1
|
Bhowal B, Hasija Y, Singla-Pareek SL. Tracing the intraspecies expansion of glyoxalase genes and their expanding roles across the genus Oryza. Funct Integr Genomics 2024; 24:220. [PMID: 39586889 DOI: 10.1007/s10142-024-01492-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 10/18/2024] [Accepted: 10/29/2024] [Indexed: 11/27/2024]
Abstract
The genus Oryza is of utmost importance to human civilization as two of its species became agronomically productive and widely cultivated, and also because wild rice is a treasure trove of beneficial alleles that can be used for crop improvement. Most of the wild rice genotypes are known for their stress tolerance several times more than the domesticated rice varieties. In this study, we aimed to carry out an exhaustive genomic survey to identify glyoxalase I (GLYI) and glyoxalase II (GLYII) genes across the 11 rice genomes sequenced so far. Notably, we found the putatively functional metal-dependent GLYI and GLYII enzymes to be conserved throughout domestication and a few homologous pairs to have undergone beneficial mutations to drive positive selection, and thus, acquire newer functions. Interestingly, we also report four newly identified GLYII members in O. sativa subsp. japonica in addition to the three previously reported GLYII genes. The presence of different types of cis-elements in the promoter region of the glyoxalase genes gives insights into their role and regulation under various developmental processes besides stress adaptation. Publicly available data suggests the role of glyoxalase genes particularly in salinity stress in both wild and cultivated rice as is also confirmed through qRT-PCR. Interestingly, we found less accumulation of MG and concurrently higher enzymatic activity of GLYI and GLYII proteins in stressed seedlings of selected wild rice genotypes indicating that glyoxalases indeed contribute to the intrinsic stress tolerance of wild rice.
Collapse
Affiliation(s)
- Bidisha Bhowal
- Plant Stress Biology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi, 110067, India
- Department of Biotechnology, Delhi Technological University, Main Bawana Road, Shahbad, Daulatpur, Delhi, 110042, India
| | - Yasha Hasija
- Department of Biotechnology, Delhi Technological University, Main Bawana Road, Shahbad, Daulatpur, Delhi, 110042, India
| | - Sneh L Singla-Pareek
- Plant Stress Biology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
2
|
Ji K, Zhang Y, Zhang T, Li D, Yuan Y, Wang L, Huang Q, Chen W. sll1019 and slr1259 encoding glyoxalase II improve tolerance of Synechocystis sp. PCC 6803 to methylglyoxal- and ethanol- induced oxidative stress by glyoxalase pathway. Appl Environ Microbiol 2024; 90:e0056424. [PMID: 39431850 DOI: 10.1128/aem.00564-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 09/20/2024] [Indexed: 10/22/2024] Open
Abstract
The glyoxalase pathway is the primary detoxification mechanism for methylglyoxal (MG), a ubiquitous toxic metabolite that disrupts redox homeostasis. In the glyoxalase pathway, glyoxalase II (GlyII) can completely detoxify MG. Increasing the activity of the glyoxalase system can enhance the resistance of plants or organisms to abiotic stress, but the relevant mechanism remains largely unknown. In this study, we investigated the physiological functions of GlyII genes (sll1019 and slr1259) in Synechocystis sp. PCC 6803 under MG or ethanol stress based on transcriptome and metabolome data. High-performance liquid chromatography (HPLC) results showed that proteins Sll1019 and Slr1259 had GlyII activity. Under stress conditions, sll1019 and slr1259 protected the strain against oxidative stress by enhancing the activity of the glyoxalase pathway and raising the contents of antioxidants such as glutathione and superoxide dismutase. In the photosynthetic system, sll1019 and slr1259 indirectly affected the light energy absorption by strains, synthesis of photosynthetic pigments, and activities of photosystem I and photosystem II, which was crucial for the growth of the strain under stress conditions. In addition, sll1019 and slr1259 enhanced the tolerance of strain to oxidative stress by indirectly regulating metabolic networks, including ensuring energy acquisition, NADH and NADPH production, and phosphate and nitrate transport. This study reveals the mechanism by which sll1019 and slr1259 improve oxidative stress tolerance of strains by glyoxalase pathway. Our findings provide theoretical basis for breeding, seedling, and field production of abiotic stress tolerance-enhanced variety.IMPORTANCEThe glyoxalase system is present in most organisms, and it is the primary pathway for eliminating the toxic metabolite methylglyoxal. Increasing the activity of the glyoxalase system can enhance plant resistance to environmental stress, but the relevant mechanism is poorly understood. This study revealed the physiological functions of glyoxalase II genes sll1019 and slr1259 in Synechocystis sp. PCC 6803 under abiotic stress conditions and their regulatory effects on oxidative stress tolerance of strains. Under stress conditions, sll1019 and slr1259 enhanced the activity of the glyoxalase pathway and the antioxidant system, maintained photosynthesis, ensured energy acquisition, NADH and NADPH production, and phosphate and nitrate transport, thereby protecting the strain against oxidative stress. This study lays a foundation for further deciphering the mechanism by which the glyoxalase system enhances the tolerance of cells to abiotic stress, providing important information for breeding, seedling, and selection of plants with strong stress resistance.
Collapse
Affiliation(s)
- Kai Ji
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yihang Zhang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Tianyuan Zhang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Daixi Li
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yuan Yuan
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Li Wang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Qiaoyun Huang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Wenli Chen
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
| |
Collapse
|
3
|
Falconieri GS, Bertini L, Fiaschetti M, Bizzarri E, Baccelli I, Caruso C, Proietti S. Arabidopsis GLYI4 Reveals Intriguing Insights into the JA Signaling Pathway and Plant Defense. Int J Mol Sci 2024; 25:12162. [PMID: 39596230 PMCID: PMC11594653 DOI: 10.3390/ijms252212162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/05/2024] [Accepted: 11/07/2024] [Indexed: 11/28/2024] Open
Abstract
Plant hormones play a central role in various physiological functions and mediate defense responses against (a)biotic stresses. Jasmonic acid (JA) has emerged as one of the key phytohormones involved in the response to necrotrophic pathogens. Under stressful conditions, plants can also produce small molecules, such as methylglyoxal (MG), a cytotoxic aldehyde. The enzymes glyoxalase I (GLYI) and glyoxalase II primarily detoxify MG. In Arabidopsis thaliana, GLYI4 has been recently characterized as having a crucial role in MG detoxification and emerging involvement in the JA pathway. Here, we investigated the impact of a GLYI4 loss-of-function on the Arabidopsis JA pathway and how MG affects it. The results showed that the glyI4 mutant plant had stunted growth, a smaller rosette diameter, reduced leaf size, and an altered pigment concentration. A gene expression analysis of the JA marker genes showed significant changes in the JA biosynthetic and signaling pathway genes in the glyI4 mutant. Disease resistance bioassays against the necrotroph Botrytis cinerea revealed altered patterns in the glyI4 mutant, likely due to increased oxidative stress. The MG effect has a further negative impact on plant performance. Collectively, these results contribute to clarifying the intricate interconnections between the GLYI4, MG, and JA pathways, opening up new avenues for further explorations of the intricate molecular mechanisms controlling plant stress responses.
Collapse
Affiliation(s)
- Gaia Salvatore Falconieri
- Department of Ecological and Biological Sciences, University of Tuscia, Largo dell’Università snc, 01100 Viterbo, Italy; (G.S.F.); (L.B.); (M.F.); (E.B.)
| | - Laura Bertini
- Department of Ecological and Biological Sciences, University of Tuscia, Largo dell’Università snc, 01100 Viterbo, Italy; (G.S.F.); (L.B.); (M.F.); (E.B.)
| | - Matteo Fiaschetti
- Department of Ecological and Biological Sciences, University of Tuscia, Largo dell’Università snc, 01100 Viterbo, Italy; (G.S.F.); (L.B.); (M.F.); (E.B.)
| | - Elisabetta Bizzarri
- Department of Ecological and Biological Sciences, University of Tuscia, Largo dell’Università snc, 01100 Viterbo, Italy; (G.S.F.); (L.B.); (M.F.); (E.B.)
| | - Ivan Baccelli
- Institute for Sustainable Plant Protection, National Research Council of Italy, Sesto Fiorentino, 50019 Florence, Italy;
| | - Carla Caruso
- Department of Ecological and Biological Sciences, University of Tuscia, Largo dell’Università snc, 01100 Viterbo, Italy; (G.S.F.); (L.B.); (M.F.); (E.B.)
- Institute for Sustainable Plant Protection, National Research Council of Italy, Strada delle Cacce, 73, 10135 Torino, Italy
| | - Silvia Proietti
- Department of Ecological and Biological Sciences, University of Tuscia, Largo dell’Università snc, 01100 Viterbo, Italy; (G.S.F.); (L.B.); (M.F.); (E.B.)
| |
Collapse
|
4
|
Arman MS, Bhuya AR, Shuvo MRK, Rabbi MA, Ghosh A. Genomic identification, characterization, and stress-induced expression profiling of glyoxalase and D-lactate dehydrogenase gene families in Capsicum annuum. BMC PLANT BIOLOGY 2024; 24:990. [PMID: 39428463 PMCID: PMC11492504 DOI: 10.1186/s12870-024-05612-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 09/23/2024] [Indexed: 10/22/2024]
Abstract
BACKGROUND Capsicum annuum, a significant agricultural and nutritional crop, faces production challenges due to its sensitivity to various abiotic stresses. Glyoxalase (GLY) and D-lactate dehydrogenase (D-LDH) enzymes play vital roles in mitigating these stresses by detoxifying the stress-induced cytotoxin, methylglyoxal (MG). METHODS A genome-wide study was conducted to identify and characterize glyoxalase I (GLYI), glyoxalase II (GLYII), unique glyoxalase III or DJ-1 (GLYIII), and D-LDH gene candidates in Capsicum annuum. The identified members were evaluated based on their evolutionary relationships with known orthologues, as well as their gene and protein features. Their expression patterns were examined in various tissues, developmental stages, and in response to abiotic stress conditions using RNA-seq data and qRT-PCR. RESULTS A total of 19 GLYI, 9 GLYII, 3 DJ-1, and 11 D-LDH members were identified, each featuring characteristic domains: glyoxalase, metallo-β-lactamase, DJ-1_PfpI, and FAD_binding_4, respectively. Phylogenetic analysis revealed distinct clades depending on functional diversification. Expression profiling demonstrated significant variability under stress conditions, underscoring their potential roles in stress modulation. Notably, gene-specific responses were observed with CaGLYI-2, CaGLYI-7, CaGLYII-6, CaDJ-1 A, and CaDLDH-1 showed upregulation under salinity, drought, oxidative, heat, and cold stresses, while downregulation were shown for CaGLYI-3, CaGLYII-1, CaDJ-1B, and CaDJ-1 C. Remarkably, CaGLYI-1 presented a unique expression pattern, upregulated against drought and salinity but downregulated under oxidative, heat, and cold stress. CONCLUSION The identified GLY and D-LDH gene families in Capsicum annuum exhibited differential expression patterns under different abiotic stresses. Specifically, CaGLYI-2, CaGLYI-7, CaGLYII-6, CaDJ-1 A, and CaDLDH-1 were upregulated in response to all five analyzed abiotic stressors, highlighting their critical role in stress modulation amidst climate change. This study enhances our understanding of plant stress physiology and opens new avenues for developing stress-resilient crop varieties, crucial for sustainable agriculture.
Collapse
Affiliation(s)
- Md Sakil Arman
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| | - Asifur Rob Bhuya
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| | - Md Rihan Kabir Shuvo
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| | - Md Afser Rabbi
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| | - Ajit Ghosh
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh.
| |
Collapse
|
5
|
Guo Z, Jiang N, Li M, Guo H, Liu Q, Qin X, Zhang Z, Han C, Wang Y. A vicinal oxygen chelate protein facilitates viral infection by triggering the unfolded protein response in Nicotiana benthamiana. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:1481-1499. [PMID: 38695653 DOI: 10.1111/jipb.13667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 03/31/2024] [Indexed: 07/12/2024]
Abstract
Vicinal oxygen chelate (VOC) proteins are members of an enzyme superfamily with dioxygenase or non-dioxygenase activities. However, the biological functions of VOC proteins in plants are poorly understood. Here, we show that a VOC in Nicotiana benthamiana (NbVOC1) facilitates viral infection. NbVOC1 was significantly induced by infection by beet necrotic yellow vein virus (BNYVV). Transient overexpression of NbVOC1 or its homolog from Beta vulgaris (BvVOC1) enhanced BNYVV infection in N. benthamiana, which required the nuclear localization of VOC1. Consistent with this result, overexpressing NbVOC1 facilitated BNYVV infection, whereas, knockdown and knockout of NbVOC1 inhibited BNYVV infection in transgenic N. benthamiana plants. NbVOC1 interacts with the basic leucine zipper transcription factors bZIP17/28, which enhances their self-interaction and DNA binding to the promoters of unfolded protein response (UPR)-related genes. We propose that bZIP17/28 directly binds to the NbVOC1 promoter and induces its transcription, forming a positive feedback loop to induce the UPR and facilitating BNYVV infection. Collectively, our results demonstrate that NbVOC1 positively regulates the UPR that enhances viral infection in plants.
Collapse
Affiliation(s)
- Zhihong Guo
- Ministry of Agriculture and Rural Affairs Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Ning Jiang
- Ministry of Agriculture and Rural Affairs Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Menglin Li
- Ministry of Agriculture and Rural Affairs Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Hongfang Guo
- Ministry of Agriculture and Rural Affairs Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Qi Liu
- Ministry of Agriculture and Rural Affairs Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Xinyu Qin
- Ministry of Agriculture and Rural Affairs Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Zongying Zhang
- Ministry of Agriculture and Rural Affairs Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Chenggui Han
- Ministry of Agriculture and Rural Affairs Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Ying Wang
- Ministry of Agriculture and Rural Affairs Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
6
|
Masum AA, Arman MS, Ghosh A. Methylglyoxal detoxifying gene families in tomato: Genome-wide identification, evolution, functional prediction, and transcript profiling. PLoS One 2024; 19:e0304039. [PMID: 38865327 PMCID: PMC11168688 DOI: 10.1371/journal.pone.0304039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 05/04/2024] [Indexed: 06/14/2024] Open
Abstract
Methylglyoxal (MG) is a highly cytotoxic molecule produced in all biological systems, which could be converted into non-toxic D-lactate by an evolutionarily conserved glyoxalase pathway. Glutathione-dependent glyoxalase I (GLYI) and glyoxalase II (GLYII) are responsible for the detoxification of MG into D-lactate in sequential reactions, while DJ-1 domain containing glyoxalase III (GLYIII) catalyzes the same reaction in a single step without glutathione dependency. Afterwards, D-lactate dehydrogenase (D-LDH) converts D-lactate into pyruvate, a metabolically usable intermediate. In the study, a comprehensive genome-wide investigation has been performed in one of the important vegetable plants, tomato to identify 13 putative GLYI, 4 GLYII, 3 GLYIII (DJ-1), and 4 D-LDH genes. Expression pattern analysis using microarray data confirmed their ubiquitous presence in different tissues and developmental stages. Moreover, stress treatment of tomato seedlings and subsequent qRT-PCR demonstrated upregulation of SlGLYI-2, SlGLYI-3, SlGLYI-6A, SlGLYII-1A, SlGLYII-3B, SlDJ-1A, SlDLDH-1 and SlDLDH-4 in response to different abiotic stresses, whereas SlGLYI-6B, SlGLYII-1B, SlGLYII-3A, SlDJ-1D and SlDLDH-2 were downregulated. Expression data also revealed SlGLYII-1B, SlGLYI-1A, SlGLYI-2, SlDJ-1D, and SlDLDH-4 were upregulated in response to various pathogenic infections, indicating the role of MG detoxifying enzymes in both plant defence and stress modulation. The functional characterization of each of these members could lay the foundation for the development of stress and disease-resistant plants promoting sustainable agriculture and production.
Collapse
Affiliation(s)
- Abdullah Al Masum
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Md Sakil Arman
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Ajit Ghosh
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| |
Collapse
|
7
|
Moy A, Nkongolo K. Decrypting Molecular Mechanisms Involved in Counteracting Copper and Nickel Toxicity in Jack Pine ( Pinus banksiana) Based on Transcriptomic Analysis. PLANTS (BASEL, SWITZERLAND) 2024; 13:1042. [PMID: 38611570 PMCID: PMC11013723 DOI: 10.3390/plants13071042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/28/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024]
Abstract
The remediation of copper and nickel-afflicted sites is challenged by the different physiological effects imposed by each metal on a given plant system. Pinus banksiana is resilient against copper and nickel, providing an opportunity to build a valuable resource to investigate the responding gene expression toward each metal. The objectives of this study were to (1) extend the analysis of the Pinus banksiana transcriptome exposed to nickel and copper, (2) assess the differential gene expression in nickel-resistant compared to copper-resistant genotypes, and (3) identify mechanisms specific to each metal. The Illumina platform was used to sequence RNA that was extracted from seedlings treated with each of the metals. There were 449 differentially expressed genes (DEGs) between copper-resistant genotypes (RGs) and nickel-resistant genotypes (RGs) at a high stringency cut-off, indicating a distinct pattern of gene expression toward each metal. For biological processes, 19.8% of DEGs were associated with the DNA metabolic process, followed by the response to stress (13.15%) and the response to chemicals (8.59%). For metabolic function, 27.9% of DEGs were associated with nuclease activity, followed by nucleotide binding (27.64%) and kinase activity (10.16%). Overall, 21.49% of DEGs were localized to the plasma membrane, followed by the cytosol (16.26%) and chloroplast (12.43%). Annotation of the top upregulated genes in copper RG compared to nickel RG identified genes and mechanisms that were specific to copper and not to nickel. NtPDR, AtHIPP10, and YSL1 were identified as genes associated with copper resistance. Various genes related to cell wall metabolism were identified, and they included genes encoding for HCT, CslE6, MPG, and polygalacturonase. Annotation of the top downregulated genes in copper RG compared to nickel RG revealed genes and mechanisms that were specific to nickel and not copper. Various regulatory and signaling-related genes associated with the stress response were identified. They included UGT, TIFY, ACC, dirigent protein, peroxidase, and glyoxyalase I. Additional research is needed to determine the specific functions of signaling and stress response mechanisms in nickel-resistant plants.
Collapse
Affiliation(s)
| | - Kabwe Nkongolo
- Biomolecular Sciences Program, Department of Biology, School of Natural Sciences, Laurentian University, Sudbury, ON P3E 2C6, Canada;
| |
Collapse
|
8
|
Dawane A, Deshpande S, Vijayaraghavreddy P, Vemanna RS. Polysome-bound mRNAs and translational mechanisms regulate drought tolerance in rice. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 208:108513. [PMID: 38513519 DOI: 10.1016/j.plaphy.2024.108513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 03/04/2024] [Accepted: 03/07/2024] [Indexed: 03/23/2024]
Abstract
Plants evolved several acquired tolerance traits for drought stress adaptation to maintain the cellular homeostasis. Drought stress at the anthesis stage in rice affects productivity due to the inefficiency of protein synthesis machinery. The effect of translational mechanisms on different pathways involved in cellular tolerance plays an important role. We report differential responses of translation-associated mechanisms in rice using polysome bound mRNA sequencing at anthesis stage drought stress in resistant Apo and sensitive IR64 genotypes. Apo maintained higher polysomes with 60 S-to-40 S and polysome-to-monosome ratios which directly correlate with protein levels under stress. IR64 has less protein levels under stress due to defective translation machinery and reduced water potential. Many polysome-bound long non-coding RNAs (lncRNA) were identified in both genotypes under drought, influencing translation. Apo had higher levels of N6-Methyladenosine (m6A) mRNA modifications that contributed for sustained translation. Translation machinery in Apo could maintain higher levels of photosynthetic machinery-associated proteins in drought stress, which maintain gas exchange, photosynthesis and yield under stress. The protein stability and ribosome biogenesis mechanisms favoured improved translation in Apo. The phytohormone signalling and transcriptional responses were severely affected in IR64. Our results demonstrate that, the higher translation ability of Apo favours maintenance of photosynthesis and physiological responses that are required for drought stress adaptation.
Collapse
Affiliation(s)
- Akashata Dawane
- Laboratory of Plant Functional Genomics, Regional Centre for Biotechnology, Faridabad-Gurgaon Expressway, NCR Biotech Science Cluster, 3rd Milestone, Faridabad, Haryana, 121 001, India
| | - Sanjay Deshpande
- Laboratory of Plant Functional Genomics, Regional Centre for Biotechnology, Faridabad-Gurgaon Expressway, NCR Biotech Science Cluster, 3rd Milestone, Faridabad, Haryana, 121 001, India
| | | | - Ramu S Vemanna
- Laboratory of Plant Functional Genomics, Regional Centre for Biotechnology, Faridabad-Gurgaon Expressway, NCR Biotech Science Cluster, 3rd Milestone, Faridabad, Haryana, 121 001, India.
| |
Collapse
|
9
|
Fu ZW, Li JH, Gao X, Wang SJ, Yuan TT, Lu YT. Pathogen-induced methylglyoxal negatively regulates rice bacterial blight resistance by inhibiting OsCDR1 protease activity. MOLECULAR PLANT 2024; 17:325-341. [PMID: 38178576 DOI: 10.1016/j.molp.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/10/2023] [Accepted: 01/02/2024] [Indexed: 01/06/2024]
Abstract
Xanthomonas oryzae pv. oryzae (Xoo) causes bacterial blight (BB), a globally devastating disease of rice (Oryza sativa) that is responsible for significant crop loss. Sugars and sugar metabolites are important for pathogen infection, providing energy and regulating events associated with defense responses; however, the mechanisms by which they regulate such events in BB are unclear. As an inevitable sugar metabolite, methylglyoxal (MG) is involved in plant growth and responses to various abiotic stresses, but the underlying mechanisms remain enigmatic. Whether and how MG functions in plant biotic stress responses is almost completely unknown. Here, we report that the Xoo strain PXO99 induces OsWRKY62.1 to repress transcription of OsGLY II genes by directly binding to their promoters, resulting in overaccumulation of MG. MG negatively regulates rice resistance against PXO99: osglyII2 mutants with higher MG levels are more susceptible to the pathogen, whereas OsGLYII2-overexpressing plants with lower MG content show greater resistance than the wild type. Overexpression of OsGLYII2 to prevent excessive MG accumulation confers broad-spectrum resistance against the biotrophic bacterial pathogens Xoo and Xanthomonas oryzae pv. oryzicola and the necrotrophic fungal pathogen Rhizoctonia solani, which causes rice sheath blight. Further evidence shows that MG reduces rice resistance against PXO99 through CONSTITUTIVE DISEASE RESISTANCE 1 (OsCDR1). MG modifies the Arg97 residue of OsCDR1 to inhibit its aspartic protease activity, which is essential for OsCDR1-enhanced immunity. Taken together, these findings illustrate how Xoo promotes infection by hijacking a sugar metabolite in the host plant.
Collapse
Affiliation(s)
- Zheng-Wei Fu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, China; Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Jian-Hui Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
| | - Xiang Gao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
| | - Shi-Jia Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
| | - Ting-Ting Yuan
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
| | - Ying-Tang Lu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
10
|
Alam NB, Jain M, Mustafiz A. Pyramiding D-lactate dehydrogenase with the glyoxalase pathway enhances abiotic stress tolerance in plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108391. [PMID: 38309183 DOI: 10.1016/j.plaphy.2024.108391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/18/2023] [Accepted: 01/19/2024] [Indexed: 02/05/2024]
Abstract
Methylglyoxal is a common cytotoxic metabolite produced in plants during multiple biotic and abiotic stress. To mitigate the toxicity of MG, plants utilize the glyoxalase pathway comprising glyoxalase I (GLYI), glyoxalase II (GLYII), or glyoxalase III (GLYIII). GLYI and GLYII are the key enzymes of glyoxalase pathways that play an important role in abiotic stress tolerance. Earlier research showed that MG level is lower when both GLYI and GLYII are overexpressed together, compared to GLYI or GLYII single gene overexpressed transgenic plants. D-lactate dehydrogenase (D-LDH) is an integral part of MG detoxification which metabolizes the end product (D-lactate) of the glyoxalase pathway. In this study, two Arabidopsis transgenic lines were constructed using gene pyramiding technique: GLYI and GLYII overexpressed (G-I + II), and GLYI, GLYII, and D-LDH overexpressed (G-I + II + D) plants. G-I + II + D exhibits lower MG and D-lactate levels and enhanced abiotic stress tolerance than the G-I + II and wild-type plants. Further study explores the stress tolerance mechanism of G-I + II + D plants through the interplay of different regulators and plant hormones. This, in turn, modulates the expression of ABA-dependent stress-responsive genes like RAB18, RD22, and RD29B to generate adaptive responses during stress. Therefore, there might be a potential correlation between ABA and MG detoxification pathways. Furthermore, higher STY46, GPX3, and CAMTA1 transcripts were observed in G-I + II + D plants during abiotic stress. Thus, our findings suggest that G-I + II + D has significantly improved MG detoxification, reduced oxidative stress-induced damage, and provided a better protective mechanism against abiotic stresses than G-I + II or wild-type plants.
Collapse
Affiliation(s)
- Nazmir Binta Alam
- Plant Molecular Biology Laboratory, Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, 110068, India
| | - Muskan Jain
- Plant Molecular Biology Laboratory, Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, 110068, India
| | - Ananda Mustafiz
- Plant Molecular Biology Laboratory, Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, 110068, India.
| |
Collapse
|
11
|
Garai S, Bhowal B, Gupta M, Sopory SK, Singla-Pareek SL, Pareek A, Kaur C. Role of methylglyoxal and redox homeostasis in microbe-mediated stress mitigation in plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 338:111922. [PMID: 37952767 DOI: 10.1016/j.plantsci.2023.111922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/04/2023] [Accepted: 11/07/2023] [Indexed: 11/14/2023]
Abstract
One of the general consequences of stress in plants is the accumulation of reactive oxygen (ROS) and carbonyl species (like methylglyoxal) to levels that are detrimental for plant growth. These reactive species are inherently produced in all organisms and serve different physiological functions but their excessive accumulation results in cellular toxicity. It is, therefore, essential to restore equilibrium between their synthesis and breakdown to ensure normal cellular functioning. Detoxification mechanisms that scavenge these reactive species are considered important for stress mitigation as they maintain redox balance by restricting the levels of ROS, methylglyoxal and other reactive species in the cellular milieu. Stress tolerance imparted to plants by root-associated microbes involves a multitude of mechanisms, including maintenance of redox homeostasis. By improving the overall antioxidant response in plants, microbes can strengthen defense pathways and hence, the adaptive abilities of plants to sustain growth under stress. Hence, through this review we wish to highlight the contribution of root microbiota in modulating the levels of reactive species and thereby, maintaining redox homeostasis in plants as one of the important mechanisms of stress alleviation. Further, we also examine the microbial mechanisms of resistance to oxidative stress and their role in combating plant stress.
Collapse
Affiliation(s)
- Sampurna Garai
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Bidisha Bhowal
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Mayank Gupta
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Sudhir K Sopory
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Sneh L Singla-Pareek
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Ashwani Pareek
- National Agri-Food Biotechnology Institute, SAS Nagar, Mohali, Punjab 140306, India
| | - Charanpreet Kaur
- National Agri-Food Biotechnology Institute, SAS Nagar, Mohali, Punjab 140306, India.
| |
Collapse
|
12
|
Pan X, Ullah A, Feng YX, Tian P, Yu XZ. Proline-mediated activation of glyoxalase II improve methylglyoxal detoxification in Oryza sativa L. under chromium injury: Clarification via vector analysis of enzymatic activities and gene expression. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 201:107867. [PMID: 37393860 DOI: 10.1016/j.plaphy.2023.107867] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/19/2023] [Accepted: 06/26/2023] [Indexed: 07/04/2023]
Abstract
Environmental factors affect plants in several ways including the excessive accumulation of methylglyoxal (MG), resulting in dysfunctions of many biological processes. Exogenous proline (Pro) application is one of the successful strategies to increase plant tolerance against various environmental stresses, including chromium (Cr). This study highlights the alleviation role of exogenous Pro on MG detoxification in rice plants induced by Cr(Vl) through modifying the expression of glyoxalase I (Gly I)- and glyoxalase II (Gly II)-related genes. The MG content in rice roots was significantly reduced by Pro application under Cr(VI) stress, however, there was little effect on the MG content in shoots. In this connection, the vector analysis was used to compare the involvement of Gly l and Gly II on MG detoxification in 'Cr(VI)' and 'Pro+Cr(VI)' treatments. Results exhibited that vector strength in rice roots increased with an increase in Cr concentrations, while there was a negligible difference in the shoots. The comparative analysis demonstrated that the vector strengths in roots under 'Pro+Cr(VI)' treatments were higher than 'Cr(VI)' treatments, suggesting that Pro improved Gly II activity more efficiently to reduce MG content in roots. Calculation of the gene expression variation factors (GEFs) indicated a positive effect of Pro application on the expression of Gly I and Gly ll-related genes, wherein a stronger impact was in roots than the shoots. Together, the vector analysis and gene expression data reveal that exogenous Pro chiefly improved Gly ll activity in rice roots which subsequently enhanced MG detoxification under Cr(VI) stress.
Collapse
Affiliation(s)
- Xingren Pan
- College of Environmental Science & Engineering, Guilin University of Technology, Guilin, 541004, People's Republic of China
| | - Abid Ullah
- College of Environmental Science & Engineering, Guilin University of Technology, Guilin, 541004, People's Republic of China
| | - Yu-Xi Feng
- College of Environmental Science & Engineering, Guilin University of Technology, Guilin, 541004, People's Republic of China
| | - Peng Tian
- College of Environmental Science & Engineering, Guilin University of Technology, Guilin, 541004, People's Republic of China
| | - Xiao-Zhang Yu
- College of Environmental Science & Engineering, Guilin University of Technology, Guilin, 541004, People's Republic of China.
| |
Collapse
|
13
|
Sun M, Sun S, Jia Z, Zhang H, Ou C, Ma W, Wang J, Li M, Mao P. Genome-wide analysis and expression profiling of glyoxalase gene families in oat ( Avena sativa) indicate their responses to abiotic stress during seed germination. FRONTIERS IN PLANT SCIENCE 2023; 14:1215084. [PMID: 37396634 PMCID: PMC10308377 DOI: 10.3389/fpls.2023.1215084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 05/31/2023] [Indexed: 07/04/2023]
Abstract
Abiotic stresses have deleterious effects on seed germination and seedling establishment, leading to significant crop yield losses. Adverse environmental conditions can cause the accumulation of methylglyoxal (MG) within plant cells, which can negatively impact plant growth and development. The glyoxalase system, which consists of the glutathione (GSH)-dependent enzymes glyoxalase I (GLX1) and glyoxalase II (GLX2), as well as the GSH-independent glyoxalase III (GLX3 or DJ-1), plays a crucial role in detoxifying MG. However, genome-wide analysis of glyoxalase genes has not been performed for one of the agricultural important species, oat (Avena sativa). This study identified a total of 26 AsGLX1 genes, including 8 genes encoding Ni2+-dependent GLX1s and 2 genes encoding Zn2+-dependent GLX1s. Additionally, 14 AsGLX2 genes were identified, of which 3 genes encoded proteins with both lactamase B and hydroxyacylglutathione hydrolase C-terminal domains and potential catalytic activity, and 15 AsGLX3 genes encoding proteins containing double DJ-1 domains. The domain architecture of the three gene families strongly correlates with the clades observed in the phylogenetic trees. The AsGLX1, AsGLX2, and AsGLX3 genes were evenly distributed in the A, C, and D subgenomes, and gene duplication of AsGLX1 and AsGLX3 genes resulted from tandem duplications. Besides the core cis-elements, hormone responsive elements dominated the promoter regions of the glyoxalase genes, and stress responsive elements were also frequently observed. The subcellular localization of glyoxalases was predicted to be primarily in the cytoplasm, chloroplasts, and mitochondria, with a few presents in the nucleus, which is consistent with their tissue-specific expression. The highest expression levels were observed in leaves and seeds, indicating that these genes may play important roles in maintaining leaf function and ensuring seed vigor. Moreover, based on in silico predication and expression pattern analysis, AsGLX1-7A, AsGLX2-5D, AsDJ-1-5D, AsGLX1-3D2, and AsGLX1-2A were suggested as promising candidate genes for improving stress resistance or seed vigor in oat. Overall, the identification and analysis of the glyoxalase gene families in this study can provide new strategies for improving oat stress resistance and seed vigor.
Collapse
|
14
|
Gaba Y, Bhowal B, Pareek A, Singla-Pareek SL. Genomic Survey of Flavin Monooxygenases in Wild and Cultivated Rice Provides Insight into Evolution and Functional Diversities. Int J Mol Sci 2023; 24:4190. [PMID: 36835601 PMCID: PMC9960948 DOI: 10.3390/ijms24044190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/08/2023] [Accepted: 01/12/2023] [Indexed: 02/22/2023] Open
Abstract
The flavin monooxygenase (FMO) enzyme was discovered in mammalian liver cells that convert a carcinogenic compound, N-N'-dimethylaniline, into a non-carcinogenic compound, N-oxide. Since then, many FMOs have been reported in animal systems for their primary role in the detoxification of xenobiotic compounds. In plants, this family has diverged to perform varied functions like pathogen defense, auxin biosynthesis, and S-oxygenation of compounds. Only a few members of this family, primarily those involved in auxin biosynthesis, have been functionally characterized in plant species. Thus, the present study aims to identify all the members of the FMO family in 10 different wild and cultivated Oryza species. Genome-wide analysis of the FMO family in different Oryza species reveals that each species has multiple FMO members in its genome and that this family is conserved throughout evolution. Taking clues from its role in pathogen defense and its possible function in ROS scavenging, we have also assessed the involvement of this family in abiotic stresses. A detailed in silico expression analysis of the FMO family in Oryza sativa subsp. japonica revealed that only a subset of genes responds to different abiotic stresses. This is supported by the experimental validation of a few selected genes using qRT-PCR in stress-sensitive Oryza sativa subsp. indica and stress-sensitive wild rice Oryza nivara. The identification and comprehensive in silico analysis of FMO genes from different Oryza species carried out in this study will serve as the foundation for further structural and functional studies of FMO genes in rice as well as other crop types.
Collapse
Affiliation(s)
- Yashika Gaba
- Plant Stress Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India
| | - Bidisha Bhowal
- Plant Stress Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India
| | - Ashwani Pareek
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Sneh Lata Singla-Pareek
- Plant Stress Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India
| |
Collapse
|
15
|
Gambhir P, Singh V, Raghuvanshi U, Parida AP, Pareek A, Roychowdhury A, Sopory SK, Kumar R, Sharma AK. A glutathione-independent DJ-1/PfpI domain-containing tomato glyoxalaseIII2, SlGLYIII2, confers enhanced tolerance under salt and osmotic stresses. PLANT, CELL & ENVIRONMENT 2023; 46:518-548. [PMID: 36377315 DOI: 10.1111/pce.14493] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 10/07/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
In plants, glyoxalase enzymes are activated under stress conditions to mitigate the toxic effects of hyperaccumulated methylglyoxal (MG), a highly reactive carbonyl compound. Until recently, a glutathione-dependent bi-enzymatic pathway involving glyoxalase I (GLYI) and glyoxalase II (GLYII) was considered the primary MG-detoxification system. Recently, a new glutathione-independent glyoxalase III (GLYIII) mediated direct route was also reported in plants. However, the physiological significance of this new pathway remains to be elucidated across plant species. This study identified the full complement of 22 glyoxalases in tomato. Based on their strong induction under multiple abiotic stresses, SlGLYI4, SlGLYII2 and SlGLYIII2 were selected candidates for further functional characterisation. Stress-inducible overexpression of both glutathione-dependent (SlGLYI4 + SlGLYII2) and independent (SlGLYIII2) pathways led to enhanced tolerance in both sets of transgenic plants under abiotic stresses. However, SlGLYIII2 overexpression (OE) plants outperformed the SlGLYI4 + SlGLYII2 OE counterparts for their stress tolerance under abiotic stresses. Further, knockdown of SlGLYIII2 resulted in plants with exacerbated stress responses than those silenced for both SlGLYI4 and SlGLYII2. The superior performance of SlGLYIII2 OE tomato plants for better growth and yield under salt and osmotic treatments could be attributed to better GSH/GSSG ratio, lower reactive oxygen species levels, and enhanced antioxidant potential, indicating a prominent role of GLYIII MG-detoxification pathway in abiotic stress mitigation in this species.
Collapse
Affiliation(s)
- Priya Gambhir
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Vijendra Singh
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Utkarsh Raghuvanshi
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Adwaita Prasad Parida
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Amit Pareek
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | | | - Sudhir K Sopory
- Department of Plant Molecular Biology, Plant Stress Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Rahul Kumar
- Department of Plant Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Arun Kumar Sharma
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| |
Collapse
|
16
|
Yan G, Zhang M, Guan W, Zhang F, Dai W, Yuan L, Gao G, Xu K, Chen B, Li L, Wu X. Genome-Wide Identification and Functional Characterization of Stress Related Glyoxalase Genes in Brassica napus L. Int J Mol Sci 2023; 24:ijms24032130. [PMID: 36768459 PMCID: PMC9916435 DOI: 10.3390/ijms24032130] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/06/2023] [Accepted: 01/18/2023] [Indexed: 01/25/2023] Open
Abstract
Rapeseed (Brassica napus L.) is not only one of the most important oil crops in the world, but it is also an important vegetable crop with a high value nutrients and metabolites. However, rapeseed is often severely damaged by adverse stresses, such as low temperature, pathogen infection and so on. Glyoxalase I (GLYI) and glyoxalase II (GLYII) are two enzymes responsible for the detoxification of a cytotoxic metabolite methylglyoxal (MG) into the nontoxic S-D-lactoylglutathione, which plays crucial roles in stress tolerance in plants. Considering the important roles of glyoxalases, the GLY gene families have been analyzed in higher plans, such as rice, soybean and Chinese cabbage; however, little is known about the presence, distribution, localizations and expression of glyoxalase genes in rapeseed, a young allotetraploid. In this study, a total of 35 BnaGLYI and 30 BnaGLYII genes were identified in the B. napus genome and were clustered into six and eight subfamilies, respectively. The classification, chromosomal distribution, gene structure and conserved motif were identified or predicted. BnaGLYI and BnaGLYII proteins were mainly localized in chloroplast and cytoplasm. By using publicly available RNA-seq data and a quantitative real-time PCR analysis (qRT-PCR), the expression profiling of these genes of different tissues was demonstrated in different developmental stages as well as under stresses. The results indicated that their expression profiles varied among different tissues. Some members are highly expressed in specific tissues, BnaGLYI11 and BnaGLYI27 expressed in flowers and germinating seed. At the same time, the two genes were significantly up-regulated under heat, cold and freezing stresses. Notably, a number of BnaGLY genes showed responses to Plasmodiophora brassicae infection. Overexpression of BnGLYI11 gene in Arabidopsis thaliana seedlings confirmed that this gene conferred freezing tolerance. This study provides insight of the BnaGLYI and BnaGLYII gene families in allotetraploid B. napus and their roles in stress resistance, and important information and gene resources for developing stress resistant vegetable and rapeseed oil.
Collapse
|
17
|
Gao S, Li C, Chen X, Li S, Liang N, Wang H, Zhan Y, Zeng F. Basic helix-loop-helix transcription factor PxbHLH02 enhances drought tolerance in Populus (Populus simonii × P. nigra). TREE PHYSIOLOGY 2023; 43:185-202. [PMID: 36054366 DOI: 10.1093/treephys/tpac107] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 08/30/2022] [Indexed: 06/15/2023]
Abstract
The basic helix-loop-helix (bHLH) transcription factors (TFs) are involved in plant morphogenesis and various abiotic and biotic stress responses. However, further exploration is required of drought-responsive bHLH family members and their detailed regulatory mechanisms in Populus. Two bHLH TF genes, PxbHLH01/02, were identified in Populus simonii × P. nigra and cloned. The aim of this study was to examine the role of bHLH TFs in drought tolerance in P. simonii × P. nigra. The results showed that the amino acid sequences of the two genes were homologous to Arabidopsis thaliana UPBEAT1 (AtUPB1) and overexpression of PxbHLH01/02 restored normal root length in the AtUPB1 insertional mutant (upb1-1). The PxbHLH01/02 gene promoter activity analysis suggested that they were involved in stress responses and hormone signaling. Furthermore, Arabidopsis transgenic lines overexpressing PxbHLH01/02 exhibited higher stress tolerance compared with the wild-type. Populus simonii × P. nigra overexpressing PxbHLH02 increased drought tolerance and exhibited higher superoxide dismutase and peroxidase activities, lower H2O2 and malondialdehyde content, and lower relative conductivity. The results of transcriptome sequencing (RNA-seq) and quantitative real-time PCR suggested that the response of PxbHLH02 to drought stress was related to abscisic acid (ABA) signal transduction. Overall, the findings of this study suggest that PxbHLH02 from P. simonii × P. nigra functions as a positive regulator of drought stress responses by regulating stomatal aperture and promoting ABA signal transduction.
Collapse
Affiliation(s)
- Shangzhu Gao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Caihua Li
- Shijiazhuang Academy of Agricultural and Forestry Sciences, Shijiazhuang, 050041, China
| | - Xiaohui Chen
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Sida Li
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Nansong Liang
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Hengtao Wang
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Yaguang Zhan
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Fansuo Zeng
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| |
Collapse
|
18
|
Borysiuk K, Ostaszewska-Bugajska M, Kryzheuskaya K, Gardeström P, Szal B. Glyoxalase I activity affects Arabidopsis sensitivity to ammonium nutrition. PLANT CELL REPORTS 2022; 41:2393-2413. [PMID: 36242617 PMCID: PMC9700585 DOI: 10.1007/s00299-022-02931-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Elevated methylglyoxal levels contribute to ammonium-induced growth disorders in Arabidopsis thaliana. Methylglyoxal detoxification pathway limitation, mainly the glyoxalase I activity, leads to enhanced sensitivity of plants to ammonium nutrition. Ammonium applied to plants as the exclusive source of nitrogen often triggers multiple phenotypic effects, with severe growth inhibition being the most prominent symptom. Glycolytic flux increase, leading to overproduction of its toxic by-product methylglyoxal (MG), is one of the major metabolic consequences of long-term ammonium nutrition. This study aimed to evaluate the influence of MG metabolism on ammonium-dependent growth restriction in Arabidopsis thaliana plants. As the level of MG in plant cells is maintained by the glyoxalase (GLX) system, we analyzed MG-related metabolism in plants with a dysfunctional glyoxalase pathway. We report that MG detoxification, based on glutathione-dependent glyoxalases, is crucial for plants exposed to ammonium nutrition, and its essential role in ammonium sensitivity relays on glyoxalase I (GLXI) activity. Our results indicated that the accumulation of MG-derived advanced glycation end products significantly contributes to the incidence of ammonium toxicity symptoms. Using A. thaliana frostbite1 as a model plant that overcomes growth repression on ammonium, we have shown that its resistance to enhanced MG levels is based on increased GLXI activity and tolerance to elevated MG-derived advanced glycation end-product (MAGE) levels. Furthermore, our results show that glyoxalase pathway activity strongly affects cellular antioxidative systems. Under stress conditions, the disruption of the MG detoxification pathway limits the functioning of antioxidant defense. However, under optimal growth conditions, a defect in the MG detoxification route results in the activation of antioxidative systems.
Collapse
Affiliation(s)
- Klaudia Borysiuk
- Department of Plant Bioenergetics, Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
| | - Monika Ostaszewska-Bugajska
- Department of Plant Bioenergetics, Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
| | - Katsiaryna Kryzheuskaya
- Department of Plant Bioenergetics, Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
| | - Per Gardeström
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, 90187, Umeå, Sweden
| | - Bożena Szal
- Department of Plant Bioenergetics, Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland.
| |
Collapse
|
19
|
Shelake RM, Kadam US, Kumar R, Pramanik D, Singh AK, Kim JY. Engineering drought and salinity tolerance traits in crops through CRISPR-mediated genome editing: Targets, tools, challenges, and perspectives. PLANT COMMUNICATIONS 2022; 3:100417. [PMID: 35927945 PMCID: PMC9700172 DOI: 10.1016/j.xplc.2022.100417] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 07/07/2022] [Accepted: 07/27/2022] [Indexed: 05/10/2023]
Abstract
Prolonged periods of drought triggered by climate change hamper plant growth and cause substantial agricultural yield losses every year. In addition to drought, salinity is one of the major abiotic stresses that severely affect crop health and agricultural production. Plant responses to drought and salinity involve multiple processes that operate in a spatiotemporal manner, such as stress sensing, perception, epigenetic modifications, transcription, post-transcriptional processing, translation, and post-translational changes. Consequently, drought and salinity stress tolerance are polygenic traits influenced by genome-environment interactions. One of the ideal solutions to these challenges is the development of high-yielding crop varieties with enhanced stress tolerance, together with improved agricultural practices. Recently, genome-editing technologies, especially clustered regularly interspaced short palindromic repeats (CRISPR) tools, have been effectively applied to elucidate how plants deal with drought and saline environments. In this work, we aim to portray that the combined use of CRISPR-based genome engineering tools and modern genomic-assisted breeding approaches are gaining momentum in identifying genetic determinants of complex traits for crop improvement. This review provides a synopsis of plant responses to drought and salinity stresses at the morphological, physiological, and molecular levels. We also highlight recent advances in CRISPR-based tools and their use in understanding the multi-level nature of plant adaptations to drought and salinity stress. Integrating CRISPR tools with modern breeding approaches is ideal for identifying genetic factors that regulate plant stress-response pathways and for the introgression of beneficial traits to develop stress-resilient crops.
Collapse
Affiliation(s)
- Rahul Mahadev Shelake
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Korea.
| | - Ulhas Sopanrao Kadam
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Korea
| | - Ritesh Kumar
- Department of Agronomy & Plant Genetics, University of Minnesota, Saint Paul, MN 55108, USA
| | - Dibyajyoti Pramanik
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Korea
| | - Anil Kumar Singh
- ICAR-National Institute for Plant Biotechnology, LBS Centre, Pusa Campus, New Delhi 110012, India
| | - Jae-Yean Kim
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Korea; Division of Life Science, Gyeongsang National University, 501 Jinju-daero, Jinju 52828, Korea.
| |
Collapse
|
20
|
Scirè A, Cianfruglia L, Minnelli C, Romaldi B, Laudadio E, Galeazzi R, Antognelli C, Armeni T. Glyoxalase 2: Towards a Broader View of the Second Player of the Glyoxalase System. Antioxidants (Basel) 2022; 11:2131. [PMID: 36358501 PMCID: PMC9686547 DOI: 10.3390/antiox11112131] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 07/30/2023] Open
Abstract
Glyoxalase 2 is a mitochondrial and cytoplasmic protein belonging to the metallo-β-lactamase family encoded by the hydroxyacylglutathione hydrolase (HAGH) gene. This enzyme is the second enzyme of the glyoxalase system that is responsible for detoxification of the α-ketothaldehyde methylglyoxal in cells. The two enzymes glyoxalase 1 (Glo1) and glyoxalase 2 (Glo2) form the complete glyoxalase pathway, which utilizes glutathione as cofactor in eukaryotic cells. The importance of Glo2 is highlighted by its ubiquitous distribution in prokaryotic and eukaryotic organisms. Its function in the system has been well defined, but in recent years, additional roles are emerging, especially those related to oxidative stress. This review focuses on Glo2 by considering its genetics, molecular and structural properties, its involvement in post-translational modifications and its interaction with specific metabolic pathways. The purpose of this review is to focus attention on an enzyme that, from the most recent studies, appears to play a role in multiple regulatory pathways that may be important in certain diseases such as cancer or oxidative stress-related diseases.
Collapse
Affiliation(s)
- Andrea Scirè
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy
| | - Laura Cianfruglia
- Department of Clinical Sciences, Polytechnic University of Marche, 60126 Ancona, Italy
| | - Cristina Minnelli
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy
| | - Brenda Romaldi
- Department of Clinical Sciences, Polytechnic University of Marche, 60126 Ancona, Italy
| | - Emiliano Laudadio
- Department of Science and Engineering of Materials, Environment and Urban Planning, Polytechnic University of Marche, 60131 Ancona, Italy
| | - Roberta Galeazzi
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy
| | - Cinzia Antognelli
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy
| | - Tatiana Armeni
- Department of Clinical Sciences, Polytechnic University of Marche, 60126 Ancona, Italy
| |
Collapse
|
21
|
Ahmad M. Genomics and transcriptomics to protect rice ( Oryza sativa. L.) from abiotic stressors: -pathways to achieving zero hunger. FRONTIERS IN PLANT SCIENCE 2022; 13:1002596. [PMID: 36340401 PMCID: PMC9630331 DOI: 10.3389/fpls.2022.1002596] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
More over half of the world's population depends on rice as a major food crop. Rice (Oryza sativa L.) is vulnerable to abiotic challenges including drought, cold, and salinity since it grown in semi-aquatic, tropical, or subtropical settings. Abiotic stress resistance has bred into rice plants since the earliest rice cultivation techniques. Prior to the discovery of the genome, abiotic stress-related genes were identified using forward genetic methods, and abiotic stress-tolerant lines have developed using traditional breeding methods. Dynamic transcriptome expression represents the degree of gene expression in a specific cell, tissue, or organ of an individual organism at a specific point in its growth and development. Transcriptomics can reveal the expression at the entire genome level during stressful conditions from the entire transcriptional level, which can be helpful in understanding the intricate regulatory network relating to the stress tolerance and adaptability of plants. Rice (Oryza sativa L.) gene families found comparatively using the reference genome sequences of other plant species, allowing for genome-wide identification. Transcriptomics via gene expression profiling which have recently dominated by RNA-seq complements genomic techniques. The identification of numerous important qtl,s genes, promoter elements, transcription factors and miRNAs involved in rice response to abiotic stress was made possible by all of these genomic and transcriptomic techniques. The use of several genomes and transcriptome methodologies to comprehend rice (Oryza sativa, L.) ability to withstand abiotic stress have been discussed in this review.
Collapse
Affiliation(s)
- Mushtaq Ahmad
- Visiting Scientist Plant Sciences, University of Nebraska, Lincoln, NE, United States
| |
Collapse
|
22
|
Liu S, Liu W, Lai J, Liu Q, Zhang W, Chen Z, Gao J, Song S, Liu J, Xiao Y. OsGLYI3, a glyoxalase gene expressed in rice seed, contributes to seed longevity and salt stress tolerance. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 183:85-95. [PMID: 35569169 DOI: 10.1016/j.plaphy.2022.04.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 04/03/2022] [Accepted: 04/27/2022] [Indexed: 06/15/2023]
Abstract
The glyoxalase pathway plays a vital role in the chemical detoxification of methylglyoxal (MG) in biological systems. Our previous study suggested that OsGLYI3 may be effective in seed natural aging. In this study, the rice OsGLYI3 gene was cloned and characterized as specifically expressed in the seed. The accelerated aging (AA) treatment results indicated significant roles of OsGLYI3 in seed longevity and vigor, as the seeds of the transgenic lines with overexpressed and knocked-out OsGLYI3 exhibited higher and lower germination, respectively. The AA treatment also increased the superoxide dismutase (SOD) activity in the overexpressed transgenic seeds compared to the wild-type seeds yet lowered the SOD activity in the CRISPR/Cas9-derived transgenic rice lines. Rice OsGLYI3 was markedly upregulated in response to NaCl induced stress conditions. Compared to wild-type plants, overexpressed transgenic rice lines exhibited increased GLYI activity, decreased MG levels and improved salt stress tolerance, while CRISPR/Cas9 knockout transgenic rice lines showed decreased glyoxalase I activity, increased MG levels, and greater sensitivity to stress treatments with NaCl. Collectively, our results confirmed for the first time that OsGLYI3 is specifically expressed in rice seeds and contributes to seed longevity and salt stress tolerance.
Collapse
Affiliation(s)
- Shengjie Liu
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China; Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Wenhua Liu
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Jianyun Lai
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Qinjian Liu
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Wenhu Zhang
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Zhongjian Chen
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Jiadong Gao
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Songquan Song
- Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
| | - Jun Liu
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China.
| | - Yinghui Xiao
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
23
|
Soccio M, Marangi M, Laus MN. Genome-Wide Expression Analysis of Glyoxalase I Genes Under Hyperosmotic Stress and Existence of a Stress-Responsive Mitochondrial Glyoxalase I Activity in Durum Wheat ( Triticum durum Desf.). FRONTIERS IN PLANT SCIENCE 2022; 13:934523. [PMID: 35832233 PMCID: PMC9272005 DOI: 10.3389/fpls.2022.934523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 06/08/2022] [Indexed: 06/18/2023]
Abstract
Glyoxalase I (GLYI) catalyzes the rate-limiting step of the glyoxalase pathway that, in the presence of GSH, detoxifies the cytotoxic molecule methylglyoxal (MG) into the non-toxic D-lactate. In plants, MG levels rise under various abiotic stresses, so GLYI may play a crucial role in providing stress tolerance. In this study, a comprehensive genome database analysis was performed in durum wheat (Triticum durum Desf.), identifying 27 candidate GLYI genes (TdGLYI). However, further analyses of phylogenetic relationships and conserved GLYI binding sites indicated that only nine genes encode for putative functionally active TdGLYI enzymes, whose distribution was predicted in three different subcellular compartments, namely cytoplasm, plastids and mitochondria. Expression profile by qRT-PCR analysis revealed that most of the putative active TdGLYI genes were up-regulated by salt and osmotic stress in roots and shoots from 4-day-old seedlings, although a different behavior was observed between the two types of stress and tissue. Accordingly, in the same tissues, hyperosmotic stress induced an increase (up to about 40%) of both GLYI activity and MG content as well as a decrease of GSH (up to about -60%) and an increase of GSSG content (up to about 7-fold) with a consequent strong decrease of the GSH/GSSG ratio (up to about -95%). Interestingly, in this study, we reported the first demonstration of the existence of GLYI activity in highly purified mitochondrial fraction. In particular, GLYI activity was measured in mitochondria from durum wheat (DWM), showing hyperbolic kinetics with Km and Vmax values equal to 92 ± 0.2 μM and 0.519 ± 0.004 μmol min-1 mg-1 of proteins, respectively. DWM-GLYI resulted inhibited in a competitive manner by GSH (Ki = 6.5 ± 0.7 mM), activated by Zn2+ and increased, up to about 35 and 55%, under salt and osmotic stress, respectively. In the whole, this study provides basis about the physiological significance of GLYI in durum wheat, by highlighting the role of this enzyme in the early response of seedlings to hyperosmotic stress. Finally, our results strongly suggest the existence of a complete mitochondrial GLYI pathway in durum wheat actively involved in MG detoxification under hyperosmotic stress.
Collapse
Affiliation(s)
- Mario Soccio
- Department of Agriculture, Food, Natural resources and Engineering, University of Foggia, Foggia, Italy
| | - Marianna Marangi
- Department of Clinic and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Maura N. Laus
- Department of Agriculture, Food, Natural resources and Engineering, University of Foggia, Foggia, Italy
| |
Collapse
|
24
|
The Rice Serine/Arginine Splicing Factor RS33 Regulates Pre-mRNA Splicing during Abiotic Stress Responses. Cells 2022; 11:cells11111796. [PMID: 35681491 PMCID: PMC9180459 DOI: 10.3390/cells11111796] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/27/2022] [Accepted: 05/07/2022] [Indexed: 02/06/2023] Open
Abstract
Abiotic stresses profoundly affect plant growth and development and limit crop productivity. Pre-mRNA splicing is a major form of gene regulation that helps plants cope with various stresses. Serine/arginine (SR)-rich splicing factors play a key role in pre-mRNA splicing to regulate different biological processes under stress conditions. Alternative splicing (AS) of SR transcripts and other transcripts of stress-responsive genes generates multiple splice isoforms that contribute to protein diversity, modulate gene expression, and affect plant stress tolerance. Here, we investigated the function of the plant-specific SR protein RS33 in regulating pre-mRNA splicing and abiotic stress responses in rice. The loss-of-function mutant rs33 showed increased sensitivity to salt and low-temperature stresses. Genome-wide analyses of gene expression and splicing in wild-type and rs33 seedlings subjected to these stresses identified multiple splice isoforms of stress-responsive genes whose AS are regulated by RS33. The number of RS33-regulated genes was much higher under low-temperature stress than under salt stress. Our results suggest that the plant-specific splicing factor RS33 plays a crucial role during plant responses to abiotic stresses.
Collapse
|
25
|
Genome-Wide Identification of Cassava Glyoxalase I Genes and the Potential Function of MeGLYⅠ-13 in Iron Toxicity Tolerance. Int J Mol Sci 2022; 23:ijms23095212. [PMID: 35563603 PMCID: PMC9104206 DOI: 10.3390/ijms23095212] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/03/2022] [Accepted: 05/04/2022] [Indexed: 02/01/2023] Open
Abstract
Glyoxalase I (GLYI) is a key enzyme in the pathway of the glyoxalase system that degrades the toxic substance methylglyoxal, which plays a crucial part in plant growth, development, and stress response. A total of 19 GLYI genes were identified from the cassava genome, which distributed randomly on 11 chromosomes. These genes were named MeGLYI-1–19 and were systematically characterized. Transcriptome data analysis showed that MeGLYIs gene expression is tissue-specific, and MeGLYI-13 is the dominant gene expressed in young tissues, while MeGLYI-19 is the dominant gene expressed in mature tissues and organs. qRT-PCR analysis showed that MeGLYI-13 is upregulated under 2 h excess iron stress, but downregulated under 6, 12, and 20 h iron stress. Overexpression of MeGLYI-13 enhanced the growth ability of transgenic yeast under iron stress. The root growth of transgenic Arabidopsis seedlings was less inhibited by iron toxicity than that of the wild type (WT). Potted transgenic Arabidopsis blossomed and podded under iron stress, but flowering of the WT was significantly delayed. The GLYI activity in transgenic Arabidopsis was improved under both non-iron stress and iron stress conditions compared to the WT. The SOD activity in transgenic plants was increased under iron stress, while the POD and CAT activity and MDA content were decreased compared to that in the WT. These results provide a basis for the selection of candidate genes for iron toxicity tolerance in cassava, and lay a theoretical foundation for further studies on the functions of these MeGLYI genes.
Collapse
|
26
|
Chen G, Hu K, Zhao J, Guo F, Shan W, Jiang Q, Zhang J, Guo Z, Feng Z, Chen Z, Wu X, Zhang S, Zuo S. Genome-Wide Association Analysis for Salt-Induced Phenotypic and Physiologic Responses in Rice at Seedling and Reproductive Stages. FRONTIERS IN PLANT SCIENCE 2022; 13:822618. [PMID: 35222481 PMCID: PMC8863738 DOI: 10.3389/fpls.2022.822618] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 01/06/2022] [Indexed: 06/14/2023]
Abstract
Salinity is one of the main adverse environmental factors severely inhibiting rice growth and decreasing grain productivity. Developing rice varieties with salt tolerance (ST) is one of the most economical approaches to cope with salinity stress. In this study, the salt tolerance of 220 rice accessions from rice diversity panel l (RDP1), representing five subpopulations, were evaluated based on 16 ST indices at both seedling and reproductive stages under salt stress. An apparent inconsistency was found for ST between the two stages. Through a gene-based/tightly linked genome-wide association study with 201,332 single nucleotide polymorphisms (SNPs) located within genes and their flanking regions were used, a total of 214 SNPs related to 251 genes, significantly associated with 16 ST-related indices, were detected at both stages. Eighty-two SNPs with low frequency favorable (LFF) alleles in the population were proposed to hold high breeding potential in improving rice ST. Fifty-four rice accessions collectively containing all these LFF alleles were identified as donors of these alleles. Through the integration of meta-quantitative trait locus (QTL) for ST and the response patterns of differential expression genes to salt stress, thirty-eight candidate genes were suggested to be involved in the regulation of rice ST. In total, the present study provides valuable information for further characterizing ST-related genes and for breeding ST varieties across whole developmental stages through marker-assisted selection (MAS).
Collapse
Affiliation(s)
- Gang Chen
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, China
- Co-innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou University, Yangzhou, China
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, China
| | - Keming Hu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, China
- Co-innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou University, Yangzhou, China
| | - Jianhua Zhao
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, China
| | - Feifei Guo
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, China
| | - Wenfeng Shan
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, China
| | - Qiuqing Jiang
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, China
| | - Jinqiao Zhang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, China
| | - Zilong Guo
- Root Biology Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhiming Feng
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, China
- Co-innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou University, Yangzhou, China
| | - Zongxiang Chen
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, China
- Co-innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou University, Yangzhou, China
| | - Xiaoxia Wu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, China
- Co-innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou University, Yangzhou, China
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, China
| | - Shengwei Zhang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Shimin Zuo
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, China
- Co-innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Institutes of Agricultural Science and Technology Development, Yangzhou University, The Ministry of Education of China, Yangzhou, China
| |
Collapse
|
27
|
Enríquez-González C, Garcidueñas-Piña C, Castellanos-Hernández OA, Enríquez-Aranda S, Loera-Muro A, Ocampo G, Pérez-Molphe Balch E, Morales-Domínguez JF. De Novo Transcriptome of Mammillaria bombycina (Cactaceae) under In Vitro Conditions and Identification of Glyoxalase Genes. PLANTS 2022; 11:plants11030399. [PMID: 35161380 PMCID: PMC8838482 DOI: 10.3390/plants11030399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/18/2022] [Accepted: 01/18/2022] [Indexed: 11/16/2022]
Abstract
Mammillaria bombycina is a cactus distributed in the central region of Mexico. Cactaceae have the particularity of surviving drought and high temperatures, which is why in vitro propagation studies have been carried out successfully to preserve this species and use it as a study model in cacti. In this contribution, a de novo transcriptome of M. bombycina was produced under in vitro conditions for the identification and expression of genes related to abiotic stress. Samples were sequenced using an Illumina platform, averaging 24 million clean readings. From assembly and annotation, 84,975 transcripts were generated, 55% of which were unigenes. Among these, the presence of 13 isoforms of genes belonging to glyoxalase I, II and III were identified. An analysis of the qRT-PCR expression of these genes was performed under in vitro and ex vitro conditions and dehydration at 6 and 24 h. The highest expression was observed under greenhouse conditions and dehydration at 24 h, according to the control. The de novo assembly of the M. bombycina transcriptome remains a study model for future work in cacti.
Collapse
Affiliation(s)
- Carolina Enríquez-González
- Centro de Ciencias Básicas, Departamento de Química, Universidad Autónoma de Aguascalientes, Av. Universidad 940, Aguascalientes 20100, Mexico
| | - Cristina Garcidueñas-Piña
- Centro de Ciencias Básicas, Departamento de Química, Universidad Autónoma de Aguascalientes, Av. Universidad 940, Aguascalientes 20100, Mexico
| | - Osvaldo Adrián Castellanos-Hernández
- Centro de Investigación en Biología Molecular Vegetal, Centro Universitario de la Ciénega, Universidad de Guadalajara, Av. Universidad, 1115, Linda Vista, Ocotlán 47810, Mexico
| | - Sergio Enríquez-Aranda
- Centro de Ciencias Básicas, Departamento de Sistemas de la Información, Universidad Autónoma de Aguascalientes, Av. Universidad 940, Aguascalientes 20100, Mexico
| | - Abraham Loera-Muro
- CONACyT Centro de Investigaciones Biológicas del Noroeste S.C., Av. Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz 23096, Mexico
| | - Gilberto Ocampo
- Centro de Ciencias Básicas, Departamento de Biología, Universidad Autónoma de Aguascalientes, Av. Universidad 940, Aguascalientes 20100, Mexico
| | - Eugenio Pérez-Molphe Balch
- Centro de Ciencias Básicas, Departamento de Química, Universidad Autónoma de Aguascalientes, Av. Universidad 940, Aguascalientes 20100, Mexico
| | - José Francisco Morales-Domínguez
- Centro de Ciencias Básicas, Departamento de Química, Universidad Autónoma de Aguascalientes, Av. Universidad 940, Aguascalientes 20100, Mexico
| |
Collapse
|
28
|
Kumar J, Gupta DS, Kesari R, Verma R, Murugesan S, Basu PS, Soren KR, Gupta S, Singh NP. Comprehensive RNAseq analysis for identification of genes expressed under heat stress in lentil. PHYSIOLOGIA PLANTARUM 2021; 173:1785-1807. [PMID: 33829491 DOI: 10.1111/ppl.13419] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 04/06/2021] [Indexed: 06/12/2023]
Abstract
Lentils are highly sensitive to abrupt increases in temperature during the mid to late reproductive stages, leading to severe biomass and seed yield reduction. Therefore, we carried out an RNAseq analysis between IG4258 (heat tolerant) and IG3973 (heat sensitive) lentil genotypes at the reproductive stage under both normal and heat stress conditions in the field. It resulted in 209,549 assembled transcripts and among these 161,809 transcripts had coding regions, of which 94,437 transcripts were annotated. The differential gene expression analysis showed upregulation of 678 transcripts and downregulation of 680 transcripts between the tolerant and sensitive genotypes at the early reproductive stage. While 76 transcripts were upregulated and 47 transcripts were downregulated at the late reproductive stage under heat stress conditions. The validation of 12 up-or downregulated transcripts through RT-PCR corresponded well with the expression analysis data of RNAseq, with a correlation of R2 = 0.89. Among these transcripts, the DN364_c1_g1_i9 and DN2218_c0_g1_i5 transcripts encoded enzymes involved in the tryptophan pathway, indicating that tryptophan biosynthesis plays a role under heat stress in lentil. Moreover, KEGG pathways enrichment analysis identified transcripts associated with genes encoding proteins/regulating factors related to different metabolic pathways including signal transduction, fatty acid biosynthesis, rRNA processing, ribosome biogenesis, gibberellin (GA) biosynthesis, and riboflavin biosynthesis. This analysis also identified 6852 genic-SSRs leading to the development of 4968 SSR primers that are potential genomic resources for molecular mapping of heat-tolerant genes in lentil.
Collapse
Affiliation(s)
- Jitendra Kumar
- Division of Crop Improvement, ICAR-Indian Institute of Pulses Research, Kanpur, India
| | - Debjyoti Sen Gupta
- Division of Crop Improvement, ICAR-Indian Institute of Pulses Research, Kanpur, India
| | - Ravi Kesari
- Department of Plant Breeding and Genetics, Bhola Paswan Shastri Agricultural College, Purnea, India
| | - Renu Verma
- Division of Basic Sciences, ICAR-Indian Institute of Pulses Research, Kanpur, India
| | | | - Partha Sarathi Basu
- Division of Basic Sciences, ICAR-Indian Institute of Pulses Research, Kanpur, India
| | - Khela Ram Soren
- Division of Biotechnology, ICAR-Indian Institute of Pulses Research, Kanpur, India
| | - Sanjeev Gupta
- All India Co-ordinated Research Project on MULLaRP, ICAR-Indian Institute of Pulses Research, Kanpur, India
| | | |
Collapse
|
29
|
Proietti S, Bertini L, Falconieri GS, Baccelli I, Timperio AM, Caruso C. A Metabolic Profiling Analysis Revealed a Primary Metabolism Reprogramming in Arabidopsis glyI4 Loss-of-Function Mutant. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10112464. [PMID: 34834827 PMCID: PMC8624978 DOI: 10.3390/plants10112464] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/08/2021] [Accepted: 11/11/2021] [Indexed: 05/09/2023]
Abstract
Methylglyoxal (MG) is a cytotoxic compound often produced as a side product of metabolic processes such as glycolysis, lipid peroxidation, and photosynthesis. MG is mainly scavenged by the glyoxalase system, a two-step pathway, in which the coordinate activity of GLYI and GLYII transforms it into D-lactate, releasing GSH. In Arabidopsis thaliana, a member of the GLYI family named GLYI4 has been recently characterized. In glyI4 mutant plants, a general stress phenotype characterized by compromised MG scavenging, accumulation of reactive oxygen species (ROS), stomatal closure, and reduced fitness was observed. In order to shed some light on the impact of gly4 loss-of-function on plant metabolism, we applied a high resolution mass spectrometry-based metabolomic approach to Arabidopsis Col-8 wild type and glyI4 mutant plants. A compound library containing a total of 70 metabolites, differentially synthesized in glyI4 compared to Col-8, was obtained. Pathway analysis of the identified compounds showed that the upregulated pathways are mainly involved in redox reactions and cellular energy maintenance, and those downregulated in plant defense and growth. These results improved our understanding of the impacts of glyI4 loss-of-function on the general reprogramming of the plant's metabolic landscape as a strategy for surviving under adverse physiological conditions.
Collapse
Affiliation(s)
- Silvia Proietti
- Department of Ecological and Biological Sciences, University of Tuscia, 01100 Viterbo, Italy; (S.P.); (L.B.); (G.S.F.)
| | - Laura Bertini
- Department of Ecological and Biological Sciences, University of Tuscia, 01100 Viterbo, Italy; (S.P.); (L.B.); (G.S.F.)
| | - Gaia Salvatore Falconieri
- Department of Ecological and Biological Sciences, University of Tuscia, 01100 Viterbo, Italy; (S.P.); (L.B.); (G.S.F.)
| | - Ivan Baccelli
- Institute for Sustainable Plant Protection, National Research Council of Italy, Sesto Fiorentino, 50019 Florence, Italy;
| | - Anna Maria Timperio
- Department of Ecological and Biological Sciences, University of Tuscia, 01100 Viterbo, Italy; (S.P.); (L.B.); (G.S.F.)
- Correspondence: (A.M.T.); (C.C.); Tel.: +39-0761-357330 (C.C.)
| | - Carla Caruso
- Department of Ecological and Biological Sciences, University of Tuscia, 01100 Viterbo, Italy; (S.P.); (L.B.); (G.S.F.)
- Correspondence: (A.M.T.); (C.C.); Tel.: +39-0761-357330 (C.C.)
| |
Collapse
|
30
|
Sahoo KK, Gupta BK, Kaur C, Joshi R, Pareek A, Sopory SK, Singla-Pareek SL. Methylglyoxal-glyoxalase system as a possible selection module for raising marker-safe plants in rice. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:2579-2588. [PMID: 34924712 PMCID: PMC8639883 DOI: 10.1007/s12298-021-01072-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 08/23/2021] [Accepted: 09/11/2021] [Indexed: 06/14/2023]
Abstract
Methylglyoxal (MG) is ubiquitously produced in all living organisms as a byproduct of glycolysis, higher levels of which are cytotoxic, leading to oxidative stress and apoptosis in the living systems. Though its generation is spontaneous but its detoxification involves glyoxalase pathway genes. Based on this understanding, the present study describes the possible role of MG as a novel non-antibiotic-based selection agent in rice. Further, by metabolizing MG, the glyoxalase pathway genes viz. glyoxalase I (GLYI) and glyoxalase II (GLYII), may serve as selection markers. Therefore, herein, transgenic rice harboring GLYI-GLYII genes (as selection markers) were developed and the effect of MG as a selection agent was assessed. The 3 mM MG concentration was observed as optimum for the selection of transformed calli, allowing efficient callus induction and proliferation along with high regeneration frequency (55 ± 2%) of the transgenic calli. Since the transformed calli exhibited constitutively higher activity of GLYI and GLYII enzymes compared to the wild type calli, the rise in MG levels was restricted even upon exogenous addition of MG during the selection process, resulting in efficient selection of the transformed calli. Therefore, MG-based selection method is a useful and efficient system for selection of transformed plants without significantly compromising the transformation efficiency. Further, this MG-based selection system is bio-safe and can pave way towards better public acceptance of transgenic plants.
Collapse
Affiliation(s)
- Khirod K. Sahoo
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Road, New Delhi, 110067 India
| | - Brijesh K. Gupta
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Road, New Delhi, 110067 India
| | - Charanpreet Kaur
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Road, New Delhi, 110067 India
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067 India
| | - Rohit Joshi
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Road, New Delhi, 110067 India
| | - Ashwani Pareek
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067 India
| | - Sudhir K. Sopory
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Road, New Delhi, 110067 India
| | - Sneh L. Singla-Pareek
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Road, New Delhi, 110067 India
| |
Collapse
|
31
|
Li T, Cheng X, Wang X, Li G, Wang B, Wang W, Zhang N, Han Y, Jiao B, Wang Y, Liu G, Xu T, Xu Y. Glyoxalase I-4 functions downstream of NAC72 to modulate downy mildew resistance in grapevine. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:394-410. [PMID: 34318550 DOI: 10.1111/tpj.15447] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 07/20/2021] [Accepted: 07/22/2021] [Indexed: 05/09/2023]
Abstract
Glyoxalase I (GLYI) is part of the glyoxalase system; its major function is the detoxification of α-ketoaldehydes, including the potent and cytotoxic methylglyoxal (MG). Methylglyoxal disrupts mitochondrial respiration and increases production of reactive oxygen species (ROS), which also increase during pathogen infection of plant tissues; however, there have been few studies relating the glyoxalase system to the plant pathogen response. We used the promoter of VvGLYI-4 to screen the upstream transcription factors and report a NAC (NAM/ATAF/CUC) domain-containing transcription factor VvNAC72 in grapevine, which is localized to the nucleus. Our results show that VvNAC72 expression is induced by downy mildew, Plasmopara viticola, while the transcript level of VvGLYI-4 decreases. Further analysis revealed that VvNAC72 can bind directly to the promoter region of VvGLYI-4 via the CACGTG element, leading to inhibition of VvGLYI-4 transcription. Stable overexpression of VvNAC72 in grapevine and tobacco showed a decreased expression level of VvGLYI-4 and increased content of MG and ROS, as well as stronger resistance to pathogen stress. Taken together, these results demonstrate that grapevine VvNAC72 negatively modulates detoxification of MG through repression of VvGLYI-4, and finally enhances resistance to downy mildew, at least in part, via the modulation of MG-associated ROS homeostasis through a salicylic acid-mediated defense pathway.
Collapse
Affiliation(s)
- Tiemei Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, China
| | - Xin Cheng
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, China
| | - Xiaowei Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, China
| | - Guanggui Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, China
| | - Bianbian Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, China
| | - Wenyuan Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, China
| | - Na Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, China
| | - Yulei Han
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, China
| | - Bolei Jiao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, China
| | - Yuejin Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, China
| | - Guotian Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, China
| | - Tengfei Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, China
| | - Yan Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, China
| |
Collapse
|
32
|
Dorion S, Ouellet JC, Rivoal J. Glutathione Metabolism in Plants under Stress: Beyond Reactive Oxygen Species Detoxification. Metabolites 2021; 11:metabo11090641. [PMID: 34564457 PMCID: PMC8464934 DOI: 10.3390/metabo11090641] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/14/2021] [Accepted: 09/14/2021] [Indexed: 01/16/2023] Open
Abstract
Glutathione is an essential metabolite for plant life best known for its role in the control of reactive oxygen species (ROS). Glutathione is also involved in the detoxification of methylglyoxal (MG) which, much like ROS, is produced at low levels by aerobic metabolism under normal conditions. While several physiological processes depend on ROS and MG, a variety of stresses can dramatically increase their concentration leading to potentially deleterious effects. In this review, we examine the structure and the stress regulation of the pathways involved in glutathione synthesis and degradation. We provide a synthesis of the current knowledge on the glutathione-dependent glyoxalase pathway responsible for MG detoxification. We present recent developments on the organization of the glyoxalase pathway in which alternative splicing generate a number of isoforms targeted to various subcellular compartments. Stress regulation of enzymes involved in MG detoxification occurs at multiple levels. A growing number of studies show that oxidative stress promotes the covalent modification of proteins by glutathione. This post-translational modification is called S-glutathionylation. It affects the function of several target proteins and is relevant to stress adaptation. We address this regulatory function in an analysis of the enzymes and pathways targeted by S-glutathionylation.
Collapse
|
33
|
Shailani A, Joshi R, Singla-Pareek SL, Pareek A. Stacking for future: Pyramiding genes to improve drought and salinity tolerance in rice. PHYSIOLOGIA PLANTARUM 2021; 172:1352-1362. [PMID: 33180968 DOI: 10.1111/ppl.13270] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/30/2020] [Accepted: 11/06/2020] [Indexed: 05/02/2023]
Abstract
Abiotic stresses, such as drought and salinity, adversely affect rice production and cause a severe threat to food security. Conventional crop breeding techniques alone are inadequate for achieving drought stress tolerance in crop plants. Using transgenic technology, incremental improvements in tolerance to drought and salinity have been successfully attained via manipulation of gene(s) in several crop species. However, achieving the goal via pyramiding multiple genes from the same or different tolerance mechanisms has received little attention. Pyramiding of multiple genes can be achieved either through breeding, by using marker-assisted selection, or by genetic engineering through molecular stacking co-transformation or re-transformation. Transgene stacking into a single locus has added advantages over breeding or re-transformation since the former assures co-inheritance of genes, contributing to more effective tolerance in transgenic plants for generations. Drought, being a polygenic trait, the potential candidate genes for gene stacking are those contributing to cellular detoxification, osmolyte accumulation, antioxidant machinery, and signaling pathways. Since cellular dehydration is inbuilt in salinity stress, manipulation of these genes results in improving tolerance to salinity along with drought in most of the cases. In this review, attempts have been made to provide a critical assessment of transgenic plants developed through transgene stacking and approaches to achieve the same. Identification and functional validation of more such candidate genes is needed for research programs targeting the gene stacking for developing crop plants with high precision in the shortest possible time to ensure sustainable crop productivity under marginal lands.
Collapse
Affiliation(s)
- Anjali Shailani
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Rohit Joshi
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Sneh Lata Singla-Pareek
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Ashwani Pareek
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
34
|
Jain P, Hussian S, Nishad J, Dubey H, Bisht DS, Sharma TR, Mondal TK. Identification and functional prediction of long non-coding RNAs of rice (Oryza sativa L.) at reproductive stage under salinity stress. Mol Biol Rep 2021; 48:2261-2271. [PMID: 33742326 DOI: 10.1007/s11033-021-06246-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 02/20/2021] [Indexed: 11/28/2022]
Abstract
Salinity adversely affects the yield and growth of rice (Oryza sativa L.) plants severely, particularly at reproductive stage. Long non-coding RNAs (lncRNAs) are key regulators of diverse molecular and cellular processes in plants. Till now, no systematic study has been reported for regulatory roles of lncRNAs in rice under salinity at reproductive stage. In this study, total 80 RNA-seq data of Horkuch (salt-tolerant) and IR-29 (salt-sensitive) genotypes of rice were used and found 1626 and 2208 transcripts as putative high confidence lncRNAs, among which 1529 and 2103 were found to be novel putative lncRNAs in root and leaf tissue respectively. In Horkuch and IR-29, 14 and 16 lncRNAs were differentially expressed in root tissue while 18 and 63 lncRNAs were differentially expressed in leaf tissue. Interaction analysis among the lncRNAs, miRNAs and corresponding mRNAs indicated that these modules are involved in different biochemical pathways e.g. phenyl propanoid pathway during salinity stress in rice. Interestingly, two differentially expressed lncRNAs such as TCONS_00008914 and TCONS_00008749 were found as putative target mimics of known rice miRNAs. This study indicates that lncRNAs are involved in salinity adaptation of rice at reproductive stage through certain biochemical pathways.
Collapse
Affiliation(s)
- Priyanka Jain
- ICAR- National Institute for Plant Biotechnology, LBS Centre, IARI Campus, Pusa, New Delhi, 110012, India
| | - Samreen Hussian
- ICAR- National Institute for Plant Biotechnology, LBS Centre, IARI Campus, Pusa, New Delhi, 110012, India
| | - Jyoti Nishad
- ICAR- National Institute for Plant Biotechnology, LBS Centre, IARI Campus, Pusa, New Delhi, 110012, India
| | - Himanshu Dubey
- ICAR- National Institute for Plant Biotechnology, LBS Centre, IARI Campus, Pusa, New Delhi, 110012, India
| | - Deepak Singh Bisht
- ICAR- National Institute for Plant Biotechnology, LBS Centre, IARI Campus, Pusa, New Delhi, 110012, India
| | - Tilak Raj Sharma
- ICAR- National Institute for Plant Biotechnology, LBS Centre, IARI Campus, Pusa, New Delhi, 110012, India
| | - Tapan Kumar Mondal
- ICAR- National Institute for Plant Biotechnology, LBS Centre, IARI Campus, Pusa, New Delhi, 110012, India.
| |
Collapse
|
35
|
Fu ZW, Li JH, Feng YR, Yuan X, Lu YT. The metabolite methylglyoxal-mediated gene expression is associated with histone methylglyoxalation. Nucleic Acids Res 2021; 49:1886-1899. [PMID: 33476385 PMCID: PMC7913762 DOI: 10.1093/nar/gkab014] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/09/2020] [Accepted: 01/06/2021] [Indexed: 12/11/2022] Open
Abstract
Methylglyoxal (MG) is a byproduct of glycolysis that functions in diverse mammalian developmental processes and diseases and in plant responses to various stresses, including salt stress. However, it is unknown whether MG-regulated gene expression is associated with an epigenetic modification. Here we report that MG methylglyoxalates H3 including H3K4 and increases chromatin accessibility, consistent with the result that H3 methylglyoxalation positively correlates with gene expression. Salt stress also increases H3 methylglyoxalation at salt stress responsive genes correlated to their higher expression. Following exposure to salt stress, salt stress responsive genes were expressed at higher levels in the Arabidopsis glyI2 mutant than in wild-type plants, but at lower levels in 35S::GLYI2 35S::GLYII4 plants, consistent with the higher and lower MG accumulation and H3 methylglyoxalation of target genes in glyI2 and 35S::GLYI2 35S::GLYII4, respectively. Further, ABI3 and MYC2, regulators of salt stress responsive genes, affect the distribution of H3 methylglyoxalation at salt stress responsive genes. Thus, MG functions as a histone-modifying group associated with gene expression that links glucose metabolism and epigenetic regulation.
Collapse
Affiliation(s)
- Zheng-Wei Fu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Jian-Hui Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yu-Rui Feng
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Xiao Yuan
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Ying-Tang Lu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
36
|
Kenney P, Sankaranarayanan S, Balogh M, Indriolo E. Expression of Brassica napus GLO1 is sufficient to breakdown artificial self-incompatibility in Arabidopsis thaliana. PLANT REPRODUCTION 2020; 33:159-171. [PMID: 32862319 DOI: 10.1007/s00497-020-00392-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 07/25/2020] [Indexed: 06/11/2023]
Abstract
Members of the Brassicaceae family have the ability to regulate pollination events occurring on the stigma surface. In Brassica species, self-pollination leads to an allele-specific interaction between the pollen small cysteine-rich peptide ligand (SCR/SP11) and the stigmatic S-receptor kinase (SRK) that activates the E3 ubiquitin ligase ARC1 (Armadillo repeat-containing 1), resulting in proteasomal degradation of various compatibility factors including glyoxalase I (GLO1) which is necessary for successful pollination. In Brassica napus, the suppression of GLO1 was sufficient to reduce compatibility, and overexpression of GLO1 in self-incompatible Brassica napus stigmas resulted in partial breakdown of the self-incompatibility response. Here, we verified if BnGLO1 could function as a compatibility factor in the artificial self-incompatibility system of Arabidopsis thaliana expressing AlSCRb, AlSRKb and AlARC1 proteins from A. lyrata. Overexpression of BnGLO1 is sufficient to breakdown self-incompatibility response in A. thaliana stigmas. Therefore, GLO1 has an indisputable role as a compatibility factor in the stigma in regulating pollen attachment and pollen tube growth. Lastly, this study demonstrates the usefulness of an artificial self-incompatibility system in A. thaliana for interspecific self-incompatibility studies.
Collapse
Affiliation(s)
- Patrick Kenney
- Department of Biology, New Mexico State University, 1200 S. Horseshoe Dr, Las Cruces, NM, 88003, USA
- Division of Plant Sciences, University of Missouri, Waters Hall 1112 University Ave, Columbia, MO, 65201, USA
| | | | - Michael Balogh
- Department of Biology, New Mexico State University, 1200 S. Horseshoe Dr, Las Cruces, NM, 88003, USA
| | - Emily Indriolo
- Department of Biology, New Mexico State University, 1200 S. Horseshoe Dr, Las Cruces, NM, 88003, USA.
| |
Collapse
|
37
|
Guo Z, Cai L, Chen Z, Wang R, Zhang L, Guan S, Zhang S, Ma W, Liu C, Pan G. Identification of candidate genes controlling chilling tolerance of rice in the cold region at the booting stage by BSA-Seq and RNA-Seq. ROYAL SOCIETY OPEN SCIENCE 2020; 7:201081. [PMID: 33391797 PMCID: PMC7735347 DOI: 10.1098/rsos.201081] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 10/14/2020] [Indexed: 06/12/2023]
Abstract
Rice is sensitive to low temperatures, specifically at the booting stage. Chilling tolerance of rice is a quantitative trait loci that is governed by multiple genes, and thus, its precise identification through the conventional methods is an arduous task. In this study, we investigated the candidate genes related to chilling tolerance at the booting stage of rice. The F2 population was derived from Longjing25 (chilling-tolerant) and Longjing11 (chilling-sensitive) cross. Two bulked segregant analysis pools were constructed. A 0.82 Mb region containing 98 annotated genes on chromosomes 6 and 9 was recognized as the candidate region associated with chilling tolerance of rice at the booting stage. Transcriptomic analysis of Longjing25 and Longjing11 revealed 50 differentially expressed genes (DEGs) on the candidate intervals. KEGG pathway enrichment analysis of DEGs was performed. Nine pathways were found to be enriched, which contained 10 DEGs. A total of four genes had different expression patterns or levels between Longjing25 and Longjing11. Four out of the 10 DEGs were considered as potential candidate genes for chilling tolerance. This study will assist in the cloning of the candidate genes responsible for chilling tolerance and molecular breeding of rice for the development of chilling-tolerant rice varieties.
Collapse
Affiliation(s)
- Zhenhua Guo
- Rice Research Institute of Heilongjiang Academy of Agricultural Sciences, Jiamusi 154026, People's Republic of China
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou 510642, People's Republic of China
| | - Lijun Cai
- Jiamusi Branch of Heilongjiang Academy of Agricultural Sciences, Jiamusi 154007, People's Republic of China
| | - Zhiqiang Chen
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou 510642, People's Republic of China
| | - Ruiying Wang
- Rice Research Institute of Heilongjiang Academy of Agricultural Sciences, Jiamusi 154026, People's Republic of China
| | - Lanming Zhang
- Rice Research Institute of Heilongjiang Academy of Agricultural Sciences, Jiamusi 154026, People's Republic of China
| | - Shiwu Guan
- Rice Research Institute of Heilongjiang Academy of Agricultural Sciences, Jiamusi 154026, People's Republic of China
| | - Shuhua Zhang
- Rice Research Institute of Heilongjiang Academy of Agricultural Sciences, Jiamusi 154026, People's Republic of China
| | - Wendong Ma
- Rice Research Institute of Heilongjiang Academy of Agricultural Sciences, Jiamusi 154026, People's Republic of China
| | - Chuanxue Liu
- Rice Research Institute of Heilongjiang Academy of Agricultural Sciences, Jiamusi 154026, People's Republic of China
| | - Guojun Pan
- Rice Research Institute of Heilongjiang Academy of Agricultural Sciences, Jiamusi 154026, People's Republic of China
| |
Collapse
|
38
|
Jana GA, Yaish MW. Functional characterization of the Glyoxalase-I ( PdGLX1) gene family in date palm under abiotic stresses. PLANT SIGNALING & BEHAVIOR 2020; 15:1811527. [PMID: 32835595 PMCID: PMC7588186 DOI: 10.1080/15592324.2020.1811527] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/12/2020] [Accepted: 08/14/2020] [Indexed: 06/11/2023]
Abstract
Methylglyoxal (MG), a cytotoxic oxygenated short aldehyde, is a by-product of various metabolic reactions in plants, including glycolysis. The basal level of MG in plants is low, whereby it acts as an essential signaling molecule regulating multiple cellular processes. However, hyperaccumulation of MG under stress conditions is detrimental for plants as it inhibits multiple developmental processes, including seed germination, photosynthesis, and root growth. The evolutionarily conserved glyoxalase system is critical for MG detoxification, and it comprises of two-enzymes, the glyoxalase-I and glyoxalase-II. Here, we report the functional characterization of six putative glyoxalase-I genes from date palm (Phoenix dactylifera L.) (PdGLX1), by studying their gene expression under various environmental stress conditions and investigating their function in bacteria (Escherichia coli) and yeast (Saccharomyces cerevisiae) mutant cells. The putative PdGLX1 genes were initially identified using computational methods and cloned using molecular tools. The PdGLX1 gene expression analysis using quantitative PCR (qPCR) revealed differential expression under various stress conditions such as salinity, oxidative stress, and exogenous MG stress in a tissue-specific manner. Further, in vivo functional characterization indicated that overexpression of the putative PdGLX1 genes in E. coli enhanced their growth and MG detoxification ability. The putative PdGLX1 genes were also able to complement the loss-of-function MG hypersensitive GLO1 (YML004C) yeast mutants and promote growth by enhancing MG detoxification and reducing the accumulation of reactive oxygen species (ROS) under stress conditions as indicated by flow cytometry. These findings denote the potential importance of PdGLX1 genes in MG detoxification under stress conditions in the date palm.
Collapse
Affiliation(s)
- Gerry Aplang Jana
- Department of Biology, College of Sciences, Sultan Qaboos University, Muscat, Oman
| | - Mahmoud W. Yaish
- Department of Biology, College of Sciences, Sultan Qaboos University, Muscat, Oman
| |
Collapse
|
39
|
Singla-Pareek SL, Kaur C, Kumar B, Pareek A, Sopory SK. Reassessing plant glyoxalases: large family and expanding functions. THE NEW PHYTOLOGIST 2020; 227:714-721. [PMID: 32249440 DOI: 10.1111/nph.16576] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 03/07/2020] [Indexed: 05/07/2023]
Abstract
Methylglyoxal (MG), a reactive carbonyl compound, is generated during metabolism in living systems. However, under stress, its levels increase rapidly leading to cellular toxicity. Although the generation of MG is spontaneous in a cell, its detoxification is essentially catalyzed by the glyoxalase enzymes. In plants, modulation of MG content via glyoxalases influences diverse physiological functions ranging from regulating growth and development to conferring stress tolerance. Interestingly, there has been a preferred expansion in the number of isoforms of these enzymes in plants, giving them high plasticity in their actions for accomplishing diverse roles. Future studies need to focus on unraveling the interplay of these multiple isoforms of glyoxalases possibly contributing towards the unique adaptability of plants to diverse environments.
Collapse
Affiliation(s)
- Sneh L Singla-Pareek
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India
| | - Charanpreet Kaur
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Brijesh Kumar
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India
| | - Ashwani Pareek
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Sudhir K Sopory
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India
| |
Collapse
|
40
|
Ramu VS, Preethi V, Nisarga KN, Srivastava KR, Sheshshayee MS, Mysore KS, Udayakumar M. Carbonyl Cytotoxicity Affects Plant Cellular Processes and Detoxifying Enzymes Scavenge These Compounds to Improve Stress Tolerance. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:6237-6247. [PMID: 32401508 DOI: 10.1021/acs.jafc.0c02005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Oxidative stress is ubiquitous in environmental stresses and prevails over the cellular metabolic and phenotypic responses in plants. Reactive oxygen species (ROS) generated under stress affect macromolecules to form another group of toxic compounds called reactive carbonyl compounds (RCCs). These molecules have a longer half-life than ROS and cause carbonyl stress that affects cellular metabolism, cellular homeostasis, and crop productivity. The later effect of oxidative stress in terms of the generation of RCCs and glycation products and their effects on plant processes have not been explored well in plant biology. Therefore, how these molecules are produced and a few important effects of RCCs on plants have been discussed in this review article. Further, the plant adaptive detoxification mechanisms of RCCs have been discussed. The enzymes that were identified in plants to detoxify these cytotoxic compounds have broad substrate specificity and the potential for use in breeding programs. The review should provide a comprehensive understanding of the cytotoxic compounds beyond ROS and subsequently their mitigation strategies for crop improvement programs.
Collapse
Affiliation(s)
- Vemanna S Ramu
- Laboratory of Plant Functional Genomics, Regional Center for Biotechnology, Faridabad, Haryana 121001, India
| | - V Preethi
- Department of Crop Physiology, University of Agriculture Sciences, GKVK, Bengaluru 560065, India
| | - K N Nisarga
- Department of Crop Physiology, University of Agriculture Sciences, GKVK, Bengaluru 560065, India
| | | | - M S Sheshshayee
- Department of Crop Physiology, University of Agriculture Sciences, GKVK, Bengaluru 560065, India
| | | | - M Udayakumar
- Department of Crop Physiology, University of Agriculture Sciences, GKVK, Bengaluru 560065, India
| |
Collapse
|
41
|
Gupta S, Mishra SK, Misra S, Pandey V, Agrawal L, Nautiyal CS, Chauhan PS. Revealing the complexity of protein abundance in chickpea root under drought-stress using a comparative proteomics approach. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 151:88-102. [PMID: 32203884 DOI: 10.1016/j.plaphy.2020.03.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/03/2020] [Accepted: 03/03/2020] [Indexed: 05/02/2023]
Abstract
Global warming has reached an alarming situation, which led to a dangerous climatic condition. The irregular rainfalls and land degradation are the significant consequences of these climatic changes causing a decrease in crop productivity. The effect of drought and its tolerance mechanism, a comparative roots proteomic analysis of chickpea seedlings grown under hydroponic conditions for three weeks, performed at different time points using 2-Dimensional gel electrophoresis (2-DE). After PD-Quest analysis, 110 differentially expressed spots subjected to MALDI-TOF/TOF and 75 spots identified with a significant score. These identified proteins classified into eight categories based on their functional annotation. Proteins involved in carbon and energy metabolism comprised 23% of total identified proteins include mainly glyceraldehyde-3-phosphate dehydrogenase, malate dehydrogenase, transaldolase, and isocitrate dehydrogenase. Proteins related to stress response (heat-shock protein, CS domain protein, and chitinase 2-like) contributed 16% of total protein spots followed by 13% involved in protein metabolism (adenosine kinase 2, and protein disulfide isomerase). ROS metabolism contributed 13% (glutathione S-transferase, ascorbate peroxidase, and thioredoxin), and 9% for signal transduction (actin-101, and 14-3-3-like protein B). Five percent protein identified for secondary metabolism (cinnamoyl-CoA reductase-1 and chalcone-flavononeisomerase 2) and 7% for nitrogen (N) and amino acid metabolism (glutamine synthetase and homocysteine methyltransferase). The abundance of some proteins validated by using Western blotting and Real-Time-PCR. The detailed information for drought-responsive root protein(s) through comparative proteomics analysis can be utilized in the future for genetic improvement programs to develop drought-tolerant chickpea lines.
Collapse
Affiliation(s)
- Swati Gupta
- Microbial Technology Division, Council of Scientific and Industrial Research-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Shashank Kumar Mishra
- Microbial Technology Division, Council of Scientific and Industrial Research-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001, India
| | - Sankalp Misra
- Microbial Technology Division, Council of Scientific and Industrial Research-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Vivek Pandey
- Plant Ecology and Environmental Sciences, Council of Scientific and Industrial Research-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001, India
| | - Lalit Agrawal
- Microbial Technology Division, Council of Scientific and Industrial Research-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001, India; Department of Agriculture and Allied Sciences, Doon Business School, Dehradun, 248001, India.
| | - Chandra Shekhar Nautiyal
- Microbial Technology Division, Council of Scientific and Industrial Research-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001, India.
| | - Puneet Singh Chauhan
- Microbial Technology Division, Council of Scientific and Industrial Research-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001, India.
| |
Collapse
|
42
|
Rabbani N, Al-Motawa M, Thornalley PJ. Protein Glycation in Plants-An Under-Researched Field with Much Still to Discover. Int J Mol Sci 2020; 21:ijms21113942. [PMID: 32486308 PMCID: PMC7312737 DOI: 10.3390/ijms21113942] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/27/2020] [Accepted: 05/28/2020] [Indexed: 12/19/2022] Open
Abstract
Recent research has identified glycation as a non-enzymatic post-translational modification of proteins in plants with a potential contributory role to the functional impairment of the plant proteome. Reducing sugars with a free aldehyde or ketone group such as glucose, fructose and galactose react with the N-terminal and lysine side chain amino groups of proteins. A common early-stage glycation adduct formed from glucose is Nε-fructosyl-lysine (FL). Saccharide-derived reactive dicarbonyls are arginine residue-directed glycating agents, forming advanced glycation endproducts (AGEs). A dominant dicarbonyl is methylglyoxal—formed mainly by the trace-level degradation of triosephosphates, including through the Calvin cycle of photosynthesis. Methylglyoxal forms the major quantitative AGE, hydroimidazolone MG-H1. Glucose and methylglyoxal concentrations in plants change with the developmental stage, senescence, light and dark cycles and also likely biotic and abiotic stresses. Proteomics analysis indicates that there is an enrichment of the amino acid residue targets of glycation, arginine and lysine residues, in predicted functional sites of the plant proteome, suggesting the susceptibility of proteins to functional inactivation by glycation. In this review, we give a brief introduction to glycation, glycating agents and glycation adducts in plants. We consider dicarbonyl stress, the functional vulnerability of the plant proteome to arginine-directed glycation and the likely role of methylglyoxal-mediated glycation in the activation of the unfolded protein response in plants. The latter is linked to the recent suggestion of protein glycation in sugar signaling in plant metabolism. The overexpression of glyoxalase 1, which suppresses glycation by methylglyoxal and glyoxal, produced plants resistant to high salinity, drought, extreme temperature and other stresses. Further research to decrease protein glycation in plants may lead to improved plant growth and assist the breeding of plant varieties resistant to environmental stress and senescence—including plants of commercial ornamental and crop cultivation value.
Collapse
Affiliation(s)
- Naila Rabbani
- Department of Basic Medical Science, College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar
- Correspondence: (N.R.); (P.J.T.); Tel.: +974-7479-5649 (N.R.); +974-7090-1635 (P.J.T.)
| | - Maryam Al-Motawa
- Diabetes Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha P.O. Box 34110, Qatar;
- College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha P.O. Box 34110, Qatar
| | - Paul J. Thornalley
- Diabetes Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha P.O. Box 34110, Qatar;
- College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha P.O. Box 34110, Qatar
- Correspondence: (N.R.); (P.J.T.); Tel.: +974-7479-5649 (N.R.); +974-7090-1635 (P.J.T.)
| |
Collapse
|
43
|
Batth R, Jain M, Kumar A, Nagar P, Kumari S, Mustafiz A. Zn2+ dependent glyoxalase I plays the major role in methylglyoxal detoxification and salinity stress tolerance in plants. PLoS One 2020; 15:e0233493. [PMID: 32453778 PMCID: PMC7250436 DOI: 10.1371/journal.pone.0233493] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 05/06/2020] [Indexed: 01/01/2023] Open
Abstract
Glyoxalase pathway is the major pathway of methylglyoxal detoxification and is ubiquitously present in all organisms ranging from prokaryotes to eukaryotes. Glyoxalase I (GLYI) and Glyoxalase II (GLYII), the two core enzymes of this pathway work together to neutralize methylglyoxal (MG), a dicarbonyl molecule with detrimental cytotoxicity at higher concentrations. The first step towards the detoxification of MG is catalyzed by GLYI, a metalloenzyme that requires divalent metal ions (either Zn2+ as seen in eukaryotes or Ni2+ as in prokaryotes). However, both Zn2+ and Ni2+ dependent GLYIs have been shown to co-exist in a higher eukaryote i.e. Arabidopsis thaliana. In the present study, we determine the role of both Zn2+ dependent (AtGLYI2) and Ni2+ dependent (AtGLYI3, AtGLYI6) GLYIs from Arabidopsis in salinity stress tolerance. AtGLYI2 overexpressing Arabidopsis plants showed better growth rate while maintaining lower levels of MG under high saline conditions. They were taller with more number of silique formation with respect to their Ni2+ dependent counterparts. Further, lack in germination of Arabidopsis AtGLYI2 mutants in presence of exogenous MG indicates the direct involvement of Zn2+ dependent GLYI in MG detoxification, suggesting Zn2+ dependent GLYI as the main enzyme responsible for MG detoxification and salinity stress tolerance.
Collapse
Affiliation(s)
- Rituraj Batth
- Plant Molecular Biology Laboratory, Faculty of Life Sciences and Biotechnology, South Asian University, Chanakyapuri, New Delhi, India
| | - Muskan Jain
- Plant Molecular Biology Laboratory, Faculty of Life Sciences and Biotechnology, South Asian University, Chanakyapuri, New Delhi, India
| | - Ashish Kumar
- Plant Molecular Biology Laboratory, Faculty of Life Sciences and Biotechnology, South Asian University, Chanakyapuri, New Delhi, India
| | - Preeti Nagar
- Plant Molecular Biology Laboratory, Faculty of Life Sciences and Biotechnology, South Asian University, Chanakyapuri, New Delhi, India
| | - Sumita Kumari
- School of Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology, Jammu, JK, India
| | - Ananda Mustafiz
- Plant Molecular Biology Laboratory, Faculty of Life Sciences and Biotechnology, South Asian University, Chanakyapuri, New Delhi, India
- * E-mail:
| |
Collapse
|
44
|
Tang Y, Gao CC, Gao Y, Yang Y, Shi B, Yu JL, Lyu C, Sun BF, Wang HL, Xu Y, Yang YG, Chong K. OsNSUN2-Mediated 5-Methylcytosine mRNA Modification Enhances Rice Adaptation to High Temperature. Dev Cell 2020; 53:272-286.e7. [DOI: 10.1016/j.devcel.2020.03.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 01/20/2020] [Accepted: 03/11/2020] [Indexed: 01/08/2023]
|
45
|
Bhowal B, Singla-Pareek SL, Sopory SK, Kaur C. From methylglyoxal to pyruvate: a genome-wide study for the identification of glyoxalases and D-lactate dehydrogenases in Sorghum bicolor. BMC Genomics 2020; 21:145. [PMID: 32041545 PMCID: PMC7011430 DOI: 10.1186/s12864-020-6547-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 01/31/2020] [Indexed: 12/03/2022] Open
Abstract
Background The glyoxalase pathway is evolutionarily conserved and involved in the glutathione-dependent detoxification of methylglyoxal (MG), a cytotoxic by-product of glycolysis. It acts via two metallo-enzymes, glyoxalase I (GLYI) and glyoxalase II (GLYII), to convert MG into D-lactate, which is further metabolized to pyruvate by D-lactate dehydrogenases (D-LDH). Since D-lactate formation occurs solely by the action of glyoxalase enzymes, its metabolism may be considered as the ultimate step of MG detoxification. By maintaining steady state levels of MG and other reactive dicarbonyl compounds, the glyoxalase pathway serves as an important line of defence against glycation and oxidative stress in living organisms. Therefore, considering the general role of glyoxalases in stress adaptation and the ability of Sorghum bicolor to withstand prolonged drought, the sorghum glyoxalase pathway warrants an in-depth investigation with regard to the presence, regulation and distribution of glyoxalase and D-LDH genes. Result Through this study, we have identified 15 GLYI and 6 GLYII genes in sorghum. In addition, 4 D-LDH genes were also identified, forming the first ever report on genome-wide identification of any plant D-LDH family. Our in silico analysis indicates homology of putatively active SbGLYI, SbGLYII and SbDLDH proteins to several functionally characterised glyoxalases and D-LDHs from Arabidopsis and rice. Further, these three gene families exhibit development and tissue-specific variations in their expression patterns. Importantly, we could predict the distribution of putatively active SbGLYI, SbGLYII and SbDLDH proteins in at least four different sub-cellular compartments namely, cytoplasm, chloroplast, nucleus and mitochondria. Most of the members of the sorghum glyoxalase and D-LDH gene families are indeed found to be highly stress responsive. Conclusion This study emphasizes the role of glyoxalases as well as that of D-LDH in the complete detoxification of MG in sorghum. In particular, we propose that D-LDH which metabolizes the specific end product of glyoxalases pathway is essential for complete MG detoxification. By proposing a cellular model for detoxification of MG via glyoxalase pathway in sorghum, we suggest that different sub-cellular organelles are actively involved in MG metabolism in plants.
Collapse
Affiliation(s)
- Bidisha Bhowal
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Sneh L Singla-Pareek
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Sudhir K Sopory
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi, 110067, India.
| | - Charanpreet Kaur
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
46
|
Sinha R, Bala M, Kumar M, Sharma TR, Singh AK. Methods for Screening Legume Crops for Abiotic Stress Tolerance through Physiological and Biochemical Approaches. Methods Mol Biol 2020; 2107:277-303. [PMID: 31893454 DOI: 10.1007/978-1-0716-0235-5_15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Legume crops are subjected to a wide range of abiotic stresses, which stimulate an array of physiological, biochemical, and molecular responses. However, different genotypes may exhibit significant variations between individual responses, which can determine their tolerance or susceptibility to these stresses. The present chapter suggests a broad range of assays that can help in understanding stress perception by plants at cellular and molecular levels. The genotypes may be sorted depending on their tolerance potential, by broadly analysing morphological, physiological, biochemical, and enzyme kinetics parameters. These assays are very beneficial in revealing the mechanism of stress perception and response in varied plant types, and have helped in discriminating contrasting genotypes. Here, we have described detailed protocols of assays which may be carried out to assess tolerance or susceptibility to abiotic stresses. The analysis, as a whole, can help researchers understand the effect of abiotic stresses on plant biochemical pathways, be it photosynthesis, redox homeostasis, metabolite perturbation, signaling, transcription, and translation. These protocols may be beneficial in identification of suitable donors for breeding programs, as well as for identifying promising candidate genes or pathways for developing stress tolerant legume crops through genetic engineering.
Collapse
Affiliation(s)
- Ragini Sinha
- ICAR-Indian Institute of Agricultural Biotechnology, Ranchi, India
| | - Meenu Bala
- ICAR-Indian Institute of Agricultural Biotechnology, Ranchi, India
- Vinoba Bhave University, Hazaribagh, India
| | - Madan Kumar
- ICAR-Indian Institute of Agricultural Biotechnology, Ranchi, India
| | - Tilak Raj Sharma
- ICAR-Indian Institute of Agricultural Biotechnology, Ranchi, India
| | - Anil Kumar Singh
- ICAR-Indian Institute of Agricultural Biotechnology, Ranchi, India.
| |
Collapse
|
47
|
Han Y, Teng K, Nawaz G, Feng X, Usman B, Wang X, Luo L, Zhao N, Liu Y, Li R. Generation of semi-dwarf rice ( Oryza sativa L.) lines by CRISPR/Cas9-directed mutagenesis of OsGA20ox2 and proteomic analysis of unveiled changes caused by mutations. 3 Biotech 2019; 9:387. [PMID: 31656725 DOI: 10.1007/s13205-019-1919-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 09/24/2019] [Indexed: 12/13/2022] Open
Abstract
Plant height (PH) is one of the most important agronomic traits of rice, as it directly affects the yield potential and lodging resistance. Here, semi-dwarf mutant lines were developed through CRISPR/Cas9-based editing of OsGA20ox2 in an indica rice cultivar. Total 24 independent lines were obtained in T0 generation with the mean mutation rate of 73.5% including biallelic (29.16%), homozygous (47.91%) and heterozygous (16.66%) mutations, and 16 T-DNA-free lines (50%) were obtained in T1 generation without off-target effect in four most likely sites. Mutations resulted in a changed amino acid sequence of mutant plants and reduced gibberellins (GA) level and PH (22.2%), flag leaf length (FLL) and increased yield per plant (YPP) (6.0%), while there was no effect on other agronomic traits. Mutants restored their PH to normal by exogenous GA3 treatment. The expression of the OsGA20ox2 gene was significantly suppressed in mutant plants, while the expression level was not affected for other GA biosynthesis (OsGA2ox3 and OsGA3ox2) and signaling (D1, GIDI and SLR1) genes. The mutant lines showed decreased cell length and width, abnormal cell elongation, while increased cell numbers in the second internode sections at mature stage. Total 30 protein spots were exercised, and 24 proteins were identified, and results showed that OsGA20ox2 editing altered protein expression. Five proteins including, glyceraldehyde-3-phosphate dehydrogenase, putative ATP synthase, fructose-bisphosphate aldolase 1, S-adenosyl methionine synthetase 1 and gibberellin 20 oxidase 2, were downregulated in dwarf mutant lines which may affect the plant growth. Collectively, our results provide the insights into the role of OsGA20ox2 in PH and confirmed that CRISPR-Cas9 is a powerful tool to understand the gene functions.
Collapse
|
48
|
Proietti S, Falconieri GS, Bertini L, Baccelli I, Paccosi E, Belardo A, Timperio AM, Caruso C. GLYI4 Plays A Role in Methylglyoxal Detoxification and Jasmonate-Mediated Stress Responses in Arabidopsis thaliana. Biomolecules 2019; 9:biom9100635. [PMID: 31652571 PMCID: PMC6843518 DOI: 10.3390/biom9100635] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/17/2019] [Accepted: 10/18/2019] [Indexed: 12/18/2022] Open
Abstract
Plant hormones play a central role in various physiological functions and in mediating defense responses against (a)biotic stresses. In response to primary metabolism alteration, plants can produce also small molecules such as methylglyoxal (MG), a cytotoxic aldehyde. MG is mostly detoxified by the combined actions of the enzymes glyoxalase I (GLYI) and glyoxalase II (GLYII) that make up the glyoxalase system. Recently, by a genome-wide association study performed in Arabidopsis, we identified GLYI4 as a novel player in the crosstalk between jasmonate (JA) and salicylic acid (SA) hormone pathways. Here, we investigated the impact of GLYI4 knock-down on MG scavenging and on JA pathway. In glyI4 mutant plants, we observed a general stress phenotype, characterized by compromised MG scavenging, accumulation of reactive oxygen species (ROS), stomatal closure, and reduced fitness. Accumulation of MG in glyI4 plants led to lower efficiency of the JA pathway, as highlighted by the increased susceptibility of the plants to the pathogenic fungus Plectospherella cucumerina. Moreover, MG accumulation brought about a localization of GLYI4 to the plasma membrane, while MeJA stimulus induced a translocation of the protein into the cytoplasmic compartment. Collectively, the results are consistent with the hypothesis that GLYI4 is a hub in the MG and JA pathways.
Collapse
Affiliation(s)
- Silvia Proietti
- Department of Ecological and Biological Sciences, University of Tuscia, 01100 Viterbo, Italy.
| | | | - Laura Bertini
- Department of Ecological and Biological Sciences, University of Tuscia, 01100 Viterbo, Italy.
| | - Ivan Baccelli
- Institute for Sustainable Plant Protection, National Research Council of Italy, Sesto Fiorentino, 50019 Florence, Italy.
| | - Elena Paccosi
- Department of Ecological and Biological Sciences, University of Tuscia, 01100 Viterbo, Italy.
| | - Antonio Belardo
- Department of Ecological and Biological Sciences, University of Tuscia, 01100 Viterbo, Italy.
| | - Anna Maria Timperio
- Department of Ecological and Biological Sciences, University of Tuscia, 01100 Viterbo, Italy.
| | - Carla Caruso
- Department of Ecological and Biological Sciences, University of Tuscia, 01100 Viterbo, Italy.
| |
Collapse
|
49
|
Rai S, Rai R, Singh PK, Rai LC. Alr2321, a multiple stress inducible glyoxalase I of Anabaena sp. PCC7120 detoxifies methylglyoxal and reactive species oxygen. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 214:105238. [PMID: 31301544 DOI: 10.1016/j.aquatox.2019.105238] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 06/25/2019] [Accepted: 06/26/2019] [Indexed: 06/10/2023]
Abstract
Abiotic stresses enhance the cellular level of reactive oxygen species (ROS) which consequently leads to toxic methylglyoxal (MG) production. Glyoxalases (GlyI & GlyII) catalyze the conversion of toxic MG into non-toxic lactic acid but their properties and functions have been overlooked in cyanobacteria. This is the first attempt to conduct a genome-wide analysis of GlyI protein (PF00903) from Anabaena sp. PCC7120. Out of total nine GlyI domain possessing proteins, only three (Alr2321, Alr4469, All1022) harbour conserve His/Glu/His/Glu metal binding site at their homologous position and are deficient in conserved region specific for Zn2+ dependent members. Their biochemical, structural and functional characterization revealed that only Alr2321 is a homodimeric Ni2+ dependent active GlyI with catalytic efficiency 11.7 × 106 M-1 s-1. It has also been found that Alr2321 is activated by various divalent metal ions and has maximum GlyI activity with Ni2+ followed by Co2+ > Mn2+ > Cu2+ and no activity with Zn2+. Moreover, the expression of alr2321 was found to be maximally up-regulated under heat (19 fold) followed by cadmium, desiccation, arsenic, salinity and UV-B stresses. BL21/pGEX-5X2-alr2321 showed improved growth under various abiotic stresses as compared to BL21/pGEX-5X2 by increased scavenging of intracellular MG and ROS levels. Taken together, these results suggest noteworthy links between intracellular MG and ROS, its detoxification by Alr2321, a member of GlyI family of Anabaena sp. PCC7120, in relation to abiotic stress.
Collapse
Affiliation(s)
- Shweta Rai
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Ruchi Rai
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Prashant Kumar Singh
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - L C Rai
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
50
|
de Freitas GM, Thomas J, Liyanage R, Lay JO, Basu S, Ramegowda V, do Amaral MN, Benitez LC, Bolacel Braga EJ, Pereira A. Cold tolerance response mechanisms revealed through comparative analysis of gene and protein expression in multiple rice genotypes. PLoS One 2019; 14:e0218019. [PMID: 31181089 PMCID: PMC6557504 DOI: 10.1371/journal.pone.0218019] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Accepted: 05/24/2019] [Indexed: 11/25/2022] Open
Abstract
Due to its tropical origin and adaptation, rice is significantly impacted by cold stress, and consequently sustains large losses in growth and productivity. Currently, rice is the second most consumed cereal in the world and production losses caused by extreme temperature events in the context of "major climatic changes" can have major impacts on the world economy. We report here an analysis of rice genotypes in response to low-temperature stress, studied through physiological gas-exchange parameters, biochemical changes in photosynthetic pigments and antioxidants, and at the level of gene and protein expression, towards an understanding and identification of multiple low-temperature tolerance mechanisms. The first effects of cold stress were observed on photosynthesis among all genotypes. However, the tropical japonica genotypes Secano do Brazil and Cypress had a greater reduction in gas exchange parameters like photosynthesis and water use efficiency in comparison to the temperate japonica Nipponbare and M202 genotypes. The analysis of biochemical profiles showed that despite the impacts of low temperature on tolerant plants, they quickly adjusted to maintain their cellular homeostasis by an accumulation of antioxidants and osmolytes like phenolic compounds and proline. The cold tolerant and sensitive genotypes showed a clear difference in gene expression at the transcript level for OsGH3-2, OsSRO1a, OsZFP245, and OsTPP1, as well as for expression at the protein level for LRR-RLKs, bHLH, GLYI, and LTP1 proteins. This study exemplifies the cold tolerant features of the temperate japonica Nipponbare and M202 genotypes, as observed through the analysis of physiological and biochemical responses and the associated changes in gene and protein expression patterns. The genes and proteins showing differential expression response are notable candidates towards understanding the biological pathways affected in rice and for engineering cold tolerance, to generate cultivars capable of maintaining growth, development, and reproduction under cold stress. We also propose that the mechanisms of action of the genes analyzed are associated with the tolerance response.
Collapse
Affiliation(s)
- Gabriela Moraes de Freitas
- Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, Arkansas, United States of America
- Department of Botany, Federal University of Pelotas, Pelotas, Brazil
| | - Julie Thomas
- Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, Arkansas, United States of America
| | - Rohana Liyanage
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas, United States of America
| | - Jackson O. Lay
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas, United States of America
| | - Supratim Basu
- Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, Arkansas, United States of America
| | - Venkategowda Ramegowda
- Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, Arkansas, United States of America
| | | | | | | | - Andy Pereira
- Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, Arkansas, United States of America
| |
Collapse
|