1
|
Wang S, Ping Q, Li Y. Comprehensively understanding metabolic pathways of protein during the anaerobic digestion of waste activated sludge. CHEMOSPHERE 2022; 297:134117. [PMID: 35227742 DOI: 10.1016/j.chemosphere.2022.134117] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 02/21/2022] [Accepted: 02/24/2022] [Indexed: 06/14/2023]
Abstract
The metabolic pathways of protein during anaerobic digestion (AD) of waste activated sludge (WAS) were comprehensively investigated. Results showed that 100 kinds of peptidases were involved in the hydrolysis and acidogenesis processes. Serine endopeptidases (EC 3.4.21.53) and serine-type carboxypeptidases (EC 3.4.16.4) were the key enzymes of endopeptidases and exopeptidases, respectively. The pathways of ko00250 (alanine, aspartate and glutamate metabolism), ko00260 (glycine, serine and threonine metabolism), ko00270 (cysteine and methionine metabolism), ko00280 (valine, leucine and isoleucine degradation), ko00360 (phenylalanine metabolism) and ko00310 (lysine degradation) were the critical metabolic pathways of amino acids during AD of WAS, since they have complete pathways from amino acids to vital intermediates (pyruvate or acetyl-CoA). l-aspartate, l-alanine, threonine, glycine, serine, l-cysteine were the intermediate products in the conversion of protein to pyruvate, while l-leucine, l-isoleucine, phenylalanine, lysine could be directly metabolized to acetyl-CoA. Dechloromonas and Thauera played major roles in the crucial metabolic pathways of amino acids (ko00250, ko00260, ko00280 and ko00270). These important discoveries could provide a new biological perspective for improving AD performance.
Collapse
Affiliation(s)
- Siyuan Wang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China
| | - Qian Ping
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China
| | - Yongmei Li
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China.
| |
Collapse
|
2
|
Xu X, Zhang L, Zhao W, Fu L, Han Y, Wang K, Yan L, Li Y, Zhang XH, Min DH. Genome-wide analysis of the serine carboxypeptidase-like protein family in Triticum aestivum reveals TaSCPL184-6D is involved in abiotic stress response. BMC Genomics 2021; 22:350. [PMID: 33992092 PMCID: PMC8126144 DOI: 10.1186/s12864-021-07647-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 04/21/2021] [Indexed: 12/17/2022] Open
Abstract
Background The serine carboxypeptidase-like protein (SCPL) family plays a vital role in stress response, growth, development and pathogen defense. However, the identification and functional analysis of SCPL gene family members have not yet been performed in wheat. Results In this study, we identified a total of 210 candidate genes encoding SCPL proteins in wheat. According to their structural characteristics, it is possible to divide these members into three subfamilies: CPI, CPII and CPIII. We uncovered a total of 209 TaSCPL genes unevenly distributed across 21 wheat chromosomes, of which 65.7% are present in triads. Gene duplication analysis showed that ~ 10.5% and ~ 64.8% of the TaSCPL genes are derived from tandem and segmental duplication events, respectively. Moreover, the Ka/Ks ratios between duplicated TaSCPL gene pairs were lower than 0.6, which suggests the action of strong purifying selection. Gene structure analysis showed that most of the TaSCPL genes contain multiple introns and that the motifs present in each subfamily are relatively conserved. Our analysis on cis-acting elements showed that the promoter sequences of TaSCPL genes are enriched in drought-, ABA- and MeJA-responsive elements. In addition, we studied the expression profiles of TaSCPL genes in different tissues at different developmental stages. We then evaluated the expression levels of four TaSCPL genes by qRT-PCR, and selected TaSCPL184-6D for further downstream analysis. The results showed an enhanced drought and salt tolerance among TaSCPL184-6D transgenic Arabidopsis plants, and that the overexpression of the gene increased proline and decreased malondialdehyde levels, which might help plants adapting to adverse environments. Our results provide comprehensive analyses of wheat SCPL genes that might work as a reference for future studies aimed at improving drought and salt tolerance in wheat. Conclusions We conducte a comprehensive bioinformatic analysis of the TaSCPL gene family in wheat, which revealing the potential roles of TaSCPL genes in abiotic stress. Our analysis also provides useful resources for improving the resistance of wheat. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07647-6.
Collapse
Affiliation(s)
- Xiaomin Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Lili Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Wan Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Liang Fu
- Xinxiang Academy of Agricultural Sciences of He'nan Province, Xinxiang, China
| | - Yuxuan Han
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Keke Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Luyu Yan
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Ye Li
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiao-Hong Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China.
| | - Dong-Hong Min
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China.
| |
Collapse
|
3
|
Xiao SS, Mi JD, Mei L, Liang J, Feng KX, Wu YB, Liao XD, Wang Y. Microbial Diversity and Community Variation in the Intestines of Layer Chickens. Animals (Basel) 2021; 11:ani11030840. [PMID: 33809729 PMCID: PMC8002243 DOI: 10.3390/ani11030840] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/06/2021] [Accepted: 03/12/2021] [Indexed: 02/03/2023] Open
Abstract
The intestinal microbiota is increasingly recognized as an important component of host health, metabolism and immunity. Early gut colonizers are pivotal in the establishment of microbial community structures affecting the health and growth performance of chickens. White Lohmann layer is a common commercial breed. Therefore, this breed was selected to study the pattern of changes of microbiota with age. In this study, the duodenum, caecum and colorectum contents of white Lohmann layer chickens from same environment control farm were collected and analyzed using 16S rRNA sequencing to explore the spatial and temporal variations in intestinal microbiota. The results showed that the diversity of the microbial community structure in the duodenum, caecum and colorectum increased with age and tended to be stable when the layer chickens reached 50 days of age and the distinct succession patterns of the intestinal microbiota between the duodenum and large intestine (caecum and colorectum). On day 0, the diversity of microbes in the duodenum was higher than that in the caecum and colorectum, but the compositions of intestinal microbes were relatively similar, with facultative anaerobic Proteobacteria as the main microbes. However, the relative abundance of facultative anaerobic bacteria (Escherichia) gradually decreased and was replaced by anaerobic bacteria (Bacteroides and Ruminococcaceae). By day 50, the structure of intestinal microbes had gradually become stable, and Lactobacillus was the dominant bacteria in the duodenum (41.1%). The compositions of dominant microbes in the caecum and colorectum were more complex, but there were certain similarities. Bacteroides, Odoribacter and Clostridiales vadin BB60 group were dominant. The results of this study provide evidence that time and spatial factors are important factors affecting the intestinal microbiota composition. This study provides new knowledge of the intestinal microbiota colonization pattern of layer chickens in early life to improve the intestinal health of layer chickens.
Collapse
Affiliation(s)
- Sha-Sha Xiao
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Wushan Road, Tianhe District, Guangzhou 510642, China; (S.-S.X.); (J.-D.M.); (L.M.); (K.-X.F.); (Y.-B.W.); (X.-D.L.)
| | - Jian-Dui Mi
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Wushan Road, Tianhe District, Guangzhou 510642, China; (S.-S.X.); (J.-D.M.); (L.M.); (K.-X.F.); (Y.-B.W.); (X.-D.L.)
| | - Liang Mei
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Wushan Road, Tianhe District, Guangzhou 510642, China; (S.-S.X.); (J.-D.M.); (L.M.); (K.-X.F.); (Y.-B.W.); (X.-D.L.)
| | - Juanboo Liang
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, Serdang 43400, Malaysia;
| | - Kun-Xian Feng
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Wushan Road, Tianhe District, Guangzhou 510642, China; (S.-S.X.); (J.-D.M.); (L.M.); (K.-X.F.); (Y.-B.W.); (X.-D.L.)
| | - Yin-Bao Wu
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Wushan Road, Tianhe District, Guangzhou 510642, China; (S.-S.X.); (J.-D.M.); (L.M.); (K.-X.F.); (Y.-B.W.); (X.-D.L.)
| | - Xin-Di Liao
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Wushan Road, Tianhe District, Guangzhou 510642, China; (S.-S.X.); (J.-D.M.); (L.M.); (K.-X.F.); (Y.-B.W.); (X.-D.L.)
| | - Yan Wang
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Wushan Road, Tianhe District, Guangzhou 510642, China; (S.-S.X.); (J.-D.M.); (L.M.); (K.-X.F.); (Y.-B.W.); (X.-D.L.)
- Correspondence: ; Tel.: +86-20-85280279; Fax: +86-20-85280740
| |
Collapse
|
4
|
Leišová-Svobodová L, Psota V, Stočes Š, Vácha P, Kučera L. Comparative de novo transcriptome analysis of barley varieties with different malting qualities. Funct Integr Genomics 2020; 20:801-812. [PMID: 32948934 PMCID: PMC7585565 DOI: 10.1007/s10142-020-00750-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 07/22/2020] [Accepted: 08/18/2020] [Indexed: 12/01/2022]
Abstract
Barley is one of the most important crops in the world. Barley is used as both food and feed and is important for malt production. Demands for malting quality differ among countries and customs. Malting quality is a complex characteristic involving barley genetics, the environmental conditions during barley growth, and the technological parameters of the malting process. In this study, the hypothesis was that there were no differences between two groups of barley varieties with different but defined malting qualities, which was tested using RNA sequencing during selected stages of malting. In total, 919 differentially transcribed genes between the two barley groups were identified and annotated. Differentially expressed genes (DEGs) were primarily assigned to gene ontology (GO) terms of oxidation-reduction process - oxidoreductase activity, response to stress, carbohydrate metabolic process, and proteolysis - hydrolase activity, and metal ion binding. Genes connected with the plasma membrane and its integral components also play important roles in malting quality. DEG profiles of selected genes in the three malting stages indicate a complex character of malting quality. Many single-nucleotide polymorphisms (SNPs) and insertions and deletions (indels) were identified. SNPs and indels with the best quality were used for primer design. After optimization and validation, five molecular markers were developed for use in barley breeding.
Collapse
Affiliation(s)
| | - Vratislav Psota
- Research Institute of Brewing and Malting, Analytical Testing Laboratory - Malting Institute Brno, Mostecká 971/7, 614 00, Brno, Czech Republic
| | - Štěpán Stočes
- SEQme s.r.o., Dlouhá 176 26301, Dobříš, Czech Republic
| | - Petr Vácha
- SEQme s.r.o., Dlouhá 176 26301, Dobříš, Czech Republic
| | - Ladislav Kučera
- Crop Research Institute, Drnovská, 507 161 06, Prague 6, Czech Republic
| |
Collapse
|
5
|
Sharma A, Basu U, Malik N, Daware A, Thakro V, Narnoliya L, Bajaj D, Tripathi S, Hegde VS, Upadhyaya HD, Tyagi AK, Parida SK. Genome-wide cis-regulatory signatures for modulation of agronomic traits as exemplified by drought yield index (DYI) in chickpea. Funct Integr Genomics 2019; 19:973-992. [PMID: 31177403 DOI: 10.1007/s10142-019-00691-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 05/07/2019] [Accepted: 05/10/2019] [Indexed: 12/26/2022]
Abstract
Developing functional molecular tags from the cis-regulatory sequence components of genes is vital for their deployment in efficient genetic dissection of complex quantitative traits in crop plants including chickpea. The current study identified 431,194 conserved non-coding SNP (CNSNP) from the cis-regulatory element regions of genes which were annotated on a chickpea genome. These genome-wide CNSNP marker resources are made publicly accessible through a user-friendly web-database ( http://www.cnsnpcicarbase.com ). The CNSNP-based quantitative trait loci (QTL) and expression QTL (eQTL) mapping and genome-wide association study (GWAS) were further integrated with global gene expression landscapes, molecular haplotyping, and DNA-protein interaction study in the association panel and recombinant inbred lines (RIL) mapping population to decode complex genetic architecture of one of the vital seed yield trait under drought stress, drought yield index (DYI), in chickpea. This delineated two constituted natural haplotypes and alleles from a histone H3 protein-coding gene and its transcriptional regulator NAC transcription factor (TF) harboring the major QTLs and trans-acting eQTL governing DYI in chickpea. The effect of CNSNPs in TF-binding cis-element of a histone H3 gene in altering the binding affinity and transcriptional activity of NAC TF based on chromatin immunoprecipitation-quantitative PCR (ChIP-qPCR) assay was evident. The CNSNP-led promising molecular tags scanned will essentially have functional significance to decode transcriptional gene regulatory function and thus can drive translational genomic analysis in chickpea.
Collapse
Affiliation(s)
- Akash Sharma
- Genomics-Assisted Breeding and Crop Improvement Laboratory, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Udita Basu
- Genomics-Assisted Breeding and Crop Improvement Laboratory, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Naveen Malik
- Genomics-Assisted Breeding and Crop Improvement Laboratory, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Anurag Daware
- Genomics-Assisted Breeding and Crop Improvement Laboratory, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Virevol Thakro
- Genomics-Assisted Breeding and Crop Improvement Laboratory, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Laxmi Narnoliya
- Genomics-Assisted Breeding and Crop Improvement Laboratory, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Deepak Bajaj
- Genomics-Assisted Breeding and Crop Improvement Laboratory, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Shailesh Tripathi
- Division of Genetics, Indian Agricultural Research Institute (IARI), New Delhi, 110012, India
| | - V S Hegde
- Division of Genetics, Indian Agricultural Research Institute (IARI), New Delhi, 110012, India
| | - Hari D Upadhyaya
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Telangana, 502324, India
| | - Akhilesh K Tyagi
- Genomics-Assisted Breeding and Crop Improvement Laboratory, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India.,Department of Plant Molecular Biology, University of Delhi, South Campus, New Delhi, 110021, India
| | - Swarup K Parida
- Genomics-Assisted Breeding and Crop Improvement Laboratory, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
6
|
Galotta MF, Pugliese P, Gutiérrez-Boem FH, Veliz CG, Criado MV, Caputo C, Echeverria M, Roberts IN. Subtilase activity and gene expression during germination and seedling growth in barley. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 139:197-206. [PMID: 30908971 DOI: 10.1016/j.plaphy.2019.03.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 02/25/2019] [Accepted: 03/12/2019] [Indexed: 06/09/2023]
Abstract
Proteases play a main role in the mobilization of storage proteins during seed germination. Until today, there is little information about the involvement of serine proteases, particularly subtilases, in the germination of barley grains. The aims of the present work were to study the contribution of serine proteases to the total proteolytic activity induced during germination of barley grains and evaluate the specific involvement of subtilases in this process. Proteolytic activity assayed against azocasein in the presence of specific inhibitors, showed that serine proteases contributed between 10 and 20% of total activity along germination. Subtilase activity increased from day 1 after imbibition with a peak between days 4-5. Moreover, in vivo determination of subtilase activity in germinating grains revealed increasing activity along germination mainly localized in the seed endosperm and developing rootlets. Finally, the expression of 19 barley genes encoding subtilases was measured by real time PCR during germination. Three of the analyzed genes increased their expression along germination, five showed a transient induction, one was down-regulated, nine remained unchanged and one was not expressed. The present work demonstrates the involvement of subtilases in germination of barley grains and describes the positive association of eight subtilase genes to this process.
Collapse
Affiliation(s)
- María Florencia Galotta
- Instituto de Investigaciones en Biociencias Agrícolas y Ambientales (INBA), CONICET, Facultad de Agronomía, Universidad de Buenos Aires, Av. San Martín 4453, C1417DSE, Buenos Aires, Argentina
| | - Paulina Pugliese
- Instituto de Investigaciones en Biociencias Agrícolas y Ambientales (INBA), CONICET, Facultad de Agronomía, Universidad de Buenos Aires, Av. San Martín 4453, C1417DSE, Buenos Aires, Argentina
| | - Flavio H Gutiérrez-Boem
- Instituto de Investigaciones en Biociencias Agrícolas y Ambientales (INBA), CONICET, Facultad de Agronomía, Universidad de Buenos Aires, Av. San Martín 4453, C1417DSE, Buenos Aires, Argentina
| | - Cintia G Veliz
- Instituto de Investigaciones en Biociencias Agrícolas y Ambientales (INBA), CONICET, Facultad de Agronomía, Universidad de Buenos Aires, Av. San Martín 4453, C1417DSE, Buenos Aires, Argentina
| | - María Victoria Criado
- Instituto de Investigaciones en Biociencias Agrícolas y Ambientales (INBA), CONICET, Facultad de Agronomía, Universidad de Buenos Aires, Av. San Martín 4453, C1417DSE, Buenos Aires, Argentina
| | - Carla Caputo
- Instituto de Investigaciones en Biociencias Agrícolas y Ambientales (INBA), CONICET, Facultad de Agronomía, Universidad de Buenos Aires, Av. San Martín 4453, C1417DSE, Buenos Aires, Argentina
| | - Mariela Echeverria
- Instituto de Investigaciones en Biociencias Agrícolas y Ambientales (INBA), CONICET, Facultad de Agronomía, Universidad de Buenos Aires, Av. San Martín 4453, C1417DSE, Buenos Aires, Argentina
| | - Irma N Roberts
- Instituto de Investigaciones en Biociencias Agrícolas y Ambientales (INBA), CONICET, Facultad de Agronomía, Universidad de Buenos Aires, Av. San Martín 4453, C1417DSE, Buenos Aires, Argentina.
| |
Collapse
|
7
|
Kochevenko A, Jiang Y, Seiler C, Surdonja K, Kollers S, Reif JC, Korzun V, Graner A. Identification of QTL hot spots for malting quality in two elite breeding lines with distinct tolerance to abiotic stress. BMC PLANT BIOLOGY 2018; 18:106. [PMID: 29866039 PMCID: PMC5987402 DOI: 10.1186/s12870-018-1323-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 05/24/2018] [Indexed: 05/02/2023]
Abstract
BACKGROUND Barley (Hordeum vulgare) is an important crop cultivated across the world. Drought is a major abiotic factor compromising barley yield worldwide, therefore in modern spring barley cultivars superior seed and malting quality characteristics should be combined with reasonable level of drought tolerance. Previously we have identified a number of barley lines demonstrating the superior yield performance under drought conditions. The aim of this work was to perform a QTL analysis of malting quality traits in a doubled haploid (DH) mapping population of two elite barley lines that differ in their reaction pattern to drought stress. RESULTS A population of DH lines was developed by crossing two drought-tolerant elite breeding lines, Victoriana and Sofiara, exploiting distinct mechanism of drought tolerance, sustaining assimilation vs remobilization. The mapping population was assayed under field conditions at four distinct locations that differed in precipitation rate. DH lines were genotyped with the Illumina 9 K iSelect assay, and linkage map including 1782 polymorphic markers and covering a total map length of 1140 cM was constructed. The result of quantitative trait loci (QTL) analysis showed that majority of the traits were affected by several main effect QTL and/or QTL x environment (QE) interactions. In total, 57, 41, and 5 QTL were associated with yield-related traits, malting quality traits and seed quality traits, respectively. 11 and 29 of mapped QTL explained more than 10 and 5% of phenotypic variation, respectively. In several chromosomal regions co-localization between QTL for various traits were observed. The largest clusters were detected on chromosomes 3H and 4H. CONCLUSIONS Our QTL mapping results revealed several novel consistent genomic regions controlling malting quality which could be exploited in marker assisted selection. In this context, the complex QTL region on chromosome 3H seems of particular interest, as it harbors several large effect QTL.
Collapse
Affiliation(s)
- Andriy Kochevenko
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, D-06466 Seeland, Germany
| | - Yong Jiang
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, D-06466 Seeland, Germany
| | - Christiane Seiler
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, D-06466 Seeland, Germany
| | - Korana Surdonja
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, D-06466 Seeland, Germany
| | - Sonja Kollers
- KWS LOCHOW GmbH, Ferdinand-von-Lochow-Str. 5, 29303 Bergen, Germany
| | - Jochen Christoph Reif
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, D-06466 Seeland, Germany
| | - Viktor Korzun
- KWS LOCHOW GmbH, Ferdinand-von-Lochow-Str. 5, 29303 Bergen, Germany
| | - Andreas Graner
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, D-06466 Seeland, Germany
| |
Collapse
|
8
|
Fechter I, Rath F, Voetz M. A Single PCR Marker Predicting the Activity Levels of Various Enzymes Responsible for Malting Quality. JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2018. [DOI: 10.1094/asbcj-2010-0120-01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Iris Fechter
- VLB Berlin, Research Institute for Raw Materials, Berlin, Germany
| | - Frank Rath
- VLB Berlin, Research Institute for Raw Materials, Berlin, Germany
| | | |
Collapse
|
9
|
Wehner G, Balko C, Humbeck K, Zyprian E, Ordon F. Expression profiling of genes involved in drought stress and leaf senescence in juvenile barley. BMC PLANT BIOLOGY 2016; 16:3. [PMID: 26733420 PMCID: PMC4702385 DOI: 10.1186/s12870-015-0701-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 12/22/2015] [Indexed: 05/22/2023]
Abstract
BACKGROUND Drought stress in juvenile stages of crop development and premature leaf senescence induced by drought stress have an impact on biomass production and yield formation of barley (Hordeum vulgare L.). Therefore, in order to get information of regulatory processes involved in the adaptation to drought stress and leaf senescence expression analyses of candidate genes were conducted on a set of 156 barley genotypes in early developmental stages, and expression quantitative trait loci (eQTL) were identified by a genome wide association study. RESULTS Significant effects of genotype and treatment were detected for leaf colour measured at BBCH 25 as an indicator of leaf senescence and for the expression level of the genes analysed. Furthermore, significant correlations were detected within the group of genes involved in drought stress (r = 0.84) and those acting in leaf senescence (r = 0.64), as well as between leaf senescence genes and the leaf colour (r = 0.34). Based on these expression data and 3,212 polymorphic single nucleotide polymorphisms (SNP) with a minor allele frequency >5% derived from the Illumina 9 k iSelect SNP Chip, eight cis eQTL and seven trans eQTL were found. Out of these an eQTL located on chromosome 3H at 142.1 cM is of special interest harbouring two drought stress genes (GAD3 and P5CS2) and one leaf senescence gene (Contig7437), as well as an eQTL on chromosome 5H at 44.5 cM in which two genes (TRIUR3 and AVP1) were identified to be associated to drought stress tolerance in a previous study. CONCLUSION With respect to the expression of genes involved in drought stress and early leaf senescence, genotypic differences exist in barley. Major eQTL for the expression of these genes are located on barley chromosome 3H and 5H. Respective markers may be used in future barley breeding programmes for improving tolerance to drought stress and leaf senescence.
Collapse
Affiliation(s)
- Gwendolin Wehner
- Julius Kühn-Institut (JKI), Federal Research Centre for Cultivated Plants, Institute for Resistance Research and Stress Tolerance, Rudolf-Schick-Platz 3, 18190, Sanitz, Germany.
- Interdisciplinary Center for Crop Plant Research (IZN), Hoher Weg 8, 06120, Halle, Germany.
| | - Christiane Balko
- Julius Kühn-Institut (JKI), Federal Research Centre for Cultivated Plants, Institute for Resistance Research and Stress Tolerance, Rudolf-Schick-Platz 3, 18190, Sanitz, Germany.
| | - Klaus Humbeck
- Interdisciplinary Center for Crop Plant Research (IZN), Hoher Weg 8, 06120, Halle, Germany.
- Martin-Luther-University Halle-Wittenberg, Institute of Biology, Weinbergweg 10, 06120, Halle, Germany.
| | - Eva Zyprian
- Julius Kühn-Institut (JKI), Federal Research Centre for Cultivated Plants, Institute for Grapevine Breeding, Geilweilerhof, 76833, Siebeldingen, Germany.
| | - Frank Ordon
- Interdisciplinary Center for Crop Plant Research (IZN), Hoher Weg 8, 06120, Halle, Germany.
- Julius Kühn-Institut (JKI), Federal Research Centre for Cultivated Plants, Institute for Resistance Research and Stress Tolerance, Erwin-Baur-Str. 27, 06484, Quedlinburg, Germany.
| |
Collapse
|
10
|
Bajaj D, Saxena MS, Kujur A, Das S, Badoni S, Tripathi S, Upadhyaya HD, Gowda CLL, Sharma S, Singh S, Tyagi AK, Parida SK. Genome-wide conserved non-coding microsatellite (CNMS) marker-based integrative genetical genomics for quantitative dissection of seed weight in chickpea. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:1271-90. [PMID: 25504138 PMCID: PMC4339591 DOI: 10.1093/jxb/eru478] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Phylogenetic footprinting identified 666 genome-wide paralogous and orthologous CNMS (conserved non-coding microsatellite) markers from 5'-untranslated and regulatory regions (URRs) of 603 protein-coding chickpea genes. The (CT)n and (GA)n CNMS carrying CTRMCAMV35S and GAGA8BKN3 regulatory elements, respectively, are abundant in the chickpea genome. The mapped genic CNMS markers with robust amplification efficiencies (94.7%) detected higher intraspecific polymorphic potential (37.6%) among genotypes, implying their immense utility in chickpea breeding and genetic analyses. Seventeen differentially expressed CNMS marker-associated genes showing strong preferential and seed tissue/developmental stage-specific expression in contrasting genotypes were selected to narrow down the gene targets underlying seed weight quantitative trait loci (QTLs)/eQTLs (expression QTLs) through integrative genetical genomics. The integration of transcript profiling with seed weight QTL/eQTL mapping, molecular haplotyping, and association analyses identified potential molecular tags (GAGA8BKN3 and RAV1AAT regulatory elements and alleles/haplotypes) in the LOB-domain-containing protein- and KANADI protein-encoding transcription factor genes controlling the cis-regulated expression for seed weight in the chickpea. This emphasizes the potential of CNMS marker-based integrative genetical genomics for the quantitative genetic dissection of complex seed weight in chickpea.
Collapse
Affiliation(s)
- Deepak Bajaj
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Maneesha S Saxena
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Alice Kujur
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Shouvik Das
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Saurabh Badoni
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Shailesh Tripathi
- Division of Genetics, Indian Agricultural Research Institute (IARI), New Delhi 110012, India
| | - Hari D Upadhyaya
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru 502324, Telangana, India
| | - C L L Gowda
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru 502324, Telangana, India
| | - Shivali Sharma
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru 502324, Telangana, India
| | - Sube Singh
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru 502324, Telangana, India
| | - Akhilesh K Tyagi
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Swarup K Parida
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| |
Collapse
|
11
|
Song H, Yin Z, Chao M, Ning L, Zhang D, Yu D. Functional properties and expression quantitative trait loci for phosphate transporter GmPT1 in soybean. PLANT, CELL & ENVIRONMENT 2014; 37:462-72. [PMID: 23889314 DOI: 10.1111/pce.12170] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 07/15/2013] [Accepted: 07/17/2013] [Indexed: 05/18/2023]
Abstract
Phosphate (Pi) remobilization within a plant is critical for plant survival under Pi-limiting conditions. In this paper, a soybean Pi transporter gene, GmPT1, was characterized. A marked induction of GmPT1 transcript was observed in young leaves, mature leaves and lateral roots during long-term Pi starvation. Transgenic tobacco plants containing the GmPT1 gene were obtained using an Agrobacterium-mediated transformation system. Compared with wild-type plants, transgenic plants showed significant increases in phosphorus-use efficiency (PUE), photosystem II (PSII) function, total dry weight and seed weight under Pi-deficient conditions. GmPT1 expression levels and PUE were determined in a soybean recombinant inbred line population during a pot experiment that was conducted to measure chlorophyll fluorescence parameters, photosynthetic rate (PN ) and seed yield. Correlation analysis revealed that GmPT1 expression levels had significantly positive correlations with seed yield, PUE, PN and the quantum yield of PSII primary photochemistry (ΦPSII ). Expression quantitative trait loci (eQTL) mapping for GmPT1 revealed two eQTLs, one of which coincided with both the physical location of GmPT1 and a QTL associated with seed yield. These results suggest that GmPT1 plays a role in Pi remobilization, and it may be possible to improve soybean seed yields under Pi-limiting conditions by modulating GmPT1 expression levels.
Collapse
Affiliation(s)
- Haina Song
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | | | | | | | | | | |
Collapse
|
12
|
Schmitt MR, Skadsen RW, Budde AD. Protein mobilization and malting-specific proteinase expression during barley germination. J Cereal Sci 2013. [DOI: 10.1016/j.jcs.2013.05.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
Drzymała A, Prabucka B, Bielawski W. Carboxypeptidase I from triticale grains and the hydrolysis of salt-soluble fractions of storage proteins. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2012; 58:195-204. [PMID: 22831920 DOI: 10.1016/j.plaphy.2012.06.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 06/27/2012] [Indexed: 06/01/2023]
Abstract
Carboxypeptidase I was purified from triticale grains (×Triticosecale Wittm.) by a 5-step purification procedure including gel filtration, cation-exchange chromatography and affinity chromatography. The enzyme was purified 595.9 fold with a 1.58% recovery. Triticale carboxypeptidase I is a homodimer with a molecular weight of 124.2 kDa and a subunit weight of 55.2 kDa. Each subunit is composed of two polypeptide chains (33.4 and 21.3 kDa). Serine was found in the active site of triticale carboxypeptidase I; DFP (diisopropylflourophosphate) and other applied inhibitors of serine proteases inhibited the enzyme activity. Triticale carboxypeptidase I hydrolyzes N-CBZ-dipeptide (N-carbobenzoxy-dipeptide) substrates at low pH. N-CBZ-Phe-Ala, N-CBZ-Phe-Leu and N-CBZ-Ala-Met were hydrolyzed with the highest rates. The lowest K(m) value and the highest k(cat)/K(m) ratio were observed for hydrolysis of N-CBZ-Phe-Ala. Studies on the amino acid sequence revealed that the purified enzyme is homologous to carboxypeptidase I from barley. Analyses of conserved regions in the sequence of triticale carboxypeptidase I revealed the presence of Ser, Asp and His that compose the catalytic triad. Intact storage proteins were poor substrates for carboxypeptidases. Carboxypeptidase I together with carboxypeptidase III effectively degraded albumins proteolytically modified by endopeptidase EP8. Modified globulins were degraded at a slower rate, and all three carboxypeptidases were required for a significantly increased activity. Studies of the expression of the carboxypeptidase I gene revealed that the synthesis of the enzyme occurs mainly in the scutellum of the grain. The enzyme is also expressed in the aleurone layer of the grains, although its function in this tissue is unknown.
Collapse
Affiliation(s)
- Adam Drzymała
- Department of Biochemistry, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland.
| | | | | |
Collapse
|
14
|
Singh S, Tan HQ, Singh J. Mutagenesis of barley malting quality QTLs with Ds transposons. Funct Integr Genomics 2011; 12:131-41. [DOI: 10.1007/s10142-011-0258-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Revised: 10/25/2011] [Accepted: 11/02/2011] [Indexed: 11/28/2022]
|
15
|
Rizvi SMH, Beattie AD, Rossnagel B, Scoles G. Thermostability of Barley Malt Proteases in Western Canadian Two-Row Malting Barley. Cereal Chem 2011. [DOI: 10.1094/cchem-04-11-0043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Syed Masood Hasan Rizvi
- Department of Plant Sciences, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK, S7N 5A8 Canada
- Corresponding author. Phone: (306) 966-5004. Fax: (306) 966-5015. E-mail:
| | - Aaron D. Beattie
- Department of Plant Sciences, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK, S7N 5A8 Canada
| | - Brian Rossnagel
- Department of Plant Sciences, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK, S7N 5A8 Canada
| | - Graham Scoles
- Department of Plant Sciences, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK, S7N 5A8 Canada
| |
Collapse
|
16
|
Yin Z, Meng F, Song H, Wang X, Chao M, Zhang G, Xu X, Deng D, Yu D. GmFtsH9 expression correlates with in vivo photosystem II function: chlorophyll a fluorescence transient analysis and eQTL mapping in soybean. PLANTA 2011; 234:815-27. [PMID: 21638036 DOI: 10.1007/s00425-011-1445-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Accepted: 05/17/2011] [Indexed: 05/18/2023]
Abstract
Filamentation temperature-sensitive H (FtsH) is an ATP-dependent zinc metalloprotease involved in diverse biological functions. There are 12 FtsH proteins in Arabidopsis, among which AtFtsH2 plays an important role in regulating the turnover of photosystem II (PSII) reaction center D1 protein and the development of the photosynthetic apparatus. Here, we have identified 11 FtsH genes in the soybean genome by a bioinformatics approach. These soybean FtsH genes corresponded to seven Arabidopsis FtsH genes, suggesting that the main characteristics of soybean FtsH genes were formed before the evolutionary split of soybean and Arabidopsis. Phylogenetic analyses allowed us to clone a soybean AtFtsH2-like gene designated as GmFtsH9. The predicted protein of GmFtsH9 consists of 690 amino acids and contains three typical FtsH proteins conserved domains. The expression level of GmFtsH9 was determined in a soybean recombinant inbred line population under a pot experiment conducted for measuring chlorophyll a fluorescence transient parameters, photosynthetic CO(2) fixation rate (P (N)), and seed yield. Expression quantitative trait loci (eQTL) mapping revealed two trans-acting eQTLs for GmFtsH9. The significant correlation of gene expression level with chlorophyll a fluorescence transient parameters and the presence of overlapping eQTL (QTL) between gene expression level and chlorophyll a fluorescence transient parameters indicated that GmFtsH9 could be involved in regulating PSII function. These results further lead to the understanding of the mechanism underlying FtsH gene expression, and contribute to the development of marker-assisted selection breeding programs for modulating soybean FtsH gene expression.
Collapse
Affiliation(s)
- Zhitong Yin
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Liu P, Wang CM, Li L, Sun F, Liu P, Yue GH. Mapping QTLs for oil traits and eQTLs for oleosin genes in jatropha. BMC PLANT BIOLOGY 2011; 11:132. [PMID: 21958236 PMCID: PMC3195091 DOI: 10.1186/1471-2229-11-132] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Accepted: 09/29/2011] [Indexed: 05/08/2023]
Abstract
BACKGROUND The major fatty acids in seed oil of jatropha, a biofuel crop, are palmitic acid (C16:0), stearic acid (C18:0), oleic acid (C18:1) and linoleic acid (C18:2). High oleic acid and total oil content are desirable for jatropha breeding. Until now, little was known about the genetic bases of these oil traits in jatropha. In this study, quantitative trait locus (QTL) and expression QTL analyses were applied to identify genetic factors that are relevant to seed oil traits in jatropha. RESULTS Composite interval mapping identified 18 QTL underlying the oil traits. A highly significant QTL qC18:1-1 was detected at one end of linkage group (LG) 1 with logarithm of the odd (LOD) 18.4 and percentage of variance explained (PVE) 36.0%. Interestingly, the QTL qC18:1-1 overlapped with qC18:2-1, controlling oleic acid and linoleic acid compositions. Among the significant QTL controlling total oil content, qOilC-4 was mapped on LG4 a relatively high significant level with LOD 5.0 and PVE 11.1%. Meanwhile, oleosins are the major composition in oil body affecting oil traits; we therefore developed SNP markers in three oleosin genes OleI, OleII and OleIII, which were mapped onto the linkage map. OleI and OleIII were mapped on LG5, closing to QTLs controlling oleic acid and stearic acid. We further determined the expressions of OleI, OleII and OleIII in mature seeds from the QTL mapping population, and detected expression QTLs (eQTLs) of the three genes on LGs 5, 6 and 8 respectively. The eQTL of OleIII, qOleIII-5, was detected on LG5 with PVE 11.7% and overlapped with QTLs controlling stearic acid and oleic acid, implying a cis- or trans-element for the OleIII affecting fatty acid compositions. CONCLUSION We identified 18 QTLs underlying the oil traits and 3 eQTLs of the oleosin acid genes. The QTLs and eQTLs, especially qC18:1-1, qOilC-4 and qOleIII-5 with contribution rates (R2) higher than 10%, controlling oleic acid, total oil content and oleosin gene expression respectively, will provide indispensable data for initiating molecular breeding to improve seed oil traits in jatropha, the key crop for biodiesel production.
Collapse
Affiliation(s)
- Peng Liu
- Molecular Population Genetics Group, Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, 117604 Singapore
| | - Chun Ming Wang
- Molecular Population Genetics Group, Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, 117604 Singapore
| | - Lei Li
- Molecular Population Genetics Group, Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, 117604 Singapore
| | - Fei Sun
- Molecular Population Genetics Group, Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, 117604 Singapore
| | - Peng Liu
- Molecular Population Genetics Group, Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, 117604 Singapore
| | - Gen Hua Yue
- Molecular Population Genetics Group, Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, 117604 Singapore
| |
Collapse
|
18
|
Jia Q, Zhang XQ, Westcott S, Broughton S, Cakir M, Yang J, Lance R, Li C. Expression level of a gibberellin 20-oxidase gene is associated with multiple agronomic and quality traits in barley. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2011; 122:1451-60. [PMID: 21318371 DOI: 10.1007/s00122-011-1544-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Accepted: 01/21/2011] [Indexed: 05/07/2023]
Abstract
The use of dwarfing genes has resulted in the most significant improvements in yield and adaptation in cereal crops. The allelic dwarfing gene sdw1/denso has been used throughout the world to develop commercial barley varieties. The sdw1 gene has never been used successfully for malting barley, but only for a large number of feed varieties. One of the gibberellin 20-oxidase genes (Hv20ox₂) was identified as the candidate gene for sdw1/denso. Semi-quantitative real-time RT-PCR revealed that Hv20ox₂ was expressed at different levels in various organs of barley. Transcriptional levels were reduced in leaf blade, sheath, stem and rachis tissue in the barley variety Baudin with the denso gene. Subsequently, the relative expression levels of Hv20ox₂ were determined by quantitative real-time RT-PCR in a doubled haploid population and mapped as a quantitative trait. A single expression quantitative trait locus (eQTL) was identified and mapped to its structural gene region on chromosome 3H. The eQTL was co-located with QTLs for yield, height, development score, hectolitre weight and grain plumpness. The expression level of Hv20ox₂ was reduced fourfold in the denso mutant, but around 60-fold in the sdw1 mutant, compared to the control variety. The reduced expression level of Hv20ox₂ enhanced grain yield by increasing the number of effective tillers, but had negative effects on grain and malting quality. The sdw1 gene can be used only in feed barley due to its severe reduction of Hv20ox₂ expression. The gene expression marker for Hv20ox₂ can be used to distinguish different alleles of sdw1/denso.
Collapse
Affiliation(s)
- Qiaojun Jia
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Iimure T, Kihara M, Ichikawa S, Ito K, Takeda K, Sato K. Development of DNA markers associated with beer foam stability for barley breeding. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2011; 122:199-210. [PMID: 20827457 DOI: 10.1007/s00122-010-1436-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Accepted: 08/25/2010] [Indexed: 05/29/2023]
Abstract
Traits conferring brewing quality are important objectives in malting barley breeding. Beer foam stability is one of the more difficult traits to evaluate due to the requirement for a relatively large amount of grain to be malted and then the experimental costs for subsequent brewing trials. Consequently, foam stability tends to be evaluated with only advanced lines in the final stages of the breeding process. To simplify the evaluation and selection for this trait, efficient DNA makers were developed in this study. Previous studies have suggested that the level of both of the foam-associated proteins Z4 and Z7 were possible factors that influenced beer foam stability. To confirm the relationship between levels of these proteins in beer and foam stability, 24 beer samples prepared from malt made from 10 barley cultivars, were examined. Regression analyses suggested that beer proteins Z4 and Z7 could be positive and negative markers for beer foam stability, respectively. To develop DNA markers associated with contents of proteins Z4 and Z7 in barley grain, nucleotide sequence polymorphisms in barley cultivars in the upstream region of the translation initiation codon, where the promoter region might be located were compared. As a result, 5 and 23 nucleotide sequence polymorphisms were detected in protein Z4 and protein Z7, respectively. By using these polymorphisms, cleaved amplified polymorphic sequence (CAPS) markers were developed. The CAPS markers for proteins Z4 and Z7 were applied to classify the barley grain content of 23 barley cultivars into two protein Z4 (pZ4-H and pZ4-L) and three protein Z7 (the pZ7-H, pZ7-L and pZ7-L2) haplotypes, respectively. Barley cultivars with pZ4-H showed significantly higher levels of protein Z4 in grain, and those with pZ7-L and pZ7-L2 showed significantly lower levels of protein Z7 in grain. Beer foam stability in the cultivars with pZ4-H and pZ7-L was significantly higher than that with pZ4-L and pZ7-H, respectively. Our results indicate that these CAPS markers provide an efficient selection tool for beer foam stability in barley breeding programs.
Collapse
Affiliation(s)
- Takashi Iimure
- Bioresources Research and Development Department, Sapporo Breweries Ltd., 37-1, Nittakizaki, Ota, Gunma, 370-0393, Japan.
| | | | | | | | | | | |
Collapse
|
20
|
Muñoz-Amatriaín M, Xiong Y, Schmitt MR, Bilgic H, Budde AD, Chao S, Smith KP, Muehlbauer GJ. Transcriptome analysis of a barley breeding program examines gene expression diversity and reveals target genes for malting quality improvement. BMC Genomics 2010; 11:653. [PMID: 21092286 PMCID: PMC3091773 DOI: 10.1186/1471-2164-11-653] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Accepted: 11/23/2010] [Indexed: 11/10/2022] Open
Abstract
Background Advanced cycle breeding utilizes crosses among elite lines and is a successful method to develop new inbreds. However, it results in a reduction in genetic diversity within the breeding population. The development of malting barley varieties requires the adherence to a narrow malting quality profile and thus the use of advanced cycle breeding strategies. Although attention has been focused on diversity in gene expression and its association with genetic diversity, there are no studies performed in a single breeding program examining the implications that consecutive cycles of breeding have on gene expression variation and identifying the variability still available for future improvement. Results Fifteen lines representing the historically important six-rowed malting barley breeding program of the University of Minnesota were genotyped with 1,524 SNPs, phenotypically examined for six malting quality traits, and analyzed for transcript accumulation during germination using the Barley1 GeneChip array. Significant correlation was detected between genetic and transcript-level variation. We observed a reduction in both genetic and gene expression diversity through the breeding process, although the expression of many genes have not been fixed. A high number of quality-related genes whose expression was fixed during the breeding process was identified, indicating that much of the diversity reduction was associated with the improvement of the complex phenotype "malting quality", the main goal of the University of Minnesota breeding program. We also identified 49 differentially expressed genes between the most recent lines of the program that were correlated with one or more of the six primary malting quality traits. These genes constitute potential targets for the improvement of malting quality within the breeding program. Conclusions The present study shows the repercussion of advanced cycle breeding on gene expression diversity within an important barley breeding program. A reduction in gene expression diversity was detected, although there is diversity still present after forty years of breeding that can exploited for future crop improvement. In addition, the identification of candidate genes for enhancing malting quality may be used to optimize the selection of targets for further improvements in this economically important phenotype.
Collapse
Affiliation(s)
- María Muñoz-Amatriaín
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, 55108, USA
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Muñoz-Amatriaín M, Cistué L, Xiong Y, Bilgic H, Budde AD, Schmitt MR, Smith KP, Hayes PM, Muehlbauer GJ. Structural and functional characterization of a winter malting barley. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2010; 120:971-84. [PMID: 19960335 DOI: 10.1007/s00122-009-1225-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Accepted: 11/18/2009] [Indexed: 05/18/2023]
Abstract
The development of winter malting barley (Hordeum vulgare L.) varieties is emerging as a worldwide priority due to the numerous advantages of these varieties over spring types. However, the complexity of both malting quality and winter hardiness phenotypes makes simultaneous improvement a challenge. To obtain an understanding of the relationship between loci controlling winter hardiness and malt quality and to assess the potential for breeding winter malting barley varieties, we structurally and functionally characterized the six-row accession "88Ab536", a cold-tolerant line with superior malting quality characteristics that derives from the cross of NE76129/Morex//Morex. We used 4,596 SNPs to construct the haplotype structure of 88Ab536 on which malting quality and winter hardiness loci reported in the literature were aligned. The genomic regions determining malting quality and winter hardiness traits have been defined in this founder germplasm, which will assist breeders in targeting regions for marker-assisted selection. The Barley1 GeneChip array was used to functionally characterize 88Ab536 during malting. Its gene expression profile was similar to that of the archetypical malting variety Morex, which is consistent with their similar malting quality characteristics. The characterization of 88Ab536 has increased our understanding of the genetic relationships of malting quality and winter hardiness, and will provide a genetic foundation for further development of more cold-tolerant varieties that have malt quality characteristics that meet or exceed current benchmarks.
Collapse
Affiliation(s)
- María Muñoz-Amatriaín
- Department of Agronomy and Plant Genetics, University of Minnesota, Saint Paul, MN 55108, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Yin Z, Meng F, Song H, Wang X, Xu X, Yu D. Expression quantitative trait loci analysis of two genes encoding rubisco activase in soybean. PLANT PHYSIOLOGY 2010; 152:1625-37. [PMID: 20032079 PMCID: PMC2832260 DOI: 10.1104/pp.109.148312] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Accepted: 12/17/2009] [Indexed: 05/18/2023]
Abstract
Rubisco activase (RCA) catalyzes the activation of Rubisco in vivo and plays a crucial role in photosynthesis. However, until now, little was known about the molecular genetics of RCA in soybean (Glycine max), one of the most important legume crops. Here, we cloned and characterized two genes encoding the longer alpha -isoform and the shorter beta -isoform of soybean RCA (GmRCA alpha and GmRCA beta, respectively). The two corresponding cDNAs are divergent in both the translated and 3 ' untranslated regions. Analysis of genomic DNA sequences suggested that the corresponding mRNAs are transcripts of two different genes and not the products of a single alternatively splicing pre-mRNA. Two additional possible alpha -form RCA-encoding genes, GmRCA03 and GmRCA14, and one additional beta -form RCA-encoding gene, GmRCA11, were also isolated. To examine the function and modulation of RCA genes in soybean, we determined the expression levels of GmRCA alpha and GmRCA beta, Rubisco initial activity, photosynthetic rate, and seed yield in 184 soybean recombinant inbred lines. Correlation of gene expression levels with three other traits indicates that RCA genes could play an important role in regulating soybean photosynthetic capacity and seed yield. Expression quantitative trait loci mapping revealed four trans-expression quantitative trait loci for GmRCA alpha and GmRCA beta. These results could provide a new approach for the modulation of RCA genes to improve photosynthetic rate and plant growth in soybean and other plants.
Collapse
Affiliation(s)
| | | | | | | | | | - Deyue Yu
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement (Z.Y., F.M., H.S., X.W., D.Y.), and Photosynthesis Research Laboratory, College of Life Sciences (X.X.), Nanjing Agricultural University, Nanjing 210095, China; and JIANGSU Yanjiang Institute of Agricultural Sciences, Nantong 226541, China (Z.Y.)
| |
Collapse
|
23
|
Lapitan NLV, Hess A, Cooper B, Botha AM, Badillo D, Iyer H, Menert J, Close T, Wright L, Hanning G, Tahir M, Lawrence C. Differentially expressed genes during malting and correlation with malting quality phenotypes in barley (Hordeum vulgare L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2009; 118:937-52. [PMID: 19132335 DOI: 10.1007/s00122-008-0951-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2008] [Accepted: 12/08/2008] [Indexed: 05/10/2023]
Abstract
Breeding for malting quality is an important goal of malting barley breeding programs. Malting quality is a complex phenotype that combines a large number of interrelated components, each of which shows complex inheritance. Currently, only a few genes involved in determining malting quality have been characterized. We combined transcript profiling with phenotypic correlations to identify candidate genes for malting quality. The Barley1 GeneChip array containing 22,792 probe sets was used to conduct transcript profiling of genes expressed in several different stages of malting of four malting cultivars. Genes that were differentially expressed in comparisons between different malting stages relative to ungerminated seed, as well as in comparisons between malting cultivars in the same malting stage were identified. Correlation analysis of 723 differentially expressed genes with malting quality phenotypes showed that 11-102 of these genes correlated with six malting quality phenotypes. Genes involved in carbohydrate metabolism were among the positively correlated genes. Genes for protein and lipid metabolism, cell wall organization and biogenesis, and genes involved in stress and defense response also correlated with malting quality phenotypes. Expressed sequence tags (ESTs) were generated from a 'malting-gene enriched' cDNA library made by suppression subtractive hybridization between malted and ungerminated seeds of 'Morex'. Eleven percent of the ESTs had no significant homology with sequences in the databases, suggesting that there may be other malting-related genes not represented in the barley gene chip array. The results provide candidate genes for malting quality phenotypes that need to be functionally validated.
Collapse
Affiliation(s)
- Nora L V Lapitan
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO 80523, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Genetic Improvement of Malting Quality through Conventional Breeding and Marker-assisted Selection. ACTA ACUST UNITED AC 2009. [DOI: 10.1007/978-3-642-01279-2_9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
|
25
|
A rice serine carboxypeptidase-like gene OsBISCPL1 is involved in regulation of defense responses against biotic and oxidative stress. Gene 2008; 420:57-65. [PMID: 18571878 DOI: 10.1016/j.gene.2008.05.006] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2008] [Revised: 05/01/2008] [Accepted: 05/02/2008] [Indexed: 11/22/2022]
Abstract
Serine carboxypeptidase-like proteins (SCPLs) comprise a large family of protein hydrolyzing enzymes that play roles in multiple cellular processes. During the course of study aimed at elucidating the molecular basis of induced immunity in rice, a gene, OsBISCPL1, encoding a putative SCPL, was isolated and identified. OsBISCPL1 contains a conserved peptidase S10 domain, serine active site and a signal peptide at N-terminus. OsBISCPL1 is expressed ubiquitously in rice, including roots, stems, leaves and spikes. Expression of OsBISCPL1 in leaves was significantly up-regulated after treatments with benzothiadiazole, salicylic acid, jasmonic acid and 1-amino cyclopropane-1-carboxylic acid, and also up-regulated in incompatible interactions between rice and the blast fungus, Magnaporthe grisea. Transgenic Arabidopsis plants with constitutive expression of OsBISCPL1 were generated and disease resistance assays indicated that the OsBISCPL1-overexpressing plants showed an enhanced disease resistance against Pseudomonas syringae pv. tomato and Alternaria brassicicola. Expression levels of defense-related genes, e.g. PR1, PR2, PR5 and PDF1.2, were constitutively up-regulated in transgenic plants as compared with those in wild-type plants. Furthermore, the OsBISCPL1-overexpressing plants also showed an increased tolerance to oxidative stress and up-regulated expression of oxidative stress-related genes. The results suggest that the OsBISCPL1 may be involved in regulation of defense responses against pathogen infection and oxidative stress.
Collapse
|
26
|
|
27
|
Schmitt MR, Budde AD. Improved Methods for High-Throughput Extraction and Assay of Green Barley Malt Proteinase Activity Facilitating Examination of Proteinase Activity Across Large-Scale Barley Populations. Cereal Chem 2007. [DOI: 10.1094/cchem-84-4-0313] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Mark R. Schmitt
- USDA-ARS, Cereal Crops Research Unit, 502 Walnut Street, Madison, WI 53726. Mention of trade names or commercial products in this presentation is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the U.S. Department of Agriculture
- Corresponding author. Phone: 608-262-4480. Fax: 608-890-0302. E-mail address:
| | - Allen D. Budde
- USDA-ARS, Cereal Crops Research Unit, 502 Walnut Street, Madison, WI 53726. Mention of trade names or commercial products in this presentation is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the U.S. Department of Agriculture
| |
Collapse
|
28
|
Jordan MC, Somers DJ, Banks TW. Identifying regions of the wheat genome controlling seed development by mapping expression quantitative trait loci. PLANT BIOTECHNOLOGY JOURNAL 2007; 5:442-53. [PMID: 17388792 DOI: 10.1111/j.1467-7652.2007.00253.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Statistical methods established for the genetic analysis of quantitative traits can be applied to gene expression data. Quantitative trait locus (QTL) analysis can associate the expression of genes or groups of genes with particular genomic regions, and thereby identify regions regulating gene expression. A segregating population of 41 doubled haploid (DH) lines from the hard red spring wheat cross RL4452 x 'AC Domain' was used to map expression level polymorphisms. This population had previously been mapped with microsatellites, and includes a full QTL analysis for agronomic and seed quality traits. Expression analysis on mRNA from developing seed grown in two field locations was conducted on 39 of the 41 DH lines using the Affymetrix GeneChip Wheat Genome Array. Analysis of the hybridization intensity identified 1484 Affymetrix probe sets in the first location and 10,280 probe sets in the second location, where the hybridization intensity varied significantly between genotypes of the population. A common set of 1455 probe sets differing in intensity between genotypes in both locations was used for mapping, and 542 QTLs were identified that each mapped to a single chromosome interval, illustrating that major gene expression QTLs could be found in wheat. Genomic regions corresponding to multiple gene expression QTLs were identified. Comparison of expression mapping data with physical mapping of wheat expressed sequence tag (EST) sequences using rice synteny, as well as logarithm of odds (LOD) score analysis, showed that both cis- and trans-acting expression QTLs were present. Chromosomes 1D and 4B may contain significant trans-regulatory regions in this population.
Collapse
Affiliation(s)
- Mark C Jordan
- Agriculture and Agri-Food Canada, Cereal Research Centre, 195 Dafoe Road, Winnipeg, MB, Canada.
| | | | | |
Collapse
|
29
|
Bellin D, Schulz B, Soerensen TR, Salamini F, Schneider K. Transcript profiles at different growth stages and tap-root zones identify correlated developmental and metabolic pathways of sugar beet. JOURNAL OF EXPERIMENTAL BOTANY 2007; 58:699-715. [PMID: 17307746 DOI: 10.1093/jxb/erl245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Field-grown sugar beets were analysed for morphological characters, sucrose content, and reproducible transcript profiles by macroarray analyses with 11,520 unique sugar-beet cDNA targets in two different years. Seasonal differences were partly compensated by expressing sampling dates as thermal time. During early beet development the number of cambial rings, root length, and sucrose concentration had already achieved >40% of their final values. Sucrose levels rose from 10% to 17% over the thermal time of 1300-1400 degrees Cd with only small changes later when lower concentrations were restricted to the exterior zone at the minimum of the spatial sucrose gradient through the beet. The number of leaves and root diameter followed the same temporal growth pattern, but mass increased until beet maturity at around 2000 degrees Cd. Cluster analysis identified 543 transcripts with reproducible preferential expression between 1300-1400 degrees Cd, and 170 showing the highest transcript levels later. In maturing beets, 373 transcripts were over-represented in the inner zone and 148 in the outer zone. During early development, genes involved in cytoskeletal reorganization and transport processes showed the highest transcript levels. Cell wall biogenesis-, defence-, stress-, and degradation-related transcripts were identified in all samples, and associated with pathogen attack during late development and in the outer zone. Candidates with potential roles in carbohydrate metabolism appeared to serve anaplerotic functions by converting excess intermediates to sucrose production. Transcripts preferentially occurring in sucrose-accumulating young beet cells and newly generated peripheral cells of mature beets are discussed as potential breeding targets to improve sink strength and growth.
Collapse
Affiliation(s)
- Diana Bellin
- Max-Planck-Institute for Plant Breeding Research, Department of Plant Breeding and Yield Physiology, Carl-von-Linné Weg 10, D-50827 Köln, Germany
| | | | | | | | | |
Collapse
|
30
|
Varshney RK, Langridge P, Graner A. Application of Genomics to Molecular Breeding of Wheat and Barley. ADVANCES IN GENETICS 2007; 58:121-55. [PMID: 17452248 DOI: 10.1016/s0065-2660(06)58005-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
In wheat and barley, several generations of selectable molecular markers have been included in the genetic maps; and a large number of qualitative and quantitative traits were located in the genomes, some of which are being routinely selected in marker-assisted breeding programs. In recent years, a large number of expressed sequence tags (ESTs) have been generated for wheat and barley that have been used for development of functional molecular markers, preparation of transcript maps, and construction of cDNA arrays. These functional genomic resources combined together with new approaches such as expression genetics, association mapping, allele mining, and informatics (bioinformatic tools) possess potential to identify genes responsible for a trait and their deployment in practical plant breeding. High costs currently limit the implementation of functional genomics in breeding programs. The potential applications together with some examples as well as challenges for applying genomics research in breeding activities are discussed. Genomics research will continue to enhance the efficiency and precision for crop improvement but will not replace conventional breeding and evaluation methods.
Collapse
Affiliation(s)
- Rajeev K Varshney
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru 502 324, A.P., India
| | | | | |
Collapse
|