C.Z.); andMax Planck Institute for Molecular Plant Physiology, 14476 Potsdam, Germany (R.F., J.E.L.)
| |
Collapse
|
15
|
McMaugh SJ, Thistleton JL, Anschaw E, Luo J, Konik-Rose C, Wang H, Huang M, Larroque O, Regina A, Jobling SA, Morell MK, Li Z. Suppression of starch synthase I expression affects the granule morphology and granule size and fine structure of starch in wheat endosperm. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:2189-201. [PMID: 24634486 PMCID: PMC3991748 DOI: 10.1093/jxb/eru095] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Studies in Arabidopsis and rice suggest that manipulation of starch synthase I (SSI) expression in wheat may lead to the production of wheat grains with novel starch structure and properties. This work describes the suppression of SSI expression in wheat grains using RNAi technology, which leads to a low level of enzymatic activity for SSI in the developing endosperm, and a low abundance of SSI protein inside the starch granules of mature grains. The amylopectin fraction of starch from the SSI suppressed lines showed an increased frequency of very short chains (degree of polymerization, dp 6 and 7), a lower proportion of short chains (dp 8-12), and more intermediate chains (dp 13-20) than in the grain from their negative segregant lines. In the most severely affected line, amylose content was significantly increased, the morphology of starch granules was changed, and the proportion of B starch granules was significantly reduced. The change of the fine structure of the starch in the SSI-RNAi suppression lines alters the gelatinization temperature, swelling power, and viscosity of the starch. This work demonstrates that the roles of SSI in the determination of starch structure and properties are similar among different cereals and Arabidopsis.
Collapse
Affiliation(s)
- Stephen J McMaugh
- CSIRO Food Future Flagship, GPO Box 1600, Canberra, ACT 2601, Australia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Characterization of shrunken endosperm mutants in barley. Gene 2014; 539:15-20. [DOI: 10.1016/j.gene.2014.02.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 01/24/2014] [Accepted: 02/04/2014] [Indexed: 11/18/2022]
|
17
|
Chanvrier H, Appelqvist IA, Li Z, Morell MK, Lillford PJ. Processing high amylose wheat varieties with a capillary rheometer: Structure and thermomechanical properties of products. Food Res Int 2013. [DOI: 10.1016/j.foodres.2013.03.040] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
18
|
Higgins JE, Kosar-Hashemi B, Li Z, Howitt CA, Larroque O, Flanagan B, Morell MK, Rahman S. Characterization of starch phosphorylases in barley grains. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2013; 93:2137-2145. [PMID: 23288583 DOI: 10.1002/jsfa.6019] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 11/13/2012] [Accepted: 11/28/2012] [Indexed: 06/01/2023]
Abstract
BACKGROUND Starch is synthesized in both leaves and storage tissues of plants. The role of starch syntheses and branching enzymes is well understood; however, the role of starch phosphorylase is not clear. RESULTS A gene encoding Pho1 from barley was characterized and starch phosphorylases from both developing and germinating grain were characterized and purified. Two activities were detected: one with a molecular mass of 110 kDa and the other of 95 kDa. It was demonstrated through the use of antisera that the 110 kDa activity was located in the amyloplast and could correspond to the polypeptide encoded by the Pho1 gene cloned. The 95 kDa activity was localized to the cytoplasm, most strongly expressed in germinating grain, and was classified as a Pho2-type sequence. Using RNAi technology to reduce the content of Pho1 in the grain to less than 30% of wild type did not lead to any visible phenotype, and no dramatic alterations in the structure of the starch were observed. CONCLUSION Two starch phosphorylase activities were identified and characterized in barley grains, and shown to be present during starch synthesis. However, their role in starch synthesis still remains to be elucidated.
Collapse
|
19
|
Blennow A, Jensen SL, Shaik SS, Skryhan K, Carciofi M, Holm PB, Hebelstrup KH, Tanackovic V. Future Cereal Starch Bioengineering: Cereal Ancestors Encounter Gene Technology and Designer Enzymes. Cereal Chem 2013. [DOI: 10.1094/cchem-01-13-0010-fi] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Andreas Blennow
- Department of Plant and Environmental Sciences, University of Copenhagen, Denmark
- Corresponding author. Phone: +45 35333304. Fax: +45 35333333. E-mail:
| | - Susanne L. Jensen
- Department of Plant and Environmental Sciences, University of Copenhagen, Denmark
| | - Shahnoor S. Shaik
- Department of Plant and Environmental Sciences, University of Copenhagen, Denmark
| | - Katsiaryna Skryhan
- Department of Plant and Environmental Sciences, University of Copenhagen, Denmark
| | - Massimiliano Carciofi
- Department of Molecular Biology and Genetics, Section of Crop Genetics and Biotechnology, Aarhus University, Denmark
| | - Preben B. Holm
- Department of Molecular Biology and Genetics, Section of Crop Genetics and Biotechnology, Aarhus University, Denmark
| | - Kim H. Hebelstrup
- Department of Molecular Biology and Genetics, Section of Crop Genetics and Biotechnology, Aarhus University, Denmark
| | - Vanja Tanackovic
- Department of Plant and Environmental Sciences, University of Copenhagen, Denmark
| |
Collapse
|
20
|
Kang GZ, Xu W, Liu GQ, Peng XQ, Guo TC. Comprehensive analysis of the transcription of starch synthesis genes and the transcription factor RSR1 in wheat (Triticum aestivum) endosperm. Genome 2012; 56:115-22. [PMID: 23517321 DOI: 10.1139/gen-2012-0146] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The cDNA sequences of 26 starch synthesis genes were identified in common wheat (Triticum aestivum L.), and their transcript levels were measured using quantitative real-time RT-PCR to assess the function of individual genes and the regulatory mechanism in wheat endosperm. The expression patterns of 26 genes in wheat endosperm were classified into three groups. The genes in group 1 were richly expressed in the early stage of grain development and may be involved in the construction of fundamental cell machinery, synthesis of glucan primers, and initiation of starch granules. The genes in group 2 were highly expressed during the middle and late stages of grain development, and their expression profiles were similar to the accumulation rate of endosperm starch; these genes are presumed to play a crucial role in starch production. The genes in group 3 were scantily expressed throughout the grain development period and might be associated with transitory starch synthesis. Transcripts of the negative transcription factor TaRSR1 were high at the early and late stages of grain development but low during the middle stage. The expression pattern of TaRSR1 was almost opposite to those of the group 2 starch synthesis genes, indicating that TaRSR1 might negatively regulate the expression of many endosperm starch synthesis genes during grain development.
Collapse
Affiliation(s)
- Guo-Zhang Kang
- National Engineering Research Centre for Wheat; the Key Laboratory of Physiology, Ecology and Genetic Improvement of Food Crops in Henan Province, Henan Agricultural University, Zhengzhou 450002, China.
| | | | | | | | | |
Collapse
|
21
|
Asare EK, Båga M, Rossnagel BG, Chibbar RN. Polymorphism in the barley granule bound starch synthase 1 (gbss1) gene associated with grain starch variant amylose concentration. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:10082-10092. [PMID: 22950712 DOI: 10.1021/jf302291t] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Granule bound starch synthase 1 (GBSS1) accumulation within starch granules and structure of Gbss1 alleles were determined for nine barley ( Hordeum vulgare L.) genotypes producing amylose-free (undetectable), near-waxy (1.6-4.5%), normal (25.8%), and increased (38.0-40.8%) amylose grain starches. Compared to normal starch granules, GBSS1 accumulation was severely reduced in three near-waxy, slightly reduced in two waxy, and slightly elevated in three increased amylose starches. Gbss1 nucleotide sequence analysis for the nine genotypes distinguished them into three Gbss1 groups with several single-nucleotide polymorphisms. A new unique Q312H substitution within GBSS1 was discovered in near-waxy genotype SB94912 with reduced amylose (1.6%) concentration relative to the other two near-waxy lines, CDC Rattan and CDC Candle (4.5%). The two waxy genotype GBSS1 showed a previously described D287V change for CDC Alamo and a new G513W change for CDC Fibar. Both amino acid alterations are conserved residues within starch synthase domains involved in glucan interaction. The increased amylose genotypes showed several unique nucleotide changes within the second and fourth Gbss1 introns, but only SB94893 GBSS1 showed a unique amino acid substitution, A250T in exon 6. The Gbss1 nucleotide differences were used to design genetic markers to monitor Gbss1 alleles in genotypes with various amylose grain starches.
Collapse
Affiliation(s)
- Eric K Asare
- Department of Plant Sciences, University of Saskatchewan , 51 Campus Drive, Saskatoon, Saskatchewan S7N 5A8, Canada
| | | | | | | |
Collapse
|
22
|
Single-copy gene fluorescence in situ hybridization and genome analysis: Acc-2 loci mark evolutionary chromosomal rearrangements in wheat. Chromosoma 2012; 121:597-611. [DOI: 10.1007/s00412-012-0384-7] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 09/12/2012] [Accepted: 09/17/2012] [Indexed: 12/30/2022]
|
23
|
Lin Q, Huang B, Zhang M, Zhang X, Rivenbark J, Lappe RL, James MG, Myers AM, Hennen-Bierwagen TA. Functional interactions between starch synthase III and isoamylase-type starch-debranching enzyme in maize endosperm. PLANT PHYSIOLOGY 2012; 158:679-92. [PMID: 22193705 PMCID: PMC3271759 DOI: 10.1104/pp.111.189704] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Accepted: 12/20/2011] [Indexed: 05/09/2023]
Abstract
This study characterized genetic interactions between the maize (Zea mays) genes dull1 (du1), encoding starch synthase III (SSIII), and isa2, encoding a noncatalytic subunit of heteromeric isoamylase-type starch-debranching enzyme (ISA1/ISA2 heteromer). Mutants lacking ISA2 still possess the ISA1 homomeric enzyme. Eight du1(-) mutations were characterized, and structural changes in amylopectin resulting from each were measured. In every instance, the same complex pattern of alterations in discontinuous spans of chain lengths was observed, which cannot be explained solely by a discrete range of substrates preferred by SSIII. Homozygous double mutants were constructed containing the null mutation isa2-339 and either du1-Ref, encoding a truncated SSIII protein lacking the catalytic domain, or the null allele du1-R4059. In contrast to the single mutant parents, double mutant endosperms affected in both SSIII and ISA2 were starch deficient and accumulated phytoglycogen. This phenotype was previously observed only in maize sugary1 mutants impaired for the catalytic subunit ISA1. ISA1 homomeric enzyme complexes assembled in both double mutants and were enzymatically active in vitro. Thus, SSIII is required for normal starch crystallization and the prevention of phytoglycogen accumulation when the only isoamylase-type debranching activity present is ISA1 homomer, but not in the wild-type condition, when both ISA1 homomer and ISA1/ISA2 heteromer are present. Previous genetic and biochemical analyses showed that SSIII also is required for normal glucan accumulation when the only isoamylase-type debranching enzyme activity present is ISA1/ISA heteromer. These data indicate that isoamylase-type debranching enzyme and SSIII work in a coordinated fashion to repress phytoglycogen accumulation.
Collapse
|
24
|
Li Z, Li D, Du X, Wang H, Larroque O, Jenkins CLD, Jobling SA, Morell MK. The barley amo1 locus is tightly linked to the starch synthase IIIa gene and negatively regulates expression of granule-bound starch synthetic genes. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:5217-31. [PMID: 21813797 PMCID: PMC3193023 DOI: 10.1093/jxb/err239] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Revised: 06/20/2011] [Accepted: 07/07/2011] [Indexed: 05/09/2023]
Abstract
In this study of barley starch synthesis, the interaction between mutations at the sex6 locus and the amo1 locus has been characterized. Four barley genotypes, the wild type, sex6, amo1, and the amo1sex6 double mutant, were generated by backcrossing the sex6 mutation present in Himalaya292 into the amo1 'high amylose Glacier'. The wild type, amo1, and sex6 genotypes gave starch phenotypes consistent with previous studies. However, the amo1sex6 double mutant yielded an unexpected phenotype, a significant increase in starch content relative to the sex6 phenotype. Amylose content (as a percentage of starch) was not increased above the level observed for the sex6 mutation alone; however, on a per seed basis, grain from lines containing the amo1 mutation (amo1 mutants and amo1sex6 double mutants) synthesize significantly more amylose than the wild-type lines and sex6 mutants. The level of granule-bound starch synthase I (GBSSI) protein in starch granules is increased in lines containing the amo1 mutation (amo1 and amo1sex6). In the amo1 genotype, starch synthase I (SSI), SSIIa, starch branching enzyme IIa (SBEIIa), and SBEIIb also markedly increased in the starch granules. Genetic mapping studies indicate that the ssIIIa gene is tightly linked to the amo1 locus, and the SSIIIa protein from the amo1 mutant has a leucine to arginine residue substitution in a conserved domain. Zymogram analysis indicates that the amo1 phenotype is not a consequence of total loss of enzymatic activity although it remains possible that the amo1 phenotype is underpinned by a more subtle change. It is therefore proposed that amo1 may be a negative regulator of other genes of starch synthesis.
Collapse
Affiliation(s)
- Zhongyi Li
- CSIRO Food Future National Research Flagship, GPO Box 1600, Canberra ACT 2601 Australia.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Wang Z, Li W, Qi J, Shi P, Yin Y. Starch accumulation, activities of key enzyme and gene expression in starch synthesis of wheat endosperm with different starch contents. Journal of Food Science and Technology 2011; 51:419-29. [PMID: 24587516 DOI: 10.1007/s13197-011-0520-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 08/11/2011] [Accepted: 08/26/2011] [Indexed: 12/01/2022]
Abstract
In order to investigate starch accumulation, and the enzymes activity changes and the expression levels of genes and their relationships among them at different developmental stages of wheat grain. We choose Annong9912 and E28 were used in the study. During starch accumulating rate and grain filling rate, and there were obvious genotype difference between Annong9912 and E28. Whether low or high starch content of starch content, the accumulation courses of amylopectin, amylose and total starch were well fitted to the logistic equation by relating starch contents against DAP. The simulation parameters revealed that the higher contents of amylopectin and amylose resulted from earlier initiating accumulation time and greater accumulation rate. And amylose, amylopectin and total starch accumulation rate of two wheat cultures were significantly and positively correlated with activities of SBE, SSS and GBSS, but amylose accumulation rate of E28 had no correlation with the activities of SBE. In addition, there were significant correlations among activities of SBE, SSS and GBSS in two wheat cultivars. We speculated that these enzymes proteins may have a coordinating action in starch biosynthesis within the amyloplast, operating as functional multiprotein complexes. And expression levels of enzyme genes demonstrated a single-peak curve, and 12-18 DAP reached their peaks and then began to drop, and all had high expression level in earlier stage of endosperm development, but in E28 were higher than in Annong9912. The GBSS-I transcripts on average were expressed over 60 times more than GBSS-II transcript in E28. SBE, SSS, DBE may control starch synthesis at the transcriptional level, and GBSS-I may control starch synthesis at the post transcriptional level. The expression level of DBE on average was lower than SS-1 and SBE-IIa genes, and similar to SS-III and SBE-IIb genes, but higher than GBSS-I and GBSS-II genes.
Collapse
Affiliation(s)
- Zibu Wang
- School of Agronomy, Shihezi University, Shihezi, 832 003 China
| | - Weihua Li
- School of Agronomy, Shihezi University, Shihezi, 832 003 China
| | - Juncang Qi
- School of Agronomy, Shihezi University, Shihezi, 832 003 China
| | - Peichun Shi
- School of Agronomy, Shihezi University, Shihezi, 832 003 China
| | - Yongan Yin
- School of Agronomy, Shihezi University, Shihezi, 832 003 China
| |
Collapse
|
26
|
Barrero RA, Bellgard M, Zhang X. Diverse approaches to achieving grain yield in wheat. Funct Integr Genomics 2011; 11:37-48. [PMID: 21221697 DOI: 10.1007/s10142-010-0208-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Accepted: 12/19/2010] [Indexed: 11/28/2022]
Abstract
Artificial selection (domestication and breeding) leaves a strong footprint in plant genomes. Second generation high throughput DNA sequencing technologies make it possible to sequence the gene complement of a plant genome within 3 to 5 months, and the costs of doing so are declining very quickly. This makes it practical to identify genomic regions that have undergone very strong selection. Available reference sequences of important crops such as rice, maize, and sorghum will promote the wide use of re-sequencing strategies in these crops. Marker/trait associations, especially haplotype (or haplotype block) association analyses, will help the precise mapping of important genomic regions and location of favored alleles or haplotypes for breeding. This mini-review examines a genomics approach to defining yield traits in wheat.
Collapse
Affiliation(s)
- Roberto A Barrero
- Centre for Comparative Genomics, Murdoch University, Murdoch, WA, 6150, Australia
| | | | | |
Collapse
|
27
|
Huang XQ, Brûlé-Babel A. Development of genome-specific primers for homoeologous genes in allopolyploid species: the waxy and starch synthase II genes in allohexaploid wheat (Triticum aestivum L.) as examples. BMC Res Notes 2010; 3:140. [PMID: 20497560 PMCID: PMC2890506 DOI: 10.1186/1756-0500-3-140] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2010] [Accepted: 05/24/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In allopolypoid crops, homoeologous genes in different genomes exhibit a very high sequence similarity, especially in the coding regions of genes. This makes it difficult to design genome-specific primers to amplify individual genes from different genomes. Development of genome-specific primers for agronomically important genes in allopolypoid crops is very important and useful not only for the study of sequence diversity and association mapping of genes in natural populations, but also for the development of gene-based functional markers for marker-assisted breeding. Here we report on a useful approach for the development of genome-specific primers in allohexaploid wheat. FINDINGS In the present study, three genome-specific primer sets for the waxy (Wx) genes and four genome-specific primer sets for the starch synthase II (SSII) genes were developed mainly from single nucleotide polymorphisms (SNPs) and/or insertions or deletions (Indels) in introns and intron-exon junctions. The size of a single PCR product ranged from 750 bp to 1657 bp. The total length of amplified PCR products by these genome-specific primer sets accounted for 72.6%-87.0% of the Wx genes and 59.5%-61.6% of the SSII genes. Five genome-specific primer sets for the Wx genes (one for Wx-7A, three for Wx-4A and one for Wx-7D) could distinguish the wild type wheat and partial waxy wheat lines. These genome-specific primer sets for the Wx and SSII genes produced amplifications in hexaploid wheat, cultivated durum wheat, and Aegilops tauschii accessions, but failed to generate amplification in the majority of wild diploid and tetraploid accessions. CONCLUSIONS For the first time, we report on the development of genome-specific primers from three homoeologous Wx and SSII genes covering the majority of the genes in allohexaploid wheat. These genome-specific primers are being used for the study of sequence diversity and association mapping of the three homoeologous Wx and SSII genes in natural populations of both hexaploid wheat and cultivated tetraploid wheat. The strategies used in this paper can be used to develop genome-specific primers for homoeologous genes in any allopolypoid species. They may be also suitable for (i) the development of gene-specific primers for duplicated paralogous genes in any diploid species, and (ii) the development of allele-specific primers at the same gene locus.
Collapse
Affiliation(s)
- Xiu-Qiang Huang
- Department of Plant Science, University of Manitoba, 66 Dafoe Road, Winnipeg, Manitoba R3T 2N2, Canada.
| | | |
Collapse
|
28
|
Mangelsen E, Wanke D, Kilian J, Sundberg E, Harter K, Jansson C. Significance of light, sugar, and amino acid supply for diurnal gene regulation in developing barley caryopses. PLANT PHYSIOLOGY 2010; 153:14-33. [PMID: 20304969 PMCID: PMC2862414 DOI: 10.1104/pp.110.154856] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2010] [Accepted: 03/16/2010] [Indexed: 05/21/2023]
Abstract
The caryopses of barley (Hordeum vulgare), as of all cereals, are complex sink organs optimized for starch accumulation and embryo development. While their early to late development has been studied in great detail, processes underlying the caryopses' diurnal adaptation to changes in light, temperature, and the fluctuations in phloem-supplied carbon and nitrogen have remained unknown. In an attempt to identify diurnally affected processes in developing caryopses at the early maturation phase, we monitored global changes of both gene expression and metabolite levels. We applied the 22 K Barley1 GeneChip microarray and identified 2,091 differentially expressed (DE) genes that were assigned to six major diurnal expression clusters. Principal component analysis and other global analyses demonstrated that the variability within the data set relates to genes involved in circadian regulation, storage compound accumulation, embryo development, response to abiotic stress, and photosynthesis. The correlation of amino acid and sugar profiles with expression trajectories led to the identification of several hundred potentially metabolite-regulated DE genes. A comparative analysis of our data set and publicly available microarray data disclosed suborgan-specific expression of almost all diurnal DE genes, with more than 350 genes specifically expressed in the pericarp, endosperm, or embryo tissues. Our data reveal a tight linkage between day/night cycles, changes in light, and the supply of carbon and nitrogen. We present a model that suggests several phases of diurnal gene expression in developing barley caryopses, summarized as starvation and priming, energy collection and carbon fixation, light protection and chaperone activity, storage and growth, and embryo development.
Collapse
Affiliation(s)
- Elke Mangelsen
- Department of Plant Biology and Forest Genetics, Swedish University of Agricultural Sciences, SE-75007 Uppsala, Sweden.
| | | | | | | | | | | |
Collapse
|
29
|
Affiliation(s)
- Peter L. Keeling
- NSF Engineering Research Center for Biorenewable Chemicals and Iowa State University, Ames, Iowa 50011;
| | - Alan M. Myers
- NSF Engineering Research Center for Biorenewable Chemicals and Iowa State University, Ames, Iowa 50011;
| |
Collapse
|
30
|
Radchuk VV, Borisjuk L, Sreenivasulu N, Merx K, Mock HP, Rolletschek H, Wobus U, Weschke W. Spatiotemporal profiling of starch biosynthesis and degradation in the developing barley grain. PLANT PHYSIOLOGY 2009; 150:190-204. [PMID: 19321714 PMCID: PMC2675734 DOI: 10.1104/pp.108.133520] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Accepted: 03/19/2009] [Indexed: 05/19/2023]
Abstract
Barley (Hordeum vulgare) grains synthesize starch as the main storage compound. However, some starch is degraded already during caryopsis development. We studied temporal and spatial expression patterns of genes coding for enzymes of starch synthesis and degradation. These profiles coupled with measurements of selected enzyme activities and metabolites have allowed us to propose a role for starch degradation in maternal and filial tissues of developing grains. Early maternal pericarp functions as a major short-term starch storage tissue, possibly ensuring sink strength of the young caryopsis. Gene expression patterns and enzyme activities suggest two different pathways for starch degradation in maternal tissues. One pathway possibly occurs via alpha-amylases 1 and 4 and beta-amylase 1 in pericarp, nucellus, and nucellar projection, tissues that undergo programmed cell death. Another pathway is deducted for living pericarp and chlorenchyma cells, where transient starch breakdown correlates with expression of chloroplast-localized beta-amylases 5, 6, and 7, glucan, water dikinase 1, phosphoglucan, water dikinase, isoamylase 3, and disproportionating enzyme. The suite of genes involved in starch synthesis in filial starchy endosperm is much more complex than in pericarp and involves several endosperm-specific genes. Transient starch turnover occurs in transfer cells, ensuring the maintenance of sink strength in filial tissues and the reallocation of sugars into more proximal regions of the starchy endosperm. Starch is temporally accumulated also in aleurone cells, where it is degraded during the seed filling period, to be replaced by storage proteins and lipids.
Collapse
Affiliation(s)
- Volodymyr V Radchuk
- Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung, D-06466 Gatersleben, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Hennen-Bierwagen TA, Lin Q, Grimaud F, Planchot V, Keeling PL, James MG, Myers AM. Proteins from multiple metabolic pathways associate with starch biosynthetic enzymes in high molecular weight complexes: a model for regulation of carbon allocation in maize amyloplasts. PLANT PHYSIOLOGY 2009; 149:1541-59. [PMID: 19168640 PMCID: PMC2649383 DOI: 10.1104/pp.109.135293] [Citation(s) in RCA: 150] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Starch biosynthetic enzymes from maize (Zea mays) and wheat (Triticum aestivum) amyloplasts exist in cell extracts in high molecular weight complexes; however, the nature of those assemblies remains to be defined. This study tested the interdependence of the maize enzymes starch synthase IIa (SSIIa), SSIII, starch branching enzyme IIb (SBEIIb), and SBEIIa for assembly into multisubunit complexes. Mutations that eliminated any one of those proteins also prevented the others from assembling into a high molecular mass form of approximately 670 kD, so that SSIII, SSIIa, SBEIIa, and SBEIIb most likely all exist together in the same complex. SSIIa, SBEIIb, and SBEIIa, but not SSIII, were also interdependent for assembly into a complex of approximately 300 kD. SSIII, SSIIa, SBEIIa, and SBEIIb copurified through successive chromatography steps, and SBEIIa, SBEIIb, and SSIIa coimmunoprecipitated with SSIII in a phosphorylation-dependent manner. SBEIIa and SBEIIb also were retained on an affinity column bearing a specific conserved fragment of SSIII located outside of the SS catalytic domain. Additional proteins that copurified with SSIII in multiple biochemical methods included the two known isoforms of pyruvate orthophosphate dikinase (PPDK), large and small subunits of ADP-glucose pyrophosphorylase, and the sucrose synthase isoform SUS-SH1. PPDK and SUS-SH1 required SSIII, SSIIa, SBEIIa, and SBEIIb for assembly into the 670-kD complex. These complexes may function in global regulation of carbon partitioning between metabolic pathways in developing seeds.
Collapse
|
32
|
Leterrier M, Holappa LD, Broglie KE, Beckles DM. Cloning, characterisation and comparative analysis of a starch synthase IV gene in wheat: functional and evolutionary implications. BMC PLANT BIOLOGY 2008; 8:98. [PMID: 18826586 PMCID: PMC2576272 DOI: 10.1186/1471-2229-8-98] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2007] [Accepted: 09/30/2008] [Indexed: 05/18/2023]
Abstract
BACKGROUND Starch is of great importance to humans as a food and biomaterial, and the amount and structure of starch made in plants is determined in part by starch synthase (SS) activity. Five SS isoforms, SSI, II, III, IV and Granule Bound SSI, have been identified, each with a unique catalytic role in starch synthesis. The basic mode of action of SSs is known; however our knowledge of several aspects of SS enzymology at the structural and mechanistic level is incomplete. To gain a better understanding of the differences in SS sequences that underscore their specificity, the previously uncharacterised SSIVb from wheat was cloned and extensive bioinformatics analyses of this and other SSs sequences were done. RESULTS The wheat SSIV cDNA is most similar to rice SSIVb with which it shows synteny and shares a similar exon-intron arrangement. The wheat SSIVb gene was preferentially expressed in leaf and was not regulated by a circadian clock. Phylogenetic analysis showed that in plants, SSIV is closely related to SSIII, while SSI, SSII and Granule Bound SSI clustered together and distinctions between the two groups can be made at the genetic level and included chromosomal location and intron conservation. Further, identified differences at the amino acid level in their glycosyltransferase domains, predicted secondary structures, global conformations and conserved residues might be indicative of intragroup functional associations. CONCLUSION Based on bioinformatics analysis of the catalytic region of 36 SSs and 3 glycogen synthases (GSs), it is suggested that the valine residue in the highly conserved K-X-G-G-L motif in SSIII and SSIV may be a determining feature of primer specificity of these SSs as compared to GBSSI, SSI and SSII. In GBSSI, the Ile485 residue may partially explain that enzyme's unique catalytic features. The flexible 380s Loop in the starch catalytic domain may be important in defining the specificity of action for each different SS and the G-X-G in motif VI could define SSIV and SSIII action particularly.
Collapse
MESH Headings
- Amino Acid Sequence
- Chromosome Mapping
- Chromosomes, Plant/genetics
- Cloning, Molecular
- DNA, Complementary/genetics
- Evolution, Molecular
- Expressed Sequence Tags
- Gene Expression
- Gene Library
- Genes, Plant
- Genome, Plant
- Molecular Sequence Data
- Phylogeny
- Plant Leaves/enzymology
- Plant Leaves/genetics
- Plant Proteins/genetics
- Protein Structure, Secondary
- RNA, Messenger/genetics
- RNA, Plant/genetics
- Reverse Transcriptase Polymerase Chain Reaction
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Analysis, Protein
- Starch Synthase/genetics
- Triticum/enzymology
- Triticum/genetics
Collapse
Affiliation(s)
- Marina Leterrier
- Department of Plant Sciences, One Peter Shield Avenue, University of California, Davis, CA 95616-8617, USA
| | - Lynn D Holappa
- Department of Plant Sciences, One Peter Shield Avenue, University of California, Davis, CA 95616-8617, USA
- Department of Organismic & Evolutionary Biology, Harvard University, 16 Divinity Ave, Cambridge MA 02138, USA
| | - Karen E Broglie
- DuPont-Pioneer, Crop Genetics Research, Experimental Station, Wilmington, DE 19808, USA
| | - Diane M Beckles
- Department of Plant Sciences, One Peter Shield Avenue, University of California, Davis, CA 95616-8617, USA
| |
Collapse
|
33
|
Zhang X, Szydlowski N, Delvallé D, D'Hulst C, James MG, Myers AM. Overlapping functions of the starch synthases SSII and SSIII in amylopectin biosynthesis in Arabidopsis. BMC PLANT BIOLOGY 2008; 8:96. [PMID: 18811962 PMCID: PMC2566982 DOI: 10.1186/1471-2229-8-96] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2008] [Accepted: 09/23/2008] [Indexed: 05/18/2023]
Abstract
BACKGROUND The biochemical mechanisms that determine the molecular architecture of amylopectin are central in plant biology because they allow long-term storage of reduced carbon. Amylopectin structure imparts the ability to form semi-crystalline starch granules, which in turn provides its glucose storage function. The enzymatic steps of amylopectin biosynthesis resemble those of the soluble polymer glycogen, however, the reasons for amylopectin's architectural distinctions are not clearly understood. The multiplicity of starch biosynthetic enzymes conserved in plants likely is involved. For example, amylopectin chain elongation in plants involves five conserved classes of starch synthase (SS), whereas glycogen biosynthesis typically requires only one class of glycogen synthase. RESULTS Null mutations were characterized in AtSS2, which codes for SSII, and mutant lines were compared to lines lacking SSIII and to an Atss2, Atss3 double mutant. Loss of SSII did not affect growth rate or starch quantity, but caused increased amylose/amylopectin ratio, increased total amylose, and deficiency in amylopectin chains with degree of polymerization (DP) 12 to DP28. In contrast, loss of both SSII and SSIII caused slower plant growth and dramatically reduced starch content. Extreme deficiency in DP12 to DP28 chains occurred in the double mutant, far more severe than the summed changes in SSII- or SSIII-deficient plants lacking only one of the two enzymes. CONCLUSION SSII and SSIII have partially redundant functions in determination of amylopectin structure, and these roles cannot be substituted by any other conserved SS, specifically SSI, GBSSI, or SSIV. Even though SSIII is not required for the normal abundance of glucan chains of DP12 to DP18, the enzyme clearly is capable of functioning in production such chains. The role of SSIII in producing these chains cannot be detected simply by analysis of an individual mutation. Competition between different SSs for binding to substrate could in part explain the specific distribution of glucan chains within amylopectin.
Collapse
Affiliation(s)
- Xiaoli Zhang
- Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa, USA
- The Ohio State University, Center for Biostatistics, M200 Starling Loving Hall, 320 W. 10th Avenue, Columbus, OH 43210, USA
| | - Nicolas Szydlowski
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR8576 du CNRS, IFR 147, Bâtiment C9, Université des Sciences et Technologies de Lille, 59655 Villeneuve d'Ascq Cedex, France
| | - David Delvallé
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR8576 du CNRS, IFR 147, Bâtiment C9, Université des Sciences et Technologies de Lille, 59655 Villeneuve d'Ascq Cedex, France
| | - Christophe D'Hulst
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR8576 du CNRS, IFR 147, Bâtiment C9, Université des Sciences et Technologies de Lille, 59655 Villeneuve d'Ascq Cedex, France
| | - Martha G James
- Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa, USA
| | - Alan M Myers
- Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa, USA
| |
Collapse
|
34
|
Haseneyer G, Ravel C, Dardevet M, Balfourier F, Sourdille P, Charmet G, Brunel D, Sauer S, Geiger HH, Graner A, Stracke S. High level of conservation between genes coding for the GAMYB transcription factor in barley (Hordeum vulgare L.) and bread wheat (Triticum aestivum L.) collections. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2008; 117:321-31. [PMID: 18488187 PMCID: PMC2755743 DOI: 10.1007/s00122-008-0777-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2007] [Accepted: 04/15/2008] [Indexed: 05/09/2023]
Abstract
The transcription factor GAMYB is involved in gibberellin signalling in cereal aleurone cells and in plant developmental processes. Nucleotide diversity of HvGAMYB and TaGAMYB was investigated in 155 barley (Hordeum vulgare) and 42 wheat (Triticum aestivum) accessions, respectively. Polymorphisms defined 18 haplotypes in the barley collection and 1, 7 and 3 haplotypes for the A, B, and D genomes of wheat, respectively. We found that (1) Hv- and TaGAMYB genes have identical structures. (2) Both genes show a high level of nucleotide identity (>95%) in the coding sequences and the distribution of polymorphisms is similar in both collections. At the protein level the functional domain is identical in both species. (3) GAMYB genes map to a syntenic position on chromosome 3. GAMYB genes are different in both collections with respect to the Tajima D statistic and linkage disequilibrium (LD). A moderate level of LD was observed in the barley collection. In wheat, LD is absolute between polymorphic sites, mostly located in the first intron, while it decays within the gene. Differences in Tajima D values might be due to a lower selection pressure on HvGAMYB, compared to its wheat orthologue. Altogether our results provide evidence that there have been only few evolutionary changes in Hv- and TaGAMYB. This confirms the close relationship between these species and also highlights the functional importance of this transcription factor.
Collapse
Affiliation(s)
- Grit Haseneyer
- Leibniz Institute of Plant Genetics and Crop Plant Research Gatersleben (IPK), Corrensstr. 3, 06466 Gatersleben, Germany
- Plant Breeding, Technische Universitaet Muenchen/Centre of Life and Food Sciences Weihenstephan, Am Hochanger 4, 85350 Freising, Germany
| | | | | | | | | | | | | | - Sascha Sauer
- Max Planck Institute for Molecular Genetics, Ihnestr. 73, 14195 Berlin, Germany
| | - Hartwig H. Geiger
- Institute of Plant Breeding, Seed Science and Population Genetics, University of Hohenheim, 70599 Stuttgart, Germany
| | - Andreas Graner
- Leibniz Institute of Plant Genetics and Crop Plant Research Gatersleben (IPK), Corrensstr. 3, 06466 Gatersleben, Germany
| | - Silke Stracke
- Leibniz Institute of Plant Genetics and Crop Plant Research Gatersleben (IPK), Corrensstr. 3, 06466 Gatersleben, Germany
- Department of Crop Sciences, Quality of Plant Products, University of Goettingen, Carl-Sprengel-Weg 1, 37075 Goettingen, Germany
| |
Collapse
|
35
|
Konik-Rose C, Thistleton J, Chanvrier H, Tan I, Halley P, Gidley M, Kosar-Hashemi B, Wang H, Larroque O, Ikea J, McMaugh S, Regina A, Rahman S, Morell M, Li Z. Effects of starch synthase IIa gene dosage on grain, protein and starch in endosperm of wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2007; 115:1053-65. [PMID: 17721773 DOI: 10.1007/s00122-007-0631-0] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2007] [Accepted: 08/06/2007] [Indexed: 05/16/2023]
Abstract
Starch synthases (SS) are responsible for elongating the alpha-1,4 glucan chains of starch. A doubled haploid population was generated by crossing a line of wheat, which lacks functional ssIIa genes on each genome (abd), and an Australian wheat cultivar, Sunco, with wild type ssIIa alleles on each genome (ABD). Evidence has been presented previously indicating that the SGP-1 (starch granule protein-1) proteins present in the starch granule in wheat are products of the ssIIa genes. Analysis of 100 progeny lines demonstrated co-segregation of the ssIIa alleles from the three genomes with the SGP-1 proteins, providing further evidence that the SGP-1 proteins are the products of the ssIIa genes. From the progeny lines, 40 doubled haploid lines representing the eight possible genotypes for SSIIa (ABD, aBD, AbD, ABd, abD, aBd, Abd, abd) were characterized for their grain weight, protein content, total starch content and starch properties. For some properties (chain length distribution, pasting properties, swelling power, and gelatinization properties), a progressive change was observed across the four classes of genotypes (wild type, single nulls, double nulls and triple nulls). However, for other grain properties (seed weight and protein content) and starch properties (total starch content, granule morphology and crystallinity, granule size distribution, amylose content, amylose-lipid dissociation properties), a statistically significant change only occurred for the triple nulls, indicating that all three genes had to be missing or inactive for a change to occur. These results illustrate the importance of SSIIa in controlling grain and starch properties and the importance of amylopectin fine structure in controlling starch granule properties in wheat.
Collapse
|
36
|
Kosar-Hashemi B, Irwin JA, Higgins J, Rahman S, Morell MK. Isolation, identification and characterisation of starch-interacting proteins by 2-D affinity electrophoresis. Electrophoresis 2006; 27:1832-9. [PMID: 16645949 DOI: 10.1002/elps.200500400] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A 2-D affinity electrophoretic technique (2-DAE) has been used to isolate proteins that interact with various starch components from total barley endosperm extracts. In the first dimension, proteins are separated by native PAGE. The second-dimensional gel contains polysaccharides such as amylopectin and glycogen. The migration of starch-interacting proteins in this dimension is determined by their affinity towards a particular polysaccharide and these proteins are therefore spatially separated from the bulk of proteins in the crude extract. Four distinct proteins demonstrate significant affinity for amylopectin and have been identified as starch branching enzyme I (SBEI), starch branching enzyme IIa (SBEIIa), SBEIIb and starch phosphorylase using polyclonal antibodies and zymogram activity analysis. In the case of starch phosphorylase, a protein spot was excised from a 2-DAE polyacrylamide gel and analysed using Q-TOF MS/MS, resulting in the alignment of three internal peptide sequences with the known sequence of the wheat plastidic starch phosphorylase isoform. This assignment was confirmed by the determination of the enzyme's function using zymogram analysis. Dissociation constants (Kd) were calculated for the three enzymes at 4 degrees C and values of 0.20, 0.21 and 1.3 g/L were determined for SBEI, SBEIIa and starch phosphorylase, respectively. Starch synthase I could also be resolved from the other proteins in the presence of glycogen and its identity was confirmed using a polyclonal antibody and by activity analysis. The 2-DAE method described here is simple, though powerful, enabling protein separation from crude extracts on the basis of function.
Collapse
Affiliation(s)
- Behjat Kosar-Hashemi
- Commonwealth Scientific and Industrial Research Organisation Plant Industry, Canberra, ACT, Australia
| | | | | | | | | |
Collapse
|
37
|
Shimbata T, Nakamura T, Vrinten P, Saito M, Yonemaru J, Seto Y, Yasuda H. Mutations in wheat starch synthase II genes and PCR-based selection of a SGP-1 null line. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2005; 111:1072-9. [PMID: 16172895 DOI: 10.1007/s00122-005-0032-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2005] [Accepted: 06/28/2005] [Indexed: 05/04/2023]
Abstract
Wheat (Triticum aestivum L.) starch synthase II, which is also known as starch granule protein 1 (SGP-1), plays a major role in endosperm starch synthesis. The three SGP-1 proteins, SGP-A1, B1 and D1, are produced by three homoeologous SSII genes, wSSII-A, B, and D. Lines carrying null alleles for each SGP-1 protein have previously been identified. In this report, the mutations occurring in each wSSII gene were characterized, and PCR-based DNA markers capable of detecting the mutations were developed. In the null wSSII-A allele, a 289 bp deletion accompanied by 8 bp of filler DNA was present near the initiation codon. A 175 bp insertion occurred in exon 8 of the null wSSII-B allele. The insertion represented a recently discovered miniature inverted-repeat transposable element (MITE) named Hikkoshi that was first found in a wheat waxy gene. A 63 bp deletion was found at the region surrounding the junction of the fifth exon and intron of the null wSSII-D allele. Based on this information, we designed primer sets to enable us to conduct allele-specific amplifications for each locus. The applicability of these primer sets for breeding programs was demonstrated by reconstructing a line lacking all three SGP-1 proteins using marker-assisted selection. These markers will also be useful in breeding programs aimed at obtaining partial mutants missing one or two SGP-1 proteins.
Collapse
Affiliation(s)
- T Shimbata
- Central Laboratory, Nippon Flour Mills Co. Ltd., 5-1-3 Midorigaoka, Atsugi, Kanagawa, Japan.
| | | | | | | | | | | | | |
Collapse
|
38
|
Delvallé D, Dumez S, Wattebled F, Roldán I, Planchot V, Berbezy P, Colonna P, Vyas D, Chatterjee M, Ball S, Mérida A, D'Hulst C. Soluble starch synthase I: a major determinant for the synthesis of amylopectin in Arabidopsis thaliana leaves. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2005; 43:398-412. [PMID: 16045475 DOI: 10.1111/j.1365-313x.2005.02462.x] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
A minimum of four soluble starch synthase families have been documented in all starch-storing green plants. These activities are involved in amylopectin synthesis and are extremely well conserved throughout the plant kingdom. Mutants or transgenic plants defective for SSII and SSIII isoforms have been previously shown to have a large and specific impact on the synthesis of amylopectin while the function of the SSI type of enzymes has remained elusive. We report here that Arabidopsis mutants, lacking a plastidial starch synthase isoform belonging to the SSI family, display a major and novel type of structural alteration within their amylopectin. Comparative analysis of beta-limit dextrins for both wild type and mutant amylopectins suggests a specific and crucial function of SSI during the synthesis of transient starch in Arabidopsis leaves. Considering our own characterization of SSI activity and the previously described kinetic properties of maize SSI, our results suggest that the function of SSI is mainly involved in the synthesis of small outer chains during amylopectin cluster synthesis.
Collapse
Affiliation(s)
- David Delvallé
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR8576 CNRS/USTL, IFR 118, Université des Sciences et Technologies de Lille, 59655 Villeneuve d'Ascq Cedex, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Hirose T, Terao T. A comprehensive expression analysis of the starch synthase gene family in rice (Oryza sativa L.). PLANTA 2004; 220:9-16. [PMID: 15232694 DOI: 10.1007/s00425-004-1314-6] [Citation(s) in RCA: 152] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2004] [Accepted: 05/05/2004] [Indexed: 05/04/2023]
Abstract
To elucidate the roles of the isogenes encoding starch synthase (EC 2.4.1.21) in rice (Oryza sativa L.), a comprehensive expression analysis of the gene family was conducted. Extensive searches for starch synthase genes were done in the databases of both the whole genome and full-length cDNAs of rice, and ten genes were revealed to comprise the starch synthase gene family. Multi-sequence alignment analysis of the starch synthase proteins from rice and other plant species suggested that they were grouped into five classes, soluble starch synthase I (SSI), SSII, SSIII, SSIV and granule-bound starch synthase (GBSS). In rice, there was one gene for SSI, three for SSII and two each for SSIII, IV and GBSS. The expression pattern of the ten genes in the developing caryopsis was examined by semi-quantitative RT-PCR analysis. Based on the temporal expression patterns, the ten genes could be divided into three groups: (i) early expressers ( SSII-2, III-1, GBSSII), which are expressed in the early stage of grain filling; (ii) late expressers ( SSII-3, III-2, GBSSI), which are expressed in the mid to later stage of grain filling; and (iii) steady expressers ( SSI, II-1, IV-1, IV-2), which are expressed relatively constantly during grain filling. Within a caryopsis, the three gene groups spatially share their expression, i.e. "early expressers" in the pericarp, the "late expressers" in the endosperm" and the "steady expressers" in both tissues. In addition, this grouping was reflected in the expression pattern of various rice tissues: expression in non-endosperm, endosperm or all tissues examined. The implications in this spatio-temporal work sharing of starch synthesis isogenes are discussed.
Collapse
Affiliation(s)
- Tatsuro Hirose
- Department of Rice Research, National Agricultural Research Center, Joetsu, 943-0193 Niigata, Japan.
| | | |
Collapse
|
40
|
Zhang X, Colleoni C, Ratushna V, Sirghie-Colleoni M, James MG, Myers AM. Molecular characterization demonstrates that the Zea mays gene sugary2 codes for the starch synthase isoform SSIIa. PLANT MOLECULAR BIOLOGY 2004; 54:865-79. [PMID: 15604657 DOI: 10.1007/s11103-004-0312-1] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Mutations in the maize gene sugary2 ( su2 ) affect starch structure and its resultant physiochemical properties in useful ways, although the gene has not been characterized previously at the molecular level. This study tested the hypothesis that su2 codes for starch synthase IIa (SSIIa). Two independent mutations of the su2 locus, su2-2279 and su2-5178 , were identified in a Mutator -active maize population. The nucleotide sequence of the genomic locus that codes for SSIIa was compared between wild type plants and those homozygous for either novel mutation. Plants bearing su2-2279 invariably contained a Mutator transposon in exon 3 of the SSIIa gene, and su2-5178 mutants always contained a small retrotransposon-like insertion in exon 10. Six allelic su2 (-) mutations conditioned loss or reduction in abundance of the SSIIa protein detected by immunoblot. These data indicate that su2 codes for SSIIa and that deficiency in this isoform is ultimately responsible for the altered physiochemical properties of su2 (-) mutant starches. A specific starch synthase isoform among several identified in soluble endosperm extracts was absent in su2-2279 or su2-5178 mutants, indicating that SSIIa is active in the soluble phase during kernel development. The immediate structural effect of the su2 (-) mutations was shown to be increased abundance of short glucan chains in amylopectin and a proportional decrease in intermediate length chains, similar to the effects of SSII deficiency in other species.
Collapse
Affiliation(s)
- Xiaoli Zhang
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, 1210 Molecular Biology Building, IA, USA
| | | | | | | | | | | |
Collapse
|
41
|
Bellgard M, Ye J, Gojobori T, Appels R. The bioinformatics challenges in comparative analysis of cereal genomes-an overview. Funct Integr Genomics 2004; 4:1-11. [PMID: 14770300 DOI: 10.1007/s10142-004-0102-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2003] [Revised: 12/16/2003] [Accepted: 12/16/2003] [Indexed: 11/24/2022]
Abstract
Comparative genomic analysis is the cornerstone of in silico-based approaches to understanding biological systems and processes across cereal species, such as rice, wheat and barley, in order to identify genes of agronomic interest. The size of the genomic repositories is nearly doubling every year, and this has significant implications on the way bioinformatics analyses are carried out. In this overview the concepts and technology underpinning bioinformatics as applied to comparative genomic analysis are considered in the context of other manuscripts appearing in this issue of Functional and Integrative Genomics.
Collapse
Affiliation(s)
- M Bellgard
- Molecular Plant Breeding CRC, Murdoch University, South Street, WA 6152 Murdoch, Australia
| | | | | | | |
Collapse
|
42
|
Morell MK, Kosar-Hashemi B, Cmiel M, Samuel MS, Chandler P, Rahman S, Buleon A, Batey IL, Li Z. Barley sex6 mutants lack starch synthase IIa activity and contain a starch with novel properties. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2003; 34:173-85. [PMID: 12694593 DOI: 10.1046/j.1365-313x.2003.01712.x] [Citation(s) in RCA: 201] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Analysis of barley shrunken grain mutants has identified lines with a novel high amylose starch phenotype. The causal mutation is located at the sex6 locus on chromosome 7H, suggesting the starch synthase IIa (ssIIa) gene as a candidate gene altered by the mutation. Consistent with this hypothesis, no evidence of SSIIa protein expression in either the starch granule or soluble fractions of the endosperm was found. Sequences of the starch synthase IIa gene, ssIIa, from three independent sex6 lines showed the presence of a stop codon preventing translation of the ssIIa transcript in each line. Perfect segregation of the starch phenotype with the presence of stop codons in the ssIIa gene was obtained, providing strong evidence for the lesion in the ssIIa gene being the causal mutation for the sex6 phenotype. The loss of SSIIa activity in barley leads to novel and informative phenotypes. First, a decrease in amylopectin synthesis to less than 20% of the wild-type levels indicates that SSIIa accounts for the majority of the amylopectin polymer elongation activity in barley. Secondly, in contrast to high amylose starches resulting from branching enzyme downregulation, the sex6 starches have a shortened amylopectin chain length distribution and a reduced gelatinisation temperature. Thirdly, the mutation leads to pleiotropic effects on other enzymes of the starch biosynthesis pathway, abolishing the binding of SSI, branching enzyme IIa and branching enzyme IIb to the starch granules of sex6 mutants, while not significantly altering their expression levels in the soluble fraction.
Collapse
|